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Résumé — La gestion de la maintenance d'installations 

industrielles de production est un facteur important de compétitivité. 

Les travaux présentés dans cette publication consistent à modéliser 

un exemple de système industriel issu de la littérature : le système 

AGR ; pour l’évaluation de stratégies de maintenances. Nous 

utilisons deux outils considérant le système suivant deux niveaux : 

l’outil mp-sim qui se positionne au niveau des composants, et la 

plateforme OpenAltaRica qui se positionne au niveau système. Ces 

deux outils sont basés sur le cadre mathématique des systèmes à 

événements discrets stochastiques. Les indicateurs évalués sont 

calculés par simulation stochastique sur ces modèles. 

Mots-clefs — Maintenance de systèmes industriels, 

modélisation, systèmes à événements discrets stochastiques 

Abstract— Managing the maintenance of industrial plants is an 

important factor of competitiveness. Works presented within this 

publication show the modeling of an industrial system example 

coming from the literature: the AGR system; to evaluate 

maintenance strategies. Two tools are used with different level 

abstraction on the system. The mp-sim tool considers the component 

level. The OpenAltaRica platform considers the system level. These 

tools are based on the stochastic discrete event systems 

mathematical framework. Indicators to assess on these models are 

calculated by stochastic simulation. 

Keywords — Maintenance of industrial systems, Modeling, 

stochastic discrete event systems 

I. INTRODUCTION 

The maintenance of industrial production systems is one 
of the major actual challenges, and the management of their 
maintenances is an important competitiveness factor. In fact, 
a suitable maintenance strategy should increase the system 
availability, and decreases costs due to interventions. There 
are two different kinds of maintenance policies: corrective 
maintenances repairing the system after the occurrences of 
failures, preventive maintenances to maintain the system 
before the occurrences of failures. Combining different kinds 
of maintenance policies on components of a system can thus 

 
1 www.irt-systemx.fr/projets/mpo 

be a good solution. Nevertheless, it has to be finely analyzed, 
so to search the optimal maintenance strategies on the system, 
according to specified criteria (e.g. availability, cost, etc.). 

In this publication, we show the modeling and assessment 
of maintenance strategies and time availability of an industrial 
example coming from the literature: the AGR system [3]. We 
focus on two levels: the component level and the system level. 
For both, the components are modeled with their degradation 
and failure processes. At the component level we study 
different kinds of maintenance strategies. At the system level, 
we compose the components so to get the time of availability 
of the system according to occurrences of failures of 
components. We only consider the reliability diagram point of 
view of the system, and does not represent functional 
reconfigurations. This overall modeling is based on the 
mathematical framework of stochastic discrete event systems 
(see [4] and [5] for an overall introduction). Models are 
designed with the mp-sim tool for the component level, and 
the OpenAltaRica platform for the system level. 

These works are carried out within the research project 
MPO (for “Maintenance Prévisionnelle et Optimisation” in 
French), realized at IRT SystemX1 with different industrial 
and academic partners. This project deals with the 
optimization of maintenance strategies for production 
systems. 

The remainder of this publication is organized as follow. 
Section II makes a brief description of this AGR system 
example. Section III presents the mathematical framework of 
stochastic discrete event systems, and how it is implemented 
within the mp-sim tool and the OpenAltaRica platform. 
Section IV presents the modeling of the AGR system with mp-
sim and OpenAltaRica, and is followed by the experiments in 
section V. Section VI discusses about works combining the 
two tools with an optimization algorithm to get (one of) the 
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best maintenance strategy for the system. Finally, section VII 
concludes this publication. 

II. THE AGR SYSTEM EXAMPLE 

The AGR system example is taken from [3]. It is a 
lubrication system of a turbo-pump of a 900MW nuclear 
power plant. It is composed of several heterogeneous 
components: pumps, valves, filters, a heat exchanger and 
sensors. These components are organized in several redundant 
lines. Each component can fail according to several failure 
modes, which occurrences are led by different degradation 
mechanisms: for instance, the oxidation of the electrical 
contacts of a pump, leading to a shutdown or a failure to start. 
Figure 1 presents the architecture diagram of this AGR system 

 

Figure 1: Architecture diagram of the AGR system 

Document [3] also presents the degradations and failures 
of the components. For instance, a filter can have two 
degradations, leading to two failure types: a clogging 
degradation leading to a hydraulic lost and a hole degradation 
leading to a chemical lost. The degradations have different 
levels, from level 0 meaning no degradation, to level 2 
meaning high degraded. The transitions towards higher 
degradation levels follow a stochastic law (Weibull or 
exponential). Furthermore, the changes between the working 
of a component and its failures, according to the degradation 
and its level, follow a stochastic law. 

Different kinds of maintenance strategies are defined: 
corrective maintenance, planned maintenance and condition-
based maintenance according to inspection and tests 
performed on components. 

For the works of this publication, our interest is on the 
modeling of such degradations and failures processes at the 
component and system levels, and to get the time of 
availability of the system according to these degradations and 
failures. 

III. THE STOCHASTIC DISCRETE EVENT SYSTEMS 

FRAMEWORK 

Discrete event systems (DES) are a mathematical 
framework to describe the behavior of systems. The state of 
the system can be in a finite or infinite set and transitions 
between states are performed according to occurrences of 
events. These occurrences of events are associated to delays, 
which can be deterministic or stochastic. In case of stochastic 
delays, we name a stochastic discrete event systems (SDES) 

Figure 2 is a graphical representation of a SDES of a 
component which can be in four states: STANDBY, 
WORKING, FAILED and MAINTENANCE. Arrows linking 
states represent transitions and their labels describe the events. 
Plain arrows represent stochastic transitions whereas dotted 
ones represent deterministic transitions. 

 

Figure 2: Graphical representation of a SDES 

For both tools presented after (mp-sim and 
OpenAltaRica), we consider stochastic simulation of discrete 
event systems. Stochastic simulation is a versatile tool to 
compute performance indicators of discrete event systems 
([9]). It consists in drawing at random a sample of executions 
of the model, to observe a number of quantities during these 
executions, and to make statistics on these observations. 

A. The mp-sim implementation 

Mp-sim (Maintenance Policy SIMulation) is a Python 
based maintenance policy simulations tool. It is intended for 
component level or black-box system simulations. Mp-sim 
uses SimPy ([1]-[2]) as its core simulation framework. SimPy 
is an open source library for discrete event simulations and it 
is process-based. The processes in SimPy are defined by 
Python generator functions and can be used to model active 
components like customers, vehicles or agents. SimPy also 
provides various types of shared resources to model limited 
capacity congestion points like servers, checkout counters and 
tunnels. 

We identified modeling components for maintenance 
policy simulations from existing research efforts (Figure 3). 
Among them, the two right side components, a degradation 
model and a maintenance policy, are the most important and 
core items for maintenance policy simulations. The left side 
components, which are usage, performance metric, cost, time 
(delay), maintenance quality, maintenance type, system 
configuration, data quality and optimization, are also 
important but their necessity is dependent on specific 
requirements of actual use cases. 

 

Figure 3: Identified Modeling Components in mp-sim 

In the mp-sim degradation model, there are two main 
features: time to failure (TTF or lifetime) and degradation 
level at a given time or a given usage. The TTF is the time 
difference between a failure time and its introduction time of 
a maintenance object while degradation levels are an 
evolution of health states during a course of its start and 
failure. As you can easily infer, the two features affect each 
other and are closely linked together; the short TTF implies a 
steeper degradation level curve and vice versa. 

After identifying the two essential features for a 
degradation model, we can think of two different approaches: 
top-down and bottom-up. The top-down approach starts from 
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a TTF distribution that reflects statistical characteristics of a 
population of maintenance objects. Well-known probability 
distributions for modeling lifetimes include Weibull, 
Lognormal, Exponential and Bathtub curve distributions. 
Once a TTF is drawn from a given probability distribution, we 
can create a degradation curve that is adjusted to fail at the 
drawn TTF of the instance. The degradation curve can take 
different shapes such as linear, stepwise, exponential and 
logarithm. 

The bottom-up approach takes the opposite process; it 
starts from modeling a degradation curve then TTF is decided 
when a degradation level reaches a threshold. Two aspects to 
consider for modeling a degradation curve are increment and 
unexpected failure. Increment models a difference between 
two consecutive usages or time units of a maintenance object. 
It is obtained from a given probability distribution each time 
the maintenance object is used, then it is cumulatively added 
to the last degradation level. By repeating this process, we can 
obtain a degradation curve that contains evolution of 
degradation levels over time. When modeling the increment, 
we can also consider correlations with previous degradation 
levels or different usages. Depending on characteristics of an 
increment distribution, a degradation curve can be 
monotonically increase or fluctuate. More specifically, if an 
increment distribution contains only positive values then it is 
monotone, otherwise it can fluctuate. Another aspect to 
consider for modeling a degradation curve is an unexpected 
failure that means a sudden break down at once rather than 
gradual degradations. It models random failures in real world 
due to unexpected events such as a bird crash to an airplane 
engine. We can model an unexpected failure with a random 
process that has a certain occurrence probability and apply it 
each time when a maintenance object is used. We can consider 
correlations with previous degradation levels or usages for the 
unexpected failure modeling too. 

Figure 4 shows class diagram of degradation models 
implemented in mp-sim. At the top, BaseDegradModel 
provides interfaces for all the degradation models. Then 
BaseTDDegradModel and BaseBUDegradModel inherit the 
BaseDegradModel and implement common functionalities for 
top-down and bottom-up degradation models respectively. 

Mp-sim supports three top-down degradation models: 

• TopDownDegradModel: Used for simple top-
down degradation model that has one TTF 
distribution 

• GeneralTDDegradModel: Used for a more 
generalized and advanced top-down degradation 
model that has one or more degradation 
mechanisms. Each degradation mechanism has 
one or more degradation levels, and each 
degradation level has one or more TTF 
distributions. 

• MixedTDDegradModel: Used for mixed usage 
cases where two or more different usages were 
assumed in a maintenance target object. Final 
TTF is obtained by applying weighted average. 

In addition to the top-down degradation models, mp-sim 
supports two bottom-up degradation models: 

• BottomUpDegradModel: Used for simple 
bottom-up degradation model that has one 
increment distribution and one unexpected 
failure probability 

• MixedBUDegradModel: Used for mixed usage 
cases where two or more different usages were 
assumed in a maintenance target object. Each 
increment is obtained from multiple increment 
distributions. 

From the perspective of maintenance policy simulations 
with discrete events, we can think of three fundamental 
events: failure, repair and inspection. A failure occurs when 
simulation time reaches a TTF, which is obtained from a 
degradation model, without proper repair actions. A repair 
event occurs periodically (scheduled) or after an unexpected 
failure depending on a maintenance policy. An inspection 
occurs periodically by a predefined schedule and it checks a 
degradation level of a maintenance object. According to the 
inspection result, we decide whether to do a maintenance or 
not. These discrete events essentially introduce their 
corresponding expenses (costs) and delays (downtime) to the 
system. 

A maintenance policy in mp-sim is all about how to 
allocate the repair and inspection events. For that, mp-sim 
provides a generic and extendible way to allocate the two 
events for implementing new maintenance policies without 
much effort. More specifically, mp-sim provides the abstract 
class BaseMO that deals with the three main events behind the 
scene and subclasses of BaseMO only need to specify where 
to place repair and/or inspection events (Figure 5). 

 

 

Figure 4: Class Diagram of Degradation Models in mp-sim 
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Figure 5: Class Diagram of Maintenance Policies in mp-sim 

 

As of now, mp-sim provides six different maintenance 
policy implementations: 

• CorrectiveMO: Let it fail, then repair. 

• PerfectMO: Repair right before a failure. 

• PeriodicMO: Repair periodically and wait until 
the next scheduled repair even if there was a 
failure. 

• PeriodicCorrectiveMO: Repair periodically and 
repair right after a failure like the corrective one. 

• ConditionBasedMO: Inspect periodically and 
repair when a degradation level is over a 
threshold. 

• ExperimentalMO: Template for implementing 
new maintenance policies. 

B. The AltaRica 3.0 implementation 

AltaRica 3.0 is a high level and stochastic event-based 
modeling language, initially dedicated to the assessment of 
complex critical systems ([6]). The language is based on the 
mathematical framework GTS (for Guarded Transition 
Systems [7]) to describe the behavior of the system under 
study. The execution of an AltaRica 3.0 model is based of 
stochastic discrete event system ([8]). 

A versatile set of assessment tools are developed for 
AltaRica 3.0, composing the OpenAltaRica platform: 

• An interactive simulator making possible to play 
‘what-if’ scenarios and to validate models ([10]). 

• A compiler of AltaRica 3.0 models into fault 
trees ([11]). 

• A generator of critical sequences. 

• Finally, a stochastic simulator ([12]). 

For this publication, we focus on this stochastic simulator 
assessment tool. For AltaRica 3.0 models, the random 
dimension comes with delays of events. For stochastic delays 
a random choice is made for the date to fire the transition, 
whereas for deterministic delays a random choice is made 
when several transitions can be fired at the same date. Then 
statistics are made on indicators based on observers defined in 

the model. Indicators are values calculated at specific times of 
the executions from the successive values. 

Previous works have considered the modeling and 
assessment of different maintenance strategies with 
AltaRica 3.0: for instance [13] or [14] for corrective and 
planned maintenances, or [15] for combination of different 
kinds. 

IV. MODELING OF THE AGR SYSTEM 

The AGR system example, presented section II was 
modeled by both tools: mp-sim and OpenAltaRica. These two 
modeling complement each other: with mp-sim we focus on 
the component point of view and with OpenAltaRica we focus 
on the system point of view. 

A. mp-sim modeling 

The AGR system can be modeled by using 
GeneralTDDegradModel in mp-sim. In fact, this generalized 
top-down degradation model is inspired by the AGR system. 
As noted in Chapter III.A, this generalized top-down 
degradation model can have one or more degradation 
mechanisms. Each degradation mechanism can have one or 
more degradation levels, and finally, each degradation level 
can have one or more TTF distributions. Figure 6 shows a 
code example that realizes the “Clogging” degradation 
mechanism of 01FI and 02FI filters in the AGR system. Other 
degradation mechanisms can also be realized following the 
similar way. 

A complete degradation model for the filters consists two 
degradation mechanisms, namely “Clogging” and “Hole 
degradation”. A TTF is drawn from the two degradation 
mechanisms and histogram of the drawn TTFs of the filters is 
shown in Figure 7. 
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Figure 6: Code Example of a Filter Degradation Mechanism 

 

 

Figure 7: TTF Histogram of the filter 

B. AltaRica 3.0 modeling 

With the AltaRica 3.0 modeling language, one can design 
by the top-down or the bottom-up approaches, and even 
combines both. For the AGR system, the model is 
decomposed on three main parts: the definition of classes 
representing components of the system, the definition of the 
main block representing the system, and other elements to 
define domains of values. 

For all the components, we have defined a modeling 
pattern to model behaviors of degradations and failures. For 
this publication, and due to lack of place, we only present it 
instantiated on the class filter. Other components are defined 
with the same patterns and according to their respective 
degradations and failures. 

1) AltaRica 3.0 generic domains 
Figure 8 presents the AltaRica 3.0 domains of values used 

within the different parts of the model. The first domain 
named agr::OMode is used to define if a component is on 

operation or on maintenance. The second domain 
agr::FState is used  to define functional state of 

components. We only consider the AGR system with a 
dysfunctional point of view, thus functional states of 
components are limited to one of the two working/failed 
pattern. Finally, the third domain agr::CDegradation is 

used to define the state level of a degradation. 

 

domain agr::OMode {OPERATION, MAINTENANCE} 

domain agr::FState {WORKING, FAILED} 

domain agr::CDegradation {D0, D1, D2} 

Figure 8: AltaRica 3.0 generic domains of values 

2) AltaRica 3.0 classes for a filter 
As previously introduced in section II, a filter can have 

two degradations, leading to two failures: a clogging 
degradation leading to a hydraulic lost, and a hole degradation 
leading to a chemical lost. 

Figure 9 introduces the two classes defining a filter.  The 
first class agr::BehavioralFilter, the most important, 

defines a filter from its internal behavior point of view: three 
state variables vsMode, vsFState and vsIsDegraded, a 

maintenance part describes after and the two blocks, also 
describes after to define the degradations and failures. The 
second class agr::Filter inherits the first class and adds its 

external behavior with Boolean flow variables and the 
assertion defining how the output flow is updated according 
to the input flow and the internal state variables. Boolean 
variables are considered because we only focus on 
dysfunctional point of view of the system, meaning, when the 
component is failed, it sends the value false. 

class agr::BehavioralFilter 

  agr::OMode vsMode (init = OPERATION); 

  agr::FState vsFState (init = WORKING); 

  Boolean vsIsDegraded (init = false); 

  // Maintenance part 

  // ... 

  // Degradations and failures 

  block CloggingDegradation 

    // ... 

  end 

  block HoleDegradation 

    // ... 

  end 

end 

 

class agr::Filter 

  extends agr::BehavioralFilter; 

  Boolean vfIn, vfOut (reset = false); 

  assertion 

    vfOut := vfIn and vsMode == OPERATION  

                  and vsFState == WORKING; 

end 

Figure 9: AltaRica 3.0 classes for a filter 

The AltaRica 3.0 part of the clogging degradation of a 
filter is presented in Figure 10. It first introduces a dedicated 
state variable vsD representing the level of degradation and 
transitions to change from level 0 to level 1 and from level 1 
to level 2. Weibull delays of events labelling these transitions 
are taken from [3]. Then it defines the occurrences of the 
failure ‘hydraulic lost’ according to the level of the 
degradation by the three transitions. 

The same degradation pattern, instantiated in Figure 10, is 
used to define the second degradation of a filter: a hole 
degradation leading to a chemical lost. Furthermore, it is also 
used to define all degradation and failures for components. 

Maintenance of a filter are abstract in the sense that they 
are started if the component is degraded or failed. We assume 
a deterministic delay of 0.5 time units (expressed in day) to 
start a maintenance, and a deterministic delay parametrized 
with the value 0.5 time units, done in [3], to realize the 
maintenance. After the maintenance, the functional state of the 
component is set to WORKING. 
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block CloggingDegradation 

  agr::CDegradation vsD (init = D0); 

  event evD0D1 (delay = Weibull(4.0,200.0)); 

  event evD1D2 (delay = Weibull(2.0,100.0)); 

  transition 

    evD0D1: owner.vsOMode == OPERATION and 

            owner.vsFState == WORKING and 

            vsD == D0 

      -> {vsD := D1; 

          owner.vsIsDegraded := true;} 

    evD1D2: owner.vsOMode == OPERATION and 

            owner.vsFState == WORKING and 

            vsD == D1 

      -> {vsD := D2; 

          owner.vsIsDegraded := true;} 

  event evHydraulicLostD0 

             (delay = exponential(1.0e-4)); 

  event evHydraulicLostD1 

             (delay = exponential(0.004)); 

  event evHydraulicLostD2 

             (delay = exponential(0.04)); 

  transition 

    evHydraulicLostD0: vsD == D0 and 

             owner.vsOpMode == OPERATION and 

             owner.vsFState == WORKING 

      -> owner.vsFState := FAILED; 

    evHydraulicLostD1: vsD == D1 and 

             owner.vsOpMode == OPERATION and 

             owner.vsFState == WORKING 

      -> owner.vsFState := FAILED; 

    evHydraulicLostD2: vsD == D2 and 

             owner.vsOpMode == OPERATION and 

             owner.vsFState == WORKING 

      -> owner.vsFState := FAILED; 

end 

Figure 10: AltaRica 3.0 part for the Clogging of a filter 

Other classes defining other components of the AGR 
system are implemented with the same pattern as the one of 
the class filter. 

3) AltaRica 3.0 main block of the AGR system 
The main block of the AltaRica 3.0 is defined with the 

same structure as the AGR system depicted in Figure 1. It 
means that this main block is composed of two sub-parts 
defined as (sub-)block: the main line with the super 
component, the heat exchanger, the filters, and the valve; and 
the spare line with the pump and the valve. Figure 11 shows 
this main structure. 

The Boolean observer oOut is used to compute indicators 

by assessment tools. For our purpose, it is used to compute 
statistics, by stochastic simulation, on the time availability of 
the system. 

V. EXPERIMENTS 

A. Component-level simulations with mp-sim 

Figure 12 shows availability, in term of mean “sojourn-
time” in days, of a 01FI or 02FI filter simulated using mp-sim. 
In the simulations, we consider a mission time of 1 825 days 
(representing 5 years), 10-day of delay when there is a failure 
and 0.5-day of delay for maintenance interventions. The 
corrective maintenance strategy resulted in around 1 760 
available days while periodic maintenance strategy resulted in 
around 1 813 available days with 95-day of maintenance 
interval. The best maintenance strategy was the periodic + 
corrective one that resulted in around 1 815 available days 
with 115-day of maintenance interval. 

 

 

 

block AGRSystem 

  Boolean vfIn, vfOut (reset = false); 

  block MainLine 

    Boolean vfIn, vfOut (reset = false); 

    block SuperComponent 

      // ... 

    end 

    agr::HeatExchanger he; 

    block Filtering 

      // ... 

    end 

    agr::Valve V; 

    assertion 

      SuperComponent.vfIn := vfIn; 

      HE.vfIn := SuperComponent.vfOut; 

      Filtering.vfIn := HE.vfOut; 

      V.vfIn := Filtering.vfOut; 

      vfOut := V.vfOut; 

  end 

  block SpareLine  
    Boolean vfIn, vfOut (reset = false); 

    agr::Pump P; 

    agr::Valve V; 

    assertion 

      P.vfIn := vfIn; 

      V.vfIn := P.vfOut; 

      vfOut := V.vfOut; 

  end 

  agr::Sensor S 

  assertion 

    vfIn := true;  
    MainLine.vfIn := vfIn; 

    SpareLine.vfIn := vfIn; 

    S.vfIn := MainLine.vfOut or SpareLine.vfOut; 

    vfOut := S.vfOut and  

            (MainLine.vfOut or SpareLine.vfOut); 

 

  observer Boolean oOut = vfOut; 

end 

Figure 11: AltaRica 3.0 main block of the AGR system 

 

 

Figure 12: Filter Availability Obtained from mp-sim Simulations 

B. System-level simulations with AltaRica 3.0 

For stochastic simulation of the AltaRica 3.0 model 
presented in sub-section IV.B of the AGR system, we 
consider a time mission of 1 825 days (representing 5 years). 
We have defined a ‘sojourn-time’ indicator on the observer 
oOut to the value true. It represents the total duration of the 

different time intervals with the observer oOut takes the value 

true, during the time interval [0.0, 1 825.0]. Statistics of this 
indicator provides the mean time of availability of the system. 

Table 1 presents results obtained by the stochastic 
simulator. 100 000 executions of the model have been realized 
and statistics are calculated on these executions. The time to 
realize these executions is 3 minutes on a laptop, which is 
quite small according to the size of the model and the number 
of fired transitions presented in the first part of the table. The 
second part of the table indicates statistics of the indicator 
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‘sojourn-time’ on the observer ‘oOut’: the mean, the standard 
deviation (named SD) and the 95% lower and upper bound 
(named lb and ub) confidence range. These statistics are 
provided at different dates of execution: each year. 

Table 1: Results of stochastic simulations of the AltaRica 3.0 

model 

Fired transitions Mean 
Min 
Max 

3296.22 
2943 
4093 

Indicator ‘sojourn-time’ on Observer ‘oOut’ 

Dates 
365.0 
730.0 
1 095.0 
1 460.0 
1 825.0 

Mean 
324.79 
638.93 
941.35 
1 238.36 
1 531.39 

SD 
10.47 
19.28 
27.47 
36.31 
46.32 

95% lb 
324.73 
638.81 
941.18 
1 238.14 
1 531.1 

95% ub 
324.86 
639.05 
941.52 
1 238.59 
1 531.67 

 

We do not realize a comparison of our results with results 
from [3]. On the one hand, the system level model and the 
calculated indicators are not the same. In fact, the AltaRica 3.0 
model does not consider some functional features of the 
system, for instance the control to switch from one line to the 
other according to failures. Furthermore, we do not consider 
the number of required repairers to realized maintenance, and 
also the cost of the maintenance. On the other hand, our 
concern is focus on the relation between simulation and 
optimization tools, see the next section VI. Thus, the use of 
this example may continue with this next works. 

VI. DISCUSSION 

In this publication, we consider two approaches to assess 
maintenance strategies and time availability of the 
AGR system: the mp-sim tool with a component point of view 
and the OpenAltaRica platform with a system point of view. 
Our objective is to get first information about the maintenance 
strategies at the component level, so to parametrize the model 
of the system level with first values. In fact, our works are 
integrated in a more global project to combine simulation tools 
with optimization algorithms, so to get the best, or one of the 
best, maintenance strategies of a system. First works 
considering small (or toy) examples were already presented: 
see [13] and [14]. The idea is to define planned maintenance 
of components thanks to a genetic algorithm. 

VII. CONCLUSION 

In this publication, we presented how to model and assess 
maintenance and the time availability of an industrial example 
coming from the literature: the AGR system. After a brief 
presentation of this system, we have considered modeling 
with two point of views, and two different tools. The mp-sim 
tool considers the component level point view and produces 
information about the best maintenance strategies for each 
component of the AGR system. The OpenAltaRica platform 
considers the system level point of view and produces 
information about the time availability of the system 
according to failures of components. 

The models, at both component and system levels, 
consider the stochastic discrete event systems mathematical 
framework. For each component we defined degradations and 
failures as states, and the changes between levels of 
degradation and from the working to failed state as transitions. 
On the one hand, it provides a modeling pattern to model and 
assess such behaviors of degradations leading to failures. On 

the other hand, stochastic discrete event systems are the 
accurate level of abstraction, not only because behaviors of 
degradations and failures are clearly defined in terms of 
occurrences of events, but also because assessment algorithms 
(e.g. stochastic simulation) are efficient. 

Even if some future works were indicated within the 
discussion part (VI), in can also be interesting to made some 
sensitive analyses on the different parameters of the model. In 
fact, such analyses can conclude, on the one hand, on the 
relations between the variations of some parameters and the 
results of the model, in terms of the time availability, or other 
criteria. On the other hand on the relation between some of 
these parameters. 
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