
HAL Id: hal-03966651
https://hal.science/hal-03966651v1

Submitted on 31 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Industrial system example modeling for the assessment
of maintenance strategies

Batteux Michel, Selma Khebbache, Seo Sin-Seok

To cite this version:
Batteux Michel, Selma Khebbache, Seo Sin-Seok. Industrial system example modeling for the assess-
ment of maintenance strategies. 23e Congrès de Maîtrise des Risques et de Sûreté de Fonctionnement
(Lambda Mu 23), Oct 2022, Paris Saclay, France. �hal-03966651�

https://hal.science/hal-03966651v1
https://hal.archives-ouvertes.fr

23ème Congrès Lambda Mu de l’IMdR 10 au 13 octobre 2022, EDF Lab Paris Saclay

Modélisation d’un exemple de système industriel

pour l’évaluation de stratégies de maintenances

Industrial system example modeling for the

assessment of maintenance strategies

BATTEUX Michel

IRT SystemX

2, boulevard Thomas Gobert

91120 Palaiseau

michel.batteux@irt-systemx.fr

KHEBBACHE Selma

IRT SystemX

2, boulevard Thomas Gobert

91120 Palaiseau

selma.khebbache@irt-systemx.fr

SEO Sin-Seok

Safran Tech, DST / IRT System X

Rue des Jeunes Bois, Châteaufort

78114 Magny-Les-Hameaux

sin-seok.seo@safrangroup.com

Résumé — La gestion de la maintenance d'installations

industrielles de production est un facteur important de compétitivité.

Les travaux présentés dans cette publication consistent à modéliser

un exemple de système industriel issu de la littérature : le système

AGR ; pour l’évaluation de stratégies de maintenances. Nous

utilisons deux outils considérant le système suivant deux niveaux :

l’outil mp-sim qui se positionne au niveau des composants, et la

plateforme OpenAltaRica qui se positionne au niveau système. Ces

deux outils sont basés sur le cadre mathématique des systèmes à

événements discrets stochastiques. Les indicateurs évalués sont

calculés par simulation stochastique sur ces modèles.

Mots-clefs — Maintenance de systèmes industriels,

modélisation, systèmes à événements discrets stochastiques

Abstract— Managing the maintenance of industrial plants is an

important factor of competitiveness. Works presented within this

publication show the modeling of an industrial system example

coming from the literature: the AGR system; to evaluate

maintenance strategies. Two tools are used with different level

abstraction on the system. The mp-sim tool considers the component

level. The OpenAltaRica platform considers the system level. These

tools are based on the stochastic discrete event systems

mathematical framework. Indicators to assess on these models are

calculated by stochastic simulation.

Keywords — Maintenance of industrial systems, Modeling,

stochastic discrete event systems

I. INTRODUCTION

The maintenance of industrial production systems is one
of the major actual challenges, and the management of their
maintenances is an important competitiveness factor. In fact,
a suitable maintenance strategy should increase the system
availability, and decreases costs due to interventions. There
are two different kinds of maintenance policies: corrective
maintenances repairing the system after the occurrences of
failures, preventive maintenances to maintain the system
before the occurrences of failures. Combining different kinds
of maintenance policies on components of a system can thus

1 www.irt-systemx.fr/projets/mpo

be a good solution. Nevertheless, it has to be finely analyzed,
so to search the optimal maintenance strategies on the system,
according to specified criteria (e.g. availability, cost, etc.).

In this publication, we show the modeling and assessment
of maintenance strategies and time availability of an industrial
example coming from the literature: the AGR system [3]. We
focus on two levels: the component level and the system level.
For both, the components are modeled with their degradation
and failure processes. At the component level we study
different kinds of maintenance strategies. At the system level,
we compose the components so to get the time of availability
of the system according to occurrences of failures of
components. We only consider the reliability diagram point of
view of the system, and does not represent functional
reconfigurations. This overall modeling is based on the
mathematical framework of stochastic discrete event systems
(see [4] and [5] for an overall introduction). Models are
designed with the mp-sim tool for the component level, and
the OpenAltaRica platform for the system level.

These works are carried out within the research project
MPO (for “Maintenance Prévisionnelle et Optimisation” in
French), realized at IRT SystemX1 with different industrial
and academic partners. This project deals with the
optimization of maintenance strategies for production
systems.

The remainder of this publication is organized as follow.
Section II makes a brief description of this AGR system
example. Section III presents the mathematical framework of
stochastic discrete event systems, and how it is implemented
within the mp-sim tool and the OpenAltaRica platform.
Section IV presents the modeling of the AGR system with mp-
sim and OpenAltaRica, and is followed by the experiments in
section V. Section VI discusses about works combining the
two tools with an optimization algorithm to get (one of) the

23ème Congrès Lambda Mu de l’IMdR 10 au 13 octobre 2022, EDF Lab Paris Saclay

best maintenance strategy for the system. Finally, section VII
concludes this publication.

II. THE AGR SYSTEM EXAMPLE

The AGR system example is taken from [3]. It is a
lubrication system of a turbo-pump of a 900MW nuclear
power plant. It is composed of several heterogeneous
components: pumps, valves, filters, a heat exchanger and
sensors. These components are organized in several redundant
lines. Each component can fail according to several failure
modes, which occurrences are led by different degradation
mechanisms: for instance, the oxidation of the electrical
contacts of a pump, leading to a shutdown or a failure to start.
Figure 1 presents the architecture diagram of this AGR system

Figure 1: Architecture diagram of the AGR system

Document [3] also presents the degradations and failures
of the components. For instance, a filter can have two
degradations, leading to two failure types: a clogging
degradation leading to a hydraulic lost and a hole degradation
leading to a chemical lost. The degradations have different
levels, from level 0 meaning no degradation, to level 2
meaning high degraded. The transitions towards higher
degradation levels follow a stochastic law (Weibull or
exponential). Furthermore, the changes between the working
of a component and its failures, according to the degradation
and its level, follow a stochastic law.

Different kinds of maintenance strategies are defined:
corrective maintenance, planned maintenance and condition-
based maintenance according to inspection and tests
performed on components.

For the works of this publication, our interest is on the
modeling of such degradations and failures processes at the
component and system levels, and to get the time of
availability of the system according to these degradations and
failures.

III. THE STOCHASTIC DISCRETE EVENT SYSTEMS

FRAMEWORK

Discrete event systems (DES) are a mathematical
framework to describe the behavior of systems. The state of
the system can be in a finite or infinite set and transitions
between states are performed according to occurrences of
events. These occurrences of events are associated to delays,
which can be deterministic or stochastic. In case of stochastic
delays, we name a stochastic discrete event systems (SDES)

Figure 2 is a graphical representation of a SDES of a
component which can be in four states: STANDBY,
WORKING, FAILED and MAINTENANCE. Arrows linking
states represent transitions and their labels describe the events.
Plain arrows represent stochastic transitions whereas dotted
ones represent deterministic transitions.

Figure 2: Graphical representation of a SDES

For both tools presented after (mp-sim and
OpenAltaRica), we consider stochastic simulation of discrete
event systems. Stochastic simulation is a versatile tool to
compute performance indicators of discrete event systems
([9]). It consists in drawing at random a sample of executions
of the model, to observe a number of quantities during these
executions, and to make statistics on these observations.

A. The mp-sim implementation

Mp-sim (Maintenance Policy SIMulation) is a Python
based maintenance policy simulations tool. It is intended for
component level or black-box system simulations. Mp-sim
uses SimPy ([1]-[2]) as its core simulation framework. SimPy
is an open source library for discrete event simulations and it
is process-based. The processes in SimPy are defined by
Python generator functions and can be used to model active
components like customers, vehicles or agents. SimPy also
provides various types of shared resources to model limited
capacity congestion points like servers, checkout counters and
tunnels.

We identified modeling components for maintenance
policy simulations from existing research efforts (Figure 3).
Among them, the two right side components, a degradation
model and a maintenance policy, are the most important and
core items for maintenance policy simulations. The left side
components, which are usage, performance metric, cost, time
(delay), maintenance quality, maintenance type, system
configuration, data quality and optimization, are also
important but their necessity is dependent on specific
requirements of actual use cases.

Figure 3: Identified Modeling Components in mp-sim

In the mp-sim degradation model, there are two main
features: time to failure (TTF or lifetime) and degradation
level at a given time or a given usage. The TTF is the time
difference between a failure time and its introduction time of
a maintenance object while degradation levels are an
evolution of health states during a course of its start and
failure. As you can easily infer, the two features affect each
other and are closely linked together; the short TTF implies a
steeper degradation level curve and vice versa.

After identifying the two essential features for a
degradation model, we can think of two different approaches:
top-down and bottom-up. The top-down approach starts from

23ème Congrès Lambda Mu de l’IMdR 10 au 13 octobre 2022, EDF Lab Paris Saclay

a TTF distribution that reflects statistical characteristics of a
population of maintenance objects. Well-known probability
distributions for modeling lifetimes include Weibull,
Lognormal, Exponential and Bathtub curve distributions.
Once a TTF is drawn from a given probability distribution, we
can create a degradation curve that is adjusted to fail at the
drawn TTF of the instance. The degradation curve can take
different shapes such as linear, stepwise, exponential and
logarithm.

The bottom-up approach takes the opposite process; it
starts from modeling a degradation curve then TTF is decided
when a degradation level reaches a threshold. Two aspects to
consider for modeling a degradation curve are increment and
unexpected failure. Increment models a difference between
two consecutive usages or time units of a maintenance object.
It is obtained from a given probability distribution each time
the maintenance object is used, then it is cumulatively added
to the last degradation level. By repeating this process, we can
obtain a degradation curve that contains evolution of
degradation levels over time. When modeling the increment,
we can also consider correlations with previous degradation
levels or different usages. Depending on characteristics of an
increment distribution, a degradation curve can be
monotonically increase or fluctuate. More specifically, if an
increment distribution contains only positive values then it is
monotone, otherwise it can fluctuate. Another aspect to
consider for modeling a degradation curve is an unexpected
failure that means a sudden break down at once rather than
gradual degradations. It models random failures in real world
due to unexpected events such as a bird crash to an airplane
engine. We can model an unexpected failure with a random
process that has a certain occurrence probability and apply it
each time when a maintenance object is used. We can consider
correlations with previous degradation levels or usages for the
unexpected failure modeling too.

Figure 4 shows class diagram of degradation models
implemented in mp-sim. At the top, BaseDegradModel
provides interfaces for all the degradation models. Then
BaseTDDegradModel and BaseBUDegradModel inherit the
BaseDegradModel and implement common functionalities for
top-down and bottom-up degradation models respectively.

Mp-sim supports three top-down degradation models:

• TopDownDegradModel: Used for simple top-
down degradation model that has one TTF
distribution

• GeneralTDDegradModel: Used for a more
generalized and advanced top-down degradation
model that has one or more degradation
mechanisms. Each degradation mechanism has
one or more degradation levels, and each
degradation level has one or more TTF
distributions.

• MixedTDDegradModel: Used for mixed usage
cases where two or more different usages were
assumed in a maintenance target object. Final
TTF is obtained by applying weighted average.

In addition to the top-down degradation models, mp-sim
supports two bottom-up degradation models:

• BottomUpDegradModel: Used for simple
bottom-up degradation model that has one
increment distribution and one unexpected
failure probability

• MixedBUDegradModel: Used for mixed usage
cases where two or more different usages were
assumed in a maintenance target object. Each
increment is obtained from multiple increment
distributions.

From the perspective of maintenance policy simulations
with discrete events, we can think of three fundamental
events: failure, repair and inspection. A failure occurs when
simulation time reaches a TTF, which is obtained from a
degradation model, without proper repair actions. A repair
event occurs periodically (scheduled) or after an unexpected
failure depending on a maintenance policy. An inspection
occurs periodically by a predefined schedule and it checks a
degradation level of a maintenance object. According to the
inspection result, we decide whether to do a maintenance or
not. These discrete events essentially introduce their
corresponding expenses (costs) and delays (downtime) to the
system.

A maintenance policy in mp-sim is all about how to
allocate the repair and inspection events. For that, mp-sim
provides a generic and extendible way to allocate the two
events for implementing new maintenance policies without
much effort. More specifically, mp-sim provides the abstract
class BaseMO that deals with the three main events behind the
scene and subclasses of BaseMO only need to specify where
to place repair and/or inspection events (Figure 5).

Figure 4: Class Diagram of Degradation Models in mp-sim

23ème Congrès Lambda Mu de l’IMdR 10 au 13 octobre 2022, EDF Lab Paris Saclay

Figure 5: Class Diagram of Maintenance Policies in mp-sim

As of now, mp-sim provides six different maintenance
policy implementations:

• CorrectiveMO: Let it fail, then repair.

• PerfectMO: Repair right before a failure.

• PeriodicMO: Repair periodically and wait until
the next scheduled repair even if there was a
failure.

• PeriodicCorrectiveMO: Repair periodically and
repair right after a failure like the corrective one.

• ConditionBasedMO: Inspect periodically and
repair when a degradation level is over a
threshold.

• ExperimentalMO: Template for implementing
new maintenance policies.

B. The AltaRica 3.0 implementation

AltaRica 3.0 is a high level and stochastic event-based
modeling language, initially dedicated to the assessment of
complex critical systems ([6]). The language is based on the
mathematical framework GTS (for Guarded Transition
Systems [7]) to describe the behavior of the system under
study. The execution of an AltaRica 3.0 model is based of
stochastic discrete event system ([8]).

A versatile set of assessment tools are developed for
AltaRica 3.0, composing the OpenAltaRica platform:

• An interactive simulator making possible to play
‘what-if’ scenarios and to validate models ([10]).

• A compiler of AltaRica 3.0 models into fault
trees ([11]).

• A generator of critical sequences.

• Finally, a stochastic simulator ([12]).

For this publication, we focus on this stochastic simulator
assessment tool. For AltaRica 3.0 models, the random
dimension comes with delays of events. For stochastic delays
a random choice is made for the date to fire the transition,
whereas for deterministic delays a random choice is made
when several transitions can be fired at the same date. Then
statistics are made on indicators based on observers defined in

the model. Indicators are values calculated at specific times of
the executions from the successive values.

Previous works have considered the modeling and
assessment of different maintenance strategies with
AltaRica 3.0: for instance [13] or [14] for corrective and
planned maintenances, or [15] for combination of different
kinds.

IV. MODELING OF THE AGR SYSTEM

The AGR system example, presented section II was
modeled by both tools: mp-sim and OpenAltaRica. These two
modeling complement each other: with mp-sim we focus on
the component point of view and with OpenAltaRica we focus
on the system point of view.

A. mp-sim modeling

The AGR system can be modeled by using
GeneralTDDegradModel in mp-sim. In fact, this generalized
top-down degradation model is inspired by the AGR system.
As noted in Chapter III.A, this generalized top-down
degradation model can have one or more degradation
mechanisms. Each degradation mechanism can have one or
more degradation levels, and finally, each degradation level
can have one or more TTF distributions. Figure 6 shows a
code example that realizes the “Clogging” degradation
mechanism of 01FI and 02FI filters in the AGR system. Other
degradation mechanisms can also be realized following the
similar way.

A complete degradation model for the filters consists two
degradation mechanisms, namely “Clogging” and “Hole
degradation”. A TTF is drawn from the two degradation
mechanisms and histogram of the drawn TTFs of the filters is
shown in Figure 7.

23ème Congrès Lambda Mu de l’IMdR 10 au 13 octobre 2022, EDF Lab Paris Saclay

Figure 6: Code Example of a Filter Degradation Mechanism

Figure 7: TTF Histogram of the filter

B. AltaRica 3.0 modeling

With the AltaRica 3.0 modeling language, one can design
by the top-down or the bottom-up approaches, and even
combines both. For the AGR system, the model is
decomposed on three main parts: the definition of classes
representing components of the system, the definition of the
main block representing the system, and other elements to
define domains of values.

For all the components, we have defined a modeling
pattern to model behaviors of degradations and failures. For
this publication, and due to lack of place, we only present it
instantiated on the class filter. Other components are defined
with the same patterns and according to their respective
degradations and failures.

1) AltaRica 3.0 generic domains
Figure 8 presents the AltaRica 3.0 domains of values used

within the different parts of the model. The first domain
named agr::OMode is used to define if a component is on

operation or on maintenance. The second domain
agr::FState is used to define functional state of

components. We only consider the AGR system with a
dysfunctional point of view, thus functional states of
components are limited to one of the two working/failed
pattern. Finally, the third domain agr::CDegradation is

used to define the state level of a degradation.

domain agr::OMode {OPERATION, MAINTENANCE}

domain agr::FState {WORKING, FAILED}

domain agr::CDegradation {D0, D1, D2}

Figure 8: AltaRica 3.0 generic domains of values

2) AltaRica 3.0 classes for a filter
As previously introduced in section II, a filter can have

two degradations, leading to two failures: a clogging
degradation leading to a hydraulic lost, and a hole degradation
leading to a chemical lost.

Figure 9 introduces the two classes defining a filter. The
first class agr::BehavioralFilter, the most important,

defines a filter from its internal behavior point of view: three
state variables vsMode, vsFState and vsIsDegraded, a

maintenance part describes after and the two blocks, also
describes after to define the degradations and failures. The
second class agr::Filter inherits the first class and adds its

external behavior with Boolean flow variables and the
assertion defining how the output flow is updated according
to the input flow and the internal state variables. Boolean
variables are considered because we only focus on
dysfunctional point of view of the system, meaning, when the
component is failed, it sends the value false.

class agr::BehavioralFilter

 agr::OMode vsMode (init = OPERATION);

 agr::FState vsFState (init = WORKING);

 Boolean vsIsDegraded (init = false);

 // Maintenance part

 // ...

 // Degradations and failures

 block CloggingDegradation

 // ...

 end

 block HoleDegradation

 // ...

 end

end

class agr::Filter

 extends agr::BehavioralFilter;

 Boolean vfIn, vfOut (reset = false);

 assertion

 vfOut := vfIn and vsMode == OPERATION

 and vsFState == WORKING;

end

Figure 9: AltaRica 3.0 classes for a filter

The AltaRica 3.0 part of the clogging degradation of a
filter is presented in Figure 10. It first introduces a dedicated
state variable vsD representing the level of degradation and
transitions to change from level 0 to level 1 and from level 1
to level 2. Weibull delays of events labelling these transitions
are taken from [3]. Then it defines the occurrences of the
failure ‘hydraulic lost’ according to the level of the
degradation by the three transitions.

The same degradation pattern, instantiated in Figure 10, is
used to define the second degradation of a filter: a hole
degradation leading to a chemical lost. Furthermore, it is also
used to define all degradation and failures for components.

Maintenance of a filter are abstract in the sense that they
are started if the component is degraded or failed. We assume
a deterministic delay of 0.5 time units (expressed in day) to
start a maintenance, and a deterministic delay parametrized
with the value 0.5 time units, done in [3], to realize the
maintenance. After the maintenance, the functional state of the
component is set to WORKING.

23ème Congrès Lambda Mu de l’IMdR 10 au 13 octobre 2022, EDF Lab Paris Saclay

block CloggingDegradation

 agr::CDegradation vsD (init = D0);

 event evD0D1 (delay = Weibull(4.0,200.0));

 event evD1D2 (delay = Weibull(2.0,100.0));

 transition

 evD0D1: owner.vsOMode == OPERATION and

 owner.vsFState == WORKING and

 vsD == D0

 -> {vsD := D1;

 owner.vsIsDegraded := true;}

 evD1D2: owner.vsOMode == OPERATION and

 owner.vsFState == WORKING and

 vsD == D1

 -> {vsD := D2;

 owner.vsIsDegraded := true;}

 event evHydraulicLostD0

 (delay = exponential(1.0e-4));

 event evHydraulicLostD1

 (delay = exponential(0.004));

 event evHydraulicLostD2

 (delay = exponential(0.04));

 transition

 evHydraulicLostD0: vsD == D0 and

 owner.vsOpMode == OPERATION and

 owner.vsFState == WORKING

 -> owner.vsFState := FAILED;

 evHydraulicLostD1: vsD == D1 and

 owner.vsOpMode == OPERATION and

 owner.vsFState == WORKING

 -> owner.vsFState := FAILED;

 evHydraulicLostD2: vsD == D2 and

 owner.vsOpMode == OPERATION and

 owner.vsFState == WORKING

 -> owner.vsFState := FAILED;

end

Figure 10: AltaRica 3.0 part for the Clogging of a filter

Other classes defining other components of the AGR
system are implemented with the same pattern as the one of
the class filter.

3) AltaRica 3.0 main block of the AGR system
The main block of the AltaRica 3.0 is defined with the

same structure as the AGR system depicted in Figure 1. It
means that this main block is composed of two sub-parts
defined as (sub-)block: the main line with the super
component, the heat exchanger, the filters, and the valve; and
the spare line with the pump and the valve. Figure 11 shows
this main structure.

The Boolean observer oOut is used to compute indicators

by assessment tools. For our purpose, it is used to compute
statistics, by stochastic simulation, on the time availability of
the system.

V. EXPERIMENTS

A. Component-level simulations with mp-sim

Figure 12 shows availability, in term of mean “sojourn-
time” in days, of a 01FI or 02FI filter simulated using mp-sim.
In the simulations, we consider a mission time of 1 825 days
(representing 5 years), 10-day of delay when there is a failure
and 0.5-day of delay for maintenance interventions. The
corrective maintenance strategy resulted in around 1 760
available days while periodic maintenance strategy resulted in
around 1 813 available days with 95-day of maintenance
interval. The best maintenance strategy was the periodic +
corrective one that resulted in around 1 815 available days
with 115-day of maintenance interval.

block AGRSystem

 Boolean vfIn, vfOut (reset = false);

 block MainLine

 Boolean vfIn, vfOut (reset = false);

 block SuperComponent

 // ...

 end

 agr::HeatExchanger he;

 block Filtering

 // ...

 end

 agr::Valve V;

 assertion

 SuperComponent.vfIn := vfIn;

 HE.vfIn := SuperComponent.vfOut;

 Filtering.vfIn := HE.vfOut;

 V.vfIn := Filtering.vfOut;

 vfOut := V.vfOut;

 end

 block SpareLine
 Boolean vfIn, vfOut (reset = false);

 agr::Pump P;

 agr::Valve V;

 assertion

 P.vfIn := vfIn;

 V.vfIn := P.vfOut;

 vfOut := V.vfOut;

 end

 agr::Sensor S

 assertion

 vfIn := true;
 MainLine.vfIn := vfIn;

 SpareLine.vfIn := vfIn;

 S.vfIn := MainLine.vfOut or SpareLine.vfOut;

 vfOut := S.vfOut and

 (MainLine.vfOut or SpareLine.vfOut);

 observer Boolean oOut = vfOut;

end

Figure 11: AltaRica 3.0 main block of the AGR system

Figure 12: Filter Availability Obtained from mp-sim Simulations

B. System-level simulations with AltaRica 3.0

For stochastic simulation of the AltaRica 3.0 model
presented in sub-section IV.B of the AGR system, we
consider a time mission of 1 825 days (representing 5 years).
We have defined a ‘sojourn-time’ indicator on the observer
oOut to the value true. It represents the total duration of the

different time intervals with the observer oOut takes the value

true, during the time interval [0.0, 1 825.0]. Statistics of this
indicator provides the mean time of availability of the system.

Table 1 presents results obtained by the stochastic
simulator. 100 000 executions of the model have been realized
and statistics are calculated on these executions. The time to
realize these executions is 3 minutes on a laptop, which is
quite small according to the size of the model and the number
of fired transitions presented in the first part of the table. The
second part of the table indicates statistics of the indicator

23ème Congrès Lambda Mu de l’IMdR 10 au 13 octobre 2022, EDF Lab Paris Saclay

‘sojourn-time’ on the observer ‘oOut’: the mean, the standard
deviation (named SD) and the 95% lower and upper bound
(named lb and ub) confidence range. These statistics are
provided at different dates of execution: each year.

Table 1: Results of stochastic simulations of the AltaRica 3.0

model

Fired transitions Mean
Min
Max

3296.22
2943
4093

Indicator ‘sojourn-time’ on Observer ‘oOut’

Dates
365.0
730.0
1 095.0
1 460.0
1 825.0

Mean
324.79
638.93
941.35
1 238.36
1 531.39

SD
10.47
19.28
27.47
36.31
46.32

95% lb
324.73
638.81
941.18
1 238.14
1 531.1

95% ub
324.86
639.05
941.52
1 238.59
1 531.67

We do not realize a comparison of our results with results
from [3]. On the one hand, the system level model and the
calculated indicators are not the same. In fact, the AltaRica 3.0
model does not consider some functional features of the
system, for instance the control to switch from one line to the
other according to failures. Furthermore, we do not consider
the number of required repairers to realized maintenance, and
also the cost of the maintenance. On the other hand, our
concern is focus on the relation between simulation and
optimization tools, see the next section VI. Thus, the use of
this example may continue with this next works.

VI. DISCUSSION

In this publication, we consider two approaches to assess
maintenance strategies and time availability of the
AGR system: the mp-sim tool with a component point of view
and the OpenAltaRica platform with a system point of view.
Our objective is to get first information about the maintenance
strategies at the component level, so to parametrize the model
of the system level with first values. In fact, our works are
integrated in a more global project to combine simulation tools
with optimization algorithms, so to get the best, or one of the
best, maintenance strategies of a system. First works
considering small (or toy) examples were already presented:
see [13] and [14]. The idea is to define planned maintenance
of components thanks to a genetic algorithm.

VII. CONCLUSION

In this publication, we presented how to model and assess
maintenance and the time availability of an industrial example
coming from the literature: the AGR system. After a brief
presentation of this system, we have considered modeling
with two point of views, and two different tools. The mp-sim
tool considers the component level point view and produces
information about the best maintenance strategies for each
component of the AGR system. The OpenAltaRica platform
considers the system level point of view and produces
information about the time availability of the system
according to failures of components.

The models, at both component and system levels,
consider the stochastic discrete event systems mathematical
framework. For each component we defined degradations and
failures as states, and the changes between levels of
degradation and from the working to failed state as transitions.
On the one hand, it provides a modeling pattern to model and
assess such behaviors of degradations leading to failures. On

the other hand, stochastic discrete event systems are the
accurate level of abstraction, not only because behaviors of
degradations and failures are clearly defined in terms of
occurrences of events, but also because assessment algorithms
(e.g. stochastic simulation) are efficient.

Even if some future works were indicated within the
discussion part (VI), in can also be interesting to made some
sensitive analyses on the different parameters of the model. In
fact, such analyses can conclude, on the one hand, on the
relations between the variations of some parameters and the
results of the model, in terms of the time availability, or other
criteria. On the other hand on the relation between some of
these parameters.

ACKNOWLEDGMENT

These works are carried out within the research project
MPO, realized at the SystemX Technological Research
Institute. They have been supported by the French government
under the ‘‘France 2030” program.

[1] N. Matloff. "Introduction to discrete-event simulation and the simpy

language". Davis, CA. Dept of Computer Science. 2. 2008.

[2] TeamSimPy, "SimPy overview," [Online]. Available:
https://simpy.readthedocs.io/en/latest/index.html. [Accessed 08 06
2022].

[3] V. Zille. "Modélisation et évaluation des stratégies de maintenance
complexes sur des systèmes multi-composants". PhD thesis, Université
de Technologie de Troyes, Institut Charles Delaunay, 2009

[4] Armin Zimmermann. "Stochastic Discrete Event Systems". Springer,
Berlin, Heidelberg, Germany, 2008.

[5] Christos G. Cassandras and Stéphane Lafortune. "Introduction to
Discrete Event Systems". Springer, New-York, NY, USA, 2008.

[6] M. Batteux, T. Prosvirnova and A. Rauzy. "Altarica 3.0 in 10 modeling
patterns”. Intenational Journal of Critical Computer-Based Systems
9(1–2), 133–165. 2019

[7] A. Rauzy. “Guarded transition systems: a new states/events formalism
for reliability studies”. Journal of Risk and Reliability 222(4), 495–505.
2008

[8] M. Batteux, T. Prosvirnova and A. Rauzy. "Abstract executions of
stochastic discrete event systems”. Intenational Journal of Critical
Computer-Based Systems 10-3, 202-226. 2022

[9] E. Zio. “The Monte Carlo Simulation Method for System Reliability
and Risk Analysis”. Springer Series in Reliability Engineering.
London, England: Springer London. 2013

[10] M. Batteux, T. Prosvirnova and A. Rauzy. "Enhancement of the
AltaRica 3.0 stepwise simulator by introducing an abstract notion of
time”, in Proceedings of European Safety and Reliability Conference
Safe Societies in a Changing World (ESREL 2018), Trondheim,
Norway, June, 2018.

[11] T. Prosvirnova and A. Rauzy. "Automated generation of minimal
cutsets from AltaRica 3.0 models”, International Journal of Critical
Computer-Based Systems, Vol. 6, No. 1, pp.50–79. 2015

[12] B. Aupetit, M. Batteux, A. Rauzy & J.-M. Roussel “Improving
performances of the AltaRica 3.0 stochastic simulator”. In Proceedings
of European Safety and Reliability Conference (ESREL). Zurich,
Switzerland. September 2015.

[13] S. Khebbache & M. Batteux. “Simulation based optimization for
maintenance strategies using Altarica 3.0”. In Proceedings of the 31st
European Conference on Operational Research (EURO 2021). Athens,
Greece. July 2021.

[14] M. Batteux, S. Khebbache & Y. Souami. “Simulation of complex
system based on optimization methods for Maintenance scheduling”.
In Proceedings of the 31st European Safety and Reliability Conference
(ESREL). Angers, France. September 2021.

[15] M. Batteux, T. Prosvirnova and A. Rauzy. "Modélisation de
combinaisons de maintenances en AltaRica 3.0". In Actes du congrès
Lambda-Mu 22 (actes électroniques), IMdR. Le Havre, France.
October, 2020

