CONTROL OF TWO INDUCTION MOTORS FED BY A FIVE-PHASE VOLTAGE-SOURCE INVERTER

This paper deals with a dynamic control of two induction motors supplied by a common five-phase power inverter. A complete formulation of the system and a control design procedure are presented. The inverter control is specially detailed because of its complexity. The proposed strategy allows independent controls of both induction machines. Simulation results on 2kW induction machines validate the theoretical considerations.

1.-INTRODUCTION

Nowadays, multi machines systems are more and more used in industrial applications [START_REF] Barnard | Battery operated wheelchairs using three-phase cage rotor induction machines and PWM inverters[END_REF] [START_REF] Wu | A modified current-source inverter for a multiple induction motor drive system[END_REF]. Often, induction machines are chosen for their low cost and their dynamic performances with adapted controls [START_REF] Lorentz | Motion control with induction motors[END_REF]. In the standard case, each machine is supplied by a three-phase inverter. Recently new structures have been proposed, as four-phase inverters for two induction machines [START_REF] Bouscayrol | Comparative studies of inverter structures for a mobile robot asynchronous motorisation[END_REF]. Advances include reduced power components, reduced auxiliary electronic components, reduced volume and weight of the overall power converter. Robotic and spatial applications are directly concerned by these advantages. The power structure of such multi-phase inverters is based on parallel connections of elementary commutation cells and common phases are used to supply several ac machines. However, because of the sharing of inverter phases, the machine control remains a critical point.

In this paper, the studied power structure is composed of two induction machines supplied by a five-phase power inverter (fig. 1). Two measured speeds and two estimated fluxes constitute the system outputs, which may be variables by modifying the magnitude, shift and frequency of the four inverter phase to phase voltages. These ones are obtained by creating four potential differences in comparison with one common commutation cell, which is then connected to both motors. An inverter controller has been designed to generate two independent systems of three voltages in order to get an independent control of the torques and the fluxes of both induction machines. The aim of this paper is to describe the control design procedure. This paper will be organized as follows. In section 2, the mathematical modelling of the enlarged inverter is presented with a causal input output graph of the global system. Section 3 is devoted to the design of the power system control by inversion of the mathematical modelling and is decomposed in a serial assembling of elementary control functions. In the inverter control part, non-linear functions and possible optimization tasks are explained. Attention is focused to the decoupling method of both sets of voltage supply. Simulation results are presented in section 4.
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2.-ANALYSIS OF THE FIVE PHASE INVERTER BI -MACHINE SYSTEM

2.1.-Mathematical description

Each bi-directional switch blocks or conducts the current in both directions, depending on their gate control signal.

Boolean switch states are written f cl :

closed switch -> f cl = 1 opened switch -> f cl = 0 (1)
where c ∈ {1,2,3,4,5} is the n° of the commutation cell and l ∈ {1,2} is the n° of the switch. None of switch in a column connected to one voltage source may conduct Electrimacs'99 ISBN 972-98257-0-X III -314 simultaneously to avoid short circuits. Moreover, in order to keep paths of all currents, at least one switch in a row must be opened. Therefore, only one switch must be closed in a column, which constitutes a commutation cell:

1 2 1 = + f f c c (2)
In consequence, only 2 5 states of the switching matrix must be considered (table 1). These states induce particular modulated voltages which are linked to the d.c. source voltage u dc-s as: This relation makes appear three-level functions which are defined as conversion functions:

dc-s m m m m u m m m m = u u u u                        
51 1 -f = f m c c (4)
where m c ∈ {-1, 0, 1}.

Table 1: connection and conversion function values
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2.2.-Causal input output graph of the system

A graphical representation of the global system modelling is obtained by using the Causal Input Output Graph (CIOG) [START_REF] Hautier | Le graphe informationel causal[END_REF]. The relations are represented by balloons. A causal relation which depends on time contains an unidirectional arrow. A non-causal relation which has no time dependence contain bi-directional arrows. The CIOG of the global system points out a partitioning of the converter model into causality ordered subsystems [6]. The resulting subsystems are input-output reachable as well as structurally controllable, so that a " piece by piece " design of their corresponding control units can be accomplished (fig. 2).

The five switching functions of the commutation cells, f cl lead to four modulated voltages u c5m . The classical induction machine modelling is based on the knowledge of winding voltages. So, the voltage transformation due to the particular connection of the enlarged inverter to the ac machine windings is expressed by a relation which links modulated voltages to winding voltages, u jn . Both winding voltages of an induction machine impose its flux Φ r and its mechanical speed Ω m . Remember that a flux control is needed to obtain good dynamic performances and, therefore, fluxes will be estimated Φ r-est from the stator current measurement I s-mes .

3.-CONTROL OF THE FIVE-PHASE INVERTER

3.1.-Control of the global power system

In order to obtain a decoupled control of induction motors, both winding voltage systems (u an , u bn ) and (u a'n' , u b'n' ) must be set equal to both winding voltage system references (u an_ref , u bn-ref ) and (u a'n_ref' , u b'n'_ref ) in an independent way. The architecture of the control system has been deduced from its CIOG by inversion (fig. 2). You can remark, that an indirect inversion (a closed-loop controller) is associated to a causal relation.
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Fig. 2: CIOG of the power system control An inverse transformation is necessary to obtain modulated voltage references from the knowledge of winding voltage references: 

                  - - - - ref bn ref an ref m ref m u u = u u 2 1 1 2 3 25 15 (7)                   - - - - ref b'n'
Corresponding switching references (switch states) are set by a connection controller which is presented in a subparagraph because of its originality. In a previous paper [START_REF] François | Design and modelling of a five phase voltage source inverter for two induction motors[END_REF], a separated modulation has been presented. It consists in separating the modulation period and, in each subdivided modulation period, each voltage system is separately modulated.

Here, a mixed modulation of both voltage systems is implemented inside the entire modulation period. From table

Electrimacs'99 ISBN 972-98257-0-X III -316 1, it can be shown that the four conversion functions must have the same sign at any time. It is a characteristic of matrix converters. Therefore, the sign of mean conversion function must be tested in order to create a subdivision of the timevariable conversion references in available configurations.

If all signs are identical, therefore a simultaneous and centered modulation of the four mean conversion function references is used (fig. 5).

( ) ( )

- 1 . 2 1 q . Tm m (q.Tm) p ref c ref c - - = (10)
Otherwise, a delayed modulation is implemented by setting position of positive conversion references to the left and negative level references to the right.

( ) 

0 then positive is If = - - (q.Tm) p q . Tm m ref c ref c (11) ( ) - 1 Otherwise q . Tm m (q.Tm) p ref c ref c - - = (12) mc_ref 1 -1 q .Tm pc_ref(q.Tm) .Tm t |< mc_ref >| .Tm (q+1) .Tm
1-ref > = Uref max / u dc-s .sin(ω .t) <mr2 -ref > = -Uref max / u dc-s .sin(ω .t -2 .π /3) (15) <m 3-ref > = -Uref max / u dc-s .sin(ω .t) <m 4-ref > = Uref max / u dc-s .sin(ω .t -2 .π /3) (16
) by assuming u dc-mes = u dc-s . At t=0.005 s, two sinusoidal conversion references have their extreme values with opposite signs. In consequence, a delayed modulation is required. The corresponding effective conversion duration has a maximum magnitude equal to:

δ eff = (2. Uref max / u dc-s ) Tm (17)
To be implemented, this duration must be lower than the modulation period and therefore we have the following constraint for the dc source voltage: 

u dc-s ≥ 2 Uref max (18) 0 0.005 0.01 Urefmax 0 Urefmax u 15m-ref u 25m-ref u 35m-ref u 45m-ref

3.3.-Connection controller

Electrimacs'99 ISBN 972-98257-0-X
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The passage from switching functions f cl to conversion functions m c may be rewritten as the following matrix relation: 

F + F = F H-ref M-ref ref min- (22) * [F M-ref ] represents the contribution of conversion functions: [ ] [ ] [ ][ ] ( ) [ ][ ] N M E E E F ref ref M = 1 T T - - (23) 
[ ] 

1 1 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4
-                               - - - - - - - - - - - - - - -                 - - - - - - - - - - - - - - ref ref ref ref ref M ref M ref M ref M ref M ref M ref M ref M ref M ref M m m m m = f f f f f f f f f f (24) * [F Href ]
] [ ] Href ref min F F = - (25) [ ] [ ] [ ] [ ] [ ] ( ) [ ] [ ] 1 T T ref Href H E E E E I F       - = - * [I] is an unity matrix * [H ref ] is a matrix with the same size of [F] ( ) ( ) ( ) ( ) ( )                 - - - - - =                 - - - - - - - - - - ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ 1 1
f f f f f f f f f f (26) * ξ ∈ {0,1}
The exact solutions may be found by applying a nonlinear operator on each found minimal solution. The step function has been chosen in order to generate binary values:

POS(x) = 1 if x>0 POS(x) = 0 otherwise. ( 27 
) [ ] [ ] ( ) [ ] ( ) Href Mref ref F POS F POS F + = (28) 
It can be easily shown, that the first term of this last expression implements effective conversion patterns (patterns 2 to 31 in table 1) and the second term implements null conversion patterns (pattern 1 and pattern 32). More over, when setting null conversion patterns, if ξ=1, all switching functions of the first line are closed. If ξ=0, all switching functions of the second line are closed in order to implement [M ref ]=[0]. Minimization of switch commutation is possible through this parameter.

4.-SIMULATION RESULTS

Significant results are now presented. The d.c. voltage value has been set to u dc-s = 127.√2.√3.2 = 1080 V and the modulation frequency to 5 kHz. The speed of both machines is set to 1000 rpm in opposite sense.

4.1.-Winding voltages

As expected, the obtained winding voltages have a rms value of 220V (fig. 8). This is mainly the consequence of the perfect control of modulated voltages as it is shown on the frequency spectrum.

4.2.-Switching states

The frequency analysis of switching functions shows the presence of a d.c. ray, a 50Hz ray, a 150 Hz ray and a ray family around the modulation frequency (fig. 9). III -318

4.3.-Mechanical performances

Dynamic performances of the torque and speed control have been also tested. Figure 10 presents the obtained simultaneous speed responses to particular simultaneous reference trajectories. As noted, both machines have really independent speeds. 

5.-CONCLUSION

A specific control of an original five-phase inverter has been presented in order to supply two induction machines. In order to obtain the maximum voltage rate, a PPWM is developed. If the power switch number is reduced, the voltage source must be increased in order to keep the same performance of both machines. The theoretical strategies lead to impose independent behaviours on both machines even if a commutation cell is in common.
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  functions, <m c-ref >, are obtained by linearisation with the measurement of the dc source voltage.
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 3322 Fig. 3: Parallel PPWM 3.2.2.-Position setting by mixed modulation. At each modulation period, positions of pulse references must be set in order to create configurations from table 1. The position of the conversion function reference m c-ref will be noted p c-ref .In a previous paper[START_REF] François | Design and modelling of a five phase voltage source inverter for two induction motors[END_REF], a separated modulation has been presented. It consists in separating the modulation period and, in each subdivided modulation period, each voltage system is separately modulated.
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  represents the repartition of short circuits over the switch matrix. If we set null all conversion function references ([M ref ]=[0]), we obtain:
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  It depends on the used modulation and is defined as: -δ eff = max(|<m 1-ref >|,|<m 2-ref >|,| m 3-ref >|,|<m 4-ref >|). Tm for a simultaneous modulation, and δ eff = max(|<m 1-ref >|,|<m 2-ref >|,| m 3-ref >|,|<m 4-ref >|). -min(|<m 1-ref >|,|<m 2-ref >|,| m 3-ref >|,|<m 4-ref >|) ).

	Tm	
	for a delayed modulation.	
	Suppose, now that the operating points of induction
	machines requires two identical voltage systems in opposite
	sens (fig. 6):	
	<um 15-ref > = Uref max .sin(ω .t)	
	<um 25-ref > = -Uref max .sin(ω .t -2 .π /3)	(13)
	for the first one and	
	<um 35-ref > = -Uref max .sin(ω .t)	
	<um 45-ref > = Uref max .sin(ω .t -2 .π /3)	(14)
	for the second one. We get the following conversion
	references:	
	<m	

3.2.3.-Null and effective conversions.

During a modulation period, the conversion duration of electrical quantities is called "effective conversion duration".