
HAL Id: hal-03966263
https://hal.science/hal-03966263v2

Submitted on 27 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic Average Gradient : A Simple Empirical
Investigation

Pascal Junior Tikeng Notsawo

To cite this version:
Pascal Junior Tikeng Notsawo. Stochastic Average Gradient : A Simple Empirical Investigation.
Université de Montréal. 2023. �hal-03966263v2�

https://hal.science/hal-03966263v2
https://hal.archives-ouvertes.fr

Stochastic Average Gradient :
A Simple Empirical Investigation

Pascal Junior Tikeng Notsawo
pascal.junior.tikeng.notsawo@umontreal.ca

DIRO, Université de Montréal, Montréal, Quebec, Canada

Abstract

Despite the recent growth of theoretical studies and empirical successes of neural
networks, gradient backpropagation is still the most widely used algorithm for
training such networks. On the one hand, we have deterministic or full gradient
(FG) approaches that have a cost proportional to the amount of training data used
but have a linear convergence rate, and on the other hand, stochastic gradient (SG)
methods that have a cost independent of the size of the dataset, but have a less
optimal convergence rate than the determinist approaches. To combine the cost of
the stochastic approach with the convergence rate of the deterministic approach,
a stochastic average gradient (SAG) has been proposed. SAG is a method for
optimizing the sum of a finite number of smooth convex functions. Like SG
methods, the SAG method’s iteration cost is independent of the number of terms in
the sum. In this work, we propose to compare SAG to some standard optimizers
used in machine learning. SAG converges faster than other optimizers on simple
toy problems and performs better than many other optimizers on simple machine
learning problems. We also propose a combination of SAG with the momentum
algorithm and Adam. These combinations allow empirically higher speed and
obtain better performance than the other methods, especially when the landscape
of the function to optimize presents obstacles or is ill-conditioned 1.

1 Introduction

In many domains, several problems can be reduced to the minimization of the sum of a finite number
of functions

g =
1

n

n∑
i=1

fi

That is

minimize
x∈Ω⊂Rp

g(x) =
1

n

n∑
i=1

fi(x) (1)

Gradient descent (Cauchy, 1847; Bottou, 1998; Nemirovski et al., 2009; Duchi et al., 2011b; Kingma
and Ba, 2014) optimize such functions with a rule of the form :

xk+1 = xk − αkD
k

where αk is the step size at iteration k; and Dk a function of the past gradients G1, . . . , Gk of g at
x1, . . . , xk, respectively, or of the estimators of these gradients; such that E[Dk|xk−1] = ∇g(xk).

1This work is reproducible at https://github.com/Tikquuss/sag_torch

https://github.com/Tikquuss/sag_torch

More specifically, Gk = ∇g(xk) is the gradient of g at xk, the parameter update at time k given the
optimization algorithm of choice, and {αk, k ≥ 0} is a predefined deterministic sequence of positive
real numbers such that

∑∞
k=1 αk = ∞ and

∑∞
k=1 α

2
k < ∞. The first of these two conditions is to

make sure that the total displacement
∑∞

k=1 αk∇g(xk) can be unbounded, so the optimal solution
can be reached even if we start far away from it. The second condition (the finite sum of squares) is to
decrease fast enough for the algorithm to converge. For convex functions, gradient descent converges
to a global minimum (if one exists).

Problem 1 is very common in deep learning, where the goal is to minimize the regularized cost
function

J (θ) = Es∼F [ℓ(s, θ)] + λr(θ) =

∫
ℓ(s, θ)dF (s) + λr(θ)

where the function ℓ(s, θ) measures how well the neural network with parameters θ predicts the
label of a data sample s, F is the cumulative distribution function of the data distribution, r(θ) is
the regularizer (e.g. ℓ2-regularization 1

2∥θ∥
2), and λ ∈ R+ the regularization strength. In practice, F

is generally unknown, and the empirical distribution of a given dataset D is used. The regularized
empirical risk obtained can be written as a sum of |D| functions

J (θ) =
1

|D|
∑
s∈D

[
ℓ(s, θ) + λr(θ)

]
This is the case, for example, of the least squares regression, with

D = {(xi, yi) ∈ Rp × R}ni=1 and ℓ((x, y), θ) = ∥xT θ − y∥22
or the logistic regression where ℓ is the negative log-likelihoods 2 :

D = {(xi, yi) ∈ Rp × {−1, 1}}ni=1 and ℓ((x, y), θ) = log(1 + exp(−yxT θ))

One of the challenges that gradient-based methods face in practice is the ill-conditioned surfaces,
when the hessian of the function to optimize has some large positive eigenvalues (i.e. high-curvature
directions) and some eigenvalues close to 0 (i.e. low-curvature directions). In this case, vanilla
gradient descent bounces back and forth in high curvature directions and slowly progresses in low
curvature directions. In addition to these ill-conditioned surfaces, there are obstacles such as saddle
points and critical surfaces (cliffs, valleys, plateaus, ravines, and other flat regions), extremely sharp
or flat minima.

The aim of this work is to empirically investigate the performance of stochastic average gradient
(SAG) (Schmidt et al., 2013) on this type of problem. We limit ourselves for the first time on simple
toys finite data problems where each fi is smooth and convex, although in modern applications, n,
the number of data points (or training examples) can be extremely large (e.g. datasets used to train
large-scale deep learning models like GPT-3 (Brown et al., 2020)), while there is often a large amount
of redundancy between examples. In addition to this basic setting, we will also be interested in toys
cases where the sum g is strongly convex, with the use of a strongly-convex regularizer such as the
squared ℓ2-norm, resulting in problems of the form :

minimize
x∈Rp

λ

2
∥x∥2 + 1

n

n∑
i=1

fi(x) =
1

n

n∑
i=1

[λ
2
∥x∥2 + fi(x)

]
(2)

The resulting function g will be strongly convex, provided that the individual functions fi are convex.

We then extend our investigations to slightly more complex problems where we optimize deep neural
networks on toys dataset. Many deep models are guaranteed to have an extremely large number of
local minima. It has been proven that this is not necessarily a problem. Most local minima are of
good quality (almost equivalent in cost to the global minimum) (Dauphin et al., 2014). The biggest
obstacle to the optimization of g in deep learning remains the presence of saddle points. In low

2The decision boundary is xT θ = 0, i.e. we want xT θ > 0 for y = 1 and xT θ < 0 for y = −1, thas is
yxT θ > 0 ⇐⇒ sigmoid(yxT θ) = 1/(1 + exp(−yxT θ)) > 1/2. To maximize sigmoid(yxT θ) ∈ [0, 1], we
minimize − log

(
sigmoid(yxT θ)

)
∈ R+, which gives our loss function.

2

dimensions (small p), local minima are more common, while in high dimensions, local minima are
rare and saddle points more common. Most of the training time is spent on traversing flat valleys of
the Hessian matrix or circumnavigating tall mountains via an indirect arcing path, and the trajectory
of traversing such flat valleys and circumventing such mountains may be long and result in excessive
training time (Srihari, 2020).

The rest of the paper is organized as follows. We define some terms used in our work in section 2,
then we present SAG in section 3, the related works in section 4, the convergence analysis and the
implementation details in sections 5 and 6 respectively. We finally present the experiments settings
and the results in section 7, then summarise and conclude our work in section 8.

2 Definitions

We assume g : Rp → R unless otherwise noted. The function g is convex if for all x, y ∈ domain(g)
and all t ∈ [0, 1]

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y)

or equivalently if for all x, y ∈ domain(g),

g(x) ≥ g(y) +∇g(y)T (x− y)

if g is differentiable. If the inequality holds strictly (i.e. < rather than ≤) for all t ∈ (0, 1) and x ̸= y,
then we say that g is strictly convex, so strict convexity implies convexity. Geometrically, convexity
means that the line segment between two points on the graph of g lies on or above the graph itself.
If g is convex, then any local minimum of g in any convex set X ⊂ domain(g) is also a global
minimum. Strict convexity means that the line segment lies strictly above the graph of g, except at
the segment endpoints. If g is strictly convex, then at most, one local minimum of g in X exists.
Consequently, if it exists, it is the unique global minimum of g in X 3.

For µ > 0, the function g is µ-strongly convex if the function

x 7→ g(x)− µ

2
∥x∥2

is convex, or equivalently if for all x, y ∈ domain(g),

g(x) ≥ g(y) +∇g(y)T (x− y) +
µ

2
∥x− y∥2

if g is differentiable. Strong convexity doesn’t necessarily require the function to be differentiable,
and the gradient is replaced by the sub-gradient when the function is non-smooth. Intuitively speaking,
strong convexity means a quadratic lower bound exists on the growth of the function. This directly
implies that a strong convex function is strictly convex since the quadratic lower bound growth is, of
course, strictly greater than the linear growth 4.

Let G(x) = ∇g(x) ∈ Rp and H(x) = ∇2g(x) ∈ Rp×p be respectively the gradient and the
local hessian matrix of g at x, assuming that g is twice-differentiable. If G(x) = 0, then x is a
critical/stationary point of g. In this case, the determinant d(x) of H(x) is equal to the Gaussian
curvature of the surface of g considered as a manifold. The eigenvalues of H(x) are the principal
curvatures of the g at x, and the eigenvectors are the principal directions of curvature. If d(x) > 0, x
is a local maximum of g if H(x) is negative definite (all its eigenvalues are negative), and a local
minimum of g if H(x) is a positive definite (all its eigenvalues are positive). Some local optimums
can be very flat (i.e. there is a large enough neighbourhood of x that contains only local optima) or
sharp (the loss function near x has a high condition number, i.e. very small perturbation of x can
cause large variation in g). If d(x) < 0 (some eigenvalues are positive and others are negative), x
is a saddle point of g. If d(x) = 0 (there is at least one zero eigenvalue, i.e. H(x) is undefined),
we can’t conclude, and the point x could be any of a minimum, maximum or saddle point. If the
hessian matrix of g is positive semi-definite at any point of domain(g), then g is convex and the point
x such that G(x) = 0 is its global minimum. If it is instead negative semi-definite at any point of
domain(g), then g is concave and the point x such that G(x) = 0 is its global maximum.

3https://ai.stanford.edu/~gwthomas/notes/convexity.pdf
4https://xingyuzhou.org/blog/notes/strong-convexity

3

https://ai.stanford.edu/~gwthomas/notes/convexity.pdf
https://xingyuzhou.org/blog/notes/strong-convexity

3 Motivation

Gradient descent (Bottou, 1998) is one of the most popular algorithms to perform optimization and
by far the most common way to optimize neural networks. FG method (Cauchy, 1847) uses iterations
of the form

xk+1 = xk − αk∇g(xk) = xk − αk

n

n∑
i=1

∇fi(x
k)

FG is generally called batch gradient descent in deep learning since it calculates the error for each
example in the training dataset but only updates the model after all training examples have been
evaluated. Therefore, its cost per iteration is O(n).

Assuming that a minimizer x∗ exists and g is convex, then under standard assumptions, the sub-
optimality achieved on iteration k of the FG method with a constant step size is given by a sublinear
convergence rate (Nesterov, 2004; Schmidt et al., 2013)

g(xk)− g(x∗) = O(1/k)

When g is strongly convex, the error also satisfies a linear convergence rate (also known as a geometric
or exponential rate because a fixed fraction cuts the error on each iteration) (Nesterov, 2004; Schmidt
et al., 2013)

g(xk)− g(x∗) = O(ρk) for some ρ < 1

This ρ depends on the condition number of g, i.e. on how sensitive the output of g is on its input 5.
One drawback of the FG approach is that it requires computing all the gradients at each iteration,
which can be tedious when n is very large.

The basic SG method for optimizing 1 uses iterations of the form

xk+1 = xk − αk∇fik(x
k)

where at each iteration an index ik is sampled uniformly from the set {1, . . . , n}. The randomly
chosen gradient ∇fik(x

k) yields an unbiased estimate of the true gradient ∇g(xk) :

Eik∼U({1,...,n})[∇fik(x
k)] =

1

n

n∑
i=1

∇fi(x
k) = ∇g(xk)

Under standard assumptions and for a suitably chosen decreasing step-size sequence {αk, k ≥ 0}
(Nemirovski et al., 2009; Schmidt et al., 2013), the SG iterations have an expected sub-optimality for
convex objectives of

E[g(xk)]− g(x∗) = O(1/
√
k)

and an expected sub-optimality for strongly-convex objectives of

E[g(xk)]− g(x∗) = O(1/k)

These sublinear rates are slower than the corresponding rates for FG. Under certain assumptions,
these convergence rates are optimal in a model of computation where the algorithm only accesses the
function through unbiased measurements of its objective and gradient. Thus, we should not expect to
be able to obtain the convergence rates of the FG method if the algorithm only relies on unbiased
gradient measurements. Can we have one gradient per iteration and achieve the same rate as FG?

Mini-batch gradient descent is a variation of the SG algorithm that splits the training dataset into
small batches used to calculate model error and update model coefficients. In other words, we select
a batch B ⊂ {1, . . . , n} randomly at each iteration and do the update as follows:

xk+1 = xk − αk

|B|
∑
i∈B

∇fi(x
k)

5L/µ (change in output = condition number × change in input)

4

But this allows to make a trade-off between the cost per iteration and the convergence rate: either we
choose B is too big, and we get a better rate and a big cost of O(|B|) per iteration, or we choose B so
that |B| is too small, and we get a lower rate and a cost in O(1) per iteration.

The SAG iterations take the form

xk+1 = xk − αk

n

n∑
i=1

yki

where at each iteration a random index ik is selected (not necessarily uniformly from {1, . . . , n} as
we will see below) and we set

yki =

{
∇fi(x

k) if i = ik
yk−1
i otherwise.

Like the FG method, the step incorporates a gradient with respect to each function. But, like the SG
method, each iteration only computes the gradient with respect to a single example and the cost of
the iterations is independent of n : we take a step in the direction of the average of yki .

With the mini-batch version of SAG, the update becomes

yki =

{
∇fi(x

k) if i ∈ B
yk−1
i otherwise.

4 Related works

In the following Dk is a function of the past gradients G1, . . . , Gk of g at x1, . . . , xk, respectively, or
of the estimators of these gradients. In the papers introducing these algorithms, Dk = Gk in general,
i.e. Dk is deterministic. But their SG version can be developed with Dk = ∇fik(x

k) for a randomly
sampled ik ∈ {1, . . . , n}, or their mini-batch version with Dk = 1

|B|
∑

i∈B ∇fi(x
k) for a random

sample B ⊂ {1, . . . , n}, or their SAG version with an appropriate choice of past gradients to use and
how to use them.

SG methods that incorporate a each iteration k a momentum term mk = xk − xk−1 = −αk−1D
k−1

use iterations of the form (Polyak, 1964; Sutton, 1986)

xk+1 = xk − αkD
k + βkm

k

It is common to set all βk = β1 for some constant β1 ∈ [0, 1), and in this case, we can rewrite the
SG with momentum (Tseng, 1998) method as

xk+1 = xk −
k∑

j=0

αjβ
k−j
1 Dj

The momentum algorithm accumulates an exponentially decaying moving average of past gradients
and continues to move in their direction. Formally, the momentum algorithm introduces a variable
v that plays the role of velocity: the direction and speed at which the parameters move through
parameter space. The hyperparameter β1 determines how quickly the contributions of previous
gradients exponentially decay. The above update rule can be rewritten in terms of the velocity as
(v0 = 0):

vk+1 = β1v
k − αkD

k

xk+1 = xk + vk+1

Since we have with this

vk+1 = −
k∑

j=0

αjβ
k−j
1 Dj

The SAG version of momentum becomes

xk+1 = xk +
αk

n

n∑
i=1

yki

5

where at each iteration, a random index ik is selected, and we set

yki =

{
vk+1
i = β1v

k
i − αkD

k
i if i = ik, with Dk = ∇fik(x

k)
yk−1
i otherwise.

Nesterov accelerated gradient or Nesterov momentum (Nesterov, 1983; Sutskever et al., 2013) is
a variant of the momentum algorithm that use an interim update x̃k = xk + β1v

k to compute de
gradient Dk at each iteration. That is :

x̃k = xk + β1v
k

D̃k = ∇g(x̃k)

vk+1 = β1v
k − αkD̃k

xk+1 = xk + vk+1

The AdaGrad algorithm (Duchi et al., 2011a), individually adapts the learning rates of all model
parameters by scaling them inversely proportional to the square root of the sum of all of their historical
squared values. The update rule of AdaGrad is given by (r0 = 0, rk accumulates squared gradient,
division and square root are applied element-wise, ϵ is a very small number used to avoid divisions
by 0) :

rk+1 = rk +Dk ⊙Dk

xk+1 = xk − αk√
rk+1 + ϵ

⊙Dk

The RMSProp algorithm (Hinton, 2012) modifies AdaGrad to perform better in the non-convex setting
by changing the gradient accumulation into an exponentially weighted moving average. RMSProp
uses an exponentially decaying average to discard history from the extreme past to converge rapidly
after finding a convex bowl as if it were an instance of the AdaGrad algorithm initialized within that
bowl. Compared to AdaGrad, using the moving average introduces a new hyperparameter, β2 ∈ (0, 1],
that controls the length scale of the moving average. The step of squared gradient accumulation is
modified as follows:

rk+1 = β2r
k + (1− β2)D

k ⊙Dk

Adadelta (Zeiler, 2012) is an extension of Adagrad and RMSProp that seeks to reduce its aggressive,
monotonically decreasing learning rate. Instead of accumulating all past squared gradients, Adadelta
restricts the window of accumulated past gradients to some fixed size (u0 = 0).

rk+1 = β2r
k + (1− β2)Dk ⊙Dk

∆k+1 =

√
uk + ϵ√
rk+1 + ϵ

uk+1 = β2u
k + (1− β2)∆

k+1

xk+1 = xk − αk∆
k+1

Adam (Kingma and Ba, 2017) is a combination of RMSProp and momentum. First, in Adam, mo-
mentum is incorporated directly as an estimate of the gradient’s first-order moment (with exponential
weighting). Second, Adam includes bias corrections to the estimates of both the first-order moments
(the momentum term) and the (uncentered) second-order moments to account for their initialization
at the origin.

x̃k = xk + β1v
k

D̃k = ∇g(x̃k)

rk+1 = β2r
k + (1− β2)D̃

k ⊙ D̃k

vk+1 = β1v
k − αk√

rk+1 + ϵ
⊙ D̃k

xk+1 = xk + vk+1

6

The most common Adam iteration update is written in term of momentum as

mk = β1m
k−1 + (1− β1)D

k

rk = β2r
k−1 + (1− β2)D

k ⊙Dk

xk = xk−1 − αk√
rk + ϵ

⊙mk

Adamax (Kingma and Ba, 2014, 2017) is a variant of Adam based on infinity norm.

mk = β1m
k−1 + (1− β1)D

k

uk = max(β2u
k−1, |Dk|+ ϵ)

xk = xk−1 − αk

(1− βk
1)u

k
⊙mk

AMSGrad (Reddi et al., 2018) is a version of Adam that keeps a running maximum of the squared
gradients instead of an exponential moving average.

mk = β1m
k−1 + (1− β1)D

k

m̃k = max(m̃k−1,mk)

rk = β2r
k−1 + (1− β2)D

k ⊙Dk

xk = xk−1 − αk√
rk + ϵ

⊙ m̃k

All Adaptive methods can be summarized as follows (Défossez et al., 2020). As hyper-parameters,
we have 0 ≤ β1 < β2 ≤ 1, and a non negative sequence (αk)k∈N∗ . We define three vectors
mk, rk, xk ∈ Rp iteratively. Given x0 ∈ Rp as our starting point, m0 = 0, and r0 = 0, we define for
all iterations k ∈ N∗

mk
i = β1m

k−1
i +Dk

i

rki = β2r
k−1
i +

(
Dk

i

)2
xk
i = xk−1

i − αk
mk

i√
rki + ϵ

.

The parameter β1 is a heavy-ball style momentum parameter. The parameter β2 controls the decay
rate of the per-coordinate exponential moving average of the squared gradients. Taking β1 = 0,
β2 = 1 and αk = α gives Adagrad (Duchi et al., 2011b). The original Adam algorithm (Kingma and
Ba, 2014) uses a weighed average, rather than a weighted sum :

m̃k
i = (1− β1)

k∑
j=1

βk−j
1 Dj−1

i = (1− β1)m
k
i

We can achieve the same definition by taking αadam = α · 1−β1√
1−β2

, since

m̃k
i√
r̃ki

=
1− β1√
1− β2

mk
i√
rki

with
r̃ki = (1− β2)r

k
i and m̃k

i = (1− β1)m
k
i

The original Adam algorithm further includes two corrective terms to account for the fact that mk and
rk are biased towards 0 for the first few iterations. Those corrective terms are equivalent to taking a
step-size αk of the form

7

αk,adam = α · 1− β1√
1− β2

·

corrective term for mk︷ ︸︸ ︷
1√

1− βk
1

·
√
1− βk

2︸ ︷︷ ︸
corrective term for rk

Early work on adaptive methods (e.g. (McMahan and Streeter, 2010)) showed that Adagrad achieves
an optimal rate of convergence of O(1/

√
k) for convex optimization. Ward et al. (2020) proved that

Adagrad converges to a critical point for non convex objectives with a rate O(ln(k)/
√
k) when using

a scalar adaptive step-size. Défossez et al. (2020) show a rate of O(p ln(k)/
√
k) for Adam, and

show that in expectation, the squared norm of the objective gradient averaged over the trajectory has
an upper-bound which is explicit in the constants of the problem, parameters of the optimizer, the
dimension p, and the total number of iterations k.

5 SAG convergence rate

We assume that each function fi in (1) is convex and differentiable (this makes g also convex and
differentiable), and that each gradient ∇fi is Lipschitz-continuous with constant Li, meaning that for
all x and y in Rp and each i we have

∥∇fi(x)−∇fi(y)∥ ≤ Li∥x− y∥ (3)

This makes ∇g also Lipschitz-continuous with any constant L ≥ 1
n

∑n
i=1 Li, like maxi Li. Also,

each gradient ∇fi is Lipschitz-continuous with constant L ≥ maxi Li. This is a fairly weak
assumption on the fi functions, and in cases where the fi are twice-differentiable it is equivalent to
saying that the eigenvalues of the hessians of each fi are bounded above by L. We will also assume
the existence of at least one minimizer x∗ that achieves the optimal function value.

In addition to the above basic convex case, we will also consider the case where the average function
g = 1

n

∑n
i=1 fi is strongly-convex with constant µ > 0, meaning that the function x 7→ g(x)− µ

2 ∥x∥
2

is convex. For twice-differentiable g, this is equivalent to requiring that the eigenvalues of the hessian
of g are bounded below by µ. This is a stronger assumption that is often not satisfied in practical
applications. Nevertheless, in many applications we are free to choose a regularizer of the parameters,
and thus we can add an ℓ2-regularization term as in (2) to transform any convex problem into a
strongly-convex problem (in this case we have µ ≥ λ). Note that strong-convexity implies the
existence of a unique x∗ that achieves the optimal function value.

Let x̄k = 1
k

∑k−1
i=0 xi be the average iterate and σ2 = 1

n

∑n
i=1 ∥∇fi(x

∗)∥ the variance of the gradient
norms at the optimum x∗.The convergence results consider two different initializations for the y0i
variables:

• setting y0i = 0 for all i
• or setting them to the centered gradient at the initial point x0 : y0i = ∇fi(x

0)−∇g(x0)

The convergence results are expressed in terms of expectations E with respect to the internal ran-
domization of the algorithm (the selection of the random variables ik), and not with respect to the
data which is assumed to be deterministic and fixed. The L we use in the following is a Lipschitz-
continuous constant common to all ∇fi, as maxi Li.
Theorem 5.1. With a constant step size of α = 1

16L , the SAG iterations satisfy for k ≥ 1 :

E[g(x̄k)]− g(x∗) ≤ 32n

k
C0 ∈ O

(
1

k

)
(4)

where if we initialize with y0i = 0 for all i we have

C0 = g(x0)− g(x∗) +
4L

n
∥x0 − x∗∥2 + σ2

16L

and if we initialize with y0i = ∇fi(x
0)−∇g(x0) for all i we have

C0 =
3

2

[
g(x0)− g(x∗)

]
+

4L

n
∥x0 − x∗∥2

8

Further, if g is µ-strongly convex we have

E[g(xk)]− g(x∗) ≤
(
1−min

{ µ

16L
,
1

8n

})k

C0 ∈ O

((
1−min

{ µ

16L
,
1

8n

})k
)

The proof of this theorem is given in Schmidt et al. (2013) [Appendix B] and involves finding a
Lyapunov function for a non-linear stochastic dynamical system defined on the yki and xk variables
that converges to zero at the above rates, and showing that this function dominates the expected
sub-optimality E[g(xk)]− g(x∗). The equation (4) is stated for the average x̄k, with a trivial change
to the proof technique, but it can be shown to also hold for any iterate xk where g(xk) is lower than
the average function value up to iteration k, 1

k

∑k−1
i=0 g(xi). Thus, in addition to x̄k the result also

holds for the best iterate.

The bounds are valid for any L greater than or equal to the minimum L satisfying (3) for each i,
implying an O(1/k) and linear convergence rate for any α ≤ 1/16L, but the bound becomes worse
as L grows. Although initializing each y0i with the centered gradient may have an additional cost
and slightly worsens the dependency on the initial sub-optimality (g(x0)− g(x∗)), it removes the
dependency on the variance σ2 of the gradients at the optimum.

While the theorem is stated in terms of the function values, in the µ-strongly-convex case we also
obtain a convergence rate on the iterates because we have

µ

2
∥xk − x∗∥2 ≤ g(xk)− g(x∗)

The SAG iterations have a worse constant factor because of the dependence on n. An appropriate
choice of x0 can improve the dependence on n : we can set x0 to the result of n iterations of an
appropriate SG method. In this setting, the expectation of g(x0)− g(x∗) is O(1/

√
n) in the convex

setting, while both g(x0)− g(x∗) and ∥x0−x∗∥2 would be in O(1/n) in the strongly-convex setting.

If we use this initialization of x0 and set y0i = ∇fi(x
0)−∇g(x0), then in terms of n and k the SAG

convergence rates take the form O(
√
n/k) and O(ρk/n) in the convex and strongly-convex settings,

instead of the O(n/k) and O(ρk) rates implied by the theorem.

An interesting consequence of using a step-size of α = 1/16L is that it makes the method adaptive
to the strong-convexity constant µ. For problems with a higher degree of local strong-convexity
around the solution x∗, the algorithm will automatically take advantage of this and yield a faster local
rate. This can even lead to a local linear convergence rate if the problem is strongly-convex near the
optimum but not globally strongly-convex. This adaptivity to the problem difficulty is in contrast to
SG methods whose sequence of step sizes typically depend on global constants and thus do not adapt
to local strong-convexity. We will test this on the Rosenbrock function in log scale, for which the SG
method turns indefinitely around the global minimum and never reaches it.

6 SAG implementation Details

Schmidt et al. (2013) discuss modifications that lead to better practical performance than this basic
algorithm, including ways to reduce the storage cost, how to handle regularization, how to set the
step size, using mini-batches, and using non-uniform sampling.

Algorithm 1: Basic SAG method for minimizing 1
n

∑n
i=1 fi(x) with step size α

1 begin
2 d = 0 /∗ d is use to track the quantity

∑n
i=1 yi ∗/

3 yi = 0 for i = 1, 2, . . . , n
4 for k = 0, 1, . . . do
5 Sample i from {1, 2, . . . , n}
6 d = d− yi +∇fi(x)
7 yi = ∇fi(x)
8 x = x− α

nd
9 end

10 end

9

Re-weighting on early iterations The more logical normalization is to divide d by m, the number
of data points that we have seen at least once (which converges to n once we have seen the entire
data set), when y0i = 0

x = x− α

m
d

Exact and efficient regularization

x = x− α

(
d

m
+ λx

)
= (1− αλ)x− α

m
d

Mini-batches for vectorized computation and reduced storage

xk+1 = xk − αk

n

n∑
i=1

yki with yki =

{
∇fi(x

k) if i ∈ B
yk−1
i otherwise.

Structured gradients and just-in-time parameter updates For many problems the storage cost
of O(np) for the yki vectors is prohibitiven but we can often use the structure of the gradients ∇fi to
reduce this cost. For example, let consider a linearly-parameterized model of the form

minimize
x∈Ω⊂Rp

g(x) =
1

n

n∑
i=1

fi(a
T
i x) (5)

Since each ai is constant, for these problems we only need to store the scalar ∇fik(u
k
i) for uk

i =
aTikx rather than the full gradient ai∇fi(u

k
i). This reduces the storage cost from O(np) down to

O(n). Examples of linearly-parameterized models include the least-squares regression 6, the logistic
regression 7, feed forward neural networks, etc.

7 Experiments settings Results

We will use the following acronyms to designate our algorithms :

• sgd : vanilla SGD
• momentum : SGD with momentum (Polyak, 1964; Sutton, 1986; Tseng, 1998)
• nesterov : Nesterov Accelerated SGD (Nesterov, 1983; Sutskever et al., 2013)
• asgd : Averaged SGD proposed by Polyak and Juditsky (1992)
• rmsprop : RMSProp (Hinton, 2012)
• rmsprop_mom : RMSProp with momentum
• rprop : resilient backpropagation algorithm (Riedmiller and Braun, 1993)
• adadelta : Adadelta (Zeiler, 2012)
• adagrad : Adagrad (Duchi et al., 2011b)
• adam : Adam (Kingma and Ba, 2014, 2017)
• amsgrad : AMSGrad (Reddi et al., 2018)
• adamax : Adamax (Kingma and Ba, 2014)
• custom_adam : custom adam algorithm without amsgrad and that include the two corrective

terms for mk and rk

• adam_inverse_sqrt : Adam that decays the learning rate based on the inverse square root
of the update number. It also supports a warmup phase where the learning rate is linearly
increase from some initial learning rate (warmup_init_lr) until the configured learning
rate (lr). Thereafter, the learning rate is decay proportional to the number of updates, with a
decay factor set to align with the configured learning rate.

6ℓ(s = (x, y), θ) = h(xT θ) with h(z) = (z − y)2
7ℓ(s = (x, y), θ) = h(xT θ) with h(z) = log(1 + exp(−yz))

10

– During warmup:

lrs = linspace(start = warmup_init_lr, end = lr, steps = warmup_updates)

lr = lrs[step]

– After warmup:

lr =
decay_factor√
update_num

where decay_factor = lr ∗ sqrt(warmup_updates)

• adam_cosine : Adam that assign learning rate based on a cyclical schedule that follows the
cosine function (Loshchilov and Hutter, 2016). It also supports a warmup phase where the
learning rate is linearly increase from some initial learning rate (warmup_init_lr) until
the configured learning rate (lr). Thereafter, the learning rate is decay proportional to the
number of updates, with a decay factor set to align with the configured learning rate.

– During warmup:

lrs = linspace(start = warmup_init_lr, end = lr, steps = warmup_updates)

lr = lrs[step]

– After warmup:

lr = lr_min+ 0.5 ∗ (lr_max− lr_min) ∗ (1 + cos(t_curr/t_i))

where t_curr is current percentage of updates within the current period range and t_i
is the current period range, which is scaled by t_mul after every iteration.

• sag : SAG (Schmidt et al., 2013)
• sag_sgd : combinaition of SAG and momentum SGD with

yki =

{
vk+1 = β1v

k
i − αkD

k
i if i = ik, with Dk = ∇fik(x

k)
yk−1
i otherwise.

• sag_adam : combinaition of SAG and Adam with

yki =

{
mk

i√
rki +ϵ

if i = ik

yk−1
i otherwise.

7.1 Test functions for optimization

7.1.1 Rosenbrock function

The vanilla rosenbrok function is given by gn(x) =
∑n/2

i=1

[
100(x2i − x2

2i−1)
2 + (x2i−1 − 1)2

]
,

with the gradient ∇ign(x) = 200(xi − x2
i−1) · 1i∈2N −

[
400xi(xi+1 − x2

i)− 2(xi − 1)
]
· 1i∈2N−1,

and x∗ ∈ {(1, . . . , 1), (−1, 1, . . . , 1)} ⊂ {x,∇gn(x) = 0} 8. A more involved variant is given by
gn(x) =

∑n−1
i=1

[
100(xi+1 − x2

i)
2 + (xi − 1)2

]
, with the gradient ∇ign(x) = 200(xi − x2

i−1) ·
1i>1 −

[
400xi(xi+1 − x2

i)− 2(xi − 1)
]
· 1i<n, and x∗ = {1, . . . , 1)} ⊂ {x,∇gn(x) = 0} 9. The

number of stationary points of this function grows exponentially with dimensionality n, most of
which are unstable saddle points (Kok and Sandrock, 2009).

We optimized the Rosenbrock function in a logarithmic scale (to create a ravine, figure 2). The
function is unimodal, and the global minimum is very sharp and surrounded in the direction of the
ravine by many local minima. At the beginning of optimization, we fall very quickly into the ravine
because the surface is well-conditioned. Then, depending on the learning rate and the optimizer used
(as well as the associated hyperparameters), we go down the ravine very slowly. Indeed, without
momentum or velocity, we do not go directly down to the minimum since the gradient is almost

8When the coordinates range from 0 to n − 1, gn(x) =
∑n/2−1

i=0

[
100(x2i+1 − x2

2i)
2 + (x2i − 1)2

]
and

∇ign(x) = 200(xi − x2
i−1) · 1i∈2N+1 −

[
400xi(xi+1 − x2

i)− 2(xi − 1)
]
· 1i∈2N.

9When the coordinates range from 0 to n − 1, gn(x) =
∑n−2

i=0

[
100(xi+1 − x2

i)
2 + (xi − 1)2

]
and

∇ign(x) = 200(xi − x2
i−1) · 1i>0 −

[
400xi(xi+1 − x2

i)− 2(xi − 1)
]
· 1i<n−1.

11

Figure 1: Left) Rosenbrock function in log scale (n = 2), Center) Contours, Right) Gradient
field (note how this vector is pronounced in norm near the global minimum, which is important to
understand why even near this global optimum many optimizers can felt to reach it)

zero along the ravine direction but very large in the perpendicular directions: we go from left to
right (perpendicular to the ravine) while going down a little, but very slowly. Moreover, we turn
there almost indefinitely once we are near the minimum. With adaptive gradient, we go down to
the minimum very quickly because this direction problem is corrected (due to momentum, left-right
ravine perpendicular directions cancel out): if the learning rate is too small, we will also go down
very slowly (small gradient in the flat ravine direction). Unlike SGD, here, we always reach the
minimum (and stay there). Also, for some learning rates and initializations, there is a double descent
(Nakkiran et al., 2020) in error (euclidean distance between the global minimum and the current
position at a given time) when landing in the ravine.

Adadelta and adagrad were very slow compared to sag. We can see in figure 2a a comparative
progression of these three algorithms. After 100 000 iterations adadelta and adagrad were still going
down to the valley, while SAG did it in less than 1000 iterations, which is 100 times faster than both.
Adadelta manages to reach the minimum, which sag never finally does.

Nosterov is faster on the well-conditioned part of the surface and arrives faster in the neighbourhood
of the target than sag, momentum and asgd (figure 2b). On the other hand, it stabilizes at a higher
loss than these methods. Sag and asgd have almost the same trajectory. Momentum follows the same
trajectory as these two methods from the beginning but stabilizes at a smaller loss. The combination
sag_sgd (with momentum) speeds up the arrival in the neighbourhood of the minimum but stabilizes
at the same level as momentum.

Rmsprop is slower than sag, but ends up with a smaller error than sag (figure 2c). Adding momentum
to rmsprop (rmsprop_mom) improves its speed significantly. Rprop is also very fast and gives a
smaller error than sag and sag_sgd.

On the well-conditioned part of the surface, sag is faster than adam, adamax and amsgrad, but these
methods reach the minimum (get zero final loss), which is not the case for sag (figure 2d). The
sag_adam combination almost reaches the minimum, but is very chaotic and has periodic jumps that
are similar to the slingshot mechanism (Thilak et al., 2022). amsgrad is much slower than adam and
adamax.

custom_adam, adam_inverse_sqrt, adam_cosine also have the same periodic disruption phenomenon
as sag_adam (figure 2e).

The methods that succeed in reaching the minimum are rmsprop, rprop, adadelta, adam, amsgrad,
adamax, rmsprop_mom (figure 4). The methods that come close to it without reaching it are
adam_inverse_sqrt, custom_adam, adam_cosine, sag_adam, momentum. The comparative conver-
gence speeds are presented in figures 3 and 5, which is an approximation of the number of iterations
performed before reaching stabilization.

7.1.2 Rastrigin function

The rastrigin function is given by gn(x) = na +
∑n

i=1

[
x2
i − a cos(2πxi)

]
= na + xTx −

a1Tn cos(2πx) with a ∈ R. Its gradient is ∇gn(x) = 2x + 2πa sin(2πx), and x∗ = {0, . . . , 0)} ⊂
{x,∇gn(x) = 0}.

12

(a) adadelta and adagrad vs sag (b) momentum, nesterov and asgd vs sag

(c) rmsprop, rmsprop_mom and rprop vs sag
(d) adam, amsgrad and adamax vs sag and
sag_adam

(e) adam, custom_adam, adam_inverse_sqrt,
adam_cosine (f) summary

Figure 2: Rosenbrock function

Figure 3: Comparative visualization of convergence speeds on the rosenbrock function

13

Figure 4: Final errors at steady states on the rosenbrock function

We optimized the Rastrigin function in a logarithmic scale (to create many local minimums and make
the global minimum sharp, figure 7). The function is unimodal (in terms of global minimum), and
the global minimum is very sharp and surrounded symmetrically by many local minima. At the
beginning of optimization, we fall very quickly into the one local minimum. Then, depending on the
learning rate and the optimizer used (and the associated hyperparameters), we can move successively
from one minimum to another until we reach the global minimum.

Again, adadelta and adagrad are very slow compared to sag. We can see in figure 7a a comparative
progression of these three algorithms. After 400 000 iterations adadelta and adagrad were still going
down to the valley, while SAG did it in less than 1000 iterations, which is 400 times faster than both.
adadelta manages to reach the minimum, which sag never finally does. Rprop is very bad here, it
never leaves the first local minimum in which it falls. This is the method that obtains the largest error.

Nosterov is fast to reach the local minimum than sag, momentum and asgd (figure 7b), and stabilizes
at the same error as these methods. sag and asgd have almost the same trajectory. Momentum follows
slightly the same trajectory as these two methods from the beginning and stabilizes at the same
error. The combination sag_sgd (with momentum) speeds up the arrival in the neighbourhood of the
minimum and allows to obtain stabilization with a lower error. This means that it escapes more local
minimums than the methods with which it is compared.

Rmsprop is slightly slower than sag and ends up with a bigger error than sag (figure 7c). Adding
momentum to rmsprop (rmsprop_mom) improves its speed significantly, but we end up with the same
error.

sag is faster than adam, adamax and amsgrad and gets a smaller error than them (figure 7d). The
sag_adam combination is much faster with less error. It is also one of the only methods to approach
the global minimum (i.e. to escape so many obstacles). Amsgrad is much slower than adam and
adamax, but ends up with the same error as them.

Custom_adam is faster than adam_inverse_sqrt, adam_cosine, but ends up with the same error as
them (figure 7e).

No method has reached the global minimum (figure 9). The methods that come close to it without
reaching it are adam_inverse_sqrt, custom_adam, adam_cosine and sag_adam. The comparative
convergence speeds are presented in figures 8 and 10, which approximate the number of iterations
performed before reaching stabilization.

7.2 Toys machine learning problems

14

Figure 5: Comparative visualization of the progression of each algorithm on the rosenbrock function

15

Figure 6: Left) Rastrigin function in log scale (A = 10, n = 2), Center) Contours, Right) Gradient
field

(a) adadelta, adagrad and rprop vs sag (b) momentum, nesterov and asgd vs sag

(c) rmsprop, rmsprop_mom vs sag
(d) adam, amsgrad and adamax vs sag and
sag_adam

(e) adam, custom_adam, adam_inverse_sqrt,
adam_cosine (f) summary

Figure 7: Rastrigin function

16

Figure 8: Comparative visualization of convergence speeds on the rastrigin function

Figure 9: Final errors at steady states on the rastrigin function

17

Figure 10: Comparative visualization of the progression of each algorithm on the rastrigin function

18

7.2.1 Scikit-learn dataset

We extracted the following datasets from scikit-learn (Pedregosa et al., 2011). The reader is invited to
refer to the official scikit-learn website 10 for more information about these data (sources, ...).

• wine (classification): recognize the wine class given the features like the amount of alcohol,
magnesium, phenol, colour intensity, etc.

• iris (classification): It contains sepal and petal lengths and widths for three classes of plants
(Setosa, Versicolour, and Virginica)

• digits (classification): digit classification
• boston (regression): house prices in Boston based on the crime rate, nitric oxide concentra-

tion, number of rooms, distances to employment centers, tax rates, etc. The output feature is
the median value of homes.

• diabete (regression): sklearn diabete dataset
• linnerud (regression): physical exercise Linnerud dataset

Dataset # features # classes size train size (80%) val size (20%)
wine 13 3 178 142 36
iris 4 3 150 120 30

digits 64 10 1797 1437 360

Table 1: Information about the sklearn datasets (classification)

Dataset # features # output size train size (80%) val size (20%)
boston 13 1 506 404 102
diabete 10 1 442 353 89
linnerud 3 3 20 16 4

Table 2: Information about the sklearn datasets (regression)

We trained a one-layer perceptron with a hidden layer of dimension 50, a leaky rectified linear unit
(Leaky ReLU) activation (with a negative slope of 0.01) (Maas, 2013) and a dropout of probability
0.1 (Srivastava et al., 2014), this for 2000 epochs.

The results are presented in the following figures :

• wine: 11, 12, 13, 14, 15, 16, 17
• iris: 18, 19, 20, 21, 22, 23, 24
• digits: 25, 26, 27, 28, 29, 30, 31
• boston: 32, 33, 34, 35, 36, 37, 38
• linnerud: 39, 40, 41, 42, 43, 44, 45
• diabete: 46, 47, 48, 49, 50, 51, 52

10https://scikit-learn.org/stable/datasets/toy_dataset.html

19

https://scikit-learn.org/stable/datasets/toy_dataset.html

Figure 11: adadelta, adagrad, sag (wine)

Figure 12: momentum, nesterov, asgd, sag, sag, sgd (wine)

20

Figure 13: adam, amsgrad, adamax, sag, sag_adam (wine)

Figure 14: adam, custom_adam, adam_inverse_sqrt, adam_cosine, sag, sag_sgd, sag_adam (wine)

21

Figure 15: Summary (wine)

Figure 16: Comparative visualization of convergence speeds (wine)

Figure 17: Performances at steady states (wine)

22

Figure 18: adadelta, adagrad, sag (iris)

Figure 19: momentum, nesterov, asgd, sag, sag, sgd (iris)

23

Figure 20: adam, amsgrad, adamax, sag, sag_adam (iris)

Figure 21: adam, custom_adam, adam_inverse_sqrt, adam_cosine, sag, sag_sgd, sag_adam (iris)

24

Figure 22: Summary (iris)

Figure 23: Comparative visualization of convergence speeds (iris)

Figure 24: Performances at steady states (iris)

25

Figure 25: adadelta, adagrad, sag (digits)

Figure 26: momentum, nesterov, asgd, sag, sag, sgd (digits)

26

Figure 27: adam, amsgrad, adamax, sag, sag_adam (digits)

Figure 28: adam, custom_adam, adam_inverse_sqrt, adam_cosine, sag, sag_sgd, sag_adam (digits)

27

Figure 29: Summary (digits)

Figure 30: Comparative visualization of convergence speeds (digits)

Figure 31: Performances at steady states (digits)

28

Figure 32: adadelta, adagrad, sag (boston)

Figure 33: momentum, nesterov, asgd, sag, sag, sgd (boston)

Figure 34: adam, amsgrad, adamax, sag, sag_adam (boston)

Figure 35: adam, custom_adam, adam_inverse_sqrt, adam_cosine, sag, sag_sgd, sag_adam (boston)

29

Figure 36: Summary (boston)

Figure 37: Comparative visualization of convergence speeds (boston)

Figure 38: Performances at steady states (boston)

Figure 39: adadelta, adagrad, sag (linnerud)

30

Figure 40: momentum, nesterov, asgd, sag, sag, sgd (linnerud)

Figure 41: adam, amsgrad, adamax, sag, sag_adam (linnerud)

Figure 42: adam, custom_adam, adam_inverse_sqrt, adam_cosine, sag, sag_sgd, sag_adam (linnerud)

Figure 43: Summary (linnerud)

31

Figure 44: Comparative visualization of convergence speeds (linnerud)

Figure 45: Performances at steady states (linnerud)

Figure 46: adadelta, adagrad, sag (diabete)

Figure 47: momentum, nesterov, asgd, sag, sag, sgd (diabete)

32

Figure 48: adam, amsgrad, adamax, sag, sag_adam (diabete)

Figure 49: adam, custom_adam, adam_inverse_sqrt, adam_cosine, sag, sag_sgd, sag_adam (diabete)

Figure 50: Summary (diabete)

Figure 51: Comparative visualization of convergence speeds (diabete)

33

Figure 52: Performances at steady states (diabete)

34

7.2.2 TorchVision dataset

We extracted the datasets presented in table 3 from pytorch (Paszke et al., 2019). The reader is kindly
invited to refer to the official pytorch website 11 for more information about these data (sources, ...).

Dataset (# channels, height, width) # classes size train size (80%) val size (20%)
mnist (1, 28, 28) 10 70000 60000 10000

fashion mnist (1, 28, 28) 10 7000 60000 10000
cifar10 (3, 32, 32) 10 60000 50000 10000
cifar100 (3, 32, 32) 100 60000 50000 10000

Table 3: TorchVision datasets

We trained a classifier having two main successive parts : , and

• A first part consisting of two layers of convolutions neural networks :
– (0): Conv2d(# channels, 10, kernel_size=(5, 5), stride=(1, 1))
– (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
– (2): Conv2d(10, 10, kernel_size=(5, 5), stride=(1, 1))
– (3): Dropout2d(p=0.1, inplace=False)
– (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

• A second part consisting of a a two layers feed forward neural network :
– (0): Linear(in_features=160, out_features=50, bias=True)
– (1): Dropout(p=0.1, inplace=False)
– (2): Linear(in_features=50, out_features=10, bias=True)
– (3): Dropout(p=0.1, inplace=False)

The results are presented in the following figures :

• wine: in progression
• iris: in progression
• boston: in progression
• linnerud: in progression
• diabete: in progression

8 Summary and Discussion

In this work, we compared the performance of SAG and several other optimization algorithms for
continuous objectives such as SGD with momentum, Nesterov Accelerated SGD, Averaged SGD,
RMSProp (with and without momemtum), resilient backpropagation algorithm (Rprop), Adadelta,
Adagrad, Adam, AMSGrad, Adamax, Adam with special learning rate decay procedure (inverse
square root of the update number, cyclical schedule that follows the cosine function). SAG, although
with a simple iteration, outperforms the majority of these algorithms. We have proposed two
combinations of SAG. One with the momentum algorithm, which allows control of the importance of
each gradient term in the mean used by SAG depending on the iteration during which it is used, and
another with Adam where the importance of the square of the norm of the gradient is also controlled.
These two variants allowed us to improve the speed empirically while obtaining better performances.

Limitations The memory cost used by SAG is very high compared to other algorithms, which
makes it impractical for large scale use.

Perspectives What we presented as an improvement is only an empirical illustration of the perfor-
mance of SAG. It would be interesting to evaluate theoretically the expected convergence rate of all
these algorithms. We leave this for future work.

11https://pytorch.org/vision/stable/datasets.html

35

https://pytorch.org/vision/stable/datasets.html

Acknowledgement

The authors thank Fabian Bastin who made this work possible, and for discussion at the early stage of
this project during the stochastic programming (IFT6512) course at UdeM (Université de Montréal).
We also thank Compute Canada for computational resources.

References
Léon Bottou. Online algorithms and stochastic approximations. In David Saad, editor, Online

Learning and Neural Networks. Cambridge University Press, Cambridge, UK, 1998. URL http:
//leon.bottou.org/papers/bottou-98x. revised, oct 2012.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Augustin-Louis Cauchy. Analyse mathématique. – méthode générale pour la résolution des systèmes
d’équations simultanées. volume 25, pages 536–538, 1847.

Yann N. Dauphin, Razvan Pascanu, Çaglar Gülçehre, KyungHyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and
Kilian Q. Weinberger, editors, Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada, pages 2933–2941, 2014. URL https://proceedings.neurips.cc/paper/
2014/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res., 12(null):2121–2159, July 2011a. ISSN 1532-4435.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011b. URL
http://jmlr.org/papers/v12/duchi11a.html.

Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of adam and adagrad. arXiv preprint arXiv: Arxiv-2003.02395, 2020.

G. Hinton. Neural networks for machine learning. coursera, video lectures, 2012.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference On Learning Representations, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Schalk Kok and Carl Sandrock. Locating and characterizing the stationary points of the extended
rosenbrock function. Evol. Comput., 17(3):437–453, sep 2009. ISSN 1063-6560. doi: 10.1162/
evco.2009.17.3.437. URL https://doi.org/10.1162/evco.2009.17.3.437.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv: Arxiv-1608.03983, 2016.

Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models. 2013.

H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimization.
Annual Conference Computational Learning Theory, 2010.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?id=B1g5sA4twr.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009. doi: 10.1137/
070704277. URL https://doi.org/10.1137/070704277.

36

http://leon.bottou.org/papers/bottou-98x
http://leon.bottou.org/papers/bottou-98x
https://proceedings.neurips.cc/paper/2014/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1162/evco.2009.17.3.437
https://openreview.net/forum?id=B1g5sA4twr
https://doi.org/10.1137/070704277

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-
gence o(1/k2). 1983.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Springer, 2004.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
J. Control Optim., 30(4):838–855, jul 1992. ISSN 0363-0129. doi: 10.1137/0330046. URL
https://doi.org/10.1137/0330046.

B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964. ISSN 0041-5553.
doi: https://doi.org/10.1016/0041-5553(64)90137-5. URL https://www.sciencedirect.com/
science/article/pii/0041555364901375.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
International Conference On Learning Representations, 2018.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: the rprop
algorithm. In IEEE International Conference on Neural Networks, pages 586–591 vol.1, 1993.
doi: 10.1109/ICNN.1993.298623.

Mark W. Schmidt, Nicolas Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 2013. doi: 10.1007/s10107-016-1030-6.

Sargur N. Srihari. Challenges in neural network optimization. 2020. URL https://cedar.
buffalo.edu/~srihari/CSE676/.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.
html.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In Sanjoy Dasgupta and David McAllester, editors, Proceedings
of the 30th International Conference on Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pages 1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL
http://proceedings.mlr.press/v28/sutskever13.html.

Richard S. Sutton. Two problems with backpropagation and other steepest-descent learning proce-
dures for networks. In Proceedings of the Eighth Annual Conference of the Cognitive Science
Society. Hillsdale, NJ: Erlbaum, 1986.

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon,
2022. URL https://arxiv.org/abs/2206.04817.

Paul Tseng. An incremental gradient(-projection) method with momentum term and adaptive stepsize
rule. SIAM Journal on Optimization, 8(2):506–531, 1998. doi: 10.1137/S1052623495294797.
URL https://doi.org/10.1137/S1052623495294797.

37

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1137/0330046
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://cedar.buffalo.edu/~srihari/CSE676/
https://cedar.buffalo.edu/~srihari/CSE676/
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://proceedings.mlr.press/v28/sutskever13.html
https://arxiv.org/abs/2206.04817
https://doi.org/10.1137/S1052623495294797

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. The Journal of Machine Learning Research, 21(1):9047–9076, 2020.

Matthew D. Zeiler. Adadelta: An adaptive learning rate method, 2012.

38

	Introduction
	Definitions
	Motivation
	Related works
	SAG convergence rate
	SAG implementation Details
	Experiments settings Results
	Test functions for optimization
	Rosenbrock function
	Rastrigin function

	Toys machine learning problems
	Scikit-learn dataset
	TorchVision dataset

	Summary and Discussion

