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BLOCH-BEILINSON CONJECTURES FOR HECKE CHARACTERS

AND EISENSTEIN COHOMOLOGY OF PICARD SURFACES

JITENDRA BAJPAI AND MATTIA CAVICCHI

Abstract. We consider certain families of Hecke characters φ over a quadratic
imaginary field F . The order of vanishing of the L-function L(φ, s) at the central
point s = −1, according to the Beilinson conjectures, should be equal to the dimen-
sion of the space of extensions of the Tate motive Q(1) by the motive associated
with φ.

In this article, candidates for the corresponding extensions of Hodge structure
are constructed, under the assumptions that the sign of the functional equation of
L(φ, s) is −1 and that L′(φ, −1) 6= 0. This is achieved by means of the cohomology
of variations of Hodge structures over Picard modular surfaces attached to F and
Harder’s theory of Eisenstein cohomology. Moreover, we provide a criterion for the
non-triviality of these extensions, based on the non-vanishing of a height pairing
that we define and study.
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1. Introduction

Let E be an elliptic curve over Q and denote by r the rank of the finitely generated
abelian group E(Q). Suppose that the sign of the functional equation of the (com-
pleted) L-function of E is −1. One of the striking consequences of the celebrated
Gross-Zagier formula ([10]), in this case, is that if L′(E, 1) 6= 0, then r ≥ 1. In fact,
Gross and Zagier manage to exhibit an explicit element, of infinite order, of E(Q).
Since by the hypothesis on the sign, L(E, s) vanishes at the central point s = 1, this
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obviously agrees with the Birch and Swinnerton-Dyer conjecture, which predicts in
particular that r should be precisely equal to the order of vanishing of L(E, s) at
s = 1.

In this article, we are interested in certain conjectural analogues of the latter results,
when L(E, s) is replaced by the L-function of some algebraic Hecke characters φ of a
quadratic imaginary field F , of odd weight w. To such a φ, one can associate a Chow
motive Mφ over Q of weight w, whose L-function coincides with that of φ, denoted

L(φ, s) from now on; notice that the central point for L(φ, s) is then s = w+1
2 . This

construction gives rise in particular to a pure Hodge structure Hφ of weight w.
The starting point allowing to single out an object, which plays the role of E(Q) in

this new context, is the following observation. According to Deligne ([8]), the group
E(Q)⊗Z Q is canonically isomorphic to

Ext1
MM1(Q)

(
1, H1(E)(1)

)

where MM1(Q) is the abelian category of 1-motifs over Q with rational coefficients.
The above-mentioned consequence of Gross-Zagier formula can be then expressed by
saying that if the sign of the functional equation of L(E, s) is −1, and if L′(E, 1) 6= 0,
then

(1) dimQ Ext1
MM1(Q)

(
1, H1(E)(1)

)
≥ 1

The expected Hodge-theoretic analogue of this latter statement for Hecke charac-
ters is the following:

Conjecture 1. Let MHSQ be the category of mixed Q-Hodge structures with coeffi-

cients1 in Q. Let φ be a Hecke character of the quadratic imaginary field F , of odd
weight w. If the sign of the functional equation of L(φ, s) is −1, and if L′(φ, w+1

2 ) 6= 0,
then

(2) dimQ Ext1
MHS

Q

(
1, Hφ

(
w + 1

2

))
≥ 1

This statement is predicted by Beilinson’s conjectures, which propose a vast gen-
eralization of properties of the kind of (1) in terms of mixed motives (cfr. Scholl’s
reformulation of these conjectures in [26, Conjecture B, p. 379]), and by the conjec-
tural injectivity, according to Bloch and Beilinson, of certain Abel-Jacobi maps ([4,
5.6]). In fact, the latter basically implies that the expected non-trivial extensions of
motives should give rise to non-trivial extensions of Hodge structures, since we are
working over a number field.

The ultimate aim of our work is to prove the above conjecture for some special
Hecke characters φ of F of weight -3: namely, those of infinity type (k,−(k + 3)),
with k a positive integer, which have the property that their restriction φQ to Q is
such that

(3) φQ = ǫF |Q · | · |3IQ

1See section 3 for a general definition of mixed Hodge structures with coefficients and our conven-
tions about the category MHS

Q
.
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where ǫF |Q is the quadratic character attached to the extension F |Q and | · |IQ denotes
the norm on the idèles of Q. Let us explain our plan of attack, thereby shedding light
on the reason for these specific assumptions.

Showing (2) for such a φ means constructing, under the stated hypotheses, a non-
trivial extension E of 1 by Hφ(−1) in MHSQ. The strategy that we adopt is based

on ideas and results by Harder ([12, 13]) and makes use of the fact that starting from
the Hecke character φ, one can construct a class in the boundary cohomology, with
coefficients in an appropriate local system, of a Picard modular surface SK , that is, a
non-projective Shimura variety, attached to a Q-algebraic group G such that G(R) ≃
SU(2, 1). This cohomology class is furthermore lifted, through Langlands’ theory
of Eisenstein operators, to a class in the cohomology of SK itself, as an Eisenstein
series whose constant term is controlled by the behaviour of L(φ, s) at s = −1. This
is where we need the special shape of our character and the vanishing hypothesis
on L(φ, s). Thanks to the sign hypothesis, Rogawski’s study of the automorphic
spectrum of unitary groups in three variables ([21, 22, 23]) allows us to find the other
piece for our candidate extension inside the interior cohomology of Picard surfaces.
Then we use the computations of degenerating variations of Hodge structures on S
of [1] and the localization exact sequence, involving interior cohomology and boundary
cohomology, in order to prove our first result:

Theorem 1. Let k be an integer ≥ 0 and let φ be a Hecke character of the quadratic
imaginary field F of infinity type (k,−(k + 3)). Suppose that the restriction φQ to
Q has the shape (3). If the sign of the functional equation of L(φ, s) is −1, and if
L′(φ, 1) 6= 0, then there exists an element of

(4) Ext1
MHS

Q
(1, Hφ(−1))

of geometric origin.

Theorem 1 is the consequence of Theorem 6.2 and Corollary 6.3, and actually, our
method gives rise to a family of extensions Ex lying in the space (4), depending on
the choice of a cohomology class x in a subspace IK

φ,Θ of boundary cohomology of
SK , intuitively defined by a condition of support in a subspace Θ of the boundary
of the Baily-Borel compactification of SK . These extensions should be seen as the
Hodge-theoretic analogues of the extensions of Galois representations constructed in
[3], under the hypothesis of odd order of vanishing of L(φ, s) at the central point, for
families of Hecke characters φ of F which are slightly different from ours (see also [14]
for the case of even order of vanishing). The source of the Galois representations
considered in these works is again the cohomology of Picard modular surfaces, but in
order to obtain the desired extensions, the authors use p-adic families of automorphic
forms, without looking at the geometry of the boundary of the Baily-Borel compact-
ification. It would be interesting to study the Galois-theoretic counterpart of our
constructions, via étale cohomology, and to put it in relation with their methods.

Our second contribution is to take inspiration from the ideas of Scholl on height
pairings, from [25], to provide the following construction, which we state in a slightly
informal way at this point:
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Theorem 2. There exist subspaces IK
φ,Θ, IK

θφ,Σ of boundary cohomology of SK , and a
bilinear pairing

b(x, y) : IK
φ,Θ × (IK

θφ,Σ)∨ → C

with the property that, given x ∈ IK
φ,Θ, if there exists y ∈ (IK

θφ,Σ)∨ such that b(x, y) 6= 0,
then the extension Ex is non trivial.

For the precise statement of this result and its proof, see Theorem 7.5. We provide
then a method to check the non-vanishing of this pairing in Proposition 7.8. Ongoing
work of the authors shows that making this method explicit leads to computations
in Lie algebra cohomology with coefficients in the principal series of SU(2, 1), and
that by employing the detailed description of these principal series representation
available in [29], the value L′(φ,−1) (non-zero by hypothesis) will appear in a crucial
way in the final expression for b(x, y). This is what makes it possible to show the
non-triviality of Ex for a careful choice of x and to give a proof for Conjecture 1.
Details will appear in the forthcoming article [2].

1.1. Content of the article. In Section 2 we gather all the preliminary facts that we
need about the structure of the group G, its parabolic subgroups, its representation
theory, and about its associated locally symmetric spaces, i.e. the Picard surfaces
SK , together with their compactifications (Baily-Borel, denoted by S∗

K , and Borel-

Serre, denoted by S̄K). Then, Section 3 is devoted to some formal aspects of mixed
Hodge structures with coefficients which will be needed in the sequel. In Section 4,
we recall the known results about the computation of boundary cohomology of Picard
surfaces ([12]) and its associated Hodge structure, by means of S∗

K ([1]), adding the
complements we need. We proceed then by recalling in detail the contents of Harder’s
paper [12] on which we rely crucially: in Section 4.5 we record the description of
boundary cohomology, by means of S̄K , in terms of induced representations from
Hecke characters, and in Section 5 we explain the description of Eisenstein cohomol-
ogy, where the L-functions of the aforementioned Hecke characters play an essential
role. In Section 6, we pass to construct the desired extension of Hodge structures;
this is inspired by the ideas in [13] and made possible by the information given before,
by the localization exact sequence associated to the open immersion SK →֒ S∗

K , and
by the results of Rogawski from [21, 22, 23]. In Section 7, we give the construction of
the pairing b(x, y) following Scholl’s work [25], and provide a non-vanishing criterion
for it, which gives in turn a non-triviality criterion for our extensions.

2. Preliminaries

This section quickly reviews the basic properties of G and familiarizes the reader
with the notations to be used throughout the article. We discuss the corresponding
locally symmetric space, Weyl group, the associated spectral sequence and Kostant
representatives of the minimal parabolic subgroup.

2.1. Structure Theory. Let F be a quadratic imaginary extension of Q. Let V be
a 3-dimensional F -vector space, and let J be an F -valued, non degenerate hermitian
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form on V , such that J ⊗F C is of signature (2, 1). We consider then the algebraic
group G := SU(V, J) over Q. In other terms, G is defined, for every Q-algebra R, by

G(R) = {g ∈ SLF ⊗QR(V ⊗Q R)|J(g·, g·) = J(·, ·)}
Notation 2.1. Throughout the article, let α denote the only non-trivial element of
Gal(F |Q), and |x|2 denote the norm x · α(x) of an element x ∈ F ×.

Remark 2.2. We have an isomorphism

(5) V ⊗Q F ≃ V + × V −

where

V + := {v ∈ V ⊗Q F | (x⊗ 1)v = (1⊗ x)v ∀x ∈ F}
V − := {v ∈ V ⊗Q F | (x⊗ 1)v = (1⊗ α(x))v ∀x ∈ F}.

The restriction to V of the projection on V + and on V − induces an F -linear and
F -antilinear isomorphisms of Q-vector spaces

(6) V ≃ V +, V ≃ V − .

Lemma 2.3. There exists an isomorphism GF ≃ SL3,F .

Proof. Define the desired morphism on F -points by sending g ∈ G(F ) to g|V + , us-
ing (5). To see that it is an isomorphism, fix a F -basis of V and use abusively the
same symbol J for the matrix which represents the form J in the chosen basis. Then,
by definition of G, and using the identification (6), the relation g|V − = J−1tg−1

|V +J

holds for any g ∈ G(F ). Hence g 7→ (g, J−1tg−1J) defines an inverse by using (5). �

The following is standard:

Lemma 2.4. Let (V, J) be as above.

(1) There exist infinitely many isotropic vectors for J in V .
(2) For any non-zero isotropic vector v̄ ∈ V , there exist β ∈ Q×

>0 and an isomorphism
(V, J) ≃ (F 3, Jβ) such that v̄ is sent to the first vector of the canonical basis of F 3

and Jβ is (the Hermitian form represented by) the matrix



1
β

1




Definition 2.5. The basis of V corresponding to the canonical one of F 3 through
the isomorphism of the above lemma, with first vector v̄ isotropic for J , is called a
parabolic basis of V (adapted to v̄).

We are now going to describe the locally symmetric spaces associated with G.
Observe that G(R) ≃ SU(2, 1). By fixing a basis of VC, we get an embedding G(R) →֒
GL3(C), with respect to which we can write an element g ∈ G(R) in block-matrix
form as (

A B
C D

)
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where A is a 2-by-2 matrix, B and C are respectively a 2-by-1 and a 1-by-2 matrix,
and D is a scalar. Choose now a basis such that the corresponding matrix of J is
diag(1, 1,−1). There is a standard maximal compact subgroup K∞ of G(R), given
by the subgroup of elements

(7)

{(
A

det(A)−1

)
| A ∈ U2(R)

}

where det A ∈ U1(R) ≃ S1. Then, K∞ ≃ U2(R), and each other maximal compact
subgroup of G(R) is conjugated to K∞.

We can now define the symmetric space S = G(R)/K∞ and associate to any arith-
metic subgroup Γ ⊂ G(Q) the locally symmetric space SΓ := Γ\S. Any finite dimen-

sional representation M of G naturally defines a sheaf M̃ on SΓ. One therefore has
an isomorphism

(8) H•(Γ,M) ∼= H•(SΓ,M̃),

Moreover, if SΓ is the Borel-Serre compactification of SΓ, then there exists an

isomorphism between the cohomology spaces H•(SΓ,M̃) and H•(SΓ,M̃).

2.2. The associated Shimura variety. By writing the elements of G(R) with re-
spect to a basis of VC in which the form J is represented by diag(1, 1,−1), one sees
that G(R) acts transitively by generalized fractional transformations on the matrix
space

D2,1 := {U ∈M2,1(C)|ŪU − 1 < 0}
and that the stabilizer of 0 is precisely K∞. Hence, the symmetric space S is diffeomor-
phic to D2,1. This yields then a complex analytic structure on the locally symmetric
spaces SΓ. The previous action can also be identified to the transitive action of G(R)
on the set of J-negative lines in the 3-dimensional F -vector space V (Q), providing a
complex analytic isomorphism between D2,1 and a complex 2-ball in C2.

A purely group-theoretic description of S can be obtained by making use of the
group G̃ := GU(V, J) of unitary similitudes (with rational similitude factor). One
shows that the morphism h : S → G̃R (where S := ResC|RGm,R is the Deligne torus)
defined on R-points, with respect to a parabolic basis, by

x + iy 7→



x 0 iy
0 x + iy 0
iy 0 x




defines a pure Shimura datum. Then, the G̃(R)-conjugacy class X of h is in canon-
ical bijection with a disjoint union of copies of S and therefore acquires a canonical
topology. A reference for all these facts is2 [16, 3.2].

2To make the comparison with Lan’s setting, one has to notice that i ·
( 1

1
i

)
· Jβ ·

( −i
1

1

)
=

( 1
iβ

−1

)
, where the latter matrix represents a skew-hermitian form, and that conjugating the above

Shimura datum by
( −i

1
1

)
gives the complex conjugate of Lan’s Shimura datum (loc. cit., Eq.

(3.2.5.4)).
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2.2.1. Take a compact open subgroup K ⊂ G̃(Af ) which is neat in the sense of [19,
Sec. 0.6]. Then, the set of double classes

G̃(Q)\(X × G̃(Af )/K)

equipped with its natural topology, is canonically homeomorphic to a finite disjoint
union of locally symmetric spaces ⊔

i

SΓi

where the Γi’s are congruence subgroups of G̃(Q). It therefore acquires a canonical
structure of complex analytic space, which can be shown to be isomorphic to the
analytification of a canonical smooth and quasi-projective algebraic surface SK , called
a Picard surface of level K, defined over F . As a consequence, the locally symmetric
spaces Γi\S are identified to the analytifications of smooth, quasi-projective surfaces
defined over an abelian extension of F depending on K.

2.3. Root System. Consider the maximal torus H of SL3,F defined by the subgroup
whose F -points are

H(F ) =








a
a−1b

b−1






 .

We obtain then, through the isomorphism in Lemma 2.3, a maximal torus H of GF ,
still denoted by H. The group of characters of H is identified with Z2, by associating
to the vector (k1, k2) the character defined on points by

(9) (k1, k2) : (




a
a−1b

b−1


) 7→ ak1−k2bk2

By means of these identifications, the root system Φ of the (split) group GF is of
type A2. The system ∆ of simple roots is the set {(1,−1), (1, 2)} and the set Φ+ of
positive roots is the set {(1,−1), (1, 2), (2, 1)}. The element 1

2

∑
α∈Φ+ = (2, 1) will be

often denoted by δ in what follows.
Consider the group G̃ defined in Remark 2.2. One sees, along the same lines of the

proof of Lemma 2.3, that there is an isomorphism

(10) G̃F ≃ GL3,L×Gm,F

defined on points by sending an element g ∈ G̃(F ), seen as an element of GL(V +×V −),
to

(g|V +, ν(g))

where ν(g) is the similitude factor of g. Note that such a g verifies

(11) g|V − = ν(g)J−1tg−1
|V +J

A character of the standard maximal torus of G̃F can be identified with a vector
(k1, k2, c, r) of integers such that

k1 ≥ k2 ≥ 0, c = k1 + k2 mod 2, r =
c + k1 + k2

2
mod 2
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by associating (k1, k2, c, r) with the character

(12) (




a
a−1b

b−1q


 , f) 7→ ak1−k2bk2q

c−(k1+k2)

2 · f− 1
2

(r+
3c−(k1+k2)

2
)

We will often choose to lift a character λ = (k1, k2) of the maximal torus of GF to
the character

(13) λ̃ := (k1, k2, k1 + k2, (k1 + k2))

of the maximal torus of G̃F .

2.4. Kostant Representatives. We will need to use a classical result of Kostant.
In order to state it, fix a split reductive group G over a field of characteristic zero,
with root system r and Weyl group Υ. Denote by r+ the set of positive roots and
fix moreover a parabolic subgroup Q with its unipotent radical W . Let w be the Lie
algebra of W and rW the set of roots appearing inside w (necessarily positive). For
every w ∈ Υ, we define:

r+(w) := {α ∈ r+|w−1α /∈ r+},
l(w) := |r+(w)|,
Υ′ := {w ∈ Υ|r+(w) ⊂ rW }.

Then, Kostant’s theorem reads as follows:

Theorem 2.6. [27, Thm. 3.2.3] Let Vλ be an irreducible G-representation of highest
weight λ, and let δ be the half-sum of the positive roots of G. Then, as (Q/W )-
representations,

Hq(W, Vλ) ≃
⊕

w∈Υ′|l(w)=q

Uw.(λ+δ)−δ ,

where Uµ denotes an irreducible (Q/W )-representation of highest weight µ.

Coming back to our situation, the Weyl group W of GF is isomorphic to the
symmetric group on 3 elements. Denote by λ a fixed character (k1, k2) of H. Then,
for an element w ∈ W, we compute as follows the “twisted” Weyl action

(14) w ⋆ λ := w.(λ + δ)− δ

appearing in Kostant’s theorem:

id ⋆ λ = λ

(1 2) ⋆ λ = (k2 − 1, k1 + 1)

(2 3) ⋆ λ = (k1 − k2 − 1,−k2 − 2)

(1 2 3) ⋆ λ = (−k2 − 3, k1 − k2)

(1 3 2) ⋆ λ = (k2 − k1 − 3,−k1 − 3)

(1 3) ⋆ λ = (−k1 − 4, k2 − k1 − 2)

The only element of length 0 is the identity, the elements (1 2) and (2 3) have length
1, the elements (1 2 3) and (1 3 2) have length 2, and the element (1 3) has length 3.
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2.5. The Irreducible Representations. The irreducible representations of GF co-
incide with the irreducible representations of SL3,F , and are therefore parametrized
by characters (k1, k2) which are dominant, i.e. such that k1 ≥ k2 ≥ 0.

Consider the irreducible representation Vλ of GF , of highest weight λ. Lift it to a
irreducible representation Vλ̃ of G̃F as in (13). Then, the space

(15) Vλ̃,Q := ResF |Q Vλ̃

is a representation of ResF |Q G̃F , and hence, through the canonical morphism, adjoint

to the identity of G̃F ,

G̃→ ResF |Q G̃F .

it is also a representation of G̃. It is not absolutely irreducible, and in fact, once we
extend scalars back to F , we have (with analogous notation as in (5)) a decomposition

(16) Vλ̃,Q ⊗Q F ≃ V +
λ̃
× V −

λ̃

into irreducible representations of G̃F , where the representation V +
λ̃

is canonically

isomorphic to the original Vλ̃. As far as V −
λ̃

is concerned, its highest weight can be

easily identified as follows. If λ̃ = (k1, k2, k1 + k2, k1 + k2), then the highest weight
through which the maximal torus of G̃F acts on Vλ̃ is

(




a
a−1b

b−1q


 , f) 7→ ak1−k2bk2f−(k1+k2) .

In particular, this is how the maximal torus acts on the isotropic line W + inside V +
λ̃

stabilized by the standard Borel. Then, consider the similarly defined isotropic line
W − inside V −

λ̃
. Since the action of G̃F on V −

λ̃
is described by the same formula as

in (11), the maximal torus acts on W − via the character

(




a
a−1b

b−1q


 , f) 7→ ak2bk1−k2q−k1f−(k1+k2) .

This is then the highest weight of V −
λ̃

, which is therefore isomorphic to the represen-
tation Vλ̃− of highest weight

(17) λ̃− := (k1, k1 − k2,−k2, k1 + k2) .

When λ = (k, 0), we will denote

(18) Vk := Vλ̃,Q .

Since Vk ≃ Symk V , we will look at the action of the Q-points of G̃ on Vk as the
restriction of the classical action of SL3(F ) on homogeneous polynomials of degree k
in 3 variables, with coefficients in F . The decomposition (16) becomes in this case

(19) Vk ⊗Q F ≃ Vk × V ∨
k

with V ∨
k being associated with the highest weight λ− = (k, k).
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2.6. Standard Q-Parabolic Subgroups. The standard Q-parabolic subgroups of
G are easily described by employing the notion of parabolic basis.

Lemma 2.7. The only Q-conjugacy class of parabolic subgroups of G is the class of
the Borel subgroup B whose Q-points are given, in a parabolic basis, by

B(Q) = G(Q) ∩ B(Q)

where B is the subgroup of upper triangular matrices in ResF |Q SL3,F .
In such a basis, a maximal Q-split torus T of G has Q-points given by

T(Q) =








t
1

t−1


 | t ∈ Q×





Proof. It is clear that B is a Q-parabolic. Any other one has to stabilize a subspace
W inside V , hence its orthogonal W ⊥, and by dimension considerations we see that
W ∩W ⊥ cannot be trivial and that it has to be a line. Hence any Q-parabolic P is
the stabilizer of an isotropic line, and since there is a transitive action of G(Q) on the
set of isotropic lines, P has to be conjugated to B.

As far as the maximal torus is concerned, we see that, for any element

g =




z1

z−1
1 z2

z−1
2




of the standard diagonal maximal torus of SL3(F ), g belongs to G(F ) if and only if



α(z1)z−1
2

|z1|−2|z2|2β
z1α(z2)−1


 =




1
β

1




(by definition of G). But this implies that g is of the form



z1

z−1
1 α(z1)

α(z1)−1




The above description provides us with a maximal torus TM of G and an isomor-
phism TM ≃ ResF |QGm,F . Hence, TM is a non-split torus, whose maximal Q-split
subtorus is a copy of Gm, embedded as in the statement. �

Remark 2.8. The Levi component of the maximal parabolic B is precisely the
torus TM . Denote by AG the identity component of the real points of a maximal
Q-split subtorus of TM . By the above proof, there are isomorphisms of Lie groups
TM (R) ≃ C× and AG ≃ R×

>0. It follows that there exists an isomorphism of Lie

groups 0TM := AG\TM (R) ≃ S1.

3. Mixed Hodge structures with coefficients

Before giving the description of boundary cohomology of our locally symmetric
spaces, we discuss some formal aspects of mixed Hodge structures which will be used
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throughout the article, and more importantly we will put our focus on the description
of mixed Hodge structures with coefficients.

Denote by MHSQ the abelian category of mixed Q-Hodge structures, whose objects
are in particular the triples V = (V,W•,F•) where V is a Q-vector space, W• is an
increasing filtration on V , and F• is a decreasing filtration on V ⊗Q C, subject to
a series of conditions. This definition can be generalized by replacing Q with any
subfield R of R and by using R-vector spaces as first entries of the objects V, thus
obtaining a category MHSR.

In this article, we will need to make use of mixed Hodge structures with coefficients
in subfields of C which don’t admit any embedding into R. Fix a number field K.
Mixed K-Hodge structures are defined via a two-step process. First, one considers the
category MHSQ⊗K whose objects are the same as the objects of MHSQ and whose
spaces of morphisms are defined by

HomMHSQ ⊗K(A, B) := HomMHSQ
(A, B)⊗Q K

Then, the desired category MHSQ,K of mixed Q-Hodge structures with coefficients

in K3 is defined as the pseudo-abelian completion4 of MHSQ⊗K. In particular, the
objects of MHSQ,K are couples (V, p) where V is an object of MHSQ⊗K (hence of
MHSQ) and p is an idempotent element of EndMHSQ ⊗K(V). All of these constructions
can be repeated starting with a category of mixed R-Hodge structures, with R a
subfield of R and K a finite extension of R, thus obtaining categories MHSR,K. There
are fully faithful embeddings

(20) MHSR⊗K →֒ MHSR,K

Convention 3.1.

(1) Let R be a subfield of R and K a finite extension of R. By saying that a K-
vector space V is endowed with a mixed R-Hodge structure with coefficients
in K, we will mean that there exist a R-vector space VR, a mixed R-Hodge
structure V = (VR,W•,F•) and an idempotent element p of EndMHSR

(V)⊗K,
such that p(VR ⊗ K) ≃ V . The filtrations W• and F• induce then filtrations
on V and V ⊗KC, which allow us to speak about the weights and the types of
the mixed K-Hodge structure on V . Of course, the types of a mixed K-Hodge
structure will not, in general, satisfy Hodge symmetry.

(2) If given a Q-vector space V , there exist an extension of number fields K|R,
and a K-vector space VK endowed with a mixed R-Hodge structure with co-
efficients in K, such that V ≃ VK ⊗K Q, then we will say that V is endowed
with a mixed Hodge structure with coefficients in Q, or that V is an object
of MHSQ. We will speak freely of the category MHSQ and of Ext groups in
MHSQ, leaving to the reader the technical details of the definitions.

By adopting completely analogous definitions at the level of (bounded) derived
categories, the embeddings (20) extend to fully faithful embeddings

(21) Db(MHSR⊗K) →֒ Db(MHSR,K)

3Also called mixed K-Hodge structures when the “base field” Q of coefficients is understood.
4Also known in the literature as idempotent completion or Karoubi envelope.
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This allows one to deduce formulae for the Ext-groups in MHSR,K from the formulae
for the Ext-groups in MHSR. We record in a couple of lemmas the ones which will
be important for us. In the following, the symbol 1 will denote the unit object in the
appropriate categories of mixed Hodge structures, and 1(n), for n ∈ Z, will denote
the n-th Tate twist.

Lemma 3.2. For any n > 0, there is a canonical isomorphism

(22) Ext1
MHSR,K

(1,1(n)) ≃ (C/(2πi)nR)⊗K

Proof. We have

Ext1
MHSR,K

(1,1(n)) = HomDb(MHSR,K)(1,1(n)[1]) = HomDb(MHSR)(1,1(n)[1]) ⊗K

where the last equality comes from the full faithfulness of (21) and from the definition
of morphisms in the category Db(MHSR)⊗ K. Now the result is implied by the fact
that

HomDb(MHSR)(1,1(n)[1]) = Ext1
MHSR

(1,1(n)) ≃ C/(2πi)nR

where the last isomorphism is obtained as follows ([18, Thm. 3.31]). Let [E] be the
class of an extension

0→ 1(n)→ E → 1→ 0

and let 1 denote a generator of the R-vector space underlying 1. Choose a lift sW (1)
of 1 in the R-vector space underlying E, and a lift sF (1) in the C-vector space F 0E.
Then one sends [E] to the class modulo 1(n) of the element sF (1)− sW (1). �

Lemma 3.3. Let H be a R-Hodge structure with coefficients in C, of weight −1.
Then,

Ext1
MHSR,C

(1, H) = 0

Proof. It is a classical fact, again following from [18, Thm. 3.31], that if H is a
R-Hodge structure of weight −1 then

Ext1
MHSR

(1, H) = 0

To obtain the same result with coefficients in C, it is enough to observe the general fact,
holding for any R, K as in Convention 3.1, that if (V, p), (U, q) are objects of MHSR,K,

then the group Ext1
MHSR,K

((U, q), (V, p)) is a subgroup of Ext1
MHSR

(U,V)⊗K.5 �

We conclude this section by formulating the consequence of the above principles
that will be concretely used later.

Proposition 3.4. Let W1, W2 be 1-dimensional C-vector spaces such that the under-
lying R-vector space is endowed with a pure R-Hodge structure, of weights w1, resp.
w2 with w1 < w2, whose (p, q)-decompositions are induced by the isomorphisms

ι1 : W1 ⊗R C ≃W +
1 ×W −

1

ι2 : W2 ⊗R C ≃W +
2 ×W −

2

5More precisely, it coincides with the subgroup

q
∗
p∗(Ext1

MHSR
(U,V) ⊗ K)

where q∗ and p∗ are respectively the pullback and pushout functors.
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(cfr. (5)). Let p+
i , p−

i , for i ∈ {1, 2}, be the projections on W +
i , W −

i defined via ιi.
Let

0→W1 → W
π−→W2 → 0

be an extension of R-Hodge structures and let be W + the extension in MHSR,C ob-

tained from W via pushout by p+
1 and pullback by p+

2 , W − the extension in MHSR,C

obtained from W via pushout by p−
1 and pullback by p−

2 .
Fix a R-basis {v, w} of W1 and a R-basis {u, ω} of W2. Fix moreover a section σ

of π, and a section σF of πC respecting the Hodge filtration. Then the class of W + is
trivial ⇐⇒ the class of W − is trivial ⇐⇒ the coefficients of σF (u⊗ 1) with respect
to v ⊗ 1 and of σF (ω ⊗ 1) with respect to w ⊗ 1 are conjugated to each other.

4. Boundary cohomology

In this section, we fix one of the Picard modular surfaces SK introduced in Re-
mark 2.2, and we let SΓ be a connected component of SK(C). Our aim is to study
the boundary cohomology of SΓ with coefficients in local systems coming from rep-
resentations of the underlying group G, together with their mixed Hodge structures
and G(Af )-actions. To do so, we will consider two different compactifications, the
Baily-Borel compactification S∗

Γ (a complex projective variety) and the Borel-Serre

compactification SΓ (a real analytic manifold with corners).

4.1. Boundary of the Baily-Borel compactification. As follows from [20, Sec-
tions 3.6-3.7], the boundary of the Baily-Borel compactification of SΓ is the disjoint
union of (connected components of the complex points of) Shimura varieties associ-
ated to a certain subgroup of the Levi component of a representative of each conjugacy
class of Q-parabolics in G. Since there is only one such class (the one of the Borel)
and since the corresponding Levi component is a torus, we see that there is only one
type of stratum in the boundary, which is 0-dimensional (a disjoint union of cusps).

4.2. Boundary of the Borel-Serre compactification. From the structure theory
of the Borel-Serre compactification of SΓ, we know that it admits a projection to the
Baily-Borel one, in such a way that the fiber over each cusp is a fibration over a

locally symmetric space STM

Γ for the group 0TM defined in Remark 2.8. Each fiber
is diffeomorphic to a nilmanifold, obtained as a quotient UΓ of the real points of the
unipotent radical U of B by a discrete subgroup.

In our case, U is inserted into an exact sequence

0→W→ U→ Ũ→ 0

where W is the commutator subgroup of U, isomorphic to Ga, and Ũ is isomorphic
to ResL|QGa,L ([12, p. 567]). If Γ is torsion free, this yields a diffeomorphism of UΓ

with a fiber bundle over an elliptic curve, whose fibers are homeomorphic to S1 ([12,
pp. 569-570]).

Moreover, we have the following:

Lemma 4.1. Suppose Γ to be neat. Then, the locally symmetric space STM

Γ is a point.
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Proof. Let K ′
∞ be the conjugate of the maximal compact subgroup K∞ of G(R) of (7)

under the element

γ :=




1√
2

1√
2√

β
1√
2

− 1√
2




of G(R) (notice that the hermitian form diag(1, 1,−1) is congruent to Jβ via γ). By
definition, the locally symmetric space that we want to describe is diffeomorphic
to ΓT \0TM/(K ′

∞ ∩ 0TM ), where ΓT is the projection to 0TM of Γ ∩ TM (R). By
neatness of Γ, such a projection is again arithmetic, and Remark 2.8 tells us that
0TM is homeomorphic to S1, a compact torus, so that it has no non-trivial arithmetic
subgroups. We leave it to the reader to check that on the other hand, K ′

∞ ∩ 0TM is
the whole of 0TM . �

4.3. Hodge structures at the boundary. Let us denote by S∗
Γ the (complex an-

alytic) Baily-Borel compactification of SΓ and by j : SΓ →֒ S∗
Γ, resp. i : ∂S∗

Γ →֒ S∗
Γ

the natural open, resp. closed immersions. Fix a sheaf M̃ on SΓ coming from a rep-
resentation M of GF . Suppose for simplicity thatM is an irreducible representation
of highest weight λ. Fix a cusp c in ∂S∗

Γ →֒ S∗
Γ. For any element w of the Weyl

group of GF , recall the action w ⋆ λ defined in (14), and let Nw⋆λ be the irreducible
representation of TM

F of highest weight w ⋆ λ. Since TM
F is a split torus, Nw⋆λ is a

1-dimensional F -vector space. It follows from results of Harder for general locally
symmetric spaces (cfr. [17, Cor. (6.6)] for a published proof in the context of Shimura
varieties) and from Kostant’s theorem 2.6 that for each positive integer n

(23) Rni∗j∗M̃
∣∣∣
{c}
≃

⊕

p+q=n

⊕

ℓ(w)=q

Nw⋆λ

Notice that the sheaf on the left hand side is over a point, hence it makes sense to

identify it with the vector space on the right hand side. Since the sheaf M̃ underlies
a variation of Hodge structure, the latter vector space is endowed with a canonical
mixed Hodge structure, which can be understood thanks to [7, Thms. 2.6-2.9], where
the analogue (for general Shimura varieties) of the above isomorphism of sheaves is
upgraded to a canonical isomorphism of mixed Hodge modules. This provides the
following result:

Proposition 4.2. Let Γ be a neat arithmetic subgroup of G(Q). Let λ be a dominant

weight of GF of the form (k1, k2). Let M̃λ be the local system on SΓ associated to the
highest weight representation Mλ of GF , and denote by r the weight of the canonical
pure Hodge structure on Mλ provided by the Shimura datum and by a choice of lift
of λ to G̃F . Then, the following holds:

(1) the spaces Rni∗j∗M̃λ are trivial for n outside the set {0, . . . , 3}.
(2) For each cusp c, we have isomorphisms

R0i∗j∗M̃λ

∣∣∣
{c}
∼= Nλ (a pure F -Hodge structure of weight r − k1)

R1i∗j∗M̃λ

∣∣∣
{c}
≃ N(1 2)⋆λ ⊕N(2 3)⋆λ
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(a semisimple F -Hodge structure of weights r + 1− k2, r + 1− (k1 − k2))

R2i∗j∗M̃λ

∣∣∣
{c}
≃ N(1 2 3)⋆λ ⊕N(1 3 2)⋆λ

(a semisimple F -Hodge structure of weights (r + 2) + k2 + 1, (r + 2) + (k1 − k2) + 1)

R3i∗j∗M̃λ

∣∣∣
{c}
≃ N(1 3)⋆λ (a pure F -Hodge structure of weight (r + 3) + k1 + 1)

Remark 4.3. The above assertions on the weights of the objects Rni∗j∗M̃λ can be
found in [28, proof of Theorem 3.8] and are the content of the main result of [1]. The

topological description of the local systems Rni∗j∗M̃λ was already determined in [12,
Eq. (2.1.2)]. In the notation of loc. cit., the elements wα, wᾱ, wᾱwα, wαwᾱ and θ
correspond respectively to our (2 3), (1 2), (1 2 3), (1 3 2) and (1 3).

Remark 4.4. To make explicit the weight r in Proposition 4.2, one needs a choice of
lifting of the character λ from GF to G̃F . Using the parameterization of characters of
the maximal torus of G̃F set up in Section 2.3, the weight of the Hodge structure on
the representation of highest weight (k1, k2, c, r) coincides in fact with r, thus making
the notation consistent. If one adopts the choice of lifting fixed in (13), the irreducible
representation of GF of highest weight λ is then endowed with a pure Hodge structure
of weight r = k1 + k2.

For our purposes we will need to know something more precise about the above
Hodge structures.

Proposition 4.5. Keep the notation of Proposition 4.2 and lift λ to G̃F as in (13).

(1) The one-dimensional F -Hodge structures described in Proposition 4.2 verify the
following:
(a) Nλ has type (0, k2);
(b) N(1 2)⋆λ has type (0, k1 + 1);
(c) N(2 3)⋆λ has type (k2 + 1, k2);
(d) N(1 2 3)⋆λ has type (k2 + 1, k1 + k2 + 2);
(e) N(1 3 2)⋆λ has type (k1 + 2, k1 + 1);
(f) N(1 3)⋆λ has type (k1 + 2, k1 + k2 + 2).

(2) Let V −
λ̃

be obtained from Vλ as in (16). Then the types of F -Hodge structures on

the cohomology of the local system associated with V −
λ̃

are the conjugated of the types

described in part (1).

Proof. Recall the group G̃ introduced in Remark 2.2. By employing [7, Thms. 2.6-2.9]
and exploiting the formalism of [19, Ch. 4], the Hodge structure on Nw⋆λ is seen to
be induced by the cocharacter ω : S −→ G̃R defined on C-points by

(z1, z2) 7→ (




z1z2 0 z1z2 − 1
0 z1 0
0 0 1


 , z1z2)

using the isomorphism (10). Consider a character µ = (κ1, κ2, γ, ρ) of the maximal
torus of G̃L. Our previous computation of the Kostant action of the Weyl group W
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on a character of the maximal torus of GF extends to µ as follows:

id ⋆ µ = µ

(1 2) ⋆ µ = (κ2 − 1, κ1 + 1, γ, ρ)

(2 3) ⋆ µ = (κ1 − κ2 − 1,−κ2 − 2, γ − κ2 − 1, ρ)

(1 2 3) ⋆ µ = (−κ2 − 3, κ1 − κ2, γ − κ2 − 1, ρ)

(1 3 2) ⋆ µ = (κ2 − κ1 − 3,−κ1 − 3, γ − κ1 − 2, ρ)

(1 3) ⋆ µ = (−κ1 − 4, κ2 − κ1 − 2, γ − κ1 − 2, ρ)

Fix any w ∈ W and denote w ⋆ µ := (k1, k2, c, r). Denote by π the projection modulo
the unipotent radical of the standard Borel of G̃R. Then, the composition of w ⋆ µ
with π ◦ ω sends (z1, z2) ∈ S(C) to

(24) z
k1+k2

4
+ 1

4
c− 1

2
r

1 z
3k1−k2

4
− 1

4
c− 1

2
r

2 .

By choosing µ to be the lifting λ̃ of λ fixed in (13), we perform the computation and
we get the result of part (1). If we perform the same computation by choosing µ to
be the highest weight of V −

λ̃
as described in (17), we get part (2). �

4.4. The boundary cohomology spaces. Boundary cohomology of SΓ with coef-

ficients in M̃ in degree n can be computed in several ways. Recall that, choosing
any compactification j : SΓ →֒ S∗

Γ with boundary i : ∂S∗
Γ →֒ S∗

Γ, it is defined as
hypercohomology of a complex of sheaves over ∂S∗

Γ:

∂Hn(SΓ,M̃) := Hn(∂S∗
Γ, i∗Rj∗M̃)

There is a natural long exact sequence

(25) · · · → Hn
c (SΓ,M̃)→ Hn(SΓ,M̃)→ ∂Hn(SΓ,M̃)→ · · ·

Choosing as S∗
Γ the Baily-Borel compactification, we see that boundary cohomol-

ogy in degree n is isomorphic to the sum over the cusps of the spaces Rni∗j∗M̃
∣∣∣
{c}

described in the previous section.
Choosing the Borel-Serre compactification SΓ, the sheaf M̃ canonically extends to

a sheaf on SΓ, denoted by the same symbol, and there is no need to compute hy-
percohomology: the spaces ∂Hn(SΓ,M̃) are canonically isomorphic to Hn(∂SΓ,M̃).
In our case, as follows from Subsection 4.2 and by applying van Est’s and Kostant’s
theorem, the latter coincide with a direct sum (over the connected components of the

boundary) of spaces isomorphic to
⊕

p+q=n
Hp(STM

Γ ,
⊕

ℓ(w)=q

Ñw⋆λ), where by Lemma 4.1,

the manifold STM

Γ , i.e. a locally symmetric space attached to 0TM , is just a point.

The identification of each one of the latter spaces with Rni∗j∗M̃
∣∣∣
{c}

is then clear.

In this work, we will use both descriptions: the use of the Baily-Borel compactifi-
cation allows to describe the mixed Hodge structures on the boundary cohomology
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spaces, whereas the use of the Borel-Serre one allows to describe them by means of
automorphic forms.6

4.5. Automorphic structure of boundary cohomology. We end this section by
describing the automorphic structure associated to boundary cohomology. For this
purpose, we switch to the adelic setting, and work with the spaces

SK(C) := G̃(Q)\(X × G̃(Af )/K)

defined in Remark 2.2. As in the non-adelic case, to any algebraic representation M̃λ

of G̃L of highest weight λ there corresponds functorially a local system M̃λ,K over
SK(C), underlying a variation of Hodge structure. Letting K vary among the compact

open subgroups of G̃(Af ), one can define a projective system (SK(C),M̃λ,K)K of

spaces and sheaves, the cohomology of whose projective limit (S(C),M̃λ) is such
that

H•(S(C),M̃λ) = lim−→
K

H•(SK(C),M̃λ,K)

and is endowed with a canonical structure of G̃(Af )-module.
By taking the boundary ∂SK(C) of the Borel-Serre compactification at any level

K, we obtain an analogous projective system and, in the projective limit, a G̃(Af )-

module H•(∂S(C), M̃λ). To describe the “automorphic structure of the boundary
cohomology” means, in a first approximation, to describe the structure of this G̃(Af )-
module.

This description will be given in terms of Hecke characters. For us, a Hecke char-
acter on a torus T will be a continuous homomorphism

T(Q)\T(A)→ C× .

We will often refer to a Hecke character of Gm,F as a Hecke character of F . Any
algebraic Hecke character φ has an associated type, i.e. a character

χ : T→ Gm

and the finite part φf of such a φ takes then values in Q
×

, see [11, Sec. 2.5] for
complete definitions and proofs.

We denote by T̃M and B̃ the standard maximal torus and Borel of G̃ containing
TM and B. For any algebraic Hecke character φ : T̃M(A)→ C× on T̃M, we denote by
Qφ the one-dimensional Q-vector space on which T̃M(Af ) operates through φf , and

we make it a B̃(Af )-module in the standard way. Then, the theorem we are interested
in reads as follows:

Theorem 4.6. [12, Thm. 1] There exists a canonical isomorphism of G̃(Af )-modules

(26) H•(∂S(C), M̃λ) ≃
⊕

w∈W

⊕

type(φ)=w⋆λ

Ind
G̃(Af )

B̃(Af )
Qφ

6Observe that for higher-rank groups, the Borel-Serre compactification, which doesn’t necessitate
the passage to hypercohomology, has a strong computational advantage over the Baily-Borel one.
In our situation, the structure of the boundary being as simple as possible, determining boundary
cohomology with either choice is equally easy.
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5. Eisenstein cohomology

In this section, we revisit the article [12] of Harder and study the Eisenstein coho-
mology of the Picard modular surfaces SK associated to our group G̃. Recall that
G̃(R) = GU(2, 1). We summarize the main results and set up the notations and
background required to establish our main results in Sections 6 and 7.

Following the notations fixed in Sections 2 and 4, we define Z := Z(G̃)(R)0 and

K̃∞ := Z · K∞. Denote by ω the central character of the representation M̃λ and
define the space C∞(G̃(Q)\ G̃(A))(ω−1) as the space of those C∞-functions f on
G̃(Q)\ G̃(A) which satisfy f(zg) = ω−1(z)f(g) for any z ∈ Z(G̃)(A)0, g ∈ G̃(A). We
define the archimedean component C∞(G̃(Q)\ G̃(R))(ω−1) and the non-archimedean
component C∞(G̃(Q)\ G̃(Af ))(ω−1) of this space in an analogous way. Then, if we

denote by g the complexified Lie algebra of G̃(R), there is a canonical isomorphism

H•(S(C),M̃λ,C) ≃ H•(g, K̃∞, C∞(G̃(Q)\ G̃(A))(ω−1)⊗ M̃λ,C)

which induces an isomorphism of G̃(Af )-modules

(27) H•(S(C),M̃λ,C) ≃ C∞(G̃(Q)\ G̃(Af ))(ω−1)⊗H•(g, K̃∞, C∞(G̃(Q)\ G̃(R))(ω−1)⊗ M̃λ,C) .

The aim of this section is to exploit the latter description in order to determine
Eisenstein cohomology, i.e. the image of the map of G̃(Af )-modules

(28) r : H•(S(C),M̃λ,C)→ H•(∂S(C), M̃λ,C) .

For any algebraic Hecke character φ : T̃M(A)→ C× on T̃M, denote

(29) Iφ := Ind
G̃(Af )

B̃(Af )
Qφ

and define the Harish-Chandra module
Iφ,∞ :=

{
f : G̃(R)→ C | f is K̃∞−finite and s.t.f(bg) = φ∞(b)f(g) ∀b ∈ B̃(R), g ∈ G̃(R)

}
.

We then get the space I∗
φ := Ind

G̃(A)

B̃(A)
φ = Iφ,C⊗ Iφ,∞. The aim is to define, through

Langlands’ theory of Eisenstein series, a suitable operator

Eis∗
φ : I∗

φ → A(G̃(Q)\ G̃(A)),

where the space on the right-hand side is the space of automorphic forms, and get
through (27) an induced morphism

(30) Eisφ : Iφ,C ⊗H•(g, K̃∞, Iφ,∞ ⊗ M̃λ,C)→ H•(S(C),M̃λ,C).

This is then used to show that, when considering the restriction Eis′
φ of the lat-

ter morphism to suitable submodules I ′
φ,C ⊗ H•(g, K̃∞, I ′

φ,∞ ⊗ M̃λ,C), one gets an
isomorphism

⊕

φ

Im(r ◦ Eis′
φ) ≃ Im(r) .
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5.1. The constant term of the Eisenstein operator. We begin by defining the
Hecke character

|δ| : T̃(A) → R×
>0

t 7→ |δ(t)| ,
where δ is the element defined in Subsection 2.3, and by recalling that for any other
Hecke character φ, one can define, for any s ∈ C with ℜ(s) >> 0, an Eisenstein
operator

(31) Eis∗
φ,s : I∗

φ |δ|s → A(G̃(Q)\ G̃(A))

which, as a function of s, admits a meromorphic continuation to the whole of C.
Denote by Ũ the unipotent radical of B̃, and by θ the longest element in the Weyl
group of G̃. It has a canonical representative in G̃(Q). Then a standard calculation
shows that for every Ψ ∈ I∗

φ |δ|s , the constant term of the operator Eis∗
φ,s is given, for

every g ∈ G̃(A), by
∫

Ũ(Q)\ Ũ(A)

Eis∗
φ,s(Ψ)(ug)du = Ψ(g) +

∫

Ũ(A)

Ψ(θ · ug)du

and it is also known that Eis∗
φ,s has a pole at s = 0 if and only if this is the case for

the above-described constant term.
To study whether such a pole occurs, we introduce the following:

Definition 5.1.

(1) For any s ∈ C with ℜ(s) >> 0, the intertwining operator

T (φ, s) : I∗
φ |δ|s → I∗

φ−1 |δ|−2−s

is defined, for every Ψ ∈ I∗
φ |δ|s and for every g ∈ G̃(A), by

T (φ, s)(Ψ(g)) =

∫

Ũ(A)

Ψ(θ · ug)du .

(2) For any place v of Q, we define

I∗
φv |δv|s := Ind

G̃(Qv)

B̃(Qv)
φv |δv |s

and write I∗
φ |δ|s =

⊗
v

I∗
φv |δv|s . Then, for any s ∈ C with ℜ(s) >> 0, the local

components T (φv, s) of the intertwining operator T (φ, s) are defined, for every Ψv ∈
I∗

φv |δv|s and for every gv ∈ G̃(Qv), by

T (φv, s)(Ψv(gv)) =

∫

Ũ(Qv)

Ψv(θv · uvgv)duv

and we have T (φ, s) =
⊗
v

T (φv, s).

The pole at s = 0 of the intertwining operator will turn out to be controlled by an
object of arithmetic nature:
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Definition 5.2. (1) Let φ(1) be the restriction of the Hecke character φ to the max-

imal torus TM of G, φ
(1)
Q be the restriction of φ(1) to the copy of Gm embedded into

TM , and ǫF |Q be the quadratic character associated to the extension F |Q. Then we
define the meromorphic function c(φ, s) of the complex variable s ∈ C as

c(φ, s) :=
L(φ(1), s− 1) · L(φ

(1)
Q · ǫF |Q, 2s − 2)

L(φ(1), s) · L(φ
(1)
Q · ǫF |Q, 2s− 1)

.

We denote by c̃(φ, s) the product of c(φ, s) with the appropriate Γ-factors of the
occurring L-functions.
(2) For every place v of Q, the local factor cv(φ, s) of c(φ, s) is defined as

cv(φ, s) :=
Lp(φ(1), s− 1) · Lp(φ

(1)
Q · ǫF |Q, 2s − 2)

Lp(φ(1), s) · Lp(φ
(1)
Q · ǫF |Q, 2s − 1)

if v corresponds to a finite prime p, and as the product of the appropriate Γ-factors
of the occurring L-functions, if v is an infinite place. Here Lp(·, ·) denotes the corre-
sponding factor in the Euler product of the L-function under consideration.

Lemma 5.3. The intertwining operator T (φ, s) has a pole at s = 0 if and only if this
is the case for c(φ, s).

Proof. Let v = p be an odd prime which does not ramify in F and at which φ is

not ramified. Then consider the spherical function Ψ
(0)
v ∈ I∗

φv |δ|sv
defined for every

gv = bvkv with bv ∈ B̃(Qv) and kv ∈ G̃(Zv), by Ψ
(0)
v (gv) = φv |δ|sv(bv) . The statement

then follows from Lai’s formula from [15, Sec. 3], which says that

T (φv, s)(Ψ(0)
v ) = cv(φ, s) ·Ψ(0)

v .

�

5.2. Recap on L-functions of Hecke characters. In order to study the behaviour
of the term c(φ, s), it will be useful to recall some basic terminology and facts about
L-functions of Hecke characters. For a character χ : TM → Gm, given on R-points by




z̄
z̄−1z

z−1


 7→ zν z̄µ ,

we say that the weight of an Hecke character φ(1) of TM of type χ is w(φ(1)) := ν +µ.7

Such a Hecke character will also be called of Hodge type (ν, µ).

Let now φ(1) be a Hecke character of type χ = (κ1, κ2) - this implies in particular

that we have w(φ(1)) = κ1 and Hodge type (κ2, κ1 − κ2). The region in which the

L-function L(φ(1), s) is expressed as an absolutely convergent Euler product is the

half-plane Re s > 1 + w(φ(1))
2 . In this region, the L-function is therefore holomorphic,

and moreover known to be non-zero. Multiplying the Euler product by appropriate
Γ-factors, we obtain a completed L-function Λ(φ(1), s) which admits a meromorphic

7This is the opposite of the quantity denoted by g(φ(1)) in [12, Lemma 2.3.1].
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continuation to the whole of C. The function Λ(φ(1), s) and the meromorphically

continued L(φ(1), s) are entire unless φ(1)(·) = | · |tIF
for some t ∈ C; in the latter case,

Λ(φ(1), s) has first-order poles precisely in s = −t and s = 1− t, and L(φ(1), s) has a
unique first-order pole in s = 1− t. Finally, there exists a holomorphic function ǫ(s)

such that Λ(φ(1), s) satisfies the functional equation

(32) Λ(φ(1), s) = ǫ(s)Λ((φ(1))−1, 1− s) .

By applying the previous considerations to the specific Hecke characters appearing
in our cohomology spaces, and remembering Subsection 2.4, we get:

Lemma 5.4. Let λ = (k1, k2) be a character of TM and w an element of the Weyl

group of GF of length ≥ 2. Fix an Hecke character φ(1) of TM of type w ⋆ λ.
(1) The half-plane of convergence for the Euler product of L(φ(1), s) is given by:

• Re s > −1
2 − k2

2 if w = (1 2 3);

• Re s > −1
2 − k1−k2

2 if w = (1 3 2);

• Re s > −1− k1
2 if w = (1 3).

(2) The L-function L(φ(1), s) is entire, unless (k1, k2) = (0, 0), w = (1 3) and

φ(1)(·) = | · |2IF
. In this case, it has a unique first-order pole at s = −1.

Now, taking φ(1) as above, its restriction φ
(1)
Q to IQ has weight 2w(φ(1)). The same

then holds for φ
(1)
Q ·ǫF |Q. Hence, we obtain the following:

Lemma 5.5. Let λ = (k1, k2) be a character of TM and w an element of the Weyl

group of GF of length ≥ 2. Fix an Hecke character φ(1) of TM of type w ⋆ λ.

(1) The half-plane of convergence for the Euler product of L(φ
(1)
Q ·ǫF |Q, s) is given by:

• Re s > −2− k2 if w = (1 2 3);
• Re s > −2− (k1 − k2) if w = (1 3 2);
• Re s > −3− k1 if w = (1 3).

(2) The L-function L(φ
(1)
Q ·ǫF |Q, s) is entire, unless

k2 = 0, w = (1 2 3) and φ
(1)
Q · ǫF |Q(·) = | · |3IQ ,

or
k1 = k2, w = (1 3 2) and φ

(1)
Q · ǫF |Q(·) = | · |3IQ .

In each of the above two cases, it has a unique first-order pole at s = −2.

5.3. Automorphic description of Eisenstein cohomology. Finally, we are ready
to describe the main result of this section. We begin by stating the following:

Definition 5.6. For every place v, we define

T loc(φv , s) := cv(φ, s)−1 · T (φv, s) .

We then put

T loc(φ, s) :=
⊗

v

T loc(φv , s) .

Remark 5.7. The operator T loc(φ, s) is also defined for s = 0, as follows from [12,
Lemma 2.3.1].
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Definition 5.8. The operator Eis∗
φ : I∗

φ → A(G̃(Q)\ G̃(A)) is defined as

(1) the evaluation Eis∗
φ,0 at s = 0 of the Eisenstein operator Eis∗

φ,s of (31), if
c(φ, s) does not have a pole at s = 0;

(2) the residue at s = 0 of the operator s · Eis∗
φ,s, if c(φ, s) has a pole at s = 0.

Notation 5.9.

(1) Denote by Φnp the set of those φ’s such that c(φ, s) does not have a pole at
s = 0, and by Φp the set of those φ’s such that c(φ, s) has a pole at s = 0.

(2) For each φ ∈ Φnp, let Eisφ be the operator defined as in (30) from the operator
Eis∗

φ of Definition 5.8.1.

(3) For each φ ∈ Φp, define I ′
φ := Ker T loc(φ, 0) and Jφ := Im T loc(φ, 0) and let

Eis′
φ be the restriction to I ′

φ of the operator Eisφ defined as in (30) from the

operator Eis∗
φ of Definition 5.8.2.

Theorem 5.10. [12, Thm. 2] Let r be the restriction morphism of (28) and following
Notation 5.9. Then, r ◦ (⊕φ∈Φnp

Eisφ⊕φ∈Φp
Eis′

φ) induces an isomorphism

(33) Im(r) ≃
⊕

w∈W

⊕

type(φ)=w⋆λ
ℓ(w)≥2
φ∈Φnp

Iφ,C

⊕

type(φ)=w⋆λ
ℓ(w)≥2
φ∈Φp

I ′
φ,C ⊕ Jφ,C

Proof. The case φ ∈ Φnp is treated in [12, pp. 581-583] and the case φ ∈ Φp in [12,
pp. 583-584]. �

Remark 5.11. In the above theorem, the spaces Iφ,C and I ′
φ,C contribute to cohomol-

ogy in degrees 2 and 3, whereas the spaces Jφ,C contribute to cohomology in degrees
0 and 1.

6. Construction of Hecke extensions

Consider the algebraic groups G and G̃ introduced in Section 2, with maximal tori
TM and T̃M. From now on, we will fix an algebraic Hecke character φ of T̃M, whose
restriction φ(1) to the maximal torus TM (which is identified to an algebraic Hecke
character of F ) is of type (1 2 3) ⋆ λ = (−3, k) for some integer k ≥ 0, and has the
following two properties:

(1) φ
(1)
Q · ǫF |Q(·) = | · |3IQ ;

(2) the sign of the functional equation of L(φ(1), s) is −1.

Note that such a φ has infinity type (k,−(k + 3)) in the sense of [24, Ch. 0, 1] and
that it has weight −3. Hence, the central point of the functional equation of L(φ(1), s)

is s = −1, and condition (2) above implies that L(φ(1),−1) = 0, with odd order of
vanishing. In fact, we will ask a more precise condition on φ:

(2b) L(φ(1), s) vanishes at s = −1 at the first order.

Let F ′ be the field of values of φ. Denote by CHM(F )F ′ the category of Chow
motives over F with coefficients in F ′ and let Mφ be the object of CHM(F )F ′ attached
to φ in [9, Prop. 3.5].



HECKE CHARACTERS AND PICARD SURFACES 23

The absolute Hodge motive corresponding to Mφ is then the one attached to φ
in [24, Ch. 1, Thm. 4.1] and we have L(φ, s) = L(Mφ, s). The Hodge realization of
Mφ is a rank-1 F ′-Hodge structure Hφ, of Hodge type (k,−(k + 3)).

The aim of the present section is to construct a non-zero element E inside Ext1
MHS

Q
(1, Hφ(−1))

of motivic origin, which will be called a Hecke extension, whose existence is predicted
by Beilinson’s conjectures ([26]) and the conjectural injectivity of Abel-Jacobi maps
over number fields ([4]), as discussed in Section 1.

Let us fix a Picard modular surface SK corresponding to a neat level K and a local

system M̃λ on SK(C) associated to an irreducible representation of G of highest
weight λ.

The idea for constructing the desired extension consists in exploiting the natural

exact sequence (25) expressing M̃λ-valued cohomology of SK as an extension of its
Eisenstein cohomology by its interior cohomology

(34) H•
! (S(C),M̃λ)

defined as the image of the natural morphism H•
c (S(C),M̃λ)→ H•(S(C),M̃λ).

A relevant subspace of Eisenstein cohomology useful for our purposes will be ob-
tained thanks to Theorem 5.10. In order to select a suitable subspace of interior
cohomology, we need to analyze further its automorphic structure, which has been
studied by Rogawski, as we are now going to recall.

6.1. A summary of Rogawski’s results. In [13, p. 99], the following has been ob-
served: it is a consequence of [21, Thms. 13.3.6, 13.3.7], as corrected in [23, Thm. 1.1],
that under our condition (2) on φ, there exists, for an appropriate λ, a G̃(Af )-

submodule Jφ,! of H2
! (S(C),M̃

λ,Q), whose local components are isomorphic to Jφ,v

for infinitely many places v (see Notation 5.9.3). Let us now explain this in detail.

Following the penultimate equation of [12, p. 579], our Hecke character φ(1) can
be written as

(35) φ(1) = |δ| 32 · φ(1)
u

where φ
(1)
u is a unitary Hecke character. Then, as in the last equation of loc. cit., we

have an equality of G(Af)-representations

(36) Ind
G(Af )

B(Af ) φ(1) = IndUn
G(Af )

B(Af ) φ(1)
u · |δ|

1
2

where IndUn denotes the unitary induction functor.
Denote by U(n), for n ∈ N, the quasi-split form over Q of the unitary group in n

variables (defined with respect to the extension F |Q), and write G̃0 for the subgroup
of G̃ of elements with trivial similitude character. Fix a choice of a Hecke character
µ of F whose restriction to Q is ǫF |Q(·). We choose a couple of characters on the

norm-one subgroup C
(1)
F of the idèle class group of F as follows: define ρ1 to be the

restriction of µ ·φ(1)
u to C

(1)
F , and ρ′ to be the restriction of φ · (φ(1))−1 to the maximal

torus of G̃0. Such a ρ′ actually factors through the image of that maximal torus via
the determinant, i.e. it is truly a character of U(1). Once we observe that
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(37) |δ| = | · |F
where | · |F is the norm character on the idèles of F , and once we remember (36),
we then see that for any finite place v of Q, the unitarily induced representation
called ind(ηv) in [23, p. 395] is nothing but our Iφv , or more precisely, its restriction

to a representation of G̃0 (remark that in our notation, the character called φ in

loc. cit. becomes φ
(1)
u ). To the couple (ρ1, ρ′) that we have just chosen, one attaches

a character ρ on U(2) × U(1) as in loc. cit.. From what we have just said, it follows
that for any v which is inert in F , the representation denoted by πn(ρv) in loc. cit.,
i.e. the Langlands quotient of ind(ηv), coincides with (the restriction to G̃0) of Jφ,v.
For v ramified, we still denote by πn(ρv) the Langlands quotient of ind(ηv). For split
v, we define πn(ρv) as in [23, p. 396].

At the infinite place of Q, we consider the discrete series representation πs(ρ)

of [22, p. 77, first line]. Adopt the notation M̃λ,Q of (15), and denote by M̃λ,Q,0 the

restriction of M̃λ,Q to a representation of G̃0. In our notation, the representation

M̃λ,Q,0 is identified with a triple (k1, k2, c), whereas in [22, p. 79] it is identified with
a triple (m, r, n); under the change of variables between the two parametrizations,
one sees that k2 = 0 if and only if r − n = 1, and that k1 = k2 if and only if

m − r = 1. Then, by [22, 3.2], the representation πs(ρ) is M̃λ,Q,0-cohomological in
degree 2 when either k1 = k2 or k2 = 0. In the first case, it coincides with the discrete
series representation denoted by π+ in loc. cit.; in the second case, it coincides with
the one denoted by π−. In both cases, we put π∞ := πs(ρ).

Proposition 6.1. Consider the G̃0(Af )-representation πf (φ) and the automorphic

representation π(φ) of G̃0 defined by

πf (φ) :=
⊗

v

πn(ρv) ,

π(φ) := πf (φ)⊗ π∞(38)

where the local components πn(ρv) and π∞ are as defined above. Then we have the
following

(1) The automorphic representation π(φ) has multiplicity 1 in the cuspidal spectrum
of G̃0.
(2) Recall the G̃-representation Vk defined by (18) and denote by the same symbol the
associated local system. There exist a Q-model of πf (φ), denoted by the same symbol,

and 1-dimensional Q-Hodge structures HJφ,!
, which verify the following: for any neat

open compact K small enough, there exist isomorphic Hecke submodules H2(πf (φ))

of H2
! (SK(C), Vk ⊗F Q̄) and of H2

! (SK(C), V ∨
k ⊗F Q̄) such that

(39) H2(πf (φ)) ≃ πf (φ)K ⊗HJφ,!

as a Hecke module and as Hodge structure. The Hodge structure HJφ,!
attached to the

submodule of H2
! (SK(C), Vk ⊗F Q̄) is of type (k + 2, 0) and the one attached to the

submodule of H2
! (SK(C), V ∨

k ⊗F Q̄) is of type (0, k + 2).
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Proof. (1) The automorphic representation π(φ) belongs to the A-packet Π(ρ) of [23,
p. 396], and by construction, the number n(π) of loc. cit. is equal to 1. Now write
φR for the character denoted φ in loc. cit.. We have already observed above that

φR = φ
(1)
u , so that by (35) and (37)

L

(
φR,

1

2

)
= L

(
φ · | · |−

3
2

L ,
1

2

)
= L (φ,−1)

which shows that our hypothesis (2) on φ is precisely equivalent to ǫ(1
2 , φR) = −1.

By [23, Thm. 1.1], we obtain that the multiplicity of π(φ) in the discrete spectrum
of G̃0 is 1. By [21, Thm. 13.3.6 (a)], it is actually a representation appearing in the
cuspidal spectrum.

(2) For any local system M̃λ, recall that the cuspidal cohomology H•
cusp(S(C),M̃λ,C)

is the sub-G̃(Af )-module of the interior cohomology H•
! (S(C),M̃λ,C) (34), defined as

the direct sum of all the irreducible sub-G̃(Af )-modules of H•
! (S(C),M̃λ,C) isomor-

phic to the non-archimedean component of some cuspidal automorphic representation
of G̃(A). We denote the set of these isomorphism classes by Ccusp. By multiplicity

one for the discrete spectrum of G̃(A) ([21, Thm. 13.3.1]), cuspidal cohomology de-
composes as

(40) H•
cusp(S(C),M̃λ,C) ≃

⊕

π=πf ⊗π∞

s. t. πf ∈Ccusp

πf ⊗H•(g, K̃∞, π∞ ⊗ M̃λ,C)

Upon choosing a Q-model for each submodule πf , denoted by the same symbol, we

get a Q-model for cuspidal cohomology, described as

(41) H•
cusp(S(C), M̃

λ,Q) :=
⊕

π=πf ⊗π∞

s. t. πf ∈Ccusp

πf ⊗HomG̃(Af )(πf , H•
! (S(C),M̃

λ,Q))

where each space HomG̃(Af )(πf , H•
! (S(C),M̃

λ,Q)) is endowed with a canonical Q-

Hodge structure. Now take for M̃
λ,Q either Vk ⊗F Q or V ∨

k ⊗F Q and consider the

submodule corresponding to π = π(φ). By the comparison isomorphism between
singular interior cohomology and étale interior cohomology, the dimension of the
Hodge structure

HJφ,!
:= HomG̃(Af )(π(φ)f , H2

! (S(C),M̃
λ,Q)

is the same as the dimension of the space V 2(πf )) of Case 5 of [22, pp. 91-92], which
according to loc. cit. is equal to 1, by our choice of the archimedean component of
π(φ) mentioned above. We obtain then the desired Hecke submodule. Finally, to
get the assertion on the type of HJφ,!, we apply the following two facts: (a) if r is

the weight of the pure Hodge structure on M̃λ (so that r = k in both the cases we

are treating, by Remark 4.4 and (17)), then H2
! (S(C), M̃λ) has weight r + 2. Its

Hodge substructure HJφ,!
has thus the same weight; (b) the Hodge types of HJφ,!

are

those (p, q)’s appearing in the (p, q)-decomposition of the space H2(g, K̃∞, π(φ)∞ ⊗
M̃λ,C), which is in turn determined by the (p, q)-decomposition of the discrete series
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representation π(φ)∞, and the discrete series representations π+ and π− discussed
above, are respectively holomorphic and antiholomorphic ([5, 1.3]).

�

6.2. Construction of the extension. We have now all the ingredients needed to
construct the desired extensions.

Theorem 6.2. Consider the G̃-representation Vk of (18).

(1) For any level K small enough, the extension of scalars to Q over Q of the exact
sequence obtained from (25)

(42) H2
c (SK(C), Vk)→ H2(SK(C), Vk)

r2

−→ ∂H2(SK(C), Vk)

has a subquotient short exact sequence of Hecke modules and Hodge structures

(43) 0→ H2(πf (φ))→ H̃0 → IK
φ → 0

where H2(πf (φ)) is as defined in (39) and endowed with a pure Q-Hodge structure of

type (k+2, 0) and Iφ is defined as in (29) and endowed with a pure Q-Hodge structure
of type (1, k + 2).
(2) Let n be the dimension of IK

φ . Then the short exact sequence (43) induces an

extension of Q-Hodge structures

(44) 0→ Hφ(−1)→ H0 → 1
⊕n → 0

where Hφ is the 1-dimensional Hodge structure of type (k,−(k + 3)) attached to φ.

Proof. (1) Consider our assumption (1) on φ and recall that it is of type w ⋆ λ, with
w = (1 2 3) and λ = (k, 0). Then, because of the shape of λ, the first case of part

(2) of Lemma 5.5 applies and tells us that the L-function L(φ
(1)
Q ·ǫL|Q, 2s − 2) has a

first-order pole at s = 0. But thanks to the vanishing of L(φ(1), s− 1) at s = 0 given
by our assumption (2) on φ, our Hecke character belongs to the set Φnp appearing
in the statement of Theorem 5.10. Keeping into account that w is of length 2, the
latter theorem then implies that after extending scalars to Q, we have Iφ →֒ Im(r2),

because by the decomposition (16), the cohomology of M̃λ̃ is a direct summand of

the cohomology of Vk ⊗Q Q. By Proposition 4.2 and part (4) of Proposition 4.5, IK
φ

is endowed with an Hodge structure of type (1, k + 2).

Now, again by the decomposition (16), the cohomology of the representation M̃λ̃−

of equation (17) is also a direct summand of the cohomology of Vk ⊗Q Q, so that, by
Proposition 6.1.(2), after extending scalars to Q, we get a direct summand H2(πf (φ))
of ker(r2), that is of interior cohomology in degree 2, endowed with a Hodge structure
of type (k + 2, 0).

The desired short exact sequence is then obtained by taking pullback via the inclu-
sion Iφ →֒ Im(r2) and pushout via the projection ker(r2) ։ H2(πf (φ)).

(2) The Hodge structure on IK
φ is a direct sum of copies of the 1-dimensional pure

Q-Hodge structure of type (1, k + 2). By tensoring with the dual of this latter Hodge
structure the extension of Hodge structures defined by (43), one obtains the desired
extension.

�
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Corollary 6.3. The choice of an element of IK
φ provides, by pullback of the exten-

sion (44), a 1-extension of 1 by Hφ(−1) in the category MHSQ. Hence we obtain a
morphism

(45) IK
φ → Ext1

MHS
Q
(1, Hφ(−1)) .

It thus becomes our task to select an element of IK
φ in such a way to produce a non-

trivial extension E, whose class will be the desired element of Ext1
MHS

Q
(1, Hφ(−1)).

7. Non-triviality of Hecke extensions

Throughout this section, we maintain the notation of the previous section. In
particular, we consider a fixed Hecke character φ satisfying the hypotheses stated
at the beginning of Section 6. It is of infinity type (k,−(k + 3)) for a fixed integer
k ≥ 0 and it has an associated Hodge structure Hφ. Moreover, we make use of the

G̃-representation Vk of (18).
We will now give a method to detect non-triviality of elements of Ext1

MHS
Q
(1, Hφ(−1))

constructed via the morphism (45).

7.1. The Scholl pairing. We begin with the construction of a dual extension which
will play an auxiliary role in the proof of desired non-triviality of Hecke extension.

Proposition 7.1. (1) For any level K small enough, the extension of scalars to Q
of the exact sequence obtained from (25)

(46) ∂H1(SK(C), Vk)→ H2
c (SK(C), Vk)→ H2(SK(C), Vk)

provides a short exact sequence of Hecke modules and Hodge structures

(47) 0→ IK
θφ → H̃ ′

0 → H2(πf (φ))→ 0

where H2(πf (φ)) is defined as in (39) and endowed with a pure Q-Hodge structure

of type (k + 2, 0) and Iθφ is defined as in (29) and endowed with a pure Q-Hodge
structure of type (0, k + 1).
(2) Let n be the dimension of IK

θφ. Then the short exact sequence (47) induces an

extension of Q-Hodge structures

(48) 0→ 1(1)⊕n → H ′
0 → Hφ(−1)→ 0

where Hφ is the 1-dimensional Hodge structure of type (k,−(k + 3)) attached to φ.

Proof. By remembering that the type of θφ is (1 2) ⋆ λ with λ = (k, 0) and by
using part (2) of Proposition 4.5, the statements follow by arguing as in the proof
of Proposition 6.2 (or by applying Poincaré duality to the statement of that same
proposition). �

We also get a morphism

(49) IK
θφ → Ext1

MHS
Q
(Hφ(−1),1)

analogous to (45).
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Now recall the notation i, j from Subsection 4.4. Fix a decomposition of the bound-
ary ∂ := ∂S∗

K of S∗
K as the disjoint union of two sets of connected components

(50) ∂ = Θ
⊔

Σ .

Proposition 7.2. (1) For any decomposition as in (50) and △ ∈ {Θ, Σ}, there exist
subalgebras H△(G, K) of the Hecke algebra H(G, K), and sub-H△(G, K)-modules

IK
φ,Θ ≤ IK

φ (for △ = Θ)

IK
θφ,Σ ≤ IK

θφ (for △ = Σ)

such that the elements of IK
φ,Θ are precisely the cohomology classes in IK

φ supported

on Θ. and the elements of IK
θφ,Σ are precisely the cohomology classes in IK

θφ supported
on Σ.
(2) The extensions (43) and (47) provide, by pullback, extensions

(51) 0→ H2(πf (φ))→ H̃ → IK
φ,Θ → 0

(52) 0→ IK
θφ,Σ → H̃ ′ → H2(πf (φ))→ 0

For any △ ∈ {Θ, Σ}, consider the pair of complementary, open resp. closed immer-
sions

j△ : SK(C) →֒ SK(C)
⊔
△ ←֓ △ : i△

and the open immersion

j△ : SK(C)
⊔
△ →֒ S∗

K(C)

and define i△ := j△ ◦ i△. There are canonical exact triangles

j△,∗j△
! → j∗ → i△,∗i△,∗j△

∗ →
Denote

H i
c,∂\△(SK(C),M̃λ) := H i(S∗

K(C), j△,∗j△
! M̃λ),

H i
△(∂SK(C),M̃λ) := H i(S∗

K(C), i△,∗i△,∗j△
∗ M̃λ).

We get a long exact sequence

(53) · · · → H i
c,∂\△(SK(C),M̃λ)→ H i(SK(C),M̃λ)→ H i

△(∂SK(C),M̃λ)→ · · ·
Moreover, there are canonical morphisms

(54) i∗i∗j∗
r△−−→ i△,∗i△,∗j△

∗

such that the diagram

j∗

��

&&▲
▲▲

▲▲
▲▲

▲▲
▲▲

i∗i∗j∗
r△

yyss
ss
ss
ss
s

i△,∗i△,∗j△
∗
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commutes.

Proposition 7.3. Fix a decomposition as in (50). Then there exists a canonical
mixed Q-Hodge structure H̃♯ such that the extensions (51) and (52) fit in a commu-
tative diagram of mixed Q-Hodge structures, with exact rows and columns

0

��

0

��

IK
θφ,Σ

��

IK
θφ,Σ

��

0 // H̃ ′

��

// H̃♯

��

// IK
φ,Θ

// 0

0 // H2(πf (φ)) //

��

H̃ //

��

IK
φ,Θ

// 0

0 0

Proof. Denote again by Vk the local system induced by the G̃-representation of (18)
and consider the exact sequence

(55) H1
Σ(∂SK(C), Vk)→ H2

c,Θ(SK(C), Vk)→ H2(SK(C), Vk)→ H2
Σ(∂SK(C), Vk)

obtained from the long exact sequence (53). We have inclusions

IK
φ,Θ →֒ H2

Θ(∂SK(C), Vk ⊗F Q), resp. IK
θφ,Σ →֒ H1

Σ(∂SK(C), Vk ⊗F Q)

which factor as the composition of

IK
φ,Θ →֒ H2(∂SK(C), Vk ⊗F Q), resp. IK

θφ,Σ →֒ H1(∂SK(C), Vk ⊗F Q)

and of the morphisms induced by (54). By taking pushout via the projection

H1
Σ(∂SK(C), Vk ⊗Q Q) ։ IK

θφ,Σ

(which exists by semi-simplicity of H1
Σ(∂SK(C),M̃

λ,Q)), the extension of scalars to

Q of the sequence (55) yields an exact sequence

0→ IK
θφ,Σ → ˜̃HΣ → H2(SK(C), Vk ⊗Q Q)

Denoting by ˜̃H the pullback of

H2(SK(C), Vk ⊗Q Q)→ H2(∂SK(C), Vk ⊗Q Q)

along

IK
φ,Θ →֒ H2(∂SK(C), Vk ⊗Q Q)

we obtain, by pullback via ˜̃H → H2(SK(C), Vk ⊗Q Q), an extension

(56) 0→ IK
θφ,Σ → H̃Σ → ˜̃H → 0
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Consider the space H̃ defined in (51). Pullback of (56) along the induced morphism

H̃ → ˜̃H

provides an extension

0→ IK
θφ,Σ → H̃♯ → H̃ → 0

which gives the right four-term column of the diagram in the statement. �

Corollary 7.4. Fix a decomposition as in (50) and let r be the dimension of IK
φ,Θ

and s the dimension of IK
θφ,Σ. Consider the Hodge structure on IK

φ,Θ, a direct sum of

r copies of a 1-dimensional pure Q-Hodge structure of type (1, k + 2). Tensoring with
the dual of the latter the diagram of Proposition 7.3, we obtain a diagram of mixed
Q-Hodge structures

0

��

0

��

1(1)⊕s

��

1(1)⊕s

��

0 // H ′

��

// H♯

��

// 1
⊕r // 0

0 // Hφ(−1) //

��

H //

��

1
⊕r // 0

0 0

Notice that the weight filtration of the mixed Hodge structure H♯ has three non-
trivial steps, with graded quotients 1(1)⊕n (weight -2), Hφ(−1) (weight -1) and 1

⊕m

(weight 0). Thus, we have precisely put ourselves on the Hodge-theoretic side of the
situation considered by Scholl in [25, 3] (with our H♯ playing the role of E in loc.
cit.).

Theorem 7.5. (1) Fix a decomposition as in (50) and an isomorphism

Ext1
MHSR,C

(1,1(1)) ≃ C

Then the diagram of Corollary 7.4 defines a pairing

(57) b : IK
φ,Θ × (IK

θφ,Σ)∨ → C

(2) Denote by E1, resp. by E2, the image of the restriction to IK
φ,Θ of the mor-

phism (45), resp. of the restriction to IK
θφ,Σ of the morphism (49). Choose sections

s1, s2 of the latter morphisms (thought of as having target in E1, E2). The pairing b
induces a pairing

b̃ : E1 × E2 → C

such that for any E1 ∈ E1, E2 ∈ E2

b̃(E1, E2) = b(s1(E1), s2(E2))
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Proof. (1) We follow the construction given in [25, 3.3]. In the diagram of Corollary
7.4, extend scalars to C and consider the result as a diagram of mixed R-Hodge
structures with coefficients in C. Then, since Hφ,C(−1) has weight −1, Lemma 3.3

implies that the space Ext1
MHSR,C

(1, Hφ,C(−1)) is trivial, so that there is a splitting

(58) H♯
C = Hφ,C(−1)⊕W

where W is an extension

(59) 0→ 1(1)⊕s → W → 1
⊕r → 0

which defines an element of

Ext1
MHSR,C

(1⊕r,1(1)⊕s) = Hom(IK
φ,θ, IK

θφ,Σ)⊗ Ext1
MHSR,C

(1,1(1))

where we have remembered that before extending scalars to C, the underlying vec-
tor spaces of the Hodge structures 1⊕m and 1(1)⊕n are respectively IK

φ,θ and IK
θφ,Σ.

Lemma 22 implies that there exists an isomorphism

Ext1
MHSR,C

(1,1(1)) ≃ C

so that the extension class of V can be interpreted as a bilinear pairing

b : IK
φ,Θ × (IK

θφ,Σ)∨ → C

(2) The pairing b̃ is obtained in the same way as b, by taking pullback via s1 and
pushout via the dual of s2. The property in the statement comes from [25, Prop. 3.11].

�

We call b̃ the Scholl pairing; the reader may wish to consult the proof of [25,
Thm. 7.7] in order to appreciate the underlying motivic inspiration (in terms of height
pairings on algebraic cycles). We conclude that, in order to check non-triviality of an
extension class E ∈ E1, obtained by evaluation of the morphism (45) on an element
x ∈ IK

φ,Θ, it is enough to check that there exists y ∈ (IK
θφ,Σ)∨ such that

b(x, y) 6= 0

7.2. A non-vanishing criterion for the Scholl pairing. Let us now give a con-
crete recipe, which will allow us to test whether the Scholl pairing of two given
elements vanishes. We will use the notations set up at the beginning of Section 5 and
write

(60) Iφ∞
⊗ Vk := Iφ∞

⊗C Vk,R

We recall that according to [29, Sec. 4.1], the space Iφ∞
decomposes as an (infinite)

direct sum of 1-dimensional spaces generated by Wigner D-functions

(61) W j,n
m1,m2

where j, n, m1, m2 are half-integers subject to a series of conditions.
Define φ− to be the Hecke character obtained from φ by composing it with complex

conjugation, so that in particular, we have

(62) φ−
∞ : z 7→ φ∞(z)

and φ− is of infinity type (−(k + 3), k).
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Lemma 7.6. (1) The C-vector spaces H2(g, K̃∞, Iφ∞
⊗Vk) and H1(g, K̃∞, Iθφ∞

⊗Vk)
are 1-dimensional.
(2) The (p, q) decomposition of the pure R-Hodge structure on the underlying R-vector
space of H2(g, K̃∞, Iφ∞

⊗ Vk) is defined by an isomorphism

(63) H2(g, K̃∞, Iφ∞
⊗ Vk,C) ≃ H2(g, K̃∞, Iφ∞

⊗ Vk)⊕H2(g, K̃∞, Iφ∞
⊗ V ∨

k )

Projection on the first summand on the right defines a 1-dimensional R-Hodge struc-
ture with coefficients in C on H2(g, K̃∞, Iφ∞

⊗ Vk).

(3) Fix a generator u of the C-vector space H2(g, K̃∞, Iφ∞
⊗ Vk). The R-Hodge

structure with coefficients in C on IK
φ,Θ⊗QC is induced by the 1-dimensional R-Hodge

structure with coefficients in C on H2(g, K̃∞, Iφ∞
⊗ Vk) via the isomorphism

IK
φ,Θ ⊗Q C ≃ IK

φ,Θ ⊗Q H2(g, K̃∞, Iφ,∞ ⊗ Vk)

given by the element u.

Proof. (1) Let t, resp. tK denote the complexified Lie algebras of a maximal torus
T̃M of G̃, resp. of its intersection with a maximal compact subgroup of G̃(R), and let
u denote the complexified Lie algebra of the unipotent radical of a Borel of G̃. Write
Cφ∞

for the 1-dimensional C-vector space on which T̃M (C) acts via multiplication by
φ∞. By the so-called Delorme isomorphism, see [6, Thm. 3.3] and also [11, p. 68], we
have that

H•(g, K̃∞, Iφ∞
⊗ Vk) ≃ Hom(Λ•(t/tK), (H•(u, Vk,R)⊗Cφ∞

)(0))

where (0) indicates the weight-zero space for the action of t. Now a computation
as in the end of the proof of Lemma 4.1 shows that t/tK is a 1-dimensional C-vector
space. This fact and an application of Kostant’s theorem show that in the left-hand
side of the above isomorphism, the degree-2 summand corresponds to a summand
on the right, which is a 1-dimensional C-vector space, on which T̃M acts via the
character (1 2 3) ⋆ λ.

An analogous computation, or application of Poincaré duality to the previous com-
putation, shows that H1(g, K̃∞, Iθφ∞

⊗ Vk) is also 1-dimensional.
(2) We look at the complex

· · · → Homl(Λ
i(g/l), Iφ∞

⊗ Vk)
di

−→ Homl(Λ
i+1(g/l), Iφ∞

⊗ Vk)→ · · ·
which computes relative Lie algebra cohomology of the (g, K∞)-module Iφ∞

⊗Vk. The
decomposition (19) induces G(C)-equivariant isomorphisms

(Iφ∞
⊗ Vk)+ ≃ Iφ∞

⊗ Vk

(Iφ∞
⊗ Vk)− ≃ Iφ∞

⊗ V ∨
k

where Iφ∞
denotes the subspace of those complex-valued functions on G(R) obtained

as complex conjugates of the elements of Iφ∞
. Now we represent elements of Iφ∞

via
the Wigner D-functions of (61) and observe that by [29, p. 9,(3)], we have

W j,n
m1,m2 = (−1)m2−m1W j,−n

−m1,−m2

We get a G(C)-equivariant isomorphism

Iφ∞
≃ I

φ−
∞
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sending W j,n
m1,m2

to (−1)m2−m1W j,−n
−m1,−m2

.
Putting everything together, we get a G(C)-equivariant isomorphism

(64) Iφ∞
⊗ Vk,C ≃ (Iφ∞

⊗ Vk)⊕ (Iφ−
∞
⊗ V ∨

k )

As a consequence, we get

(65) Homl(Λ
i(g/l), Iφ∞

⊗Vk,C) ≃ Homl(Λ
i(g/l), Iφ∞

⊗Vk)⊕Homl(Λ
i(g/l), Iφ−

∞
⊗V ∨

k )

which induces the desired isomorphism. The latter, in its turn, defines the (p, q)-
decomposition by Proposition 4.5.
(3) The R-Hodge structure with coefficients in C on IK

φ,Θ ⊗Q C is defined by remem-

bering that IK
φ,Θ is a subspace of the Vk⊗F Q-valued singular cohomology of ∂SK , by

extending the scalars of the latter to C and by considering the De Rham isomorphism
between the space so obtained and the cohomology of Vk,R-valued differential forms

over ∂SK . By tracing back all our identifications, this De Rham isomorphism and
the choice of a generator of the C-vector space H2(g, K̃∞, Iφ∞

⊗ Vk) induce precisely
the isomorphism given in the statement.

�

Remark 7.7. Fix a decomposition as in (50). With an abuse of notation, call again
W the direct factor appearing in the splitting

(66) H̃♯
C = H2(πf (φ))C ⊕W

induced by the splitting (58). Then, by Lemma 7.6(3), W is an extension

(67) 0→ IK
θφ,Σ⊗QH2(g, K̃∞, Iθφ∞

⊗Vk)
iW−−→W

pW−−→ IK
φ,Θ⊗QH2(g, K̃∞, Iφ∞

⊗Vk)→ 0

which is trivial if and only if the extension (59) is trivial.
Denoting by π the projection from H̃♯ to V , the extension of scalars to C of the

diagram of Proposition 7.3 provides a diagram of mixed R-Hodge structures with
coefficients in C

0

��

0

��

IK
θφ,Σ ⊗Q C

i′

��

IK
θφ,Σ ⊗Q C

i⊥

��

iW

$$❏
❏❏

❏❏
❏❏

❏❏

W
pW

$$■
■■

■■
■■

■■
■

0 // H̃ ′
C

p′

��

i♯
// H̃♯

C

p⊥

��

π

::✉✉✉✉✉✉✉✉✉✉✉ p♯

// IK
φ,Θ ⊗Q C // 0

0 // H2(πf (φ))C
i

//

��

H̃C
p

//

��

IK
φ,Θ ⊗Q C // 0

0 0
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By redoing the same constructions starting with the Hecke character φ− of (62),
we obtain an extension
(68)

0→ IK
θφ−,Σ⊗Q H2(g, K̃∞, Iθφ−

∞
⊗V ∨

k )
i
W−−→W

p
W−−→ IK

φ−,Θ⊗Q H2(g, K̃∞, Iφ−
∞
⊗V ∨

k )→ 0

so that we get an isomorphism

(69) WC ≃W + ×W −

with a C-linear isomorphism W ≃ W + and W ≃ W − (that we will implicitly use in
the following). Hence, W and W are identified with extensions of the form W +, W −,
obtained, as in Proposition 3.4, from the extension of scalars (to C over R) of (67).

The image of an element x under one of the C-antilinear isomorphisms

W ≃W, IK
θφ−,Σ ⊗Q C ≃ IK

θφ,Σ ⊗Q C, IK
φ,Θ ⊗Q C ≃ IK

φ−,Θ ⊗Q C

will be denoted by x.

Proposition 7.8. Fix a decomposition as in (50) and generators u and v of the C-
vector spaces H2(g, K̃∞, Iφ∞

⊗ Vk) and H1(g, K̃∞, Iθφ∞
⊗ Vk). Moreover, following

the notations from Remark 7.7, fix a section σ of pW and a section σF of

(pW , p
W

) : W ×W → (IK
φ,Θ ⊗Q C)× (IK

φ−,Θ ⊗Q C)

respecting the Hodge filtration.
For x ∈ IK

φ,Θ and y ∈ (IK
θφ,Σ)∨, take

(ǫx, ηx), (ǫ′
x, η′

x) ∈ (IK
θφ,Σ ⊗Q C)× (IK

θφ−,Σ ⊗Q C)

such that

(iW , iW )(ǫx, ηx) = σF ((x⊗ u, x⊗ u))− σ ⊗ 1((x ⊗ u, x⊗ u))

(iW , iW )(ǫ′
x, η′

x) = σF ((x⊗ iu,−x⊗ iu))− σ ⊗ 1((x ⊗ iu,−x⊗ iu))

Then if b is the pairing of (57), we have

b(x, y) = 0

if and only if the complex numbers

(y ⊗ v∨, y⊗ v∨)(ηx, ǫx)

(iy ⊗ v∨,−iy⊗ v∨)(η′
x, ǫ′

x)

are conjugated to each other.

Proof. Let x ∈ IK
φ,Θ and y ∈ (IK

θφ,Σ)∨. Unraveling the construction of the pairing b

of (57), we see that b sends (x, y) to the class of the 1-extension of 1 by 1(1) obtained
from the extension W of (59) by pullback via x and pushout via y. This extension is
trivial if and only if the analogous one obtained by replacing W with the extension
W of Remark 7.7 is trivial. Following the method described in Proposition 3.4, we
obtain the statement. �
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The above Proposition gives the promised recipe for checking the non-vanishing of
the pairing b when evaluated on classes x and y. Making it explicit becomes then a
matter of finding concrete representatives for the Lie algebra cohomology classes u
and v, for the lifts of x ⊗ u in the space WC, and for their duals. This will be the
object of the forthcoming paper [2], aiming at a proof of Conjecture 1 in Section 1.
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