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Abstract—Gossip-based dissemination protocols are important
building blocks of large-scale distributed systems as they may
impact both the systems’ efficiency and fault tolerance. There
exist many flavors of gossip dissemination protocols. IDA-Gossip
is one of the gossip dissemination protocols proposed in the
context of blockchains to efficiently disseminate large messages.
It relies on multi-chunk gossip dissemination, erasure coding,
and Merkle hash trees. However, despite its claimed efficiency,
there is no in-depth analysis of this protocol to understand its
behavior under different conditions (e.g., with injected faults). In
this work, we evaluate the behavior of IDA-Gossip by relying on
extensive experiments and simulations. Specifically, we evaluate
IDA-Gossip both in terms of performance and resilience to faults
by varying its configuration parameters and the number of faulty
nodes, respectively. This study results in several takeaways. First,
IDA-Gossip provides excellent dissemination latency compared to
classic gossip. Second, it provides excellent coverage even with 40
percent of faulty nodes in the system. Finally, the use of erasure
coding provides an important advantage to IDA-Gossip compared
to classic multi-chunk gossip dissemination protocols.

I. INTRODUCTION

With advances in hardware and software technologies, the
size of distributed systems is increasing. Today, there are many
distributed systems that contain several thousand nodes dis-
tributed around the world and connected via the Internet [1]—
[3]. An important characteristic of these systems is a high
churn rate which is a high change in the set of participating
nodes due to joins, graceful leaves, and failures [4]. Due to
the large size and high churn rate, communication primitives
such as reliable broadcast are not considered practical for
today’s large-scale distributed systems. In this context, gossip
dissemination protocols fill an important gap by providing
an efficient group communication primitive with probabilistic
guarantees.

Gossip dissemination protocols are originally proposed in
the context of database replication [5], and later on, they
are adopted as probabilistic alternatives of reliable broadcast
primitives. In a distributed system that depends on gossip
dissemination, messages are spread in a manner very similar
to epidemic diffusion: upon receiving a new message, a node
becomes infected, and it infects fanout nodes by sending the
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message. Fanout is an important parameter of gossip dissemi-
nation protocol that controls the redundancy of dissemination.
A message infects a node only once. Gossip dissemination
protocols are considered practical alternatives to broadcast
primitives for large-scale distributed systems because each
node communicates with a few other nodes to disseminate
a message.

Although gossip dissemination mechanisms are practical,
they are not the most efficient ones because each message
needs to be forwarded fanout times to provide a probabilistic
dissemination guarantee. The higher fanout values cause a high
resource consumption but provide high delivery guarantees.
Also, gossip dissemination of large messages incurs a high
latency with store-and-forward mechanism where each mes-
sage needs to be received completely and stored before being
forwarded. For many open systems in which nodes can join
or leave the system without any restriction, store-and-forward
is the only viable option to protect the system against Denial
of Service (DoS) [6] attacks: a correct node needs to validate
each message before forwarding it to its neighbors, therefore;
it should wait to deliver the full message before forwarding.

There are many gossip dissemination protocols, that aim
to improve the efficiency of dissemination. IDA-Gossip [7] is
one of them. It is a gossip dissemination protocol proposed in
the context of blockchains to disseminate large messages like
blocks of transactions fast. Specifically, it is designed to dis-
seminate large messages efficiently by removing the incurred
high latency caused by the store-and-forward mechanism. /DA-
Gossip combines Information Dispersal Algorithms(IDA) [8]
and gossip dissemination protocols to circumvent the limita-
tions of classic gossip protocols. IDA-Gossip makes use of
message chunking, erasure coding, and Merkle hash trees.
Using chunk-based message dissemination where a big mes-
sage is chunked into smaller chunks, IDA-Gossip alleviates
the high latency caused by the store-and-forward mechanism.
By using an erasure coding mechanism, IDA-Gossip protects
chunks against loss. Finally, by using Merkle hash trees, it
provides an efficient chunk authentication scheme. IDA-Gossip
is a promising building block for many distributed systems
that needs to disseminate large messages—Ilikes blocks of



transactions [9]. Although the description of IDA-Gossip is
straightforward, its properties are not investigated in depth
under different conditions. We believe that understanding its
properties might help its adoption.

This paper makes the following contributions: (1) we pro-
vide a formal description of the IDA-gossip protocol, (2)
we conduct a thorough evaluation of IDA-gossip through
experiments and simulations, (3) we identify the limitations of
IDA-gossip and explain when this protocol is a good candidate
to replace classic gossip alternatives in distributed systems.

II. THE IDA-Gossip PROTOCOL

In this section, first, we provide our system model, and
later we provide the details of IDA-Gossip protocol. Finally,
we communicate our analysis on the adoption of IDA-Gossip
protocol.

A. System model and assumptions

We consider a static system composed of [N nodes, with a
fraction f < 1/2 of Byzantine nodes, and a fraction 1 — f of
honest (correct) nodes. Correct nodes follow the protocol while
Byzantine nodes may deviate from it in any possible way.
Each node is connected to a set of d peers selected uniformly
at random. A node only communicates with its peers. Nodes
communicate over reliable synchronous channels in which
messages are neither lost nor duplicated. Any message sent by
one node is received by another within a known time interval.

We assume the presence of an adversary controlling all
Byzantine nodes to prevent correct nodes from delivering
messages. Byzantine nodes can either drop the messages they
receive or alter the content of the message they receive and
forward. We assume the availability of cryptographic hash
functions and Public-key cryptography mechanisms. Any mes-
sage sent by nodes is authenticated using signatures. Finally,
the adversary cannot break the cryptographic primitives. The
source nodes are selected among the correct nodes, and the
identities of source nodes are known in advance by other
nodes: therefore, Byzantine nodes can not flood the system
with irrelevant messages.

B. The details of IDA-Gossip protocol

In the IDA-Gossip protocol, each node selects d neighbors
to communicate. x denotes the number of chunks of a message
M. ¢ is a security parameter of the protocol that takes values
between 0 and 1, and it controls the ratio of data chunks
and parity chunks. ¢ is calculated theoretically to protect the
source node against up to 10 faulty sampled neighbors out of
d neighbors. The source node chunks a large message M into
(1 — ¢)r equal sized chunks, C1,Cy,C3,...,C(1_¢).. Later
on, the source node calculates ¢« additional parity chunks
using an erasure-coding scheme—Reed-Solomon erasure cod-
ing [10]. In total, the source node produces « chunks.

The use of chunks in IDA-Gossip introduces the problem of
chunk authentication: without an efficient authentication mech-
anism, it would be costly to authenticate chunks. IDA-Gossip
makes use of Merkle hash trees to authenticate chunks of a
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Fig. 1. The two phases of IDA-Gossip: in the first phase, the source node
sends r/d distinct chunks to its peers, and in the second phase, its peers
disseminate chunks using classic gossip.

message M. The source calculates a Merkle tree which is a
binary tree. The leaves of the Merkle tree consist of the hashes
of chunks in order— H(C4), H(Cy), H(C3), ..., H(C}), and
inner nodes are calculated from bottom to up by concatenating
and hashing children’s values. The source node calculates a
Merkle proof for each chunk, it disseminate each chunk with
its Merkle proof. Any node can authenticate a received chunk
using the attached Merkle proof.

The authors of RapidChain have shown that we can derive
a threshold ( for ¢, such that the probability of having a
proportion of corrupted nodes greater than ¢ in the neighbor
set of the source node is at most 0.1. Using a hypergeometric
distribution, under the assumption f < 1/2 and d = 16, setting
¢ = ¢ = 0.63 guarantees that a message is not delivered to
all honest nodes with probability 0.1. Therefore, although at
the end of the first phase none of the source node’s neighbors
can reconstruct the original message, the system is in a state
where at least (1 — @)~ chunks are possessed by honest nodes
with high probability.

For analysis purposes, one can divide IDA-Gossip protocol
into two distinct phases, as shown in Fig. 1: in the first
phase, the source node chunks a message into smaller chunks,
calculates parity chunks, and sends a subset of chunks to its
peers. In the second phase, the peers of the source disseminate
messages using classic gossip dissemination on behalf of the
source node. Redundancy is the key element to protect the
system against faulty nodes and message loss. Unlike classic
gossip dissemination protocols, in the first phase of IDA-
Gossip, the redundancy comes from parity chunks calculated
using erasure coding. In the second phase of IDA-Gossip
redundancy comes from forwarding message fanout times.

The original evaluation of IDA-Gossip conducted in Rapid-
Chain [7] considers the following parameter values: messages



of size 2MB, d = 16, ¢ = 0.63, and £ = 128.

C. On the adoption of IDA-Gossip

Because IDA-Gossip disseminates chunks of the message
instead of the message itself, a node cannot verify the content
of a received chunk according to the upper-layer protocol. This
is a crucial property that should be taken into consideration
for the adoption of IDA-Gossip, e.g., in open systems where
the identity and number of nodes are not publicly known,
and where the source node is not always expected to behave
correctly (for example, permissionless blockchains systems,
etc.). Indeed, an adversary in control of the source node
could flood the whole system by disseminating irrelevant
messages. Further, a node could behave in a faulty manner
and disseminate an invalid message. In such scenarios, faulty
behaviors would remain hidden until a correct node obtains
enough chunks to reconstruct the original message. Although
this issue is not specifically related to IDA-Gossip but to
chunk-based gossip more generally, it highlights the need to
develop solutions that allow verification of the content of each
chunk as it is disseminated, in relation to the upper-layer
protocol employing IDA-Gossip. Also, it is possible to mitigate
this kind of behavior by employing accountability mechanisms
as in [11]-[13].

Conversely, IDA-Gossip represents a very good candidate
for permissioned systems or semi-permissionless systems
where a subset of nodes is identified to conduct a specific task
such as in sharded blockchains where the sharding committees
are elected (e.g., RapidChain [7], Omniledger [14], Elas-
tico [15]), or in permissioned blockchains such as Hyperledger
Fabric [16].

III. EVALUATION WITH EXPERIMENTS

In this section, the performance and limitations of IDA-
Gossip are evaluated in a controlled testbed. We aim to address
the following questions: (1) How does IDA-Gossip perform
compared to classic gossip dissemination? (2) How does IDA-
Gossip perform under different conditions such as varying
message size, number of chunks, etc.? (3) Because IDA-
Gossip employs erasure coding that comes with redundancy
in the transmitted data, what is its impact on the utilization of
network bandwidth and the performance of the dissemination
compared to classical gossip techniques? (4) How are IDA-
Gossip’s performances affected under faults?

A. Methodology

1) Evaluation environment and implementation: The ex-
periments presented in this section are conducted on the
Grid’5000 [17] platform. We consider 32 physical machines
with 18 cores, 96 GB of memory, and connected with high-
speed links-25 Gbps. In each experiment, we deploy 4096
IDA-Gossip nodes (128 nodes per machine) to emulate a
large-scale distributed system. The use of 4096 nodes reflects
approximately the order of magnitude of today’s open system
size: Tor network being composed of ~8,000 relays, and
Bitcoin of ~15,000 nodes. We emulate wide-area network

conditions by capping the bandwidth of each node to 20 Mbps
and adding a one-way latency of 15 milliseconds to each
communication link between processes using cgroups and
traffic control subsystem of Linux.

We implemented a prototype of IDA-Gossip in Golang,
consisting of 3000 lines of code. Our implementation chunks
a large message into (1 — ¢x) chunks, and adds ¢x parity
chunks using a Reed-Solomon erasure coding library!. We
implemented a coordination service, and it is used by each
node as a rendezvous point at bootstrap.

2) Experimental protocol: An experiment starts with a
fresh deployment of an IDA-Gossip system with 4096 nodes
hosted on 32 machines. Upon start, a node registers its IP
address and port number to the coordination service and waits
for the registration of other nodes. Later on, the node retrieves
the node list from the coordination service. The node list
contains the IP addresses and port numbers of all nodes in
the system. Each node samples 16 peers uniformly at random
using the node list, and it establishes connections to sampled
nodes. Each node accepts up to 125 incoming connections.
To start dissemination, we select a source node uniformly at
random. The source node disseminates a message using /DA-
Gossip. Other nodes forward each delivered chunk 8 times,
therefore we have used the fanout value of 8. An experiment
terminates when all nodes have forwarded the chunks that
they have delivered. To guarantee this condition, we use a
conservative timeout value that we empirically determined in
preliminary experiments. At the end of each experiment, we
tear down the network and collect measured statistics from
nodes. Each experiment is run 30 times to consolidate the
measured metrics.

An experimental setup consists of a set of fixed parameters:
the number of chunks, the message size, the proportion of
Byzantine nodes, and the sequential or concurrent dissemina-
tion of chunks from a node to its neighbors—dissemination
concurrency. Table I lists the data chunks and parity chunks
used in our experiments. These values are calculated according
to the target number of chunks, x, and by setting ¢ to 0.63 to
tolerate up to 10 faulty neighbors out of the 16 neighbors of
the source node.

In our experiments, we vary the size of messages between
1 and 36 MB, the chunk count between 16 and 256, and the
proportion of Byzantine nodes between 0 and 40%. Finally, we
vary the concurrent dissemination of chunks—dissemination
concurrency—from 1 (sequential) to 128 (high degree of
concurrence).

3) Measured Metrics: We measure the following four met-
rics: 1) first chunk latency, 2) latency, 3) amount of uploaded
data, and 4) coverage.

The first chunk latency is the time needed for any node in
the system to deliver a chunk from the disseminated message.
This information is a precursor of how early a node starts
contributing to the dissemination process. In classical gossip
protocols that employ the store-and-forward mechanism, the

Uhttps://github.com/klauspost/reedsolomon



TABLE I
PARAMETER VALUES OF IDA-GOSSIP USED IN OUR EXPERIMENTS

#Chunk = x | #Data Chunks | #Parity Chunks | d | k/d
256 96 160 16 16
128 48 80 16 8
64 24 40 16 4
32 12 20 16 2
16 6 10 16 1

majority of nodes do not contribute to the dissemination until
the last rounds of dissemination. An efficient dissemination
mechanism should employ all available resources at the ear-
liest possible time. Hence this metric is a sound performance
indicator for gossip protocols disseminating large messages.

Latency is the time needed to deliver enough chunks to
reconstruct the original message disseminated by the source
node. Uploaded data is the amount of data uploaded by a
node. It is directly proportional to the fanout value, and the
message size. Uploaded data is a metric that measures the
redundancy of gossip dissemination, helping us to quantify the
bandwidth usage overhead caused by the use of erasure coding
techniques in IDA-Gossip. Finally, coverage is the percentage
of nodes that successfully deliver the initial message.

B. IDA-Gossip vs classic gossip dissemination

We compare IDA-Gossip with classic gossip dissemina-
tion where a message is disseminated in its entirety (with-
out chunking) using the store-and-forward mechanism. More
specifically, we aim to understand the performance difference
between these two protocols when considering message sizes
between 1 and 36 MB. We conducted a set of experiments by
varying the message size. In this set of experiments, we have
considered a fault-free environment.

For IDA-Gossip, we consider the use of x = 128 chunks
as originally set by the designers of RapidChain. Our classic
gossip instances use a fanout value of 8—as IDA-Gossip
instances. Also, classic gossip instances use a single-threaded
message dissemination mechanism in which a node sends
chunks one peer at a time. In our preliminary experiments,
we have observed that in case of limited bandwidth and large
message sizes this is the best strategy that produces minimal
message dissemination latency for classic gossip instances.
Fig. 2 plots quartiles (first, second, and third quartiles) of the
first chunk latency, latency, and uploaded data. Coverage is
not represented as both protocols always reach 100% of the
nodes.

The first chunk latency of classic gossip dissemination is
equal to its latency because the whole message consists of a
single chunk. When we compare both protocols in terms of
first chunk latency, IDA-Gossip provides excellent results for
all message sizes: with 36 MB messages, the first chunk is
delivered and starts being disseminated to other nodes in the
system within 11.5 seconds. Therefore, IDA-Gossip employs
system resources at a much earlier time compared to classic

gossip.
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Fig. 2. Classic gossip dissemination compared to IDA-Gossip with 128
chunks.

With all message sizes, IDA-Gossip provides lower la-
tency compared to classic gossip for all message sizes. With
messages size 1, 2, 16, and 36 MB: IDA-Gossip provides
latency values of 2.7, 6.0, 43.8, and 98.9 seconds while classic
gossip instance provides 7.1, 13.3, 93.7, and 216.7 seconds
respectively. This highlights that IDA-Gossip outperforms the
classic gossip technique that we have considered.

In terms of network usage, IDA-Gossip and classic gossip
provide similar performance: As depicted in Fig. 2, although
the uploaded data per node values are very close to each
other for specific message size, they are not the same, and
the difference is less than 0.5% for all configurations. The
small difference in uploaded data statistics stems from two
facts: (1) IDA-Gossip makes use of Merkle hash trees to
authenticate messages, and they have an overhead of O(log(k))
storage. (2), individual chunks come with a small overhead of
metadata storage which is O(1) because each chunk needs to
be disseminated with some metadata. In this comparison in the
case of IDA-Gossip, we did not observe a significant overhead
caused by parity chunks because an /DA-Gossip node forwards
messages until reconstructing the original message for that
purpose an IDA-Gossip node needs to deliver (1 —¢x) chunks
as we stated previously.



C. IDA-Gossip with different chunk counts and message sizes

We investigate the effect of chunk count and message size
on the performance of IDA-Gossip. In this experiment, we
considered IDA-Gossip instances with 16, and 256 chunk
counts. Also, we considered message sizes between 1 and 36
MB. Fig. 3 depicts the collected statistics from experiments.
First of all, the first chunk latency, latency, and uploaded
data measurements for all instances of IDA-Gossip is increas-
ing with the increase in message size. This is an expected
result because nodes have limited bandwidth to disseminate
messages, and increased message size causes an increase in
latencies.

When we consider a specific message size, the first chunk
latency of an IDA-Gossip instance with a high number of
chunk counts is always lower—better—compared to another
IDA-Gossip instance with a smaller chunk count. This is an-
other expected result because an increased chunk count results
in a smaller chunk size. Smaller chunks are disseminated faster
in the network.

We made an interesting observation, IDA-Gossip with 32
chunks always provided the lowest latency measurements for
all message sizes. The reason for this is that in this set
of experiments we have used a dissemination concurrency
value of 8 because each node forwards a message 8 times
in parallel. This results in the best performance for IDA-
Gossip with 32 chunks. For higher chunk counts, one needs to
increase dissemination concurrency value otherwise the effect
of latency added to channels—to emulate WAN conditions—
will be overemphasized on the measured latency metric. We
study the effect of dissemination concurrency value on the
performance of IDA-Gossip in subsection III-E

As seen in Fig. 3, the amount of uploaded data per node
is increasing when the message size increases, as expected.
However, for a given message size, all instances of IDA-Gossip
nodes upload a similar amount of data. We note a minor
difference lower than 1% between instances of IDA-Gossip
with 16 chunks and 256 chunks due to the size of the Merkle
proofs. This implies that a higher chunk count incurs a slightly
higher bandwidth cost.

D. IDA-Gossip with Faults

We now evaluate the performance of IDA-Gossip under
faults by varying the proportion of byzantine nodes in the
system, where byzantine nodes drop all the messages they
receive. In our experiment, we exclude the byzantine behavior
of altering the chunk content or the Merkle proofs as this does
not impact the performance of IDA-Gossip. We set the message
size to 2 MB, and vary the percentage of faulty nodes from
0% to 40%. We also explore the impact of varying the number
of chunks (from x = 16 to 256) in this faulty environment.

Fig. 4 shows the the evaluation results. In terms of first
chunk latency, IDA-Gossip instances with high chunk counts
(64, 128, and 256) provide stable results when increasing the
percentage of byzantine nodes, whereas the other instances
(with 16 and 32 chunks) provide slightly degraded first chunk
latency.
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Fig. 3. The behavior of IDA-Gossip with different chunk counts and message
sizes.

The latency of all IDA-Gossip instances is increasing along
with the ratio of faulty nodes. This increase is more pro-
nounced in IDA-Gossip with k = 16 and 32 chunks. In a
fault-free system, IDA-Gossip with 32 chunks is providing the
lowest latency but, under faults, its performance is affected
more than other instances.

From these experiments, we conclude that IDA-Gossip with
high chunk counts, i.e., above 64 chunks, are more resilient to
Byzantine behaviors, and provide smooth latency degradation
when facing faults.

In terms of coverage, all instances of IDA-Gossip provide
stable performance: with an increased fraction of faulty nodes
we did not observe a significant decrease in coverage, and it
is above 99% for all instances.

E. IDA-Gossip with Different Dissemination Concurrency Val-
ues

In case of big messages and limited bandwidth, a node
should send messages to its neighbors one by one; otherwise,
the sending might take longer time because concurrent send
events will compete for the same bandwidth resource, and this
will increase the latency of dissemination. IDA-Gossip chunks
a large message into smaller pieces, and this makes the chunk-
sending strategy vital for the performance of the system. In
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Fig. 4. The behavior of IDA-Gossip with different percentages of byzantine
nodes.

this subsection, we investigate the effect of dissemination con-
currency on the performance of IDA-Gossip because choosing
the wrong strategy might result in sub-optimal performance.

We have conducted a set of experiments where we keep
the message size constant—2MB—, and we vary the dis-
semination concurrency value between 1 and 128 so that a
node serves a limited number of connections simultaneously.
Without any restriction, dissemination concurrency is equal to
the fanout value because a node opens a single connection
to each sampled peer, and each peer connection is owned
by a distinct thread that serves the connection. The value of
dissemination concurrency 1 means that a node serves peers
one by one, sequentially, and the value of 2 means that a
node can serve up to two peers concurrently, and so on.
To increase the dissemination concurrency above the fanout
value, our implementation opens more than one connection
to each peer; for example, with a fanout value of 8 to reach
dissemination concurrency of 128, a node needs to open 16
(128/8) connections to each sampled peer.

In this set of experiments, as seen in Fig. 5, we have
observed that smaller values of dissemination concurrency,
like 1 and 2, provide the best first-chunk latency. When we
increase the dissemination concurrency, the first chunk latency
increases up to a point and later stays constant for all IDA-
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Fig. 5. The behavior of IDA-Gossip with different dissemination concurrency
values.

Gossip instances: This is because there is a limited number of
chunks to disseminate. On the other hand, smaller values of
dissemination concurrency values produce undesirable latency
measurements for some IDA-Gossip instances: for example,
IDA-Gossip with 256 and 128 chunks provides respectively
35 and 25 seconds latency with 1 simultaneously served con-
nection. When we send a high number of chunks sequentially,
the latency of the channel piles up, and it affects the final
latency of dissemination.

Each IDA-Gossip instance provides the best latency with a
different dissemination concurrency value: For example, /DA-
Gossip with 16 chunks provides a latency of 5.153 seconds
with dissemination concurrency of 4, and IDA-Gossip with 32
chunks provides a latency of 5.119 seconds with dissemina-
tion concurrency of 8. IDA-Gossip instance with 128 chunks
provides the best latency with dissemination concurrency of
16.

In these experiments, we have considered only the message
size of 2MB. The choice of chunk count,x, and message size
will change the characteristics because the size of a chunk
depends on these parameters; therefore, to obtain optimal
performance, one needs to examine the effect of dissemination
concurrency according to considered chunk count, message
size and considered network bandwidth capacity.

IV. EVALUATION WITH SIMULATIONS

In this section, we compare the fault resilience of IDA-
Gossip to the one of standard chunk-based gossip dissemina-
tion. We wish to quantify the resilience improvement brought
by the use of erasure-coding in /DA-Gossip. To that end, we
implement a simulation engine in Golang that simulates the
two following gossiping strategies for disseminating a message
M of size |M|: IDA-Gossip as described in this paper, and a



chunk-based gossip dissemination where a message is chunked
into n pieces.

A. Methodology

1) Simulations: Our simulation engine is discrete-time
based where time is divided into consecutive rounds. In a
round, a node can receive multiple chunks from different
nodes. In the same round, a node forwards chunks that are
received in the previous round. We use a fanout value of 8§,
therefore; for each message, a node samples 8 other nodes
uniformly random and sends the message to these nodes.

The system consists of 4096 nodes, as in our experimental
evaluation. A simulation run starts by having a source node
selected uniformly at random sending chunks to its neighbors,
and ends when there is no node with chunks to forward. We
configure the simulations with a fixed proportion f of faulty
nodes, that we vary from 0 to 99 with steps of 1. For each
configuration, we run 1000 simulations. At the end of the 1000
runs, the simulator aggregates the results and computes the
measured metrics.

2) Simulated strategies: In the IDA-Gossip strategy, the
source node chunks the message M into n = (1 — ¢)x = 48
data chunks and adds ¢x = 80 parity chunks. Any set of
(1—¢)k different chunks is enough to reconstruct the original
message. Then, the source node samples d = 16 nodes from
the system and sends them each x/d = 8 chunks.

In the classic chunk-based gossip strategy, a source node
splits M into n = 48 chunks and sends each chunk to 8 other
nodes. To reconstruct the original message, a node requires all
n chunks. In both strategies, each node stores and forwards
each received chunk until being able to reconstruct the original
message. Then, nodes may only receive other chunks but will
ignore them.

3) Measured Metrics: To evaluate the resilience of both
protocols, we measured the following metrics: 1) coverage, 2)
dissemination failure ratio, 3) received chunk count, and 4)
delivered chunk count. Coverage is the percentage of nodes
that delivers the full message at the end of a simulation run.
The dissemination failure ratio is the percentage of simulation
runs in which none of the nodes, except the source, managed
to reconstruct the original message. The received chunk count
is the number of chunks received by a node in a simulation
run. Note that a node can receive multiple copies of the
same chunk because our gossip engine implements a push-
based gossip where no communication happens between nodes
to identify chunks that should be sent/receive according to
already received chunks. The delivered chunk count is the
number of distinct chunks delivered by a node to reconstruct
the original message. This must be equal to the chunk count of
the original message which is 48 for both simulated strategies.

B. IDA-Gossip vs Classic Multi-chunk Gossip Dissemination

For all measured metrics, we display their mean values in
Fig. 6. IDA-Gossip and chunk-based gossip protocols behave
similarly when considering the numbers of received and deliv-
ered chunks. Indeed, we employ the same push-based gossip
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Fig. 6. Comparison of IDA-Gossip with classic multi-chunk gossip under
byzantine behaviors.

technique in both strategies and use the same data chunk count
n = 48. When the system consists of correct nodes only, the
mean number of received chunks per node is 384. With n = 48
data chunks, and each node forwarding each delivered chunk
to its 8 neighbors, it implies that each node sends 48 x8 = 384
chunks in a simulation run. Therefore, each node is expected
to receive 384 chunks on average. Also, each node is expected
to deliver 48 chunks to finish dissemination.

Regarding coverage, IDA-Gossip provides 100% coverage
with up to f = 40% of byzantine nodes in the system. On the
other hand, the classic chunk-based gossip suffers from low
coverage even with a low fraction of faulty nodes because
the probability of not delivering a single chunk of a message
with an increased number of data chunks is increasing. This is
not the case for IDA-Gossip because different nodes forward
different subsets of chunks, and any subset with cardinality 48
is enough to reconstruct the original message.

We observe that IDA-Gossip starts suffering from dissemi-
nation failures slightly earlier than classic chunk-based gossip.
This is because the dissemination fails if a source node
samples more than 10 faulty nodes out of 16; in this case, an
insufficient number of chunks is disseminated, and none of the
nodes can reconstruct the original message except the source
itself. The classic gossip approach suffers from this problem



later than IDA-Gossip because each chunk is forwarded 8
times by the source node, diminishing the likeliness of losing
a chunk because of faulty nodes.

V. RELATED WORK

The use of multiple chunks and erasure coding has been
studied extensively in the context of gossip dissemination in
different settings. In this section, we compare /DA-Gossip with
state-of-the-art propositions and we highlight similarities and
differences.

One of the earliest examples of multi-chunk gossip dissem-
ination is Splitstream [18]. It aims for efficient dissemination
of messages, and fair distribution of the dissemination cost
among contributing nodes. Splitstream considers a structured
peer-to-peer network where the communication pattern of
processes is scheduled in advance to obtain optimum latency
and optimum communication cost. Splitstream chunks a large
message into multiple pieces, and it constructs disjoint dissem-
ination trees in a deterministic manner for each chunk. In a
dissemination tree, only inner nodes disseminate the message.
A node has different roles in different trees. Unlike IDA-
Gossip, Splitstream’s evaluation considers a structured peer-to-
peer network, and it does not consider byzantine faulty nodes.
Also, Splitstream does not consider parity chunks. Therefore,
evaluation of Splitstream does not help to understand the
properties of the IDA-Gossip protocol.

Sanghavi et al. [19] investigate the cost of gossip dissemina-
tion in an unstructured setting where nodes randomly contact
other nodes to send or receive messages. They propose a
gossip dissemination protocol, INTERLEAVE, that relies on
multi-chunk gossip dissemination. They compare classic gos-
sip with multi-chunk gossip dissemination from a theoretical
point of view, and they provide an analysis of the optimum
gain that can be achieved from splitting a message—multi-
chunk—compared to sending a single large message. Their
analysis shows the benefit of multi-chunk gossip dissemination
theoretically. Although they mention the possible benefits of
using erasure coding in the context of push and pull gossip
dissemination they do not investigate it. Later on, Cigno et
al. [20] investigate the performance of INTERLEAVE protocol
by using simulations. They aim to quantify the properties of
the INTERLEAVE protocol. Both works provide important
information about multi-chunk gossip dissemination but they
do not consider erasure coding, therefore, one can not gain
information about IDA-Gossip by looking at these studies.

An important use case for multi-chunk gossip dissemina-
tion is live streaming. Multi-chunk gossip dissemination is
indispensable for live streaming because of the size of the
messages. Bar gossip [13], LiFtinG [12], and AcTinG [11]
are protocols designed to handle rational nodes in streaming
systems. Rational nodes do not want to contribute to the dis-
semination of messages to decrease resource consumption, and
they are risk avers. All these protocols depend on multi-chunk
gossip dissemination. Although they consider authenticated
messages, none of these protocols use erasure coding or an
efficient chunk authentication mechanism. Also, their fault

model only considers rational behaviors that are a subset of
Byzantine behaviors.

In the context of live streaming, another important propo-
sition is Gossip++ [21]. Gossip++ uses push-and-pull gossip
mechanisms together to implement a hybrid gossip protocol. It
uses erasure coding to improve dissemination performance. In
Gossip++, the source node chunks a large message into 100
chunks and adds 5 parity chunks. Gossip++ considers way
fewer parity chunks than IDA-Gossip. Unlike IDA-Gossip, the
source node forwards each chunk multiple times: Gossip++
uses different fanout values for source nodes and other nodes.
These fanout values are respectively 5 and 8. The evaluation
of Gossip++ considers only 200 nodes. Finally, the evaluation
considers only rational nodes. Although Gossip++ shows the
utility of erasure coding in the context of gossip dissemination,
its evaluation can not help to understand the behavior of
IDA-Gossip because of the differences in protocol design and
experimental setup.

All of the mentioned works have similarities with IDA-
Gossip: many use chunk-based gossip dissemination for ef-
ficient dissemination of large messages, and few consider
erasure coding. None of them handle the problem of efficient
chunk authentication. Although the majority of them have
an extensive experimental study of the considered protocol,
because of the specific differences in the protocol design
and considered systems, it is hard to interpolate the results
of these studies to understand the properties of the IDA-
Gossip protocol. The majority of experimental studies consider
only a few hundred nodes, like Gossip++, which can be
considered a small size for a distributed system of today.
Therefore, our work fills a gap in the literature, and provides
an extensive experimental study of IDA-Gossip according to
today’s standards to quantify its benefits and to understand its
properties under different conditions.

VI. CONCLUSION

Our experimental evaluation revealed that IDA-Gossip pro-
vides significant latency improvement compared to classic
store-and-forward gossip dissemination: for all considered
message sizes, even with a message size of 1 MB, IDA-Gossip
provides the lowest latency. Also, IDA-Gossip better utilizes
system resources compared to classic gossip dissemination
because nodes start contributing earlier to the dissemination.
Parity chunks and chunk authentication mechanisms of IDA-
Gossip do not incur a significant bandwidth usage overhead
compared to classic gossip dissemination.

We have observed, all instances of IDA-Gossip with dif-
ferent chunk counts provide similar bandwidth usage when
the message size is kept constant. In a fault-free setting, IDA-
Gossip with 32 chunks provides the lowest latency. On the
contrary, IDA-Gossip instances with a high number of chunk
counts provide better system utilization because of lower first
chunk latency. When we injected faults into the system, we
observed that IDA-Gossip instances with a high chunks count
provide more resilience and graceful performance degradation.
Also, we have observed that the choice of chunk-sending



strategy is vital to obtain optimum performance from IDA-
Gossip instances.

Our simulations revealed that, in the presence of
faulty nodes in the system, IDA-Gossip provides excellent
coverage—above 99%—compared to classic multi-chunk gos-
sip dissemination. /DA-Gossip starts to suffer from dissemi-
nation failures earlier than classic gossip dissemination where
none of the nodes delivers the message except the source.
Finally, our simulations showed that IDA-Gossip and classic
multi-chunk gossip dissemination provide similar bandwidth
usage characteristics in terms of received and send chunk
counts. Therefore, the use of parity chunks does not incur
an overhead on bandwidth usage.
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