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This paper presents a complete system for anticipating road hazard based on inter-vehicular communica-
tion. It relies on efficient cooperative strategies between vehicles, namely distributed data fusion for hazard 
detection and conditional transmissions for alert propagation. It is built upon cheap embedded hardware 
and specific embedded software dedicated to dynamic vehicular networks. We describe the system, its 
architecture and the cooperative strategies. Road experiments involving 10 vehicles are reported. Real-life 
in-lab experiments complete the study with performance evaluation. These experiments emphasize the 
complementarity of both cooperative strategies. They show the practical interest of the whole system as 
well as its truthfulness and robustness even against poor networking conditions. They prove its efficiency 
to provide a significant anticipation period of road hazards.

© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

The design of hazard anticipation systems is motivated by road 
safety. Road fatalities have drastically decreased in the European 
Union (EU) during the last decades. Fatal crashes fell by 42% from 
2000 to 2010 and by 23% from 2011 to 2019 [41,44]. This gives 51 
deaths per million inhabitants in the EU (106 in the USA).

Nevertheless, such good figures should not hide a cruel and 
harsh reality. There is almost one million road accidents per year 
in the EU, leading to 1.2 million injuries (more than 3,000 per day) 
and 22,700 fatalities (more than 60 per day) [43]. Moreover, the 
figures seem to be stagnating and the EU objectives are not be-
ing reached (Fig. 1). The substantial decrease in 2020 is mainly 
explained by the exceptional circumstances due to the COVID-19 
[44].

In this context, road anticipating systems are of great impor-
tance. Their aim is to give drivers more time to adapt their driving 
while approaching dangerous situations (for instance by slowing 
down). Though they could help in any situation, they apply mainly 
to non urban areas. Such areas represent 62% of the injuries in 
the EU (including 8% on motorways) [42]. Considering only the 
cars, the proportion reaches 77% (including 10.4% on motorways) 
[43].
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The detection of road events (accidents, objects, extreme 
weather conditions...) is necessary to support road safety appli-
cations – and also traffic efficiency applications – by alerting road 
users of hazards. Road events are usually detected by infrastruc-
ture sensors, such as video surveillance cameras [60], by driver 
action using mobile applications or by messages sent by the car 
to a call-center in the event of an accident [5]. Advanced Driver 
Assistance Systems (ADAS) are developed for detecting hazards in 
the vicinity of the vehicles [24]. They rely on sensors included in 
new vehicles. Retrofitting such systems in older vehicles appears 
to be beneficial [50].

In the context of Intelligent Transport System (ITS), the next 
step would consist in the design of ADAS announcing road haz-
ard to remote and approaching vehicles [36]. The deployment of 
such an approach is facilitated by standardization efforts related to 
vehicular communication [31,30,58]. Nevertheless, information has 
to be reliable and the propagation has to be adapted to the kind 
of alert (both topics addressed in this paper), in terms of area of 
distribution and duration among other criteria.

For this purpose, data collected by embedded sensors of closeby 
vehicles could contribute to a collaborative detection of road haz-
ard, reinforcing the confidence into the events. Indeed, while a 
road event may be detected by a single vehicle thanks to its em-
bedded sensors, in many situations it would be preferable to con-
firm it before warning remote vehicles. Reducing false positives 
will have strong consequences on the usability and efficiency of 
a remote road hazard alert system.
nder the CC BY NC user license
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Fig. 1. Road fatalities in the EU (from [44] with figures from [43]).
Event confirmation can be achieved by centralizing collected 
data through a wireless network provider (e.g. 5G), sending and 
analyzing large amount of data on remote servers and sending 
back alerts to affected vehicles. This approach requires large com-
puting and communication resources. Moreover it may delay alert 
propagation. Additionally, the data collection may lead to privacy 
issues. Another approach relies on cooperative distributed strate-
gies where the alert decision is taken inside the vehicular net-
work.

Finally, when the hazard is confirmed, the propagation of the 
road alert has to be done efficiently. The area of distribution 
should be alert-dependent. For instance, a weather alert may be 
propagated up to a distance depending on the event; an accident 
alert could be propagated only to approaching vehicles on the re-
lated lane. In general, the less involved non-concerned vehicles 
are, the more efficient the propagation becomes, in terms of net-
work resources and driver attention. Yet, collaborative distributed 
strategies could contribute to efficient alert propagation into event-
dependent area of distribution.

Hence, designing a road hazard anticipation system raises sev-
eral challenges:

• reinforcing the confidence into the detected event,
• preserving the privacy of road users by limiting the amount of 

collected data,
• preserving bandwidth, communication and processing re-

sources (thus minimizing energy consumption),
• minimizing the time to efficiently warn other drivers.

In this paper, we propose a general system for hazard antic-
ipation in vehicular networks relying on cooperative hazard de-
tection and cooperative alert propagation. The hazard detection is 
based on distributed data fusion to reinforce the confidence into 
an event, taking into account the uncertainties in both the data 
and the sources of information. The alert propagation is based on 
conditions to better fit with alerts characteristics while optimizing 
vehicle-to-vehicle communications.

The contribution is twofold. First, we present the design of a 
complete system for hazard anticipation, partially based on previ-
ous independent works [19,18,17]. Second we provide a proof of 
concept and an extensive study of the system performance show-
ing its interest to reinforce confidence into events and efficiently 
warn affected vehicles.
2

For this purpose, the paper presents the global architecture and 
its data-flow. Then it presents an open-road, real-life experiment 
of the whole system, involving ten vehicles and cheap embedded 
hardware, showing the feasibility of our approach (and its com-
patibility with ADAS retrofitting [50]). These road experiments are 
completed by a performance study of the whole system by means 
of real-life in-lab experiments. These experiments demonstrate the 
complementarity of both cooperative strategies (hazard detection 
and alert propagation). They show the truthfulness in alert deliv-
ering and the robustness of the system against poor networking 
conditions. They point out a significant anticipation period to the 
drivers.

The rest of this paper is organized as follows. The next sec-
tion summarizes the related work to position our contribution. 
Then, the architecture of our system is presented in Section 3. The 
cooperative hazard detection is presented in Section 4 and the co-
operative alert propagation in Section 5. The open-road proof of 
concept is presented in Section 6. The performance evaluation is 
detailed in Section 7. Concluding remarks end the paper.

2. State of the art

Many studies related to intelligent transportation systems are 
devoted to road safety in the context of communicating vehicles. 
The eCall system is deployed in Europe to warn rescue teams in 
case of car accidents [5]. The alert is sent automatically in case 
of serious damage in the vehicle.1 To anticipate and prevent acci-
dents, safety warning systems aim to warn the driver before the 
road hazard [36]. The challenge is the reliability of the detection, 
avoiding both false positives and false negatives.

Cooperative intelligent transportation systems are a promising 
technology to increase the reliability of hazard detection. They rely 
on vehicle-to-vehicle communication [2]. In [64], an opportunistic 
approach is proposed to group vehicles in order to cooperatively 
detect road events. The data are aggregated inside the groups from 
the follower to the leader using for instance the average function. 
In [59], the beacons of many vehicles are exploited to detect traffic 
congestion using relationship between events and complex pat-
terns recognition.

1 A passenger may also manually send an alert using eCall.
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Table 1
Related works synthesis.

Domain References and years Methods

Hazard [5] (2017), [23] (2016), [24], [36] (2020) Smartphone, eCall
detection [22][59] (2012), [64] [36] 2010- 2020 Cooperative strategies

[29] (2010) , [46] (2018), [62] (2020) Confidence degree, reputation

Data [51] (1976), [40] (2007), [25] (2012) Synthesis
fusion [35] (2013), [27,37] (2021), [63] (2022) Filtering, estimation methods

[48] (2008), [18,21] (2012), [39] (2016), [49] (2020) Uncertainties management

Alert [16] (2014), [9] (2016), [8,28] (2017), [53] (2019), [33] (2021), [52] (2022) Synthesis
propagation [30] (2013), [31] (2014), [32] (2017), [58] (2020) Standard

[6] (2000), [4] (2003), [32] (2017) Rouging, geocast
[45] (2018), [57] (2019), [3] (2021) Clusters
[19] (2007), [15] (2015), [61] (2020), [65] (2021), [26] (2022) Cooperation, content centric
Nevertheless, cooperative detection may be polluted by mali-
cious or faulty vehicles. In [29], some filters are applied so that a 
driver is only warned after several sources do agree. In [46], a trust 
degree is joined to the exchanged information (related to the map 
of closeby vehicles). The trust degree is updated during the for-
warding process depending on the number of independent sources 
confirming the information. To avoid fake alerts generated by ma-
licious nodes, [62] relies on the reputation of the vehicles in the 
so-called Vehicular Social Networks to select the next forwarder.

The data fusion aims at combining several sources of informa-
tion to reduce the uncertainties and false alarms. Much work has 
been done on Bayesian inference [40]. The Dempster-Shafer theory 
[51] appears to be well adapted to manage the lack of knowledge 
and the conflicts between sources in the road event detection sys-
tems. In [48], the authors shows its interest for trust management 
in vehicular networks by comparing the Dempster rule to Bayesian 
inference and weighted voting.

In this context, the distributed data fusion methods avoid col-
lecting the data before their combination [25]. In [35,27,37], local 
sensor data are combined with received data to construct a map of 
neighbors with a distributed Kalman filter or split covariance in-
tersection filter. In [63], a cooperative localization scheme is used 
to perform better positioning system when the GNSS is not avail-
able. In [21], distributed algorithms are proposed to detect Sybil 
attacks. This work is extended in [39] to congestion detection. In 
[49], the authors propose a framework that fuses data from het-
erogeneous data sources to enhance Intelligent Transportation Sys-
tem services, such as vehicle routing and traffic event detection. 
In [18], a robust distributed data fusion algorithm is proposed; it 
supports transient failures and topology changes. An application is 
given in [47] for detecting icy road using sensors of the infras-
tructure combined with those embedded in approaching vehicles. 
The system has been tested on the road with three sensors and 
one vehicle. Thanks to its robustness, it supports misplaced sen-
sors.

Such cooperative hazard detections are robust; they allow 
warning the driver to prevent accidents. However, to increase the 
anticipation period, the alert could be sent to approaching vehi-
cles, not yet involved into the distributed data fusion. For instance 
in [23], the accidents are detected using either an OBD-II connec-
tor or smartphone sensors. Then the alert is propagated using an 
MSD2 message sent using eCall or a DENM message [30] sent us-
ing IEEE 802.11p.

There exist mainly two families of algorithms that may be used 
to send an alert in the vehicular network: broadcast or multi-
cast/geocast [16,9,53,52]. The first family tries to send a message 

2 The Minimum Set of Data (MSD) is the data component of an eCall sent from a 
vehicle to an emergency call center. Its maximum size is 140 bytes; it may include 
vehicle identity, location information and time-stamp [1].
3

to all nodes. The second one tries to select the target nodes. It is 
more interesting for alert propagation because it is able to limit in-
formation transmission to vehicles having a possibility to reach the 
hazard [6,4]. This may reduce the impact on the network resources 
and avoid disturbing non affected drivers. The ETSI published the 
specification of geonetworking protocols [32,53]. These protocols 
rely on geographical positions to forward messages to a single re-
ceiver or a group of receivers. Other protocols rely on groups of 
vehicles sharing some characteristics (clusters) [16,8,52]. In [45], a 
trust management scheme is used to determine the clusters. In 
[3], clusters are combined to Named Data Networking for rout-
ing messages according to data content. In [57], a cluster strategy 
improving OLSR is used for optimizing both the cooperative local-
ization and the cooperative perception.

Additionally, cooperative strategies have been proposed to for-
ward the messages in VANETs. Here, the forwarding process is 
more intricate with the requesting application or with the data 
to be forwarded in the aim of better facing the hard vehicular 
network conditions [16,15,28]. In [33], the authors study a carry-
and-forward strategy exploiting the trajectories of vehicles in the 
aim of reaching Internet access points sparsely deployed along the 
roadways. In [61], a probability of interest is computed based on an 
estimation of the network density. In [28], a review of approaches 
promoting the cooperation in the vehicular network is proposed, 
including among other incentive-based, reputation-based or mis-
behavior-based approaches. In [65], cooperative transmissions with 
multiple relays are studied; the authors show the importance of 
node coordination. In [26], an emergency message dissemination 
strategy is proposed; it is based on the vehicle speed and on the 
collaboration of neighbors. With conditional transmissions [19], 
the forwarders and the recipients of the alert are determined 
thanks to some conditions evaluated at reception. The condition 
may be related to trajectories correlation for restricting the prop-
agation to a given lane, to the distance and duration for limiting 
the dissemination, and so on. They are application-dependent and 
the technique is then related to data-centric routing.

Table 1 proposes a synthesis of the related work. Cooperative 
hazard detection systems relying on distributed data fusion appear 
to be promising. However up to now they have mainly been tested 
in simulation or small-scale experiments only involving 2 or 3 ve-
hicles. Moreover in the aim of providing a significant anticipation 
period, it could be combined with a compatible alert propagation 
strategy. But to the best of our knowledge, there is no such study.

In this paper, we design and experiment a complete cooper-
ative road hazard anticipation system combining both detection 
and prevention. Our design choices focus on the distributed data 
fusion algorithm presented in [18] (for hazard detection) and on 
the conditional transmissions [19] (for alert propagation). First, 
the distributed data fusion enforces the robustness of the haz-
ard detection. By using the Dempster-Shafer approach, it is able 
to manage the lack of knowledge or the conflicts in the vehicular 
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Fig. 2. Illustration of the cooperative hazard anticipation system. The hazard is detected by vehicles v1, v2 and v3 using distributed data fusion. The alert is propagated by 
a selection of vehicles (v3, v4 and v5) using conditional transmissions. The RSU forwards it to approaching vehicles (v6) and also to the Internet for remote vehicles (v7). 
Vehicle-to-vehicle communication is drawn in orange; others (in blue) may be done by a network operator. The anticipated alert is displayed to drivers approaching the road 
hazard.
network. Second, the conditional transmission approach is versa-
tile enough to limit the number of involved vehicles regarding the 
type of road hazard. By relying on receiver-side decisions, it avoids 
collecting information about the neighborhood and is then more 
robust to network dynamics and packet loss. Hence both cooper-
ative strategies are robust against topology changes or messages 
losses. We show the interest of combining both of them to provide 
a significant anticipation period.

We present road experiments involving ten vehicles and exten-
sive in-lab experiments relying on network emulation. A particular 
attention is given to the truthfulness and robustness of the system, 
in particular against weak networking conditions.

3. Overall system description

This section presents the principle, the structural and the func-
tional architecture of our cooperative hazard anticipation system.

3.1. Principle

The detection relies on a cooperation between nearby vehicles 
in such a way the local data of each vehicle contributes anony-
mously to the computation of a common information. Such com-
mon information is the basis of the hazard detection. When it is 
detected, an alert is propagated from vehicle to vehicle in a scheme 
ensuring that only affected vehicles are warned. The alert is also 
sent to road-side units (and to the Internet if required by the type 
of alert) to warn distant road users.

By combining a distributed algorithm for hazard detection and 
an optimized alert propagation protocol, network resources are 
used parsimoniously. Moreover, only the common information re-
lated to the alert – computed cooperatively – is sent remotely, thus 
preserving privacy.

Computing a common information reinforces the reliability of 
the system. Indeed, some sources of information may be erroneous 
or misplaced, generating false alerts. Our algorithm fuses the input 
data of involved vehicles, giving more importance to closer sources 
than farther ones. It relies on the Dempster-Shafer theory. Thanks 
to its properties, it converges rapidly despite the unknown and dy-
namic topology of the vehicular network.

To alert only the affected vehicles, our propagation protocol 
relies on conditional transmissions. The alert is propagated ac-
cording to alert-dependent conditions related to the geographic 
area, the vehicles trajectories, the alert duration, etc. This protocol 
encompasses road-side units discovery by using suitable condi-
tions.
4

Fig. 2 illustrates our cooperative hazard anticipation system. In 
this example, the hazard is detected by vehicles v1, v2 and v3

(using distributed data fusion). It is propagated by vehicles v3, v4

and v5 (using conditional transmissions). The road-side unit is in 
charge of forwarding the alert to approaching vehicles (v6) and to 
the Internet for remote vehicles (v7).

3.2. Components of the system

The architecture of our cooperative road hazard anticipation 
system can be subdivided into five parts.

1. Sensors. Vehicles contribute to the hazard detection with a 
data input giving information related to the hazard to be de-
tected. This data mainly comes from sensors connected on the 
vehicle CAN5 bus. It is converted periodically into a specific 
format that includes a confidence level (see Section 4.1).

2. On-board unit. Each vehicle is equipped with an embedded 
computer able to read the input devices (data source, GNSS3, 
etc.) and to exchange messages with other vehicles or road-
side units using IEEE 802.11 standards (Sec. 6.1).

3. Middleware. Each embedded computer runs a framework of-
fering facilities for splitting the tasks into independent appli-
cations communicating by local or V2V4 messages (Airplug, see 
Sec. 6.1).

4. Applications. The vehicles run a set of applications (Fig. 3-left) 
which can be gathered into 3 groups:
4.1 The CAN,5 CTM6 and MET7 applications implement the co-

operative hazard detection strategy. They are respectively in 
charge of i) reading and decoding the CAN bus frames, ii) 
transforming the input data into a so-called local confidence
in the feared event occurrence and iii) computing on-the-fly 
the so-called distributed confidence (Sec. 4). To this aim, MET 
implements a distributed algorithm (distributed data fusion) 
relying on V2V communications (orange arrows in Fig. 2).

3 Global Navigation Satellite System.
4 V2V stands for Vehicle-to-Vehicle.
5 CAN stands for Controller Area Network.
6 CTM stands for CAN to MET.
7 MET stands for meteorology though the application is very generic and is able to 

compute the distributed data fusion for any use-cases (providing appropriate inputs 
are given by CTM).
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Fig. 3. Software applications of the hazard anticipation system used in the vehi-
cles on the left and in the road-side units on the right. They run on top of a 
light message-passing framework named Airplug, in charge of both inter- and intra-
vehicle communications.

4.2 Next, the ALT,8 GTW9 and HOP10 applications implement 
the cooperative alert propagation strategy. They are respec-
tively in charge of iv) generating and receiving alerts, v) 
discovering the Internet gateways and vi) propagating them 
intelligently (Sec. 5). To this aim, HOP implements a multi-
hop communication protocol (conditional transmissions) re-
lying on V2V and V2I11 communications.

4.3 Finally, the GPS, IAL12 and MAP applications are respec-
tively in charge of vii) providing the geographic vehicle po-
sition to interested applications, viii) discovering neighbors, 
and ix) displaying neighbors and alerts to the driver. The 
neighbors discovery is actually optional for the hazard an-
ticipation system but more convenient in practice (see maps 
in Fig. 9).

5. Infrastructure. The last part of our system is infrastructure-
related. Road-side units (RSU) record the alert messages, re-
play them to arriving vehicles and publish them to a web 
server (Fig. 2). As seen in Fig. 3-right, an RSU only embeds 
the applications related to the alert propagation (ALT, GTW, 
HOP) and (optionally) to neighbors discovery (GPS, IAL) to be 
displayed on the maps of approaching vehicles (see Fig. 9).

3.3. Functional architecture

The functional architecture of the system is presented in Fig. 4. 
It can be read from left to right for the ego vehicle (from the hard-
ware to the driver) though it includes inter-vehicle communication 
(top-bottom reading).

The inputs of the system are given by the embedded sen-
sors connected to the CAN5 bus of vehicles. Local applications are 
grouped in grey boxes; intra-vehicle communication is in red. Blue 
boxes represent distributed applications relying on inter-vehicle 
communication (in orange). The final output of the system con-
sists in an anticipated alert displayed to the approaching driver.

The distributed algorithms involve vehicles in bounded areas 
around the ego vehicle. The nested blue boxes are related to the 
size of such areas in the vehicular network. Note that the area 
related to cooperative hazard detection and cooperative alert prop-
agation can be configured thanks to some parameters of the algo-
rithms and the smaller one is not necessarily included into the 
larger one. For instance the hazard detection may involve any 
vehicle up to three hops from the ego vehicle according to the 
discounting parameter (Sec 4.3) while the alert propagation may in-
volve only approaching vehicles up to ten hops on a given lane 
thanks to a specific forward condition (Sec 5.2).

8 ALT stands for Alert.
9 GTW stands for Gateway.

10 HOP stands for Multihops communication; it implements the conditional trans-
missions.
11 V2I stands for Vehicle-to-Infrastructure.
12 IAL stands for Is alive.
5

The functional architecture can be subdivided into five parts 
(see numbers in Fig. 4):

1. Inputs are provided by the embedded devices.
2. The neighbors discovery algorithm involves inter-vehicle com-

munication in the neighborhood of the ego vehicle (one hop); 
see the inner blue box in Fig. 4.

3. The cooperative hazard detection (based on distributed data 
fusion, Sec. 4) relies on inter-vehicle communication to a few 
hops. The algorithm integrates a mechanism for bounding 
the number of hops around the vehicle (discounting, see Sec-
tion 4.3).

4. The cooperative alert propagation (based on conditional trans-
missions, Sec. 5) requires generally more hops to warn ap-
proaching vehicles. It may involve RSU to warn far vehicles 
depending on the kind of alert (case of vehicles v6 and v7 on 
Fig. 2).

5. The map gathers information including road, neighbors and 
alerts to the intention of the driver. This is the output of the 
system.

The complete data-flow of the system is given in Appendix A.

4. Cooperative hazard detection

In this section, we explain how the road events are detected 
cooperatively by means of inter-vehicle communication. Fig. 5 il-
lustrates how this subsystem works.

4.1. Input source of data

Our cooperative hazard detection system relies on inputs pro-
duced periodically by the vehicles (e.g. embedded sensors or cal-
culators). It is general enough to handle almost any kind of inputs, 
provided they can be interpreted as a confidence in the occurrence 
of the event to be detected.

Nevertheless, for our experiments (Sections 6 and 7), we use 
the windscreen wipers speed for three reasons: i) this informa-
tion is related to some feared weather conditions; ii) this is a 
representative case of data that should be reinforced and iii) it 
is convenient for experiments. Indeed, a large windscreen wipers 
speed can be interpreted as heavy rain that may be problematic for 
drivers. However, if such a large speed is observed on a single ve-
hicle, this may be due to a driver cleaning the windscreen. Hence, 
it is mandatory to confirm such information before broadcasting 
an alert, making it a good use-case for a collaborative approach. 
Finally, operating the windscreen wipers during road tests is easy 
and can be done even in fair weather. This greatly simplifies the 
road experiments compared to using actual rain detectors equip-
ping some vehicles.

In general, data from embedded sensors can be read through 
the CAN bus installed on all recent vehicles. Unfortunately, the 
CAN bus frames encoding are generally proprietary on cars. Thus, 
a preliminary stage consists in understanding and decoding the re-
quired frames for every vehicle model involved in the experiment. 
Next, the CAN application has to be configured with respect to the 
seeked information (here the windscreen wipers speed) and the 
vehicle model it is running on.

4.2. Local confidence

The next step consists in converting the input data into a local 
confidence usable by our distributed data fusion algorithm. It rep-
resents the confidence of the vehicle into the occurrence of the 
feared event. This is the contribution of the vehicle to the cooper-
ative detection. It is built from the sensor measurement (here the 
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Fig. 4. Functional architecture of the cooperative hazard anticipation system. Local communication is drawn in red while inter-vehicle communication is drawn in orange. 
Local applications are in grey boxes while distributed applications are in blue boxes. The input of the system is given by the embedded sensors of some vehicles (ego or 
remote vehicles); the output is an anticipated alert displayed to the driver approaching the feared event.
windscreen wiper speed) and the confidence into this value, which 
is correlated to the confidence into the input device. Then, starting 
from the local confidences – periodically updated on each vehicle 
– our distributed data fusion algorithm computes the distributed 
confidence that will be used to detect the road hazard. Both the lo-
cal and the distributed confidences use the same format, that we 
explain now.

Our distributed data fusion algorithm relies on the Dempster-
Shafer Theory [18]. Appendix B presents a summary of the theory. 
This is a formal framework for reasoning with uncertainty that is 
well suited to manage unreliable information and weak states of 
knowledge [51,10]. It offers a diversity of combination operators. 
The incertitude is represented by means of so-called belief func-
tions, that model the belief of a participant with respect to a set �
named frame of discernment. A belief function can be represented 
(among other means) by masses, corresponding to values between 
0 and 1 affected to the subsets of � so that their sum is 1.

Our algorithm (and its implementation in the Airplug MET ap-
plication) is independent of the chosen frame of discernment. But 
to illustrate the idea, the following set has been used for the rain 
detection proof of concept:

� = {nofall, lowfall,highfall } (1)

For instance, a vehicle detecting an heavy rain could have a lo-
cal confidence consisting in 0.8 on the subset {highfall } and 0.2
on � (representing the doubt), supposing that our measurement 
device admits 20% of errors. The corresponding mass function 
(named m1) is m1({highfall }) = 0.8 and m1(�) = 0.2 (the values 
on the other subsets are null). If the vehicle is less affirmative, the 
mass function (named m2) could be: m2({lowfall, highfall }) = 0.3, 
m2({highfall }) = 0.5 and m2(�) = 0.2. More generally, a mass func-
tion can be written as a vector of 2|�| components, in our case 8 
components (see Table 2).

When performing on-the-fly data fusion on a network with an 
unknown topology (as it is the case in vehicular networks), the 
main issue is the data-incest problem where a single source of in-
formation could be used multiple times [38,40]. For instance in 
Fig. 2, Vehicle v1 includes its own local confidence into its compu-
tation of the distributed confidence, which is sent to its neighbors. 
When v2 receives it, it includes it into its own distributed confi-
dence computation, and sends the result to its neighbors. Then, v1
will compute its new distributed confidence, taking into account 
6

its local confidence and the distributed confidence of v2, which 
includes the previous distributed confidence of v1. Hence, the lo-
cal confidence of v1 would be combined more than once into the 
computation.

To solve this problem, we use an idempotent operator [13], 
named the cautious operator. This operator is based on the Least 
Commitment Principle, which states that: “when several belief func-
tions are compatible with a set of constraints, the least informative 
one should be selected”. When the masses are converted into a 
vector of weights [54], the cautious operator is easily computed 
by taking the component-wise minimum. We then adopt such a 
format for representing both local and distributed confidences. The 
conversion from masses to weights of a vector of 2|�| masses gives 
a vector of 2|�| − 1 weights (there is no component for �). The 
weights are real numbers belonging to (0, 1]. The conversion is 
detailed in Appendix C. Table 3 shows the vectors of weights w1
and w2 corresponding to masses m1 and m2 respectively.

To summarize, starting from the measurement produced by an 
embedded sensor or calculator (step 1 in Fig. 5) and retrieved from 
the CAN bus by the CAN application (step 2 in Fig. 5), the CTM ap-
plication builds a vector of masses on the frame of discernment 
� (step 3 in Fig. 5). This vector is then converted into a vector 
of 2|�| − 1 weights in the aim of optimizing the distributed com-
putation. It represents the local confidence of the ego vehicle. It 
is used as input by the MET application, implementing the dis-
tributed computation, that we detail hereafter (step 4 in Fig. 5). 
The size of each component of such a vector depends on the dis-
cretization of the weights. To illustrate the idea, we discretize the 
weights up to ten thousandth in our proof of concept, leading to 
32 bytes per vector.

4.3. Distributed confidence

Starting from its local confidence (regularly updated) and the 
last received messages, each vehicle computes periodically a dis-
tributed confidence, which is broadcast in the neighborhood.

This local computation combines – using the cautious opera-
tor – the local confidence of the vehicle and all the distributed 
confidences received from the neighbors since the last local com-
putation. The distributed algorithm is asynchronous, meaning that 
the involved nodes do not need to synchronize their local compu-
tation. The local period should be adjusted in order to not saturate 
the bandwidth. In practice, we used a period of 1 second. It could 
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Fig. 5. Data exchanges during the cooperative hazard detection. The CAN application 
receives frames from the CAN bus (1) and extracts the windscreen wipers speed 
according to the vehicle model (2). The CTM application transforms the received 
speed into a vehicle-independent local confidence; this is the input for MET (3). 
The MET instances compute and exchange distributed confidence (4).

be adjusted depending on the dynamic of the event and the band-
width occupancy.

By using the weights format, the local computation is a simple 
component-wise minimum on the vectors. However, each received 
confidence – coded as a vector of weights – is discounted before 
this computation so that it is less informative. We used the fol-
lowing discounting function during our experiments:

w �→ min(1, w + 0.1) (2)

By applying a discounting, the local confidences of distant ve-
hicles become less important than closer ones, thus leading to 
an interesting property: while each vehicle contributes to the dis-
tributed computation, the result may differ from vehicle to vehicle. 
For instance, when approaching a dangerous area, the distributed 
confidence into the event increases (see Fig. 11).

As studied in [17], the discounting calibration impacts both the 
size of the area of influence of a given vehicle and the convergence 
time of the algorithm. With a small discounting, it is possible to 
influence vehicles in a larger area than with a large discounting. 
On the other hand, a large discounting ensures a faster conver-
gence of the distributed algorithm. Hence, the discounting should 
be tuned according to the tracked event. Indeed, some events are 
large (e.g. weather alert) and it could be beneficial to involve dis-
tant vehicles. Conversely, some events are more dynamic and local 
(e.g. traffic slowdowns) and should not involve distant vehicles.

The discounting also ensures the self-stabilizing property of the 
algorithm [18], which means that it is able to converge in finite 
time even in case of transient failures. This property is important 
because it is nearly impossible to predict the set of cooperating 
vehicles nor the topology of the communication network. Thus the 
distributed algorithm has to support the dynamics of the vehicular 
network. For instance, in case a vehicle passes through a convoy 
of a few vehicles, the network topology is changed but this should 
not affect the distributed computation. Moreover, when a vehicle 
gets closer to the others with some very different inputs, the algo-
rithm should still converge. This may happen for instance when a 
vehicle was into a tunnel and arrive meets others under an heavy 
rain; while the input in the arriving vehicle is not up-to-date, the 
disturbance of the distributed computation should be limited in 
time and amplitude.

To summarize, the distributed confidence is periodically com-
puted by each node using a component-wide minimum on the 
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Table 2
Examples of masses on the frame of discernment � defined in Eq. (1).
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Table 3
Examples of weights obtained from masses m1 and m2 defined in Table 2.
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local confidence and the received vectors of weights. Such received 
vectors are discounted in order to:

• Bound the area of influence of a vehicle (from discounting to 
discounting, its information becomes vacuous after a few hops, 
at most 10 in our case, see Eq. (2));

• Give more importance to the information of a nearby vehicle 
rather than those of a farther vehicle (this ensures the lack of 
false negatives, see Sec. 7.3);

• Ensuring the self-stabilizing property, which is mandatory for 
the convergence of the distributed application despite the dy-
namics of the vehicular network.

5. Cooperative alert propagation

In this section, we explain how the alerts are propagated coop-
eratively to affected vehicles. Fig. 6 illustrates how this subsystem 
works.

5.1. Alert emission

In order to take a decision, the vector of weights has to be 
mapped into an ordered set for comparison with some thresholds. 
There exist several methods for this purpose such as plausibility, 
credibility or pignistic probability [55]. The last one is commonly 
used because it enables some comparisons with probabilistic mod-
els; it is used in our system.

Starting from the distributed confidences, each node periodi-
cally computes the pignistic probabilities in order to make a de-
cision [55]. For this purpose, the vector of 2|�| − 1 weights is 
converted back into masses on the 2|�| subsets of � (see Ap-
pendix C), from which the probabilities into the |�| events of �
are computed (in our proof of concept, probability of nofall, lowfall
and highfall, see Eq. (1)). Consider a ∈ � and A = {a} one of this 
event; let m(B) the mass on B ⊂ �. Then the pignistic probability 
Pm(A) computed with mass m is given by:

Pm(A) =
∑

∅�=B⊆�

m(B)
|A ∩ B|

|B| (3)

Table 4 details the computation of the pignistic probability for the 
event highfall from the masses m1 and m2 previously introduced 
in Table 2. The probability computed with m2 is smaller than the 
one computed with m1 because it is less affirmative, as explained 
in Sec. 4.2.
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Table 4
Example of computation of the pignistic probability for the feared event A = {highfall } with 
masses m1 and m2 defined in Table 2.
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3 � 0.866
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|A∩B|
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2

1
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Pm2 (A) = 0.5 × 1 + 0.3 × 1
2 + 0.2 × 1

3 � 0.716
Fig. 6. Data exchanges during the cooperative alert propagation. When the alert 
sending threshold Tsnd is exceeded, MET warns ALT about the feared event and its 
confidence (1). ALT generates an alert with its attributes, including confidence and 
position (2). It warns the ego driver and requests HOP (3) to reach remote drivers 
with specific propagation conditions. HOP sends to neighbors the alert, the prop-
agation conditions and additional information for their evaluation at reception (4). 
When GTW discovers an Internet access, keywords values used by HOP in condi-
tions evaluation are updated (5). At message reception (6), if the forward condition 
is true, HOP relays the message to other HOP instances in its vicinity (4). If the up-
ward condition is true, it sends the message to the local ALT instance (7), to warn 
the ego driver. If an Internet access has been detected, the alert may also be posted 
into a web server (8).

These probabilities are not sent to the neighbors because our 
robust algorithm is based on richer information (confidences coded 
as vectors of weights, as seen in the previous section). They are 
used to generate the alert: when the probability into the feared 
event (here heavy rainfall) exceeds the alert sending threshold Tsnd, 
an alert is generated.13

Then vehicles cooperate to propagate it towards affected vehi-
cles.

For this purpose, the MET application periodically updates the 
pignistic probability into the feared event. When it exceeds Tsnd, 
it warns ALT. The ALT application is in charge of generating the 
alert and/or exploiting the received alerts. The alert message in-
cludes the event type and some attributes such as the confidence 
into this event, a timestamp and the GPS position it was generated 
at. It also includes some event-dependent conditions defining the 
affected vehicles, the alert duration and the propagation.

13 Besides the alert sending threshold Tsnd, we also consider a pre-alert threshold 
Tpre to warn the ego driver only. We have Tpre ≤ 0.5 and Tsnd ≥ 0.5; see Section 7.
8

When ALT generates or receives an alert, it warns the MAP 
application to add the related alert icon on the map to the in-
tention of the driver (Fig. 4). The ALT application is able to period-
ically broadcast the alert message to neighbor vehicles, using some 
heuristics to avoid message collisions or message losses. However, 
a finer propagation scheme is preferable. Hence, ALT delegates the 
alert propagation to the HOP application, in charge of the cooper-
ative alert propagation.

5.2. Cooperative propagation

Our cooperative alert propagation relies on conditional trans-
missions [19]. This is an efficient content-based diffusion working 
as follows. The alert sent to neighbors includes two conditions, 
the forward and the upward conditions. At reception, if the for-
ward condition is true, the message is forwarded to the neighbors. 
Moreover, if the upward condition is true, it is forwarded to the 
upper layers, that is the local applications. Hence, a vehicle could 
be a relay, a receiver or both. The conditional transmissions are 
well adapted to dynamic networks because a vehicle v does not 
need to save information about its neighbors in the aim of deter-
mining which is the next hop. In some situation, such information 
could be costly to collect and unstable. Here, the decision to be 
a relay or not is taken by any node receiving the message sent 
by v (receiver-side decision). The forward and upward conditions 
are application-dependent. In our case, they depend on the type of 
alert and are provided by the ALT application.

Let’s take the example illustrated on Fig. 2 where the alert type 
is highfall rain. The vehicles v1, v2 and v3 experience heavy rain. 
Soon, on v1 or v2, the pignistic probability computed from the 
distributed confidence exceeds the threshold and an alert is gen-
erated. It is broadcast in the communication range of the vehicle 
with a forward condition of “being less than 4 km away” and an 
upward condition of “being on the same trajectory”. When v3 re-
ceives such a message, it forwards it (distance is less than 4 km) 
but does not warn its driver because it is going in the opposite 
direction (forward condition true, upward condition false). Vehicle 
v4 acts similarly. When v5 receives this message, both conditions 
are true: the alert is forwarded and also displayed to the driver. 
Conditional transmissions can use logical expressions related to 
time, distance, trajectories, type of node, etc. [19].

The HOP application is in charge of this multihop cooperative 
propagation scheme. On the vehicle that generates the alert, the 
HOP instance receives the alert message and the appropriate con-
ditions from the local ALT instance. On a receiving vehicle, when 
the upward condition is true, the HOP instance forwards the alert 
message to the local ALT instance, which in turns warns the MAP 
application that displays it to the driver (Fig. 4).

The conditions depend on the type of alert to be propagated. 
Some of them concern only a given lane while some others may 
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Fig. 7. Setup for the proof of concept. Top-left: IEEE 802.11p modem and roof antenna for vehicles. Top-center: Raspberry Pi running Linux, the Airplug middleware and all 
the applications. Top-right: IEEE 802.11p road-side-unit installed on the roof of the laboratory, close to the road. Bottom: fleet of 10 vehicles used during the road tests.
concern a circular area; some of them are very localized while 
some others should be propagated at several kilometers; some of 
them are relatively brief while some others may have a long du-
ration. Depending on the conditions, HOP adds to the message the 
information required to evaluate the conditions at the reception 
(such as the local position for the trajectory matching condition 
for instance). Note that usual broadcast algorithms including geo-
cast cannot select vehicles appropriately in contrast to conditional 
transmissions.

5.3. Communication to the infrastructure

Conditions can also be used to send the alerts towards the In-
ternet [34]. Indeed, if the upward condition is “being on the same 
trajectory or having an Internet access”, it will be true on any node 
that detected a gateway to the Internet.

In our example (Fig. 2), the road-side unit is connected to the 
Internet. When the message sent by v5 reaches the RSU, it is for-
warded to the local application. Then the alert is published on a 
web server and also replayed to the arriving vehicle v6 (which is 
out of the communication range of v5). The distant vehicle v7 may 
learn about the road hazard using a web client.

The GTW application is in charge of detecting the gateways 
towards Internet. When it detects such a gateway, it warns HOP 
and indicates the type of network, such as WiFi, Ethernet, 3G/4G... 
(Fig. 6). The related keyword has now the value “true” in the con-
ditions evaluated by HOP. Gateways related conditions can then be 
refined to select the type of network to be used. In general, the 
keyword ANYNET (standing for “any network”) is selected for an 
alert, though it is not the case for other non priority traffic. Note 
that the combination of GTW and HOP with appropriate conditions 
yields a cooperative sharing of the RSU, extending their communi-
cation range [34].

6. Experimental validation

In this section, we summarize the road experiments.

6.1. Setup

The base setup (named Airbox) is composed of a Raspberry Pi 3 
board (Fig. 7-center). External devices have been added depending 
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on the targeted setup for a particular vehicle. As knowing the po-
sition of each node is mandatory for the experiment, each setup is 
equipped with an USB GPS. Access to the CAN bus is provided by 
an USB CAN interface. Some vehicles lack CAN bus access and only 
transmit and/or receive the alerts generated by other vehicles. For 
monitoring purpose, each Airbox comes with a tablet or laptop, 
connected to the Raspberry Pi using its internal WiFi to forward 
the display.

Regarding the network, some vehicles are equipped either with 
an Ethernet 802.11p device (Fig. 7-top-left) or with an USB 802.11g 
device. Some vehicles are equipped with both and act as a gate-
way between both networks (this is transparent with the Airplug 
middleware). The infrastructure (RSU) is composed of two 802.11p 
gateways (Fig. 7-right) connected to a web server.

In order to orchestrate all the previously described embedded 
applications, the Airplug middleware is running on the Raspber-
ries. This is a light message passing framework for intra- and inter-
vehicle communication. An application may subscribe to another 
one to receive its messages [20,7].

6.2. Scenario

The experiment involves 10 vehicles (Fig. 7) and two road-side 
units. The vehicles are organized in three groups; each group has 
its own loop-based track to follow (Fig. 8):

• Rain Detection 1 (RD1): 3 vehicles equipped with CAN and 
802.11p devices (blue track in Fig. 8);

• Rain Detection 2 (RD2): 2 vehicles equipped with CAN and 
802.11p devices (orange track in Fig. 8);

• Rain Advertised (RA): 4 vehicles equipped with 802.11g de-
vices and one equipped with both 802.11g and 802.11p de-
vices, acting as a gateway between 802.11p and 802.11g net-
works (violet track in Fig. 8).

All vehicles of a group are following each other. All tracks share 
a round-about to enable the groups to communicate together. They 
also periodically get in range of an RSU. Using loop-based tracks 
permits to obtain a long experiment in order to confirm the re-
sults.

The heavy rain is supposed to be localized in the dashed area 
in Fig. 8. When approaching this area, the drivers in RD1 and RD2 
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Fig. 8. Map of the proof of concept (OpenStreetMap tiles). The ten vehicles are or-
ganized in three groups, following three different tracks. Groups RD1 and RD2 will 
detect the rain in the dashed area. Group RA will be advertised about the rain. The 
RSUs forward the alert to the Internet and replay them to arriving vehicles.

turn on their wipers and progressively increase the wiper speed. 
The vehicles in RD1 and RD2 then cooperate to detect the hazard. 
The MET timer (periodic sending for the distributed data fusion) is 
set to 1 second; other MET parameters are given in Equations (1)
and (2).

When an alert is generated by a vehicle of RD1 or RD2, it is 
propagated towards distant vehicles (including those of RA which 
are not equipped for hazard detection) and the web server. The 
vehicle of RA acting as a gateway receives the alert either from the 
RSU or a vehicle from RD1 or RD2 through the 802.11p network. 
It then forwards the alert to the other vehicles of RA through the 
802.11g network. The complete data-flow of the system is given 
in Appendix A.

6.3. Results

During the experiment, all ten vehicles were working according 
to the scenario and they managed to detect hazards and propa-
gate alerts to other vehicles and to the infrastructure. Even if the 
three groups of vehicles were not synchronized (track of different 
lengths, real traffic, traffic lights), the algorithms were able to work 
correctly, which validates the proof of concept in a real demonstra-
tion.

Alerts have been received on the web server but they have not 
been transmitted to web clients (case of vehicle v7 in Fig. 2) dur-
ing the experiment (this point has been tested later separately). 
Hence, remote vehicles were warned either by means of V2V com-
10
munication or by the RSUs when they were in their communica-
tion range. This validates the role of the RSUs.

Fig. 9 shows some examples of maps available in the vehicles, 
provided by the graphical user interface (GUI) of the MAP ap-
plication. The MAP GUI relies on OpenStreetMap tiles, which are 
downloaded from the Internet either in advance or when neces-
sary (in this last case, an Internet connection is required). On these 
maps, the ego vehicle is displayed in red in the center. The vehicle 
v3 belongs to RD1 and receives the alert from RSU2 or v2 before 
entering into the dangerous area (Fig. 9-left). The vehicle w2 be-
longs to RA. It receives the alert from the vehicle w1 and is warned 
about the road hazard before entering the area (Fig. 9-right).

The alerts are displayed using appropriate icons, with the re-
lated pignistic probability (Sec. 5.1). Such a probability is used to 
compute the saturation of the icon. In such a way, an alert with a 
moderate probability attracts less attention than another one with 
a larger probability of occurrence. In case the alert is not refreshed 
by the ALT application, its saturation decreases according to a de-
creasing function given as a parameter to MAP (actually it depends 
on the alert type); this ensures that the alerts eventually disappear 
from the map.

Besides the alerts, the other vehicles (in blue), the RSUs (green 
triangles) and their distance to the ego vehicle are displayed 
thanks to the neighbor discovery (IAL application).

As a conclusion, the complexity of the scenario and the va-
riety of vehicles, networks and hardware used during the road 
tests show the feasibility of our approach. In order to study its 
performance, a simpler scenario is thoroughly analyzed by in-lab 
emulation in the next section.

7. Performance study

In this section, we present the performance study based on 
real-life in-lab experiments.

7.1. Setup and scenario

In-lab experiments are convenient for studying the perfor-
mances of our cooperative system because they enable repeating 
the runs while varying parameters. For this purpose, we used the 
Airplug emulation tool [7], that enables high-fidelity reproduction 
of road experiments or creation of new in-lab experiments. The 
software applications running in emulation are the same as those 
used during a road experiment and messages are exchanged sim-
ilarly. The wireless network is emulated (using the shell facilities) 
with some parameters that may vary, such as range, delay and re-
liability of the communication. Table 5 summarizes the parameters 
of the emulation. Fig. 10 shows an example where the proof of 
concept is replayed by emulation. In the following study, the local 
confidence is generated by MET; the CAN and CTM applications in 
charge of exploiting the sensor output are not used.

For the performance study, we emphasize on a convoy ap-
proaching a heavy rainfall on the N31 road near the city of Com-
piègne, France. The convoy is built from a real GPS track, which 
is duplicated eight times using an interval of 8 sec. The inter-
vehicle distance is then non constant because the speed is not (e.g.
it decreases in turns). A vehicle can only communicate with its 
neighbors if the distance is smaller than the communication range 
fixed to 500 m. This is a realistic multi-hop scenario for non-urban 
areas (which represent more than 3

4 of the injuries in car accidents 
[43]). It is balanced because a higher vehicles density would give 
an advantage to both hazard detection and alert propagation while 
a scenario with less vehicles would lead to a partitioned network. 
Moreover, considering such a regular topology helps with the re-
sult analysis.
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Fig. 9. Examples of maps in vehicles (v3 on the left and w2 on the right) provided by the GUI of the Airplug MAP application (relying on OpenStreetMap tiles). The ego 
vehicle is represented with a red bullet in the center. The alerts are displayed using an appropriate icon and their pignistic probability (percentage); the saturation of the 
icon is related to this value. When using the optional neighbor discovery, the RSU (green triangle) and the other vehicles (blue bullets) are also represented with the distance 
to the ego vehicle.
Fig. 11 is a screenshot of the emulation tool (relying on Open-
StreetMap tiles). The vehicles are represented with blue bullets. 
The dashed area represents heavy rainfall. Red lines represent net-
work connections (when they exist). The vertical bars on each 
node represent the local confidence (three left-most bars) and the 
distributed confidence (three right-most bars), expressed as pignis-
tic probabilities. Grey is used for the highfall event (danger), white 
for the lowfall event (cloudy weather) and yellow for the nofall
event (sunny weather).

The local confidence is computed using only the local input 
while the distributed confidence is computed thanks to the dis-
tributed data fusion. By comparing these values, the interest of the 
cooperative hazard detection is evaluated. For instance in Fig. 11, 
vehicle v1 is under heavy rainfall, which has been detected lo-
cally and distributively (using the cooperative hazard detection) 
because both grey bars are large. Thought it is still far away from 
the hazard, vehicle v4 becomes to be warned by the cooperative 
detection (pre-alert, see Sec. 7.3) while it is not warned by its own 
input: we can see that local and distributed confidences disagree 
on this vehicle. Additionally, a vehicle may receive an alert from 
a previous ones in the convoy, offering an anticipation period (see 
Sec. 7.4). Such an alert is propagated when the distributed con-
fidence (expressed as pignistic probabilities) is above the sending 
threshold.

To ease reading, the following study and the plotted figures rely 
on the data that has been regularly saved during one run of the 
in-lab experiments; variations with other runs are given for com-
parison.

7.2. Local detection as a reference

In order to compute the anticipation period provided by our 
system, we need to determine the date at which the ego vehicle 
is able to detect the road hazard by itself. The local detection date
denoted tloc corresponds to the date of detection based on the lo-
cal input of the vehicle (without any communication with others). 
The hazard impacts the input of the ego vehicle, then the local 
confidence into the feared event and in turn the related pignistic 
11
probability14 ploc(feared event). We define the local detection date 
tloc as the date for which ploc(feared event) > 0.5.

Fig. 12 shows the evolution of pignistic probabilities on the 
last vehicle (v8) of the convoy while it is approaching the road 
hazard. The feared event (highfall) is plotted in grey (same col-
ors as in Fig. 11). We observe the transition of the local confi-
dence: at t = 68 sec, ploc(nofall ) falls down and ploc(lowfall ) in-
creases. The high confidence into the feared event appears when 
ploc(highfall ) rises sharply, defining tloc(v8) = 76.983 sec (green 
mark in Fig. 12). Similar observations have been done for the 
other vehicles (see the sharp transitions in Fig. 13-top). Table 6
presents the local detection dates of the eight vehicles (very sim-
ilar results have been obtained in other runs with a difference up 
to 0.6 sec). The anticipation periods expected from the coopera-
tive road hazard anticipation system will be computed from these 
dates.

7.3. Cooperative detection study

In this section, we study the performance of the cooperative 
hazard detection introduced in Sec. 4 independently of the coop-
erative alert propagation.

Fig. 13 gathers the pignistic probabilities of the highfall event 
(danger) for the eight vehicles: local confidences at the top and 
distributed confidences on the bottom. As all vehicles detect lo-
cally the danger roughly at the same GPS position (without any 
communication), Fig. 13-top gives regular plotting. By comparing 
with Fig. 13-bottom, we observe concomitant transitions between 
local and distributed confidences. This is a useful consequence of 
the discounting: when the ego vehicle has a large confidence into 
an event (using its local input), the impact on the distributed 
confidence computation is large because the other inputs of the 
computation (received values) are discounted. This property avoids 
false negative detection: whenever the local confidence is large, 
the distributed confidence is large also.

14 For the sake of simplicity, when there is no ambiguity we refer in the rest of the 
analysis to local (or distributed) confidence instead of pignistic probability computed 
from the local (or distributed) confidence. Moreover, we note ploc(event) or pdis(event)
instead of ploc({event}) and pdis({event}).
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Fig. 10. Emulation of the proof of concept scenario. The computer is on the bottom-left behind the screen used to control the emulation. The bottom-right screen shows the 
web server receiving the alerts. The two upper screens are used to display the GUI in each vehicle (in particular the ALT and MAP applications).
The anticipation period is detected by thresholding.15 Let Tpre
the pre-alert threshold. We define the pre-alert date denoted tpre as 
the date for which pdis(feared event) > Tpre. The pre-alert provides 
an anticipation period defined by tpre − tloc. This is the period be-
fore the hazard during which the ego driver can adapt its driving. 
A positive value is useless. In our experiment, the pre-alert thresh-
old Tpre is equal to 0.25. This leads to an anticipation period for 
the driver around −7 ± 1.4 seconds (see Table 7), excepted for v1
which is the first vehicle discovering the hazard (around −6.5 ±1.8
for the ten runs). A smaller threshold would increase the antic-
ipation period while a larger would not provide any anticipation 
period. However, considering low thresholds (smaller than 0.5) 
cannot guarantee the lack of false positives. Hence, this threshold-
ing provides a pre-alert for the ego driver only and should not be 
forwarded to other vehicles.

Finally, the distributed detection date denoted talt is defined 
when the distributed confidence into the feared event becomes 
larger than the alert threshold fixed to 0.5. Though robust, the haz-
ard detection relying on the distributed confidence (pdis(highfall ) >
0.5) does not give any anticipation period because it happens af-
ter the local detection, as seen in Table 8 (anticipation periods are 
positive and then useless). Similar results are obtained for all runs.

To summarize, the cautious operator used to compute the dis-
tributed confidence avoids false positive detections by applying the 
Least Commitment Principle. Moreover, the discounting avoids false 
negative detections, as shown by the concomitance of the transi-
tions between local and distributed confidences. When considering 
a pignistic probability larger than 0.5, the alert is confirmed but 
there is no anticipation. A smaller threshold Tpre remains useful 
for local pre-alerts only. Our cooperative hazard detection system 
is then robust and truthful but on the other hand it cannot pro-
vide any anticipation period to the driver due to is cautiousness. 
For this purpose, it has to be completed by an alert propagation 
mechanism.

7.4. Road hazard anticipation study

In this section, we study the performance of the whole road 
hazard anticipation system relying both on the cooperative hazard 
detection and the cooperative alert propagation. The combination 

15 An anticipation period may be expected by analyzing the increasing of 
pdis(highfall ) before the sharp transition of the distributed confidence. However 
false positive may appear using this method and thresholding is preferred.
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of both ensures a reliable anticipation period for the drivers ap-
proaching the hazard.

First, it is important to notice that, by using conditional trans-
missions (Sec. 5) and alert-dependent conditions, the whole road 
hazard anticipation system remains true with respect to the alerts 
announced to the driver. Indeed, the upward conditions can eas-
ily be tuned so that only concerned drivers are warned about the 
road hazard (receiver vehicles). For instance, HOP admits condi-
tions such as: being behind the vehicle announcing the hazard and 
at less than 2 km of the hazard and during 30 minutes only, etc.

Moreover, the conditional transmissions bound the area of mes-
sages propagation thanks to the forward condition. Conditions are 
versatile enough to address an obstacle on a given lane, an acci-
dent on a given road, a localized weather alert or a large meteo-
rological phenomenon. This way, very few vehicles are solicited as 
relay and any vehicle detecting a road hazard can generate an alert 
without overloading the network, then enforcing the reliability of 
the whole cooperative system.

As explained in Sec. 5.1, an alert is propagated whenever 
pdis(highfall ) > Tsnd, where Tsnd is the alert sending threshold. 
When dealing with alert propagation, only well confirmed alerts 
should be considered. Hence, the alert sending threshold satisfies 
Tsnd ≥ 0.5. The larger Tsnd is, the more reliable the propagated 
alerts are but the less the anticipation period is. A too large alert 
sending threshold may lead a false negative. To be fair, the send-
ing threshold Tsnd has been set to 0.66 in our experiments. Table 9
gives the corresponding sending dates. Similar results have been 
obtained for all ten runs (for instance the average sending date of 
v8 is 81.901 sec with a standard deviation of 0.233).

We define the alert receiving date trcv_w(v) as the date of recep-
tion on vehicle w of the first alert generated by vehicle v . Fig. 14
shows the alert reception dates on v8 (red marks). For comparison, 
the green mark represents the local detection date on v8 based 
on the local input only and used as reference date (see Table 6
and Section 7.2) and the orange mark represents the pre-alert date 
with Tpre = 0.25 (see Table 7 and Section 7.3). While the send-
ing threshold has been fixed at a high value, vehicle v8 is warned 
early thanks to the alert generated by v1 (trcv_v8 (v1) = 39.941 sec) 
and forwarded from vehicle to vehicle in the convoy (7 hops; here, 
the communication range has been set to 500 m). At the same 
date, v8 is not detecting any hazard with its local input (see the 
grey dotted line, ploc(highfall ) = 0.067) nor with the cooperative 
hazard detection (see the grey solid line, pdis(highfall ) = 0.103).

By receiving the alerts from several vehicles, the robustness 
of the alert propagation is reinforced while the network may be 
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Fig. 11. Scenario of the in-lab experiment by network emulation. Vehicles move from left to right towards the rain (dashed area). On each vehicle, the three left-most bars 
represent the local confidence expressed as pignistic probability: grey for highfall, white for lowfall and yellow for nofall (sunny weather). The three right-most bars represent 
similarly the distributed confidence. The distributed confidence into the feared event increases while vehicles approach the rain.

Table 5
Parameters of the in-lab experiment using network emulation. The bottom part of the table is related to the 
analyzed run (from which the following figures come).

Parameter Value How

Number of vehicles 8 (convoy scenario, see Fig. 11) Set
Number of runs 10 Set
Data fusion timer (MET) 1 sec Set
Discounting (MET) x �→ min(1, x + 0.1) Set
Upward condition (HOP) trajectory correlation Set
Forward condition (HOP) trajectory correlation + distance ≤ 4 km Set
Alert duration (ALT) 1 minute Set

Communication range 500 m Set
Link reliability 100%; varying from 30 to 100% in Sec. 7.5 Set
Vehicle speed from 28 to 90 km/h, mean 81, stdev 15 Measureda

One hop delay from 19.3 to 202.5 ms; mean 43.3 ms, stdev 21.6 ms Measuredb

Seven hop delay (convoy) from 140 to 262 ms, mean 187 ms, stdev 39.5 ms Measuredc

Duration 109 sec Measured
One hop delay from 20 to 153 ms; mean 47.5 ms, stdev 28.4 ms Measuredb

Seven hop delay (convoy) 178 ms Measuredc

Data fusion msg sent (MET) 815 Measured
Alert messages sent (ALT) 96 Measured

a Measured in the recorded GPS track.
b Measures based on the alert messages delays at the application layer.
c Delay of the first alert from v1 to v8 at the application layer.
disconnected (inter-vehicle distance larger than the communica-
tion range) or some packets may be lost. On the other hand, the 
propagation has to be bound in time and space, using appropri-
ate forward conditions with HOP. Table 10 summarizes the hazard 
anticipation due to the cooperative alert propagation. Results are 
close in the ten runs. For instance, the anticipation period on v4 is 
between −12.494 and −9.329 (average of −11.759, standard devi-
ation of 0.94). Hence, we can see that, when there are more than 4 
vehicles in front of the ego vehicle (corresponding to roughly 2 km 
here), the cooperative alert propagation significantly increases the 
road hazard anticipation. This illustrates the discussion in Sec. 3.3
about the size of the area of influence of the cooperative hazard 
detection on the one hand and the cooperative alert propagation 
on the other hand (see Fig. 4): the cooperative alert propagation is 
useful starting from 4 hops.

As a conclusion, thanks to application-dependent conditions, 
the cooperative alert propagation warns only the concerned 
drivers. By limiting the number of relays, it allows any vehicle 
detecting a road hazard to propagate an alert, enforcing the re-
liability of the whole system despite packet loss. Moreover even 
when using a large sending threshold (0.66 in our experiments), 
the cooperative alert propagation starts being useful after few 
hops, providing a very significant anticipation period (reaching 37
sec in the convoy of 7 hops). With a smaller sending threshold 
Tsnd (yet larger than 0.5), the anticipation period would still be 
larger. The local pre-alerts defined with Tpre appear to be useful
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for vehicles close to the hazard (less than 2 km in our experi-
ment).

7.5. Impact of packet loss

When designing a cooperative application in vehicular net-
works, it is important to study its robustness in case of poor com-
munication conditions. The communication reliability is the prob-
ability that a vehicle-to-vehicle communication succeeds. Though 
the convoy is sometimes disconnected in our scenario (as shown 
in Fig. 11 for v7 and v8), previous figures have been obtained with 
a reliability of 100%, meaning that whenever a communication in-
volves two vehicles in their communication range, it succeeds. In 
this section, we study the impact of a lower network reliability, 
resulting in packet loss.

Fig. 15 shows the impact of the communication reliability on 
the distributed confidence into the feared event in vehicle v8. The 
loss rate is smaller than 1

3 in Fig. 15-bottom while harsh network 
conditions are considered in Fig. 15-top. The reference curve is 
here the distributed confidence pdis(highfall ) with the maximal 
reliability equal to 100% (black solid line). Contrary to the dis-
tributed confidence, the local confidence is computed without any 
communication, by using the local input only. Hence, ploc(highfall )
is not impacted by the communication reliability (black dotted 
line).

Unsurprisingly the more the reliability decreases, the more the 
distributed confidence varies (expressed as pignistic probabilities, 
see Note 14). Indeed the distributed algorithm is stateless: period-
ically, the computation is performed with the received values; in 
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Fig. 12. Evolution of the local confidence ploc in vehicle v8 approaching the road hazard. Same color code as in Fig. 11: probability of highfall (danger) is in grey. The local 
detection date (green mark) is defined when ploc(highfall) > 0.5.

Table 6
Local detection dates tloc defined when ploc(highfall ) > 0.5. They are used as reference for computing the anticipation period provided by the cooperative system.

Vehicle v v1 v2 v3 v4 v5 v6 v7 v8

tloc(v) in seconds 14.444 22.995 31.994 41.803 50.609 59.581 68.267 76.983
case a message is missing the result may vary temporary.16 More-
over, we also observe that the more the reliability decreases, the 
more the distributed confidence is close to the local confidence. 
Indeed, when taking into account disagreeing sources, the dis-
tributed confidence is smoothed compared to the local confidence. 
In case some messages are missing, the smoothing is less impor-
tant. In case no message is received at all, only the local confidence 
is taken into account in the computation of the distributed confi-
dence and both are equals.

Hence, the distributed confidences curves for a reliability 
smaller than 100% are mainly contained between the local con-
fidence and the distributed confidence with rel=100%, that is 
between the black dotted line and the black solid line. As a con-
sequence, the variations due to packet loss are mainly below the 
reference curve before the sharp transition and above the refer-
ence curve after. This leads to an interesting property: the risk of 
false positive pre-alert and the lack of alert sending (false nega-
tive) is neglected, even for harsh network conditions. In particular, 
none of the curves reaches the pre-alert threshold Tpre = 0.25 be-
fore the reference curve. Moreover none of them reach the sending 
threshold Tsnd = 0.66 significantly after the reference curves.

Regarding the alert propagation, packet loss is usually coun-
terbalanced by repetition. By limiting the area of distribution and 
the number of relay nodes, the conditional transmissions limit the 
bandwidth saturation and are convenient for a repetition heuris-
tic. For this purpose, the ALT application includes several strategies 
such as sending alerts using burst of few messages spaced by a 
pause or determining the inter-packet gap using the vehicle speed. 
Nevertheless, such heuristics have not been used here to obtain a 
fair study of the packet loss impact.

As a conclusion, both hazard detection and alert propagation 
rely on periodic messages and stateless algorithms (newer mes-
sages withdraw the previous ones), which is advantageous to face 

16 Note that a stateful algorithm has the drawback of being sensitive to bad or 
malicious inputs that may pollute the output for a while.
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packet loss. Moreover, by using the cautious operator, the coop-
erative hazard detection remains truthful against poor network 
conditions. By optimizing the area of distribution, the coopera-
tive alert propagation avoids the bandwidth saturation and sup-
ports well the messages repetitions. Hence, our cooperative hazard 
anticipation system is robust even with poor networking condi-
tions.

8. Discussion

In this section, the key points and the complexity of the pro-
posed road hazard anticipation system are analyzed. Then the lim-
itation of both the study and the system are listed. They may be 
improved in further work.

8.1. Key points of the system

As seen in the previous section with in-lab experiments, the ro-
bustness is an important characteristic of our system. This is due 
to several choices. First, the danger detection relies on data fusion, 
which has been designed to deal with uncertainties. It allows the 
dynamic of the vehicular network and the varying environmental 
conditions to be taken into account. Moreover, our system relies 
on the cautious operator, which withdraws eccentric information. 
Thanks to the discounting, a remote information can influence 
the local result only if it is confirmed by others, hence enforc-
ing the robustness. Such cautiousness combined with a stateless 
distributed algorithm permits packet losses to be supported, as 
explained in Sec. 7.5. Finally, limiting the number of involved vehi-
cles during the alert propagation enable alert redundancy without 
overloading the network, hence ensuring a robust propagation.

Another important advantage of our system is its efficiency. This 
is due to on-the-fly data fusion in a stateless algorithm; there is 
no need to collect data prior to computation and decision. More-
over, using vectors of weights simplify the computation. Finally, 
our alert propagation protocol is based on conditions and such
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Fig. 13. Comparing the evolution of the local (top) and distributed (bottom) confidences into the highfall event in the convoy (expressed as pignistic probability).

Table 7
Pre-alert dates tpre used to warn the ego driver only. This is the date when pdis(highfall ) > Tpre . Here, the pre-alert threshold Tpre equals 0.25. The anticipation period is 
given by tpre − tloc (positive values are then useless).

Vehicle v v1 v2 v3 v4 v5 v6 v7 v8

tpre(v) in seconds 14.981 17.42 24.3 34.063 44.875 51.778 61.076 69.674
Anticipation period (sec) 0.537 -5.575 -7.694 -7.740 -5.734 -7.803 -7.191 -7.309

Table 8
Alert detection dates talt defined when pdis(highfall ) > 0.5. This robust alert detection does not provide any anticipation period (positive values are useless) because talt > tloc .

Vehicle v v1 v2 v3 v4 v5 v6 v7 v8

talt(v) in seconds 17.052 25.538 36.607 44.355 53.176 62.131 71.361 77.988
Anticipation period (sec) 2.608 2.543 4.613 2.552 2.567 2.550 3.094 1.005

Table 9
Alert sending dates tsnd defined when pdis(highfall ) > Tsnd. Here Tsnd = 0.66.

vehicle v v1 v2 v3 v4 v5 v6 v7 v8

tsnd(v) in seconds 40.162 48.615 55.198 65.4 73.953 80.744 79.66 82.29
kind of content-addressing is more efficient than address-based 
propagation in a dynamic vehicular network. These properties save 
resources and energy.

The third advantage of our system is its architecture. It re-
lies on a combination of cooperative strategies that complete each 
other: reliable danger detection combined with a selective alert 
15
propagation. The latter counterbalances the cautiousness of the 
former which cannot offer any anticipation alone. Moreover such 
algorithms neither depend on the number of vehicles nor on the 
state of the system. Each vehicle is independent; a driver could 
be warned either by its own sensors or by the cooperation of 
other vehicles, offering an anticipation. Also each application is 
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Fig. 14. Alert reception in vehicle v8. The local confidence ploc(highfall ) is plotted in dotted line and the distributed confidence pdis(highfall ) in solid line. The green mark 
represents tloc(v8), the local detection date used as reference for computing the anticipation period. The pink mark represents tpre(v8), the date of pre-alert on v8. The red 
marks represent trcv_v8 (v), the date of reception on v8 of the alert generated by vehicle v .

Table 10
Alert reception dates trcv_v8 (v) on vehicle v8 and related anticipation period defined by trcv_v8 (v) − tloc(v8) due to the cooperative alert propagation in the convoy. Here, 
both distributed data fusion and alert propagation are used conjointly.

Vehicle generating the alert v1 v2 v3 v4 v5 v6 v7

trcv_v8 (v) in seconds 39.941 48.622 55.355 65.52 73.687 80.988 79.342

Anticipation period (sec) -37.042 -28.361 -21.628 -11.463 -3.296 4.005 2.359
Average of the 10 runs (sec) -38.308 -29.785 -20.971 -11.759 -3.127 3.581 2.408
independent inside the vehicles thanks to a light message passing 
middleware.

8.2. Complexity analysis

The maximal convergence time of the distributed data fusion 
is linearly correlated to the timer of its periodic computation and 
the diameter of its area of influence. Such area is bounded with 
the discounting. Both parameters (timer and discounting function) 
can be tuned depending on the alert needs. In our experiment, 
the maximal convergence time is bounded to 10 hops × 1 second
but we observed that the alert is generally detected much earlier. 
The convergence time of the alert propagation is related to the 
forwarding condition, that may include geographic and time lim-
itation. In our experiment, it was limited to no more than 4 km 
from the danger and no more than 1 minute. Such parameters are 
adapted to local weather alerts but may be tuned for other types 
of alert.

The computation time is negligible for both cooperative algo-
rithms because computations are very light. For the distributed 
data fusion, they consist in conversions (input, masses, weights, 
probabilities) and some minimum and additions on vectors of 
small size (8 components in our experiments). For the cooperative 
16
alert propagation, they consist in the evaluation of simple condi-
tions.

The message complexity is related to the timer for the alert 
detection and to the forward condition for the alert propagation 
because it determines the involved vehicles. In both cases, it is 
parameterized and limited (1 second and vehicles up to 4 km re-
spectively in our experiments).

Finally the memory complexity is low because our protocols are 
stateless. Only the received messages of the neighbors are stored 
during a timer. Our system is then scalable to a large number of 
vehicles.

8.3. Limitations of the study

A proof of concept involving 10 vehicles has been presented in 
Section 6. Nevertheless larger road tests could be organized, with 
various road traffic. As this is complex to set up, our study relies 
on in-lab experiments using vehicular network emulation. In fu-
ture work, this performance study could be completed with more 
scenarios.

The in-lab study has been done with the Airplug network em-
ulator. Thanks to this tool, the same applications (same code) are 
used on the road and in the lab, increasing the realism. Never-
theless the low layers are emulated and may lack accuracy. We 
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Fig. 15. Pignistic probabilities pdis(highfall ) in vehicle v8 depending on the communication reliability (low reliability on top, higher bottom). The local confidence ploc(highfall )
is computed with the local inputs only (no impact of the reliability).
checked that the application delay for the alert (from the sending 
ALT application to the receiving ALT application) for one hop and 
for the whole convoy is realistic (Table 5). It is variable from a run 
to another (as it may also be observed on the road). We checked 
that such differences do not have a significant impact on the an-
ticipation delay.

To ease the analysis, the in-lab study has been done using an 
artificial continuous input for computing local confidence. For in-
stance, it may be produced by a rain detection sensor giving a 
continuous measurement from 0 to 1. On the other hand, to ease 
the road-tests, a discretized input has been used: it was built from 
the windscreen wipers speed because the wipers could be used 
even during sunny road tests. Nevertheless, we checked that, when 
converted into a mass function and then into a pignistic probabil-
ity, the continuous input of the in-lab experiments leads to a sharp 
transition similar to an on-off discretized input (Fig. 12). Moreover 
these road and in-lab experiments show that our system can be 
used indifferently with continuous or discretized inputs.

8.4. Limitations of the system

Our system relies on cooperative strategies. In case a vehicle 
has no neighbors, it is warned by its own sensors at tloc (no an-
ticipation). To solve this issue, some RSUs could be installed in 
dangerous areas to upload long-term alerts to the Internet (Fig. 2); 
this has been tested during the road tests (Section 6). The RSUs 
may also relay messages between vehicles in case of sparse traffic. 
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They may also be equipped with sensors and be involved in the 
cooperative strategies as a stopped vehicle would do.

Our system relies on the cautious operator to fuse the data of 
several vehicles. In some cases, its cautiousness may delay the alert 
detection. This may be solved using another idempotent data fu-
sion operator. Another way would be to complete the system using 
non-idempotent operators on collected data. Our system includes 
the Dempster operator computation on the inputs from the neigh-
borhood but this has not been used in this study. Note that such 
a functionality doubles the messages size (in our case 32 bytes 
more).

Our system is able to manage any kind of danger providing it is 
not too short nor sudden. A danger close to the ego-vehicle with a 
short duration (e.g. pedestrian crossing the road) may not benefit 
from our system. Moreover, some parameters have to be tuned for 
a better efficiency. In particular, the thresholds may be adapted to 
the event to be detected and the input provided by the related on-
board sensor or calculator (local confidence). The discounting could 
also be adapted to the feared event to size the area of influence of 
the distributed data fusion (note that this impacts the convergence 
time). Finally the conditional transmissions may be tuned to better 
fit with the needs of the alert. For instance some alerts could be 
propagated only to arriving vehicles on the same lane (obstacle, 
pothole...), while some others could be propagated to a wider area 
(fog...). This may be done using a dictionary associating the alerts 
and their parameters.
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9. Conclusion

This paper describes a cooperative approach to hazard anticipa-
tion in vehicular networks. It relies on a self-stabilizing distributed 
data fusion algorithm for the hazard detection and on a condition-
based multi-hop communication protocol for the alert propagation. 
By using data fusion, it reinforces the confidence into the detected 
event. By forwarding (and uploading to the Internet) the result of 
a distributed cooperative hazard detection algorithm, it preserves 
the privacy of road users and limits the amount of collected data. 
By using local algorithms and on-the-fly computations, it preserves 
the communication and processing resources, hence minimizing 
energy consumption and time compared to centralized approaches.

The whole system has been demonstrated in a real-life ex-
periment involving a large number of vehicles using cheap off-
the-shelf hardware, showing the soundness and efficiency of the 
approach. A set of local and distributed applications has been de-
signed on top of a light message passing middleware for this pur-
pose. During the road tests, the participating vehicles have been 
warned well in advance of road hazard lying ahead.

The performance study has shown the interest of combining 
both the cooperative hazard detection and the cooperative alert 
propagation to provide significant anticipation periods before the 
hazard. Our in-lab experiments have confirmed the truthfulness 
and the robustness of the system, including the low impact of 
packet loss.

Future work will deal with improving our system. In particular, 
depending on the alert type, the cooperative hazard detection may 
benefit from conditional transmissions to give more importance to 
data fusion messages coming from vehicles ahead. This could fur-
ther increase the anticipation period.
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Appendix A. Data-flow

This appendix details the data-flow presented in Fig. 4. This fig-
ure can be read from left to right for the ego vehicle (from the 
hardware to the driver). Local Airplug messages are displayed hor-
izontally in red while inter-vehicle Airplug messages are displayed 
vertically in orange.

1. Inputs
• The embedded devices produce inputs carried over CAN 

frames. They are read, decoded and filtered by the CAN ap-
plication, which provides a comprehensive information to 
CTM (in our use case, windscreen wipers speed).

• The GNSS5 receiver produces NMEA frames which are read 
by the GPS application. The latter periodically sends geo-
graphical positions and time to the subscribed application 
using local Airplug messages, namely IAL, ALT and MAP.
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• The GTW application detects any networking interface 
changes and informs HOP by means of a local Airplug mes-
sage (Sec. 5.3).

2. Neighbor discovering
• The IAL application receives local Airplug messages from 

GPS.
• It exchanges inter-vehicle Airplug messages with other IAL 

instances in the vicinity of the ego vehicle.
• It computes the distances to the neighbors (including the 

RSUs) and forwards any update to the MAP application using 
local Airplug messages.

3. Cooperative hazard detection (Fig. 5)
• The CTM application formats the CAN information (Sec. 4.1) 

for MET as a local confidence (Sec. 4.2).
• MET computes the distributed confidence by combining its lo-

cal confidence and the distributed confidences received from 
its neighbors. Such distributed confidences are expressed as 
vector of weights to simplify the computation (Sec. 4.2). Pe-
riodic inter-vehicle Airplug messages are used to send the 
last result to the neighbors.

• The distributed confidence is converted into masses for com-
puting the pignistic probability and comparing it to a thresh-
old (Sec. 5.1).

4. Cooperative alert propagation (Fig. 6)
• ALT is warned by MET (local Airplug message) whenever the 

pignistic probability into the feared event is larger than a 
threshold.

• It informs MAP by sending a local Airplug message.
• MAP displays the alert on the GUI using an appropriate icon 

and the confidence to warn the local driver.
• ALT also requests HOP with a local Airplug message for 

propagating the alert, using appropriate alert-dependent 
conditions.

• HOP propagates alerts by selecting relay and destination 
nodes thanks to the forward and upward conditions respec-
tively (Sec. 5.2). Inter-vehicles messages are used for this 
purpose; they may contain additional information required 
for evaluating the conditions at reception.

• On a remote vehicle, when the upward condition is true, 
HOP forwards the alert to ALT using a local Airplug message.

• ALT informs MAP by sending a local Airplug message.
• MAP displays the alert on the GUI using an appropriate icon 

to warn the remote driver.

Airplug messages consist in text strings composed of key-value 
pairs. They have a variable size and may be completed accord-
ing to options. For instance, an alert message contains a sequence 
number, the sender id and GPS position, an alert type and the con-
fidence into the alert. When forwarded by HOP, it is completed 
with the upward and forward conditions and any data required for 
evaluating such conditions at reception (for instance the last GPS 
positions of the sender for the trajectory correlation).

Appendix B. Dempster-Shafer theory

The Dempster-Shafer theory of belief functions, also called evi-
dence theory, has been introduced by Dempster (1968) and Shafer 
(1976) and has been further developed by Smets (Transferable 
Belief Model) in the 1980s and 1990s [11,51,56]. It is a formal 
framework for representing and reasoning from partial (uncertain, 
imprecise) information, by generalizing both the set-membership 
approach and the probability theory.

Information representation. Let � = {ω1, ..., ωN } be a finite set of 
all possible solutions to a problem. It is called the frame of discern-
ment; it is composed of mutually exclusive elements. The knowl-
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Table C.11
Conversion masses ↔ weights.

mass function commonality function weight function

m : P(�) → [0,1]
A �→ m(A)

q : P(�) → [0,1]
A �→ q(A)

w : P(�) \ � → R+
A �→ w(A)∑

A⊂� m(A) = 1 q(A) = ∑
B⊂�,A⊆B m(B) w(A) = �B⊂�,A⊆B q(B)(−1)|B|−|A|+1

Table C.12
Examples of conversions masses ↔ weights.
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}
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fa

ll
}

{no
fa

ll,
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gh
fa

ll
}

{lo
w

fa
ll,

hi
gh

fa
ll
}

�

m1 0 0 0 0.8 0 0 0 0.2
q1 1 0.2 0.2 1 0.2 0.2 0.2 0.2
w1 1 1 1 0.2 1 1 1 -
m2 0 0 0 0.5 0 0 0.3 0.2
q2 1 0.2 0.5 1 0.2 0.2 0.5 0.2
w2 1 1 1 0.5 1 1 0.4 -
edge held by one source can be quantified by a belief function 
defined from the power set 2� to [0, 1]. Belief functions can be 
expressed in several forms: the Basic Belief Assignment (BBA) de-
noted m, credibility function Bel, the plausibility function Pl, and 
the commonality function q which are in one-to-one correspon-
dence (Appendix C).

The mass m(A) quantifies the part of belief that is restricted to 
the proposition “the truth is A ⊆ � “and satisfies:∑
A⊆�

m(A) = 1

Thus, a BBA can support a set A ⊆ � without supporting any sub-
proposition of A, which allows accounting for partial knowledge.

Another representation that can be computed from the com-
monality function q is the conjunctive weight function w [54,13]
defined by:

w(A) =
∏
B⊇A

q(B)(−1)|B|−|A|+1

Information fusion. Let two distinct pieces of evidence be defined 
over a common frame of discernment and quantified by BBAs 
m1...m2. They may be combined using a suitable operator. The 
most common ones are the conjunctive and disjunctive rules of 
combination defined, respectively, as:

m1∩2(A) =
∑

A=B∩C

m1(B).m2(C)

m1∪2(A) =
∑

A=B∪C

m1(B).m2(C)

The resulting BBAs should be normalized under the closed 
world assumption. Dempster’s rule [11] denoted by ⊕ normalizes 
the result of the conjunctive rule with

K = 1

1 − m1∩2(∅)

and sets the mass on the empty set to 0:

m⊕(A) =
{

K · m1∩2(A) for A �= ∅
m⊕(∅) = 0 else.

The conjunctive and disjunctive rules of combination are com-
mutative and associative and assume the independence of the data 
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sources. In [13], Denœux introduced the cautious rule of combi-
nation (denoted by �) to combine dependent data. This rule has 
the advantage of avoiding double-counting of common evidence 
when combining non distinct BBAs. In particular, the combination 
of a BBA with itself yields the same BBA: m = m � m (idempo-
tency property). The cautious rule of combination can be easily 
computed by taking the minimum of conjunctive weights:

w1�2 = w1 ∧ w2

where ∧ denotes the minimum operator.

Reliability and discounting factor. The belief function framework 
makes it possible to model the user’s opinion about the reliability 
of a source [56]. The idea is to weight more heavily the opinions of 
the best source and conversely for the less reliable ones. The result 
is a discounting of the BBA m produced by the source, resulting in 
a new BBA mα defined by:

mα(A) =
{

α · m(A) ∀A � �

1 − α + α · m(�) if A = �

where α ∈ [0, 1]. This discounting factor can be regarded as the 
degree of trust assigned to the sensor.

Decision-making. There are several strategies for decision making 
with belief functions [14]. An optimistic strategy consists in se-
lecting the maximum of plausibility function to singletons. The 
advantage is the low computation complexity. A strategy widely 
used is to select as solution the singleton ω with the maximum of 
pignistic probability transformation defined by:

Bet P (ω) =
∑

A⊆�,ω⊆A

m(A)

|A| ∀ω ∈ �

which is equivalent to Eq. (3). Using this strategy allows comparing 
results with probabilistic models.

Appendix C. Conversion masses-weights

To optimize the on-the-fly computation of the distributed confi-
dence with the cautious operator, our algorithm relies on weights. 
This is another representation of belief functions, which are ob-
tained from masses using commonalities [54,12], as summarized 
in Table C.11.
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Applying such formulae to the masses function m1 and m2 in-
troduced in Section 4.2 as example, we obtain the results given in 
Table C.12. The computation is implemented with about 40 lines 
of Tcl code to obtain commonalities from masses and 60 to obtain 
weights from commonalities. The reverse computation is done in 
about 185 lines.
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