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Abstract – We investigate the statistics of phase fluctuations of an acoustic wave propagating
through a turbulent flow in line of sight (LOS) configuration. Experiments are performed on a
closed von Kármán swirling flow whose boundaries are maintained at a constant temperature. In
particular, we analyze the root mean square (RMS) and the power spectrum density (PSD) of
phase fluctuations. A model is developed and analytical predictions obtained for these quantities
using geometrical acoustics are shown to be in agreement with experimental observations.

Introduction. – Lighthill [1, 2] in two seminal arti-
cles first studied the problem of sound generated aerody-
namically as intrinsic to an unsteady, inviscid and incom-
pressible flow. This phenomenon of unsteady flow gener-
ating sound can be further extended to study the scat-
tering of acoustic waves by flows. The earliest of studies
on sound-flow interaction were presented by Rayleigh [3]
who treated the problem of refraction of sound waves by
flows. Subsequent work by Obukhov [4], Blokhintzev [5],
Kraichnan [6] and others led to further development in
this field and the study of sound scattering due to veloc-
ity gradients in the flow. Fabrikant [7, 8] and Lund and
Rojas [9] related the scattered acoustic field with the vor-
ticity field in the flow and gave compact formulae in the
far-field limit under the approximations of Born and low
Mach number of the flow. This theory was validated using
experimental studies on both laminar and turbulent flows
and used to characterize vorticity filaments (see for exam-
ple [10–18]). Apart from studying the scattered acoustic
field due to vorticity inhomogeneities in the flow, there is
another effect which is equally if not more important due
to its physical implications. As Tatarskii [19] notes, the
scattering due to turbulent flow also results in parameter
fluctuations of the incoming sound wave in the particu-
lar case of line-of-sight (LOS) propagation, i.e., when the
scattering angle is zero. This effect is not restricted to
only acoustic waves but can also be encountered in elec-
tromagnetic wave propagation and is a source of noise for
optical ground based telescopes. To our knowledge, previ-
ous studies on the scattering of acoustic wave have focused
on their spatial characteristics. In this letter, we show that

the temporal characteristics of phase fluctuations of a LOS
acoustic wave travelling through a turbulent flow can be
related to the spatio-temporal characteristics of the flow.
In particular, compact formulae are derived relating the
RMS of phase fluctuations (Φrms) to the characteristics
of the turbulent flow, and, the frequency PSD of phase
fluctuations (EΦ) to the spatio-temporal coherence of ve-
locity fluctuations (Cu). Generating a von Kármán tur-
bulent swirling flow in air between counter-rotating disks,
we experimentally validate the derived analytical results.

Theory. – We consider an acoustic wave travelling
through a turbulent flow of low Mach number under the
geometrical acoustic limit (kI l0/2π) ≫ 1. We have de-
noted the wavenumber of the incident acoustic wave by
kI and the integral length scale by l0, which corresponds
to the correlation length of the turbulent velocity fluctu-
ations. The geometrical acoustic limit implies that the
wavelength of the acoustic wave is smaller than the length
scale at which most of the energy in the turbulent flow is
concentrated, the latter being same as l0. The condition
for geometrical acoustics can also be written in terms of
frequency as (f0/fI) ≪ (urms/c), where urms is the RMS
of turbulent velocity fluctuations, c is the speed of sound
and f0 = urms/l0 is the integral frequency. Using Rytov’s
method [20], we obtain the equation for fluctuations in its
phase denoted by Φ (first Rytov approximation) [19],

∂Φ(x, t)

∂x
= −kI

(

ux(x, t)

c

)

, (1)
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Fig. 1: Sketch of the von Kármán flow configuration driven
by two counter-rotating disks. Temperature of the boundaries
is maintained constant using a circulating water bath. The
velocity probe and acoustic transducers are all placed in the
midplane.

where x is the direction of propagation of the acoustic
wave, and ux is the x-component of turbulent velocity
fluctuations. The above equation can be integrated over
space to give the fluctuations in phase ΦL(t) at a distance
L from the source,

ΦL(t) = −

(

kI
c

)

∫ L

0

ux(x, t) dx , (2)

where ΦL(t) = Φ(L, t). Using eqn. 2, we can relate the
statistical properties of ΦL to that of ux. First, 〈ΦL〉 = 0
since 〈ux〉 = 0. The angle brackets denote the operation
of averaging over time. Next, the second moment of ΦL

when the turbulent flow is homogeneous and isotropic is
given by

〈Φ2

L〉 =
4k2Iu

2
rms

c2

∫ L

0

dz

∫ z

0

Γu(r) dr , (3)

where the two point spatial correlation of velocity fluc-
tuations for a homogeneous and isotropic flow is denoted
by Γu(r) = 〈ux(x)ux(x+r)〉/u2

rms [21]. We consider a tur-
bulent flow of large Reynolds number Re = urmsl0/ν ≫ 1
(ν is the kinematic viscosity of the fluid). We have mea-
sured in several experimental configurations [22], including
the present one, that the two point correlation decays ex-
ponentially for values of r larger than a fraction of l0 with
a form Γu(r) = exp(−r/l0). On using this functional form
for Γu in eqn. 3 and taking square root, we obtain

Φrms =

(

2kIurms

c

)

√

l0L , (4)

where Φrms =
√

〈Φ2

L〉. Similarly, on evaluating the tem-
poral correlation of ΦL using eqn. 2 and taking Fourier
transform, we obtain an expression for its PSD, EΦ(f) =
∫

∞

−∞
〈ΦL(t)ΦL(t+ τ)〉e2πιfτ dτ , which is

EΦ(f) =

(

2k2I
c2

)

(

Eu(f)
)

∫ L

0

dz

∫ z

−z

dr
√

Cu(r, f) ,

(5)

where Cu is the coherence and Eu(f) =
∫

∞

−∞
〈ux(t)ux(t+

τ)〉e2πιfτ dτ is the PSD of ux respectively. When the tur-
bulent flow is homogeneous and isotropic, the coherence
has the definition

Cu(r, f) =

∣

∣

∣
Eu(r, f)

∣

∣

∣

2

(

Eu(f)
)2

, (6)

with 0 6 Cu 6 1. In eqn. 6, Eu(r, f) =
∫

∞

−∞
〈ux(x, t)ux(x + r, t + τ)〉e2πιfτ dτ is the cross PSD

of ux. While Eu(f) is a real quantity, Eu(r, f) is complex
and | · | denotes its modulus. Recently, Prabhudesai et
al. [23] experimentally studied coherence of velocity fluc-
tuations in turbulent flows and reported that it has the
form

Cu(r, f) = exp

[

−
c1r

l0

(

1 +
c2l0f

urms

)]

(7)

for r/l0 > 0.27. In this experiment, we measure c1 = 0.9
and c2 = 8 which have the same order of magnitude as
the values reported in [23] for two different experimental
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configurations. On substituting this functional form in
eqn. 5, we obtain

EΦ(f) =

(

8k2I l
2
0

c2
1
c2

)

ζ(f)Eu(f) , (8)

where

ζ(f) =

(

1

1 + c2l0f
urms

)[(

c1L

l0

)

−

(

2

1 + c2l0f
urms

)

(

1− exp

(

−
c1L(1 +

c2l0f
urms

)

2l0

))]

. (9)

The above analysis shows that when the velocity fluc-
tuations at two points in space are perfectly coherent (i.e.
when Cu = 1), we have EΦ ∝ Eu. The loss of coherence
of velocity fluctuations results in the energy reduction of
phase fluctuations, captured by the function ζ(f). Note
that eqn. 4 (and eqn. 8) also gives a prediction on the
prefactor in the relation of Φrms (and EΦ) apart from its
linear dependence on urms (and Eu). These predictions
are tested experimentally in the next section.

Experimental setup and results. – We generate
a von Kármán swirling flow in air between two counter-
rotating disks in a closed cylinder of diameter 130 mm
made out of copper of 2 mm thickness (see fig. 1a). In or-
der to maintain fixed the temperature at the boundaries,
a copper tubing of outer diameter 10 mm is welded to the
cylindrical part of the container and a water bath circu-
lates water at a given temperature within ±0.01 K.
We use two loop-controlled brushless DC motors ro-

tating at an angular velocity Ω up to 2000 rotations per
minute (rpm). Each of the motor drives a disk with four
curved blades. The thickness of the disks and the height of
the blades are both 7.5 mm. Holes drilled on the surface of
the cylinder provide access to the probes; one 1D hot-wire
velocity probe and two acoustic transducers all of which
are placed in the midplane, with the acoustic transducers
flushed to the wall (fig. 1b). The power dissipated per unit
mass by the turbulent flow 〈ǫ〉 is measured from the power
required by the motors to maintain the flow, ranging from
0 to 500 m2/s3. This gives the Kolmogorov length scale

η =
(

ν3/〈ǫ〉
)1/4

≥ 50 µm with ν = 1.5 × 10−5 m2/s the
kinematic viscosity of air at room temperature. We eval-

uate the Taylor microscale λ =
(

15νu2
rms/〈ǫ〉

)1/2
∼ O(1)

mm and the Taylor microscale based Reynolds number
Reλ ∼ O(102) using standard estimates for homogeneous
and isotropic turbulent flows [21]. The two point spatial
correlation Γu is evaluated using two 1D hot-wire probes
moved radially about the center axis in the midplane.
An exponential decay is observed with the characteristic
length scale l0 = 5 mm which does not vary with Ω.
The acoustic transducers (ITC-9073) have a diameter of

12 mm and emit acoustic waves at frequency fI = 230 kHz
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Fig. 2: (a) Time series of phase fluctuations of the incident
acoustic wave for Ω = 2000 rpm. (b) PDFs of phase fluctua-
tions normalized by their respective RMS values for Ω = 1200
rpm (�), 1600 rpm (�) and 2000 rpm (�). Dashed line shows
the Gaussian distribution. (c) The RMS of phase fluctuations
Φrms vs the RMS of velocity fluctuations urms. Linear depen-
dence is observed as predicted by eqn. 4.
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(kI = 4.13 × 103 m−1). The transducers are surrounded
by sound absorbing foam to absorb any reflected acous-
tic waves not in LOS propagation. A sine wave signal is
supplied to the emitting transducer and a lock-in amplifier
(Stanford Research Systems) analyzes the signal measured
by the receiving transducer. The lock-in amplifier directly
measures the fluctuations in amplitude and phase of the
incident wave as it propagates through the bulk of the
turbulent flow from the emitter to the receiver. Figs. 2(a)
and 2(b) show the time series of phase fluctuations and
its corresponding probability density function (PDF) de-
noted by Π, for Ω = 2000 rpm. We observe that the PDFs
are Gaussian for the range of rotation rates studied in this
experiment. This is a consequence of the phase fluctua-
tions being the integral of velocity fluctuations (see eqn.
2) which in turbulent flows are generically observed to fol-
low a Gaussian distribution [24]. Eqn. 4 predicts that the
RMS of phase fluctuations Φrms would be proportional
to urms. The constant of proportionality is a function
of kI , c, l0 and L, all of which are independent of Ω for
the current experimental setup. As seen in fig. 2c, eqn. 4
correctly describes the behaviour of Φrms and does not
involve any fitting parameter.

We now focus on the test of EΦ(f) as predicted by
eqn. 8. Fig. 3(a) shows an example of PSD of velocity fluc-
tuations obtained from the 1D hot-wire probe at a location
as shown in fig. 1 and for Ω = 2000 rpm. The frequency
is normalized with the forcing frequency fforc = Ω/60.
We observe two power-laws, one at low frequency with
Elow

u = 0.1 × f−0.6 and one at higher frequencies with
Ehigh

u = 7.3 × f−5/3. A similar low-frequency behaviour
in PSD was also observed by Ravelet [25] albeit with a
slighltly different exponent who attributed it to coherent
structures in the shear layer of von Kármán flow driven
by disks with blades. The function ζ(f) is a monoton-
ically decreasing function as seen in fig. 3(b) where we
have taken the experimental values of the physical param-
eters. The theory relies on the limit of geometrical acous-
tics and is thus expected to be valid for large length scales
of the velocity fluctuations, which corresponds to small
frequencies in the temporal domain. We thus use Elow

u as
measured for small frequencies and from eqn. 8 we obtain
the prediction shown by dotted line in fig. 3(c). The slope
is correctly predicted by the model and the measured EΦ

differs from the prediction only by a multiplicative factor
of 1.3. The agreement is indeed satisfactory as several
hypotheses for the model can be questioned, such as the
homogeneity and isotropy of flow properties.

Conclusion. – We have investigated the statistics of
phase fluctuations of an acoustic wave travelling through a
turbulent flow in line of sight (LOS) propagation. Building
on the theory by Tatarskii [19] and on our previous exper-
imental results [23], we obtain predictions for the RMS of
phase fluctuations and for their PSD. The latter is shown
to be related to the spatio-temporal coherence of the ve-
locity fluctuations. We have experimentally verified these

10 -1 10 0 10 1
10 -5

10 -4

10 -3

10 -2

10 -1

10-1 100
4

6

8

10

12

14

16

18
20

10-1 100

10-4

10-3

10-2

10-1

Fig. 3: (a) Energy spectrum Eu(f) obtained using 1D hot-
wire probe. Two distinct power laws are observed with Elow

u =
0.1×f−0.6 at low frequencies (dotted-dashed line) and Ehigh

u =
7.3×f−5/3 at high frequencies (dashed line). (b) Function ζ(f)
as given by eqn. 9 for L/l0 = 20, urms = 1.2 m/s and l0 = 5
mm which correspond to the experimentally obtained values
for Ω = 2000 rpm. (c) Power spectrum of phase fluctuations
EΦ. Dotted-dashed line denotes the prediction by eqn. 8 at
low frequencies.

predictions in a von Kármán swirling flow.

Acoustic measurements thus offer a non-intrusive way
of measuring the integral length scale, and, under some
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conditions the coherence of the turbulent velocity fluctua-
tions. The procedure is as follows: first the power dis-
sipated per unit mass 〈ǫ〉 is estimated from the power
consumed by the forcing driving the turbulent flow as
was done for this experiment. The quantity 〈ǫ〉 has
been demonstrated to follow the large-scale scaling 〈ǫ〉 =
Cǫu

3
rms/l0 with Cǫ ≈ 0.4 [26, 27]. Thus from the mea-

surement of 〈ǫ〉 and Φrms, and using the above relation
along with eqn. 4, one obtains the quantities urms and l0.
We have used this method for the current experiment and
verified that the values of these quantities thus obtained
are in agreement with their measured values.
To evaluate the coherence function amounts to evaluat-

ing the constants c1 and c2 defined in eqn. 7. To do so non-
intrusively using eqn. 8, the functional form of Eu(f) needs
to be known. If we consider that Eu(f) = αf−p, then from
EΦ(f) obtained from acoustic measurements, the param-
eters α, p, c1 and c2 can be evaluated using a fitting pro-
cedure. The number of fitting parameters is reduced if we
have additional information on Eu(f). This is for instance
the case if the random sweeping hypothesis is valid [28,29],
which predicts the PSD for inertial scales in homoge-

neous, isotropic turbulence as Eu(f) = C̃〈ǫ〉2/3u
2/3
rmsf−5/3

with C̃ ≈ 0.8 [30–32]. Then only c1 and c2 need to be
evaluated from fitting. Note that the range of frequen-
cies for which both the random sweeping hypothesis and
geometrical acoustics would be applicable is given1 by
(

urms

/

l0
)

≪ f ≪
(

urms

/

l0
)(

l0fI
/

c
)2/3

.
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