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We present experiments on large air cavities spanning a wide range of sizes relative
to the Hinze scale dH, the scale at which turbulent stresses are balanced by surface
tension, disintegrating in turbulence. For cavities with initial sizes d0 much larger
than dH (probing up to d0/dH = 8.3), the size distribution of bubbles smaller than
dH follows N(d) ∝ d−3/2, with d the bubble diameter. The capillary instability
of ligaments involved in the deformation of the large bubbles is shown visually
to be responsible for the creation of the small ones. Turning to dynamical, three-
dimensional measurements of individual break-up events, we describe the break-
up child size distribution and the number of child bubbles formed as a function
of d0/dH. Then, to model the evolution of a population of bubbles produced by
turbulent bubble break-up, we propose a population balance framework in which
break-up involves two physical processes: an inertial deformation to the parent
bubble that sets the size of large child bubbles, and a capillary instability that
sets the size of small child bubbles. A Monte Carlo approach is used to construct
the child size distribution, with simulated stochastic break-ups constrained by
our experimental measurements and the understanding of the role of capillarity
in small bubble production. This approach reproduces the experimental time
evolution of the bubble size distribution during the disintegration of large air
cavities in turbulence.

1. Introduction

1.1. Broader context

Gas bubbles dispersed in liquids provide surface area through which mass can be
exchanged by diffusion. Ocean-atmosphere exchanges of CO2, for example, are
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enhanced by bubble-mediated transfer in regions of the globe where high winds
lead to high rates of wave breaking, as entrained air cavities break apart into small
bubbles in the turbulent field under the breaking wave (Deike & Melville 2018;
Reichl & Deike 2020; Deike 2022). Further, many industrial processes involve
facilitating gas transfer to a liquid through bubble interfaces (Schludieter et al.
2021). In both environmental and industrial scenarios, the breakage of bubbles
by the turbulence of the bulk flow increases the total surface area through which
transfers may occur and modulates the bubbles’ dynamics.

Despite the ubiquity of bubble break-up across disciplines, the physics of bubble
breaking in turbulence remains to be fully understood, as turbulent effects are
often accompanied by buoyant effects and shear in the mean structure of the
flow (Risso & Fabre 1998). Further, the fast dynamics of bubble pinching have,
until recently, been difficult to measure experimentally, leaving open questions
regarding the final portion of the break-up process (Ruth et al. 2019). These
various challenges have led to a wide variability in the predictions of models for
both the rate at which bubbles break and the sizes of bubbles they break into.

1.2. Bubble break-up in turbulence

We consider the break-up of a bubble with an effective diameter d0, taken to be
the diameter of a sphere with the same volume. Before considering the turbulent
nature of the liquid around it, the bubble in a liquid is described by the density
of the liquid and gas phases, ρ and ρg, their viscosities µ and µg, the acceleration
due to gravity g, and the surface tension of the liquid-gas interface σ. When the
carrier flow in which the bubbles are dispersed (with velocity u) is turbulent, it is
characterized by the dissipation rate of the turbulence ε, which is the rate at which
kinetic energy in turbulent fluctuations is dissipated to heat. The turbulence is
comprised of fluctuating motions existing over a range of length scales, extending
from larger motions near the integral length scale Lint (beyond which the velocity
field becomes uncorrelated) down to the Kolmogorov scale η, at which turbulent
motions are dissipated by the viscosity of the fluid (Pope 2000).

With nine independent physical parameters which span three physical dimen-
sions, we require six dimensionless parameters to describe the problem of bubble
break-up in turbulence, for which we choose

We0 =
C2ρε

2/3d
5/3
0
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,
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d0

lcap

=

√
ρgd2
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,
µ
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, (1.1)

where the subscript “0” indicates a quantity refers to an initial condition. The
size of the parent bubble relative to the capillary length scale lcap =

√
σ/(ρg)

describes the relative importance of gravity and surface tension effects for the
parent bubble. The large-scale turbulence Reynolds number Ret represents the
separation of length scales in the turbulence. The bubble size relative to the
integral length scale d0/Lint, along with Ret, describes the spatial separation
between the bubble and the turbulence scales. With Ret � 1 and ρ/ρgas and
µ/µgas both fixed constants � 1 for common liquid-gas configurations, we will
neglect their impact in the rest of the experimental study. The Weber number
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of the parent bubble We0, which parameterizes the balance between turbulent
stresses and surface tension, will be the main parameter of focus.

For a bubble in the inertial subrange of the turbulence (η � d0 � Lint), the
ratio of the inertial stresses arising from velocity gradients in the turbulence and
surface tension stresses defines the Weber number, We(d) = C2ρε

2/3d5/3/σ, with
C2 = 2, and is central in the analysis of bubble break-up (Risso & Fabre 1998;
Rivière et al. 2021; Perrard et al. 2021). The definition of a critical Weber number
for break-up Wec yields the Hinze scale (Hinze 1955),

dH =

(
Wec

2

)3/5 (σ
ρ

)3/5

ε−2/5, (1.2)

and we typically use the ratio d/dH = (We/Wec)
3/5 in place of We. Estimations of

Wec vary, and generally involve either considerations of how likely a bubble is to
break apart over some physically-relevant time or within some spatial observation
window (Hinze 1955; Mart́ınez-Bazán et al. 1999b; Risso & Fabre 1998; Rivière
et al. 2021), or considerations of the shape of the bubble size distribution resulting
from break-ups (Deane & Stokes 2002). Since Wec is influenced by factors like the
buoyancy and specificity of the turbulent flow, and since the turbulent stresses on
a bubble are stochastic in nature, the Hinze scale as defined in eq. (1.2) represents
a soft limit for break-up. Different experimental and computational setups will
lead to a range of reported or inferred critical Weber numbers, which typically
vary from 1—5 (Rivière et al. 2021; Risso & Fabre 1998; Hinze 1955; Mart́ınez-
Bazán et al. 1999b; Vejrazka et al. 2018). In this paper, we will use Wec = 1,
consistent with our results and similar experiments in a turbulent flow forced by
underwater pumps (Vejrazka et al. 2018). We note that the inertial stresses on a
bubble that arise from the velocity slip between the bubble and the surrounding
liquid can induce stresses comparable to those associated with the turbulence’s
inherent velocity gradients at the bubble scale (Masuk et al. 2021), that eddies
smaller than the bubble can also contribute to deformation and break-up (Luo
& Svendsen 1996; Qi et al. 2022), and that the turbulent flow can trigger bubble
shape oscillations (Risso & Fabre 1998; Ravelet et al. 2011). These factors will
contribute to bubble deformation and break-up in ways that are not directly
parameterized in the definition of dH.

The bubble size distribution N(d) gives the number density of bubbles with
diameter d, and given the nature of experiments reported in this paper, we
define it such that N(d)dd gives the total number of bubbles with diameters
∈ (d, d + dd). Garrett et al. (2000) proposed that, for bubbles larger than the
Hinze scale, a power-law scaling N(d) ∝ d−10/3 describes the steady-state bubble
size distribution, assuming that the break-up rate scales with the turbulent
frequency at the bubble size. This regime has since been reported in several
experiments (Deane & Stokes 2002; Blenkinsopp & Chaplin 2010; Rojas & Loewen
2007) and simulations (Deike et al. 2016; Wang et al. 2016; Gao et al. 2021;
Chan et al. 2021; Soligo et al. 2019; Rivière et al. 2021; Mostert et al. 2022).
For smaller bubbles, the size distribution typically exhibits a shallower slope
(Deane & Stokes 2002; Blenkinsopp & Chaplin 2010), with fewer studies resolving
this range of scales and some variation in the values that have been reported.
The N(d) ∝ d−3/2 distribution for d < dH has been observed experimentally
(Deane & Stokes 2002) and numerically (Wang et al. 2016; Mostert et al. 2022)
for bubbles under breaking waves, though the identification of a sub-Hinze
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power-law slope is additionally complicated by the transient nature of bubble
disintegration (Rivière et al. 2021) and breaking wave (Mostert et al. 2022)
events. Recent work has identified the capillary pinching of gas ligaments created
by turbulent deformations as an origin of sub-Hinze bubbles, with theoretical
arguments relating to the timescale over which such pinching occurs supporting
the N(d) ∝ d−3/2 sub-Hinze scaling (Rivière et al. 2022). Relating measured size
distributions to theoretical scalings derived from break-up physics is complicated
by the fact that bubbles’ motions, and hence their residence time in some
experimental domain, are dependent on their size and the characteristics of the
turbulence they encounter (Garrett et al. 2000). Smaller bubbles or bubbles in
regions of more intense turbulence will rise slower than others, for example (Ruth
et al. 2021); accounting for these effects requires detailed knowledge of the size
dependencies of the bubbles’ motions.

1.3. Child size distribution and break-up time scales

In this work, we will employ experimental observations to describe bubble break-
up over a range of spatial scales: we consider parent bubbles ranging in size from
the Hinze scale to d0 = 8.3dH, and investigate how they break up to produce child
bubbles that may be orders of magnitude smaller than the Hinze scale. As volume
is conserved in any break-up, we will work with bubble volumes V = πd3/6 when
discussing bubble break-up, denoting parent bubble volumes by V = ∆ and child
bubble volumes by V = δ.

Expressions for a break-up kernel f(δ;∆), for which f(δ;∆)dδ gives the rate
at which a parent bubble of volume ∆ will break into a child bubble with
volume ∈ (δ, δ + dδ) in some turbulent flow, are informed by experiments and
simulations on break-up. Most experimental studies have involved air bubbles
in water under Earth’s gravitational acceleration, with turbulence in the water
generated by one or more jets (Mart́ınez-Bazán et al. 1999b; Vejrazka et al.
2018; Qi et al. 2020), rotating blades (Ravelet et al. 2011), or by turbulent flow
through a reactor or channel (Andersson & Andersson 2006). Risso & Fabre
(1998) performed experiments on bubble break-up in microgravity to remove the
effects of buoyancy, which also contributes to bubble deformation and break-up,
and more recently, Rivière et al. (2021) performed direct numerical simulations
(DNSs) of bubble break-up without gravity, solving the full two-phase Navier
Stokes equations for a bubble subjected to homogeneous, isotropic turbulence.

These studies have confirmed that the time over which a break-up occurs is
controlled by both the turbulent scales and the bubble’s oscillatory scales. Rivière
et al. (2021) showed that, as a bubble of size d0 � dH is introduced to turbulence,
it first breaks up after a time comparable to eddy turn-over time at its scale,

Tturb(d0) = ε−1/3d
2/3
0 . Experimental studies have shown that the time over which

deformation occurs prior to break-up scales similarly (Qi et al. 2020; Risso &
Fabre 1998). As the deformation of moderately-sized bubbles is also impacted by
the surface tension, capillary dynamics remain important, as a bubble’s natural
oscillation frequency remains apparent in its shape oscillations (Risso & Fabre
1998; Ravelet et al. 2011; Perrard et al. 2021). Further, the turbulent turnover
time is typically comparable to the capillary oscillation time at the parent bubble
scale for air bubbles in water at moderate d0/dH, which can lead to a resonance
which aides break-up (Risso & Fabre 1998; Ravelet et al. 2011).

The break-up frequency ω is defined as the inverse of the typical time until

Focus on Fluids articles must not exceed this page length
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a bubble undergoes a break-up, and is distinct from the (necessarily shorter)
typical duration over which a break-up occurs. Ravelet et al. (2011) showed
that the distribution of the times until a bubble breaks mirrors the distributions
of the times between severe shape deformations and the times between large
instantaneous Weber numbers. The most energetic scales capable of deforming a
bubble are those at the scale of the bubble, and experiments from which ω was
extracted suggested that the break-up frequency initially increases with bubble
size as the turbulence becomes more capable of counteracting surface tension,
and then decreases for even larger bubbles, as the time required for a turbulent
eddy to act across the bubble scale becomes longer (Mart́ınez-Bazán et al. 1999b),
though this analysis may have missed break-ups in which one child bubble size
is close to the parent size (Lehr et al. 2002). Recent experiments from Qi et al.
(2022) showed that eddies smaller than d0 can also cause break-up, and other
theoretical analyses have considered the action of a range of turbulent scales
which may cause break-up. In such models, the product of the rate at which
eddies of a given size interact with a bubble and each interaction’s likelihood
of causing break-up are integrated over a range of eddy sizes (Prince & Blanch
1990; Tsouris & Tavlarides 1994; Luo & Svendsen 1996; Lehr et al. 2002; Aiyer
et al. 2019; Yuan et al. 2021), causing the break-up frequency to increase with
the bubble size as more turbulent scales contribute to break-up.

Various models for the child size distributions p(δ;∆) have been proposed,
most of which assume that each break-up produces two bubbles. The child size
distribution has been described with a ∩–shaped dependence on δ—that is, the
most likely outcome is to produce child bubbles that are comparable in size to the
parent bubble (Mart́ınez-Bazán et al. 1999a, 2010); or with a ∪– or W–shaped
child size distributions, in which small bubbles are more likely to be produced than
moderately-sized ones (Qi et al. 2020; Rivière et al. 2021; Vejrazka et al. 2018;
Andersson & Andersson 2006; Tsouris & Tavlarides 1994; Luo & Svendsen 1996;
Lehr et al. 2002; Yuan et al. 2021; Qi et al. 2020). Experimental and numerical
evidence suggests that break-ups often produce just two child bubbles when d0/dH

is close to 1 (Vejrazka et al. 2018; Rivière et al. 2021). However, break-ups at
larger d0/dH are more severe and often result in more than two child bubbles
being formed in a single coherent event (Vejrazka et al. 2018; Hinze 1955; Rivière
et al. 2021). Hill & Ng (1996) developed generalized expressions for p(δ;∆) as
products of power-law relations (each ∝ δα) for α > −1 and integer numbers
of child bubbles, which by design satisfy constraints relating to the sizes of the
bubbles formed. Their analysis was extended to break-ups with a non-integer
average number of child bubbles by Diemer & Olson (2002).

In the work discussed so far, the role of capillarity has been to counteract
the turbulent stresses and prevent severe deformation, while also providing a
resonance mechanism at moderate d0/dH. However, more recent work has shown
that capillarity also plays an important role late in the break-up process, even
after a turbulent stress has decidedly overcome it. Andersson & Andersson
(2006) showed that asymmetries in a deformed bubble shape can become more
pronounced as a bubble breaks apart due to the variation in capillary pressure
associated with the deformation. More recently, Rivière et al. (2022) showed that
very small bubbles originate not from turbulent motions at very small scales, but
rather from the capillary instabilities of ligaments arising from much larger-scale
deformations.
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1.4. Outline of the paper

In this work we address the problem of bubbles breaking up in forced turbulence,
which is applicable to break-up under breaking waves and in industrial reactors.
We probe a wide range of scales, with bubbles ranging in size from the Hinze
scale to d = 8.3dH (corresponding to We0 = 34). Further, we resolve the size
distribution down to approximately an order of magnitude smaller than dH,
enabling us to identify the way in which the sub-Hinze size distribution scales
when there is a large separation between the Hinze scale and the bubbles which
break.

The experiment set-up, including the turbulence generation, is detailed in
Section 2. The results on the disintegration of large air cavities are given in
Section 3, spanning a wide range of d0/dH . We demonstrate experimentally that
a N(d) ∝ d−3/2 distribution below the Hinze scale is observed when the initial
cavity size is much larger than the Hinze scale, supporting the notion that the
capillary pinching dynamics proposed by Rivière et al. (2022) are effective at
producing sub-Hinze bubbles. The dynamically-tracked individual bubble break-
ups with moderate d0/dH and resulting child size distributions are discussed
in Section 4. In Section 5 we develop a model for turbulent bubble break-up
that unifies the turbulent inertial dynamics with the faster, capillary pinching
dynamics responsible for sub-Hinze bubble production, ascribing these physical
mechanisms to various components of a modeled child size distribution. The
model is informed by both experimental observations of the disintegrations of
air cavities of various sizes and by experimental and numerical observations of
individual break-up events. Concluding remarks are given in Section 6.

2. Experimental setup

This paper presents the results of two separate, complementary experiments, both
involving air bubbles breaking apart in forced water turbulence. In the first, we
generate large cavities of air with sizes much larger than the Hinze scale (with
d0/dH betwen 2.1 and 8.3) and measure the transient evolution of the bubble
size distribution as the cavity disintegrates in successive break-ups. In the second
experiment, we introduce moderately-sized bubbles (with d0/dH between 1 and
3) into the turbulence, and track the outcomes of their individual break-ups. The
turbulence generation is identical in both set-ups.

2.1. Turbulence generation and characterization

Turbulence in a 0.37 m3 water tank is generated by the convergence of eight
turbulent jets created by four submerged water pumps, as sketched in Figure 1
(a) and described in greater detail in Ruth et al. (2021). The flow from each
pump is split into two parallel jets at a Y, with each outlet separated by 7.8 cm,
with the centers of the Y forming the vertices of a 25 cm square in the horizontal
plane. Figure 1 (b) presents properties of the flow as characterized in the central
plane (y = 0) of the experiment with two-dimensional, two-component particle
image velocimetry (PIV). The background gives the local fluctuation velocity

u′ =
√

(u′x
2 + u′z

2)/2, where u′i =
√

(ui − ui)2 and overbars denote averaging

in time. u′ tends to be largest in the plane of the jets (z ≈ 0.01 cm) and in the
region below their convergence zone (x ≈ y ≈ 0). PIV is performed in nine parallel



7

xy
z

(a)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x [m]

10

8

6

4

2

0

2

4

z [
m

]

y = 0.0 cm

cavity
disintegration FOV

dH
Lint

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

u′ [m/s]

(b)

Figure 1: The turbulence generation and characterization. (a) A sketch of the
experiment (not to scale), consisting of a 0.37 m3 tank of water in which four

pumps, each split to two outlets, are arranged at the corners of a square in the
horizontal plane. The turbulence is characterised with particle image

velocimetry performed separately in nine parallel planes, with illumination
provided by a laser sheet (shown in green). (b) Properties of the turbulent flow

field in the central plane of the experiment. The background shows the local
value of u′, denoted by the color given in the colorbar. The green dashed

rectangle shows the field of view employed in the large air cavity disintegration
experiments. The diameter of the black circles denotes the Hinze scale dH at

various x and z. The length of the cyan rectangles denotes the integral length
scale Lint at those locations.

planes, enabling the three-dimensional interpolation of turbulence quantities at
any location within the measurement domain.

As described in Ruth et al. (2021), we compute the integral length scale
Lint locally at each point in the flow by integrating the spatial autocorrelation
function. It changes throughout the experiment, being the shortest where the
turbulence is the strongest. The cyan lines in Figure 1 (b) denote the value of
Lint at various locations in the central plane of the experiment: Lint is shortest
near the convergence of the jets, and grows at lower and higher depths. With u′

and Lint calculated from the PIV data, we can then compute the local turbulence
dissipation rate under the assumption of isotropy with ε = Cεu

′3/Lint, with Cε =
0.7 (Sreenivasan 1998), and the Kolmogorov microscale with η = ((µ/ρ)3/ε)1/4

(Pope 2000). The Hinze scale dH, calculated using eq. (1.2), is denoted at various
locations by the diameter of the black circles drawn in Figure 1 (b). The Hinze
scale is smaller where the turbulence is more intense, meaning that more bubbles
will be larger than the Hinze scale and susceptible to break-up at these locations.
We refer to Ruth et al. (2021) for more details on the structure of the turbulence
field and for maps of turbulent quantities outside of the central plane.

2.2. Large cavity disintegration experiment

For the experiment on large cavity break-ups, air cavities were produced following
Landel et al. (2008) by placing a hollow hemispherical cup with R = 5 cm
underwater, sketched in Figure 2 (a), and bubbling a known volume of air



8

xy
z

(a)

0.1 1 10
d [mm]

x

dmin dH

Lcap

Lint

(b)

(c)

Figure 2: The experiment on large cavity disintegration. (a) Schematic of the
experiment. Air is bubbled into an inverted hemispherical cup located just

under the convergence of the turbulent jets, and the cup is rapidly rotated to
expose the air to the turbulence. The experiment is lit from behind (not shown)
and filmed with a high-speed camera. (b) One representative image of a cavity

breaking apart, with the cup still slightly visible at the bottom of the image. (c)
The characteristic length scales η, dH, Lcap, and Lint taken in analyzing the

data, the pixel size ∆x and the minimum bubble size considered dmin, and the
diameters of the air cavities studied (circles). Distributions of the turbulence

quantities in the field of view in the center of the tank (within the green
rectangle in Figure 1) are also given in gray.

V0 = πd3
0/6 into it. Once bubbles in this cup have coalesced into a single air

cavity, the cup is then inverted by rotating it rapidly half a revolution, such that
the air inside is suddenly no longer constrained by the curved cup surface. The top
surface of the initial volume of air roughly conforms to the curved inner surface
of the cup. The large air cavity, having been suddenly exposed to stresses from
the surrounding turbulence and its buoyant rise through the water, deforms and
starts a complex sequence of break-ups, leading to its disintegration. The surface
of the cup rotates with a speed around 0.4 m/s to 0.9 m/s, and we have checked
that this speed does not systematically impact the early stages of the bubble size
distribution. Further, similar experiments run without turbulence yield very little
break-up, as evidenced in Appendix B.

The turbulent flow in the region of the tank imaged in this experiment is
denoted by the green rectangle in Figure 1 (b). The turbulence varies spatially,
so to simplify the analysis, we take u′ ≈ 0.2 m/s, Lint ≈ 1.5 cm, and η ≈ 37 µm as
characteristic values, which set dH = 3.2 mm and Ret = 3400. These length scales
are denoted in Figure 2 (c), which also gives the distribution of the length scales
present in the field of view in the middle of the tank. The mean flow is downwards
with W ≈ −0.25 m/s, largely counteracting the buoyant rise speed of larger
bubbles. This enables the bubble population to linger in the measurement region
for a sufficient period of time to image it over multiple large-scale eddy turn-over
times Tint = Lint/u

′ ≈ 0.075 s. The cavities range in size between d0/dH = 2.12
and 8.30. Data for each condition, as well as the number of runs recorded at each,
are given in Table 1.

One image is shown in Figure 2 (b). The cup is visible in the bottom of the
image as it has not yet fully rotated out of the field of view. The measurement
region, which spans 15.8 cm in the x direction and 8.9 cm in the z direction, is
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experiment d0 [cm] runs We0 d0/dH d0/η d0/Lint d0/lcap

cavity disintegration 0.68 20 3.5 2.12 184 0.46 2.51
0.91 15 5.7 2.84 247 0.61 3.36
1.34 15 10.7 4.15 361 0.89 4.91
1.85 15 18.5 5.76 500 1.24 6.80
2.25 10 25.6 7.00 608 1.50 8.28
2.67 11 34.0 8.30 721 1.78 9.81

individual break-ups 0.54 ± 0.17 162 3.1 ± 1.7 1.89 ± 0.64 156 ± 50 0.41 ± 0.14 1.99 ± 0.62

Table 1: Conditions of the experiments. Characteristic values are given for each
of the cavity disintegration cases. For the experiments on individual bubble

break-up, the mean and standard deviation among the 162 recorded cases are
given for each quantity.

illuminated from the back, and the disintegration of the cavity is filmed with
a high-speed camera at 500 Hz with a spatial resolution of 38 µm/pixel. The
field of view is much larger than all the bubbles considered, so it does not
introduce a significant bias related to bubbles whose images extend partially
outside the field of view. Bubbles are detected with an image processing method
described in Appendix A.1, and their effective diameters d are determined as the
equivalent diameter of a circle with the same area as the projected bubble image.
In analyzing the data, we consider only bubbles for which d > 400 µm, for which
the detection is less sensitive to the chosen image intensity threshold. Given the
typical severe deformation and overlapping images of larger bubbles (d & 6 mm),
we note that their sizes will tend to be over-estimated by this method. The air
void fraction in the vicinity of the cavity is high enough that we are unable to
track the dynamics of individual break-ups, so we restrict our analysis to the
resulting bubble size distribution.

To account for the limited field of view in our experiments, we adjust the
measured size distributions by keeping a record of bubbles which have left and
entered the field of view. Those which leave are “locked” into the bubble record
used in computing the size distributions, while those that enter the field of view
are excluded from the calculation of the size distribution. This, along with a slight
smoothing in d and t to account for the limited number of bubbles observed at
early times or with small cavities, is described in greater detail in Appendix A.2,
and has only a limited impact on the results reported in this paper, as we do not
consider the size distribution at late times.

2.3. Individual break-up tracking experiment

In the second set of experiments of bubble break-up, we dynamically track the
individual break-ups of bubbles in the turbulent region. As sketched in Figure 3
(a), bubbles are introduced to the bottom of the tank through a needle and rise
to the turbulent region. Two cameras, which are synchronized with a function
generator, film at 1000 fps. They are oriented 90° from each other and their fields
of view overlap in a measurement volume of approximately 200 cm3. The cameras
are calibrated by mapping their pixels to the paths of the light rays reaching
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Figure 3: The experiment to obtain dynamic reconstructions of individual
break-up events. (a) Schematic of the experiment. Air bubbles are introduced

through a needle at the bottom of the tank and rise into the turbulence created
by the jets. The bubbles are filmed with two high-speed cameras, enabling the

determination of the 3-D bubble trajectories. (b) The trajectories of parent and
child bubbles involved in one break-up event, and their projections onto the

horizontal (x− y) plane. The color corresponds to the bubble’s size relative to
the local Hinze scale, which varies spatially with ε as the bubble size is fixed.

The green dot denotes the first detected position of the parent bubbles; the red
dots denote the final detected position of the child bubbles.

the pixels, following the method presented by Machicoane et al. (2019). Then,
following a method similar to that used in Ruth et al. (2021), we identify the
3-D location of the bubbles which are simultaneously captured by each camera.
The spatial resolution of each camera varies with the position of the bubble,
but the typical value of the two cameras are 28.9 µm/pixel and 57.1 µm/pixel.
An approximate lower bound for the size of the smallest resolved bubble is then
dmin ≈ 200 µm.

The trajectories taken by the bubbles are then determined using the Python
package Trackpy (Allen et al. 2021), which implements the algorithm from
Crocker & Grier (1996). Such trajectories are shown in Figure 3 (b). Using
the three-dimensional map of the turbulence statistics obtained from PIV, we
compute the bubble’s size relative to the local Hinze scale d/dH (computed with
the local value of ε) at each bubble location, which is encoded in the color in the
figure. The mean dissipation rate at the break-up locations is ε = 0.52 m2/s3, with
a standard deviation of 0.21 m2/s3. The mean values and standard deviations
of quantities describing the initial conditions for the break-ups studied in this
experiment are given in Table 1.

From the bubble trajectories, we identify each time a bubble breaks apart,
which occurs when a new trajectory (or trajectories) appears in the vicinity of a
previously-existing bubble. As the tracking algorithm will initially link the parent
bubble to only one of the child bubbles, the parent bubble trajectory is then split
at this time, and both child bubbles are treated equally. These events are denoted
by the gray lines connecting the “end” of one bubble to the “beginning” of another
in Figure 3 (b). Given the complex deformations involved in some break-ups, the
method does not always resolve the fast splitting dynamics accurately; the break-
up child size distributions we report, however, are not sensitive to the order of
events occurring within one break-up event.

Rapids articles must not exceed this page length
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t/Tint 1.1 t/Tint 2.9

Figure 4: The disintegration of an air cavity with d0/dH ≈ 2.1, involving just
one break-up during the interval shown.

3. Size distribution evolution during the disintegration of a large air
cavity

Here, we present experimental results on the disintegration of air cavities of
various sizes from the experiment described in Section 2.2. First, we qualitatively
discuss the break-up of cavities in two illustrative cases, one close to the critical
size for break-up, and one with a large separation of scales between the cavity
and the Hinze scale. Then, we analyze the transient evolution of the bubble size
distributions.

3.1. Disintegration of cavities of increasing sizes

The break-ups of two air cavities, one with d0 = 0.68 cm and one with d0 =
2.3 cm, are shown in Figure 4 and Figure 5, respectively. These correspond to non-
dimensional sizes of d0/dH = 2.1 and 7.0, d0/Lint = 0.46 and 1.5, and d0/lcap =
2.51 and 8.28. As a reference, the constant values taken for Lint and dH and the
initial size of the cavity d0 are denoted in the top-left corner of the first image.
In both cases, the hemispherical cup which had constrained the bubble is visible
at early times as it is rotated away.

In the disintegration of the smaller cavity, with d0/dH = 2.1 (shown in Fig-
ure 4), the bubble emerges from the cup with a moderate deformation caused by
buoyancy and the surrounding turbulence. Eventually, within approximately one
integral-scale turn-over time, the bubble becomes more elongated and breaks into
two bubbles. One is near the parent bubble in size, and other is slightly smaller
than the Hinze scale. These two bubbles persist without breaking for at least ∼ 2
more integral-scale turn-over times, at which point the smaller of the two bubbles
is advected out of the field of view by the downwards mean flow.

The deformation to the larger cavity shown in Figure 5 is more severe, leading
to a more complex sequence of events during its disintegration. Upon emerging
from the rotating cup, the cavity is flattened due to buoyancy (as d0/lcap = 8.28
for this case), and turbulent deformations to the cavity shape on the order of the
cavity size itself quickly develop. By t/Tint ≈ 0.4, the cavity consists of two lobes
(each of which is significantly deformed), separated by a shrinking neck of air. By
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Figure 5: The disintegration of an air cavity with d0/dH ≈ 7.0.

the time the neck has pinched apart (t/Tint ≈ 0.7), the two larger child bubbles
stemming from the two lobes are accompanied by much smaller child bubbles
(some with d � dH and d � d0) which were formed during the collapse of the
air neck. The larger child bubbles themselves go on to further break apart in a
chain of break-ups, some of which similarly involve small bubble production via
the collapse of elongated air necks. Many small bubbles which are more than an
order of magnitude smaller than the initial one are eventually visible. At much
later times, the largest bubbles have risen out of the field of view, and the total
air volume imaged is significantly decreased.

3.2. Transient evolution of the bubble size distributions

The experiment was carried out with six values of d0/dH between 2.1 and 8.3, with
10—20 runs taken at each condition, as given in Table 1. Note that the largest
cavities exceed the integral length scale in size, so the typical turbulent stress at
their spatial scale will be saturated relative to that predicted by the Kolmogorov
scaling employed in the definition of the Hinze scale. Figure 6 shows the transient
evolution of N (d/dH) = N(d)dH for each condition (ensemble-averaging the
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Figure 6: Bubble size distributions during the disintegration of cavities with
d0/dH between 2.1 and 8.3 and times up to 4Tint after the cavity is released into
the turbulence. The size of the parent bubble is denoted by the dashed vertical
line. Each distribution integrates to the average number of bubble observed at

that condition at that time. The eventual sub-Hinze power-law scaling exponent
approaches −3/2, shown by the dashed black line, as d0/dH is increased.

10—20 runs). At early times, the distributions for all d0/dH exhibit a peak at
d0/dH, denoted by the vertical dotted lines. For the two smallest cavities (given
in Figure 6 panels (a-b)), for which no break-up was observed during many runs,
only a small number of bubbles are formed over time, and the size distribution
near the injection scale does not decrease appreciably with time.

Over time, as the larger cavities (given in Figure 6 panels (c-f)) begin to
disintegrate, the size distribution for d < d0 begins to be built up. Even among
these larger cavities which produce a considerable number of sub-Hinze bubbles,
the increase in the number of sub-Hinze bubbles is much more pronounced for the
cavities that are initially larger (evidenced by comparing curves for d0/dH = 4.15
and d0/dH = 8.30, for example). This suggests that there is a large separation
of scales between the sub-Hinze bubbles and the parent bubbles responsible for
their creation; more simply, large bubbles are needed for the production of small
bubbles. For the largest cavities, the size distribution for sub-Hinze bubbles
eventually follows an N (d/dH) ∝ (d/dH)αd scaling, with αd = −3/2, sketched on
all plots as the dashed line for reference. The final curves shown (for t/Tint = 4)
might constitute an under-estimation for the bubble size distribution for smaller
bubbles, since some of the bubbles which may break have risen out of the field of
view by this time.

Now, we consider the size distributions averaged averaged between 2Tint and
4Tint. During these times, a significant number of break-ups have occured (for
larger d0/dH), but a significant portion of the bubbles have not yet left the field
of view, and the bubble size distribution approaches a constant shape. Figure 7
(a) compares the size distributions over these times for each value of d0/dH.
For larger air cavities, the magnitude of N (d/dH) is increased, and the sub-Hinze
power-law distribution steepens. The same data is shown in panel (b), normalized
by the cavity diameter d0 instead of the Hinze scale. Larger cavity sizes yield a
∝ d−3/2 scaling for all bubble sizes.

Figure 7 (c) shows the power-law exponent fit to the sub-Hinze portion of the
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Figure 7: Time-averaged bubble size distributions. (a) The dimensionless bubble
size distribution averaged between t/Tint = 2 and t/Tint = 4 for cases with

varying d0/dH, denoted by the position of the colored notches along the bottom
axis. Distributions for d0/dH < 2 are smoothed slightly to account for the small

number of observations. (b) The bubble size distributions based on the
diameter normalized by the initial cavity diameter d0. (c) The exponent αd of a

power-law fit to the sub-Hinze portion of each distribution,
N (d/dH) ∝ (d/dH)αd for d/dH < 1, indicating that as d0/dH is increased, the

sub-Hinze spectrum approaches a N (d/dH) ∝ (d/dH)−3/2 scaling.

distributions in panel (a), N (d/dH) ∝ (d/dH)αd for d/dH < 1, for each case. As
d0/dH is increased, an αd = −3/2 scaling is approached, indicated by the dashed
black line. The size distribution is affected not only by the break-up physics, but
is also steepened by the rising dynamics of the bubbles: as small bubbles rise
more slowly than larger ones, they tend to linger in the field of view for longer,
increasing their concentrations (Garrett et al. 2000).

Integrating the transient size distributions over the bubble diameter, the tempo-
ral evolution of the number of resolved bubbles n (with the minimum resolvable
size dmin = 0.12dH) is shown in Figure 8 (a). The gray shaded region denotes
the times over which the bubble size distributions are averaged in Figure 7 and
Figure 8 (b).

Figure 8 (b) shows the number of resolved sub-Hinze, super-Hinze, and total
bubbles, averaged over the time period considered, with the minimum resolved
bubble size dmin ≈ 0.12dH. Again, we see an increase in the number of bubbles
formed with the initial size of the cavity. Further, the number of sub-Hinze
bubbles increases with the parent bubble size more rapidly than the number of
super-Hinze bubbles does, making sub-Hinze bubbles constitute a larger portion
of the bubble size spectrum for larger d0/dH. This is remarkable, since as d0/dH

is increased, the span of bubble sizes constituting resolvable sub-Hinze bubbles
(dmin < d < dH) remains fixed, while the span of potential super-Hinze bubble
sizes (dH < d < d0) increases.

Taken together, Figures 7 and 8 are congruent with the capillary pinching
mechanisms for sub-Hinze bubble production put forward by Rivière et al. (2022).
Our figures suggest that their formation relies on the break-up of cavities that
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Figure 8: Evolution of the number of resolved bubbles (limited to d/dH > 0.12)
with time and the initial cavity size. (a) Temporal evolution of the average

number of all bubbles measured experimentally for different initial cavity sizes
d0/dH. Circles give the values employed in section 5.3.1. (b) The total number

of bubbles (black), number of sub-Hinze bubbles (orange), and number of
super-Hinze bubbles (purple) averaged between 2Tint 6 t < 4Tint (the region

shaded in gray in (a)) as a function of the initial cavity size.

are significantly larger than the Hinze scale: only larger values of d0/dH yield
the N (d/dH) ∝ (d/dH)−3/2 power-law scaling in the sub-Hinze bubble size distri-
bution, and the dependence on d0 of the number of sub-Hinze bubbles produced
(shown in Figure 8 (b)) is steeper than that of the number of super-Hinze bubbles
produced. We propose in the next section an explanation of the mechanisms
leading to this dependence.

3.3. Capillary splitting of ligaments prepared by the turbulence produces small
bubbles

Visual observations of the large air cavities disintegrating provide clues into the
mechanism responsible for the production of sub-Hinze bubbles: child bubbles
much smaller than the Hinze scale are seen to originate from a Rayleigh-Plateau-
like instability that occurs during the pinching apart of elongated fluid ligaments
prepared by the turbulence. However, the turbulence is only able to deform
bubbles that are large enough with respect to the Hinze scale that such ligaments
might be created, since surface tension is effective at limiting the severity of
deformations to smaller bubbles. These experimental observations parallel a
recent interpretation of DNSs of bubble break-up (Rivière et al. 2022).

Illustrative examples of bubble break-up are given in Figure 9, which shows the
typical break-ups of bubbles of two sizes: one is near the Hinze scale in size (a),
and another is seven times larger than the Hinze scale (b). The smaller bubble,
with d0/dH = 2.1, is initially deformed into two comparably-sized lobes, and the
neck separating the two splits at a single point to form two child bubbles, each of
a similar scale as the parent. Here, the parent bubble is small enough that surface
tension is able to prevent significant deformation during the break-up.

The larger bubble, with d0/dH = 7.0, is similarly deformed by the turbulence
into two comparably-sized lobes prior to pinch-off. However, the filament of air
separating the two just prior to pinch-off has become significantly more elongated
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Figure 9: Break-up of a bubble initially close to the Hinze scale in size (a, with
d0/dH = 2.1) and initially much bigger than the Hinze scale (b, with
d0/dH = 7.0). The deformation to the smaller bubble produces two

comparably-sized lobes, which split apart to form two comparably-sized child
bubbles. The deformation to the larger bubble also produces two

comparably-sized lobes, but these are separated by a much more elongated
filament of air. The unstable collapse of this filament produces the small

“capillary” child bubble between the two larger ones. The small bubbles in the
lower left of the image were produced in previous break-ups.

than the neck in the break-up of the smaller bubble. This elongation opens the
door to capillary instabilities along the filament during its collapse: in the instance
shown in Figure 9 (b), the filament pinches apart at two separate points, leaving
a small child bubble (with d� dH) between the two lobes.

The two examples of break-up discussed illustrate two mechanisms present in
the break-up of bubbles by turbulence. The first is the deformation of the parent
bubble by a turbulent structure, likely on the spatial scale of the parent bubble
itself. This brings the bubble to an unstable state consisting of two lobes (which
will become what we call the “inertial” child bubbles) separated by a neck of
air, which begins to pinch apart under capillarity. When the deformation to the
bubble is severe enough, this ligament can take on an elongated, deformed shape.
Its pinching can become unstable under a Rayleigh-Plateau-like mechanism,
leading to the formation of small “capillary” bubbles.

Figure 10 shows an additional five instances of deformed ligaments undergoing
a capillary instability to produce sub-Hinze bubbles. Many cases, especially those
involving large parent bubbles, do not solely involve one ligament separated by
two lobes; turbulent deformations cause the bubble shapes to be more irregular.
However, in all instances, very small bubbles are produced as an air ligament
involved in the turbulent deformation collapses unstably.

This description is clearly a simplified understanding of the bubble pinch-
off process, as it does not capture the redistribution of air due to a capillary
pressure difference between lobes that may be responsible for the formation of
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Figure 10: Five cases of sub-Hinze bubble production by the unstable collapse
of a deformed ligament. Each row shows four snapshots in time, spaced 10, 4, 2,
and 0 ms before the time at which the sub-Hinze bubbles are first visible. The
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small bubbles (Andersson & Andersson 2006), nor does it describe the “tearing
off” of very small bubbles that we observe occurring to large parent bubbles
more frequently than 1/Tturb(d0). However, the framework serves as a bridge
between the inertial deformations to a bubble by the turbulence and the later-
time collapse dynamics instigated by capillarity. This understanding mirrors the
description of bubble pinch-off in turbulence given in Ruth et al. (2019), in which
we showed that turbulence sets an “initial” deformed bubble shape before the
collapse dynamics overtake the turbulent dynamics. Once the inertial collapse of
the neck becomes fast enough (equivalently, once the neck becomes small enough),
however, the turbulence effectively “freezes” in place relative to the accelerating
collapse dynamics. The end result is that the final stage of the pinching process—
in this case, the production of small bubbles through the capillary instability of
gas ligaments—is affected by the turbulence only insofar as the turbulence sets the
“initial condition” on which the remainder of the process evolves under capillary
and, eventually, inertial, dynamics.

4. Individual break-up event dynamics

So far, we have considered the transient size distributions N (d/dH) that result
from air cavities with d0 > dH being introduced to turbulence. In this section,
we focus on individual break-up events that are tracked individually in three
dimensions as described in Section 2.3; these events are the building blocks for
the disintegration of larger cavities.

We will characterize the break-up events over their typical time scale, which
is given by the eddy turn-over time at the parent bubble’s scale, Tturb(d0) =

ε−1/3d
2/3
0 , following discussions from Risso & Fabre (1998); Mart́ınez-Bazán et al.

(1999b); Rivière et al. (2021).

4.1. Qualitative discussion of the break-up sequences

One break-up producing m = 2 child bubbles is shown in Figure 11, and one
producing m = 4 bubbles is shown in Figure 12. In each, images throughout
the break-up sequence are shown in (a-c), and the three-dimensional trajectories
taken by the bubbles involved are shown in (d). At each point, the bubble’s size is
computed relative to the local Hinze scale, and d/dH is encoded in the trajectory
color. The spatial scale is given in terms of the integral length scale at the break-
up location, Lint,0, showing that the bubble trajectories are resolved over multiple
integral length scales. Panel (e) shows the dimensional diameters of the bubbles
involved over time.

In the case of binary break-up, given in Figure 11, the parent bubble enters
the imaged volume from the foreground, and quickly encounters a region of more
intense turbulence, where d0/dH increases. Eventually, having become deformed,
the bubble pinches apart into two child bubbles, each of which are comparable
in size to the parent. Both child bubbles persist in the field of view for at least a
tenth of a second (∼ an integral-scale turn-over time) without breaking.

In the more complex break-up shown in Figure 12, the parent bubble similarly
traverses from a region of less intense turbulence to more intense turbulence,
increasing the value of d0/dH. Eventually, at t = 0.170 s (shown in panel (a)), the
bubble becomes elongated in the vertical direction, and in a sequence of two rapid
splitting events produces the three child bubbles that are visible at t = 0.192 s
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Figure 11: One dynamically-tracked bubble break-up involving the production
of m = 2 child bubbles. (a-c) Images recorded by one of the two high-speed
cameras throughout the sequence. (d) The trajectories taken by the bubbles
involved, with their size relative to the Hinze scale encoded in the color. The

green circle marks the first observation of the parent bubble, and the red circles
mark the final observation of the child bubbles. The side length of the square

shown is given in terms of the integral length scale at the break-up location. (e)
The “family tree” for the single break-up, giving diameters of the bubbles

present at each point in time. Fainter lines give the instantaneously-measured
diameters, and straight lines give the median for each bubble, which is the

quantity we consider in our analysis.

(shown in panel (b)). One is still larger than dH, one is of the order of dH, and
the third, left between the two, is smaller than dH. The bubble of the order of the
Hinze scale is still significantly deformed, the capillary dynamics involved with
the break-up not yet having relaxed. A short time later, by t = 0.201 s (shown
in panel (c)), an additional bubble has split from it, leaving a total of four child
bubbles.

4.2. Identification of break-up events

We identify bubble break-ups like the ones shown in Figures 11 and 12 as being
sequences of bubble splitting events not exceeding the eddy turn-over time at the

parent bubble scale, Tturb(d0) = ε−1/3d
2/3
0 . To enforce this temporal constraint,

we first construct a “family tree” of all splitting events recorded in one run.
Then, if any bubble is present at a time Tturb(d0) beyond the initial detected
break-up of the first bubble (with diameter d0), we truncate the family tree at
that bubble, and start a new family tree with the same bubble (if it later breaks
apart). After doing so, we store the sizes of the parent bubble and child bubbles,
as well as the turbulence characteristics spatially interpolated at the initial break-
up location. To remove spurious break-ups, we discard those for which the sum of
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Figure 12: One dynamically-tracked bubble break-up involving the production
of m = 4 child bubbles. (a-c) Images recorded by one of the two high-speed
cameras throughout the sequence. (d) The trajectories taken by the bubbles
involved, with their size relative to the Hinze scale encoded in the color. The

green circle marks the first observation of the parent bubble, and the red circles
mark the final observation of the child bubbles. The side length of the square

shown is given in terms of the integral length scale at the break-up location. (e)
The “family tree” for the single break-up, giving diameters of the bubbles

present at each point in time. Fainter lines give the instantaneously-measured
diameters, and straight lines give the median for each bubble, which is the

quantity we consider in our analysis.

the calculated volumes of the m child bubbles is less than 50% of, or more than
200% of, the calculated volume of the parent bubble.

In total, we captured 162 bubble break-ups with this dynamical tracking
approach that fit the volume conservation criteria. Figure 13 (a) shows the
distributions of the break-up conditions (the Hinze scale at the break-up location
and the parent bubble size) for the aggregated dataset, which we later break
down by the parent bubble’s size relative to the Hinze scale. The parent bubble
diameter d0 is typically slightly larger than the Hinze scale, as the distribution of
d0 (the green line) is located just to the right of that of dH (the dashed red line).
Thus, the break-ups we capture in this experiment have d0/dH ≈ 0.4–3.7. The
black curve shows the distribution of the sizes of child bubbles formed during
break-ups, integrating to the average number of bubbles formed per break-up
event.

To gauge the effect of inhomogeneity in the generated turbulence, we consider
how the local turbulence intensity experienced by the bubble (in a Lagrangian
sense) varies over timescales relevant to the bubble’s break-up. Ideally, a bubble
would not be advected through statistically inhomogeneous turbulence during
the course of its break-up. Denoting the Hinze scale at the bubble’s location at
time t as dH(t), Figure 13 (b) shows the Hinze scale at the break-up location
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Figure 13: Results on individual bubble break-ups. (a) Distributions of the
Hinze scale at the break-up location (red), parent bubble sizes (green), and of
the child bubble sizes (black). (b) The Hinze scale at the bubble’s break-up

position (vertical axis) as a function of the Hinze scale at the bubble’s position
one bubble-scale turn-over time prior to break-up (horizontal axis), for the 52%
of cases in which the bubble was in the volume resolved with PIV at this time.
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Figure 14: Dimensionless bubble break-up child size distributions for various
approximate values of d0/dH. The value give for each curve (which is denoted

by the notch on the horizontal axis) corresponds to the mean value of d0/dH for
that curve. (a) The distributions of child bubble diameter normalized by the

Hinze scale. (b) The volumetric child size distribution, with child bubble
volumes normalized by the parent bubble volume, which is approximated as the

sum of the resolved child bubble volumes.

dH(t0) as a function of the Hinze scale at the bubble’s location one bubble-scale
eddy turn-over time prior, dH(t0−Tturb(d0)) for the 52% of observed break-ups in
which the bubble is inside the volume resolved by PIV (in which we are able to
compute dH) at this point in time. There is little difference between dH(t0) and
dH(t0−Tturb(d0)), suggesting that the local turbulence characteristics experienced
by the bubble do not change appreciably during the break-up, and that the
turbulence is homogeneous over scales relevant to the break-up.
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4.3. Child size distribution

Now, we compute the dimensionless bubble child size distributions conditioned
on the approximate dimensionless parent bubble size, Pd(d/dH; d0/dH). The data
is averaged over three ranges of d0/dH (the ranges between [0.3:1.55];[1.55:1.93];
and [1.93:3.70]), and results are shown in Figure 14 (a). As d0/dH is increased,
the dependence of Pd on d/dH becomes steeper. The dashed line gives the
Pd(d/dH; d0/dH) ∝ (d/dH)−3/2 scaling, which is approached for large d0/dH due
to the production of small bubbles by capillary instabilities (Rivière et al. 2022).
Qualitatively, the child size distribution for smaller parent bubbles is flatter
near the Hinze scale, while that for larger parent bubbles increases more rapidly
with decreasing bubble size as a power-law relationship. Note that the child size
distribution is defined so that it integrates to the average number of child bubbles
formed.

This representation of the child size distribution masks the large number of bub-
bles formed very close to the parent bubble size. To capture these small bubbles,
we also compute the volumetric child size distribution, normalized by the volume
of the parent bubble V0. Since the determination of the volumes of larger bubbles
is difficult given their deformations, we approximate the parent bubble volume as
the sum of the volumes of the child bubbles, and consider (d/d0)3 ≈ d3/

∑m
i=1 d

3
i

(Vejrazka et al. 2018). The distribution of these dimensionless volumes is shown
in Figure 14 (b), exhibiting a ∪ shape that is not strongly dependent on d0/dH

(though we again see increased small bubble production with larger d0/dH). The
large values of this distribution near 1 suggest that in many break-up events,
small bubbles are “torn off” of the parent bubble, without inertial deformation
producing multiple child bubbles of sizes comparable to that of the parent. We
note that the resolution of our experiment (in which the smallest bubble we
can detect is approximately 200 µm in diameter) limits the number of bubbles
detected.

4.4. Small bubble production without significant inertial deformation

In many of the break-ups we observe in the large cavity disintegration and
individual break-up experiments, small bubbles were seen to be “torn off” from
a parent bubble, without an appreciable large-scale deformation to the parent
bubble. These events are reminiscent of tip-streaming (Montanero & Gañán-Calvo
2020). This phenomenon is evidenced by the right side of the ∪-shaped child size
distributions shown in Figure 14 (b), as a child bubble that is nearly the size
of the parent is the signature of such break-ups. To understand these events, we
present in Figure 15 a qualitative discussion of the dynamics of individual splitting
events. For each splitting event, we compare the velocity of the parent bubble at
break-up vparent (denoted by the gray arrow in panel (a)) to the displacement
between the parent bubble’s final position xparent (the gray circle) and the initial
positions at which the child bubbles are detected xchild (the black circles). The
child bubble’s initial detected position ahead of or behind the parent bubble,
κ = vparent ·(xchild−xparent)/(u

′Lint), normalized by turbulence quantities, is then
computed, and is plotted against the child bubble’s size relative to the parent size
in panel (b). The color of each marker denotes the size of the splitting event’s
parent bubble relative to the Hinze scale. The black line shows the expected
value of κ given the normalized child bubble size. Smaller child bubbles (with
dchild/dparent < 0.6, below which the mean value of κ becomes negative) tend to
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(a) (b)

Figure 15: Statistics of the positions of bubbles after splitting events. (a) A
sketch of a splitting event involving small bubble production, including the

parent bubble velocity at break-up and the final and initial positions,
respectively, of the parent and child bubbles. (b) The initial child bubble
position relative to the parent bubble’s motion, κ, for each splitting event

(circles), as well as the mean value conditioned on the normalized child bubble
size (black line). κ < 0 denotes bubble production behind the parent bubble,

while κ > 0 denotes bubble production ahead of the parent bubble.

be left in the wake of the parent bubble (κ < 0), while larger child bubbles tend
to be produced ahead of the parent bubble (κ > 0).

While the conceptual picture for break-up discussed in Section 3.3 describes the
role of capillarity during break-ups involving large-scale deformations, it is likely
that break-ups solely involving small bubble production are also regulated by
capillarity: in these cases, a turbulent motion smaller than the parent bubble may
succeed in producing a ligament which extends off of one side of the parent, and
this ligament may pinch apart into many small bubbles in a capillary instability
as it is retracted back into the bulk of the parent bubble. Specifically, Figure 15
suggests that the bulk of a bubble may often be swept forward by a turbulent
eddy, and the trailing ligament may become unstable as it “catches up” with the
rest of the parent bubble. Similar to the framework presented in Section 3.3, the
process is initiated by a turbulent deformation to the parent, and ends with the
capillary instability of a ligament involved in the deformation.

5. A model for bubble break-up

5.1. Physical ideas

The experiments presented in Sections 3 and 4, taken together with the existing
literature, point to three important time scales that must be considered in
developing a population balance model: the inverse of the break-up frequency,
the break-up duration, and the capillary capillary pinching times.

The longest of these is the typical duration until a break-up occurs—that is,
the inverse of the break-up frequency, 1/ω(d0). This time scale will control how
many break-up events will occur over a given time and will be a function of
d0/dH. The second timescale is that over which a break-up typically occurs, or
the event duration (i.e., lasting from the start of the deformation until the child
bubbles have all been formed), and will also be a function of d0/dH. The break-
ups taking the longest time will be those instigated by the largest eddies capable
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of causing break-up, which are taken to be those at the parent bubble’s scale
(Luo & Svendsen 1996). Thus, an upper bound and typical scale of the break-
up duration is taken to be the eddy turn-over time at the parent bubble’s scale,

Tturb(d0) = ε−1/3d
2/3
0 , in agreement with experimental and numerical observations

of the time over which bubbles are deformed prior to break-up (Risso & Fabre
1998; Mart́ınez-Bazán et al. 1999b; Rivière et al. 2021). The final timescale we
consider is that of the capillary instabilities of gas ligaments that produce a small
child bubble of size d, which will occur over the capillary timescale of that child
bubble, Tcap(d) = (ρ/γ)1/2d3/2/(2

√
3) (Rivière et al. 2022).

From these three relevant time scales, we define three types of events. At the
shortest time, we define the individual binary splitting events. For the production
of bubbles with d � dH, we have Tcap(d) � Tturb(d0). At the eddy turn-over
time, we define a break-up as being a sequence composed of all the splitting
events occurring in a time bounded by ∆Tbreak−up = Tturb(d0), which permits
the production of more than two bubbles in a single event (similar to the
definition used for drop break-ups by Solsvik et al. (2016)). Finally, following the
nomenclature from Hinze (1955), a disintegration is a longer-duration process
involving an arbitrary number of break-ups.

These timescales are sketched in Figure 16, which illustrates two break-up
events that stem from a bubble of diameter dA encountering turbulence. The
deformation to the parent bubble that instigates the break-up is assumed to
happen within a time Tturb(dA) before the first bubble splits from the parent.
Then, within an additional time bounded by Tturb(dA), subsequent splitting
events occur due to capillary instabilities arising from the deformation. One such
instability produces a bubble with diameter dC, and the time over which this
instability develops is set by the capillary timescale at the smaller child bubble
size, Tcap(dC). Later on, one of the child bubbles produced in the first break-up,
with diameter dB, itself breaks up.

Using these ideas, we propose a population balance model that integrates these
physical elements and models the evolution of a bubble size distribution with a
Boltzmann transport equation using the bubble size as an internal coordinate.
The population balance model considers a break-up rate kernel f , constructed
from child size distributions computed through a Monte Carlo approach (con-
strained by results from experiments and DNSs, informing the number of children
and the shape of the distribution) and a parent bubble break-up frequency taken
from the literature. With the kernel defined, we integrate the model in time to
simulate the evolution of the size distribution during a cavity disintegration and
compare to our experimental data.

5.2. Population balance modeling

In a confined region of homogeneous turbulence, the transient evolution of the
absolute dimensionless volumetric bubble size distribution NV (Ṽ ) = NV (V )VH =
N (d/dH)/(3(d/dH)2), where NV (V ) is the absolute dimensional volumetric size

distribution, Ṽ = V/VH, and t̃ = t/Tint, is described by

∂NV (Ṽ , t̃)

∂t̃
= −NV (Ṽ , t̃)

〈m〉(Ṽ )

∫ Ṽ

0

f̃(δ̃; Ṽ )dδ̃ +

∫ ∞
Ṽ

NV (∆̃, t̃)f̃(Ṽ ; ∆̃)d∆̃, (5.1)
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the first splitting

capillary timescale at the
small child size Tcap(dC)
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Figure 16: Sketch of two bubble break-ups and the associated timescales, with
Tturb(d) = ε−1/3d2/3 and Tcap(d) = (ρ/γ)1/2d3/2/(2

√
3). The gray vertical lines

denote the times associated with each of the two break-ups. The shaded region
to the left bounds the time over which the deformation to the parent bubble is
assumed to occur (the turbulent timescale at the parent bubble size), and the

region to the right of the line bounds the time over which the subsequent
splitting events are assumed to occur (also taken to be the same turbulent

timescale). During the subsequent splitting events, the capillary timescale at
the size of the smaller child bubble sets the time over which the splitting event
occurs (Rivière et al. 2022). The time between break-ups is set by the inverse of

the break-up frequency ω of the bubble which is to break, which we address
later in the paper.

where the first term on the RHS gives the rate of consumption of bubbles of
volume Ṽ due their break-ups, and the second term on the RHS gives the rate
of production of bubbles of volume Ṽ due to the break-ups of larger bubbles
(Mart́ınez-Bazán et al. 2010). The break-up kernel f̃(δ̃; ∆̃) = f(δ;∆)VHTint

can be decomposed into a parent break-up frequency and volumetric child size
distribution with f̃(δ̃; ∆̃) = ω̃(∆̃)p̃(δ̃; ∆̃), with the dimensionless break-up fre-

quency ω̃(∆̃) = ω(d)Tint and dimensionless volumetric child size distribution

p̃(δ̃; ∆̃) = p(δ;∆)VH. Thus, we can move ω̃(∆̃) outside the integral in the first

term on the RHS and invoke
∫ Ṽ

0
p̃(δ̃; Ṽ )dδ̃ = 〈m〉(Ṽ ), with 〈m〉(Ṽ ) the average

number of bubbles formed in the break-up of a bubble of volume Ṽ , to express the
bubble consumption term as simply −NV (Ṽ , t̃)ω̃(Ṽ ). Note that we define p̃(δ̃; ∆̃)

so that it integrates over δ̃ to the average number of child bubbles formed by the
break-up of a bubble of volume ∆̃.

5.3. Construction of the child size distributions

We develop a parameterization of the break-up volumetric child size distribution
p̃(δ̃; ∆̃) that accounts both for child bubbles produced by both the slower inertial
mechanism (occurring over the eddy turnover time) and the faster capillary
pinching mechanism (occurring over the capillary timescale of the small child
bubbles) using a Monte Carlo approach. We consider a set of rules constrained
by our experimental and numerical observations describing the outcomes of



26

100 101

d0/dH

100

101

102
m

dynamical data
cavity disintegration data
DNS (Riviere et al. 2021)
Vejrazka et al. 2018

0 2 4 6 8 10
m′/ m′

10 3

10 2

10 1

100

p.
d.

f.(
m

′ /
m

′
)

1

2

3
4

d 0
/d

H

(a) (b)

Figure 17: Experimental data on the number of child bubbles formed in each
break-up. (a) The average number of resolved bubbles (with dmin/dH = 0.07)
formed in each break-up event 〈m〉 as a function of the dimensionless parent

bubble size. The shaded region shows ± one half of a standard around the mean
for our dynamical data. Open circles give data from the disintegration of the

three largest cavities, and closed circles give those data with an adjustment for
the differing spatial resolution. Open stars give data from DNSs from Rivière

et al. (2021), and closed stars give those data with the spatial resolution
adjustment. The open gray markers give data from experiments reported by
Vejrazka et al. (2018). The thick orange line is the parameterization given in

eq. (5.2). (b) The p.d.f. of m′/〈m′〉 = (m−mmin)/(〈m〉 −mmin) for the
experiments (squares) and DNSs (stars), along with the exponential fit

employed in the Monte Carlo simulations.

individual break-up events, then aggregate the outcomes of these events into
child size distributions.

5.3.1. Statistics on the number of child bubbles formed

A key step in modeling each break-up is to constrain the distribution of the
number of bubbles formed in each event. To this end, we first consider the data
from our dynamical experiments given in section 4. The average number of child
bubbles larger than the experimentally-resolvable minimum size dmin/dH ≈ 0.07,
〈m〉, is shown in Figure 17 (a). As the parent bubble increases in size, more

child bubbles are typically produced. Given the steep dependence of p̃(δ̃; ∆̃) on

δ̃, we must qualify each observation of m with the minimum resolved bubble size
to better enable comparisons between different experiments. For compactness,
however, we take all m values to be the number of resolved bubbles larger than
0.07dH unless otherwise noted. Our experimental observations of 〈m〉, binned by
d0/dH, are shown in the black squares, and the gray region around them bounds
± one half of a standard deviation around the mean.

Next, to consider the number of bubbles produced in the break-ups of larger
bubbles, we turn to data from the disintegration of the three largest cavities
presented in section 3. With the assumption that the initial splitting event
happens nearly instantly after the bubble is released into the turbulence, to
apply the same definition of the duration of the break-up, we define 〈m〉 for
this dataset as the number of resolved bubbles present after one eddy turnover

time Tturb(d0) = ε−1/3d
2/3
0 has elapsed after the cavity release, which are denoted
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by the open circles in fig. 8 (a) and fig. 17 (a). We invoke eq. (C 1) to apply a slight
adjustment to these numbers in order to extrapolate results to the finer spatial
resolution of the tracked break-up experiment, as discussed in Appendix C. The
number of bubbles in the extrapolated range constitutes about 30% of the ones in
the observable range. These adjusted values are shown as the filled-in light blue
circles in Figure 17 (a).

We have additionally re-analyzed the DNSs of bubbles breaking in homoge-
neous, isotropic turbulence presented in Rivière et al. (2021, 2022), tracking
the bubble break-up events in a similar way to what has been done on the
experimental data in Section 4. From these DNSs, we can compute the average
number of bubbles formed per event as a function of the parent bubble size,
included in panel (a) as the red star markers. Open stars give the original
observations, for which dmin/dH = 0.25, while the filled-in stars give the number
adjusted for the spatial resolution. Note that while we consider Wec = 1 for the
experimental data, the value of dH for the DNS is given by Wec = 3 (Rivière
et al. 2021).

Finally, as a comparison, the open gray markers show the (un-adjusted) number
of bubbles detected experimentally in break-ups by Vejrazka et al. (2018), in
which break-ups varied in ε and d0 (which is denoted by the marker style). As
shown in their paper, once collapsed to d0/dH, the dependence on the dimensional
bubble size nearly disappears.

The four datasets (our two experiments, those from Vejrazka et al. (2018), and
DNSs from Rivière et al. (2021)) produce a coherent picture regarding the number
of bubbles formed. When d0/dH is small, break-ups tend to be binary, producing
on average 2 child bubbles after Tturb(d0). As d0/dH increases, the number of
child bubbles increases. Surface tension is less effective at preventing the severe
deformation of larger bubbles, leading to more complex deformed bubble shapes
that yield a greater number of child bubbles. The orange curve in panel (a) shows
a fit to the data of the form

〈m〉 = mmin +
(d0/dH)b2

b1

, (5.2)

where mmin = 2 and the fit constants are b1 = 4 and b2 = 2.3.
Figure 17 (b) compiles experimental and DNS data on the distribution of the

number of child bubbles produced for increasing d0/dH. The p.d.f.s of m′/〈m′〉
are well-described by an exponential function e−m

′/〈m′〉, with m′ = m−mmin and
〈m′〉 = 〈m〉 −mmin, for both the experiments (shown as the squares) and DNS
(shown as the stars). Thus, for any parent bubble size we can write the p.d.f. of
m′ as an exponential distribution,

r(m′; d0/dH) =
exp(−m′/〈m′〉)

〈m′〉
, m′ > 0, (5.3)

with 〈m′〉 + mmin the mean number of children, a function of the parent bubble
size.

5.3.2. A stochastic model for each break-up

The Monte Carlo approach involves running many iterations of a stochastic model
and developing a statistical representation of the aggregated results. Each discrete
simulation of a break-up mirrors the physical processes involved: the bubble,
sketched in Figure 18 (a), is first deformed into two lobes, shown in panel (b),
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and then some number of capillary bubbles are created as the neck separating
the lobes collapses to create the two inertial child bubbles.

For each iteration (i.e., one simulated breakup) at a given value of ∆̃, we first
define the number of bubbles m that will be produced by picking a value of
m′ from the distribution r(m′; d0/dH) given by eq. (5.3), adding mmin = 2, and

rounding to the nearest integer. We pick δ̃min = 0.073 in order to match the
experimental dataset on which the parameterization of 〈m〉 is based. As we will

show, once the p.d.f.s have been constructed for this given value of δ̃min, it will
be straightforward to extend them to lower or higher values of δ̃min.

For cases in which m > 3, the capillary mechanism produces m′ = m − 2
bubbles, whose sizes follow a ∝ δ̃α distribution with α = −7/6 (corresponding
to the Pd(d/dH; d0/dH) ∝ (d/dH)−3/2 scaling described by Rivière et al. (2022),
as distributions in diameter are related to those in volume by Pd(d/dH; d0/dH) =

3(d/dH)2p̃(δ̃; ∆̃) (Mart́ınez-Bazán et al. 2010; Qi et al. 2020)). As is sketched in

Figure 18 (c), the volume δ̃cap,i of capillary bubble i is picked from a power-law

distribution with slope α, bounded between δ̃min and the maximum allowable
volume for a capillary bubble given the previously-produced bubbles, δ̃cap,max,i.

For the production of the first capillary bubble, we set δ̃cap,max,1 = ∆̃ (noting that
the steep slope of Pd(d/dH; d0/dH) with respect to d/dH makes the production
of capillary bubbles this large uncommon). For the production of the remaining

capillary bubbles, we set δ̃cap,max,i = ∆̃−
∑i−1

j=1 δ̃cap,j. At each step of the process,

if δ̃cap,i is greater than δ̃cap,max,i/2, we replace it with δ̃cap,max,i/2− δ̃cap,i, such that
for any splitting event, the smaller of the two produced does not further split.

Once the volumes of the m′ capillary bubbles are specified, we must determine
the volumes of the two inertial bubbles. To that end, we first compute the
portion of the parent bubble volume that has gone to the capillary bubbles,

χcap =
∑m′

i=1 δ̃cap,i/∆̃. The size of the first of the two inertial child bubbles δ̃inertial,1

is drawn uniformly from the remaining bubble volume, (1 − χcap)∆̃, and the

second is taken as its complement, δ̃inertial,2 = (1 − χcap)∆̃ − δ̃inertial,1. Once this
is done, the volumes of all child bubbles produced in this single break-up have
been determined.

5.3.3. Aggregation of simulated break-ups into child size distributions

For a given value of d0/dH (or the equivalent normalized volume ∆̃ = (d0/dH)3),
the process of simulating one break-up stochastically is repeated nMC = 105 times.

For each ∆̃, the sizes of the bubbles produced in each of the nMC events
are aggregated, and the distribution of all these child bubbles defines the vol-
umetric child size distribution p̃(δ̃; ∆̃). The distribution is normalized such that∫ ∆̃

0
p̃(δ̃; ∆̃) = 〈m〉(∆̃), with 〈m〉(∆̃) the average number of bubbles formed.

Since the size distribution is aggregated from geometrically-plausible break-ups,
it itself must satisfy any constraints relating to the sizes of the bubbles produced.
Figure 19 (a) shows the volumetric child size distributions for five values of ∆̃.

When ∆̃ is small, the child size distribution is nearly uniform, as the capillary
production mechanism is negligible for small bubbles; for moderate ∆̃, the child
size distribution exhibits a p̃ ∝ δ̃α scaling for small bubbles, while remaining close
to flat for bubbles near the parent bubble size. For even larger bubbles, for which
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(a)

(b)

(c)

(d)

Figure 18: Process of simulating one break-up for the Monte Carlo approach of
a bubble of volume ∆̃, shown in (a). (b) First, the bubble is taken to be

deformed into two lobes, separated by a neck of gas. (c) Next, the sizes of the
m′ = m− 2 capillary bubbles are picked from a δαcap distribution. (d) Finally,

the sizes of the two inertial bubbles δ̃inertial,i are picked by from a uniform
distribution over the remaining parent bubble volume (that which has not gone

to the capillary bubbles).

the capillary production mechanism is the most effective, the entire distribution
approaches a δ̃α scaling.

For each ∆̃, we also obtain 〈χcap〉(∆̃), shown in Figure 19 (b), by averaging the
portion of the parent bubble volume going to the capillary child bubbles χcap over

the nMC events. When ∆̃� 1, χcap ≈ 0, and essentially all of the parent bubble

volume goes to the two inertial child bubbles. With larger ∆̃, χcap increases,

reaching χcap = 0.1 at ∆̃ = 60. Even at ∆̃ = 1000, less than half of the parent
bubble volume goes to the capillary bubbles.

We then fit each volumetric child size distribution as a sum of two components,
each stemming from one of the two mechanisms of child bubble production,

p̃(δ̃; ∆̃) = a(∆̃)δ̃γ(∆̃)︸ ︷︷ ︸
inertial mechanism

+ b(∆̃)δ̃α︸ ︷︷ ︸
capillary mechanism

, (5.4)

with α = −7/6 set by the distribution from which the capillary bubbles are picked

and γ(∆̃) chosen to match the aggregated Monte Carlo simulation data. The two

remaining coefficients, a(∆̃) and b(∆̃), are constrained by the volume going to



30

10 3 10 2 10 1 100 101 102 103

child bubble size = (d/dH)3

10 3

10 2

10 1

100

101

102

103

104
p(

;
)

a( ) ( )

b( )

= (d0/dH)3

0.1
1
10
100
1000

10 2 10 1 100 101 102 103

10 4

10 2

100

ca
p

(
), 

fro
m

 M
.C

.

10 2 10 1 100 101 102 103

parent bubble size = (d0/dH)3

1.5

1.0

0.5

0.0

(
), 

fit
 to

 d
at

a

(a) (b)

(c)

Figure 19: Volumetric child size distributions constructed via the Monte Carlo
approach. (a) Volumetric child size distributions p̃(δ̃; ∆̃) for five values of the

parent bubble size ∆̃. Distributions compiled from the Monte Carlo simulations
are given by the thin lines, while the thick fainter lines give the fits using

eq. (5.4). The two components of the fit form of the distribution are illustrated

for ∆̃ = 10. (b) The average capillary fraction 〈χcap〉 calculated from the
ensemble of simulations, as a function of the parent bubble size. (c) Fit values of

the exponent γ(∆̃) employed in eq. (5.4). Data for the curves in (b) and (c) and

Python code to use them to construct p̃(δ̃; ∆̃) are will be made available online.

bubbles produced by each mechanism, leading to

a(∆̃) = (1− 〈χcap〉)
(

(γ + 2)∆̃

∆̃γ+2 − δ̃γ+2
min

)
, (5.5)

b(∆̃) = 〈χcap〉
(

(α+ 2)∆̃

∆̃α+2 − δ̃α+2
min

)
. (5.6)

The fits to each child size distribution with eq. (5.4) are shown as the faint, thick
lines in Figure 19 (a).

Figure 19 (c) shows the evolution of the exponent γ(∆̃) describing the inertial

production mechanism. Values of 〈χcap〉(∆̃) and γ(∆̃), which together contain
all the necessary information about the child size distributions, are stored for
many values of ∆̃. To implement the child size distributions in a population
balance model, we interpolate 〈χcap〉(∆̃) and γ(∆̃) for a given value of ∆̃. Data
for each curve and Python code to construct the child size distributions will be
provided online at publication for those wishing to implement the model we have
constructed.

5.4. Parameterization of the break-up frequency

The next step is to parameterize how often the break-ups will occur. Here, using
an approach that has been successfully applied to the break-up of oil droplets in
turbulent jets (Aiyer et al. 2019; Aiyer & Meneveau 2020), we integrate the effects
of eddies smaller than the parent bubble size (each of dimensional diameter de)
which contribute to break-up (Prince & Blanch 1990; Tsouris & Tavlarides 1994),
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yielding

ω̃(∆̃) = K
dH

Lint

∫ d0/dH

0

π

4

(
d0

dH

+
de

dH

)2

ũturb(de/dH)

(
de

dH

)−4

Ω(de/dH; d0/dH)d(de/dH),

(5.7)

where K is an order-1 constant we adjust, ũturb(de/dH) = C
1/2
2 ε1/3d1/3

e /u′ =
C1/3
ε (de/dH)1/3(dH/Lint)

1/3 is the dimensionless turbulent velocity scale of the
eddy, (de/Lint)

−4 is the approximate dimensionless eddy density (Solsvik et al.
2016), and Ω(de/dH; d0/dH) is the break-up efficiency given the eddy and bubble
sizes. Neglecting viscous effects (given the low viscosity of air bubbles), the break-
up efficiency, which gives the probability that an eddy has sufficient energy to
overcome surface tension, is taken as the inverse of the exponential of the ratio
between the average change in surface energy associated with the break-up Eσ(d0)
and the kinetic energy of the eddy Eeddy(de), exp(−Eeddy(de)/Eσ(d0). The average
surface energy change is given dimensionally by

Eσ(d0) =
σπ

4

(∫ πd30/6

δmin

p(δ;πd3
0/6)δ2/3dδ − d2

0

)
= Γπσd2

0/4, (5.8)

with the proportional change in surface area due to break-up Γ dependent on the
form of the child size distribution according to

Γ (∆̃) =

∫ ∆̃
δ̃min

p̃(δ̃; ∆̃)δ̃2/3dδ̃

∆̃2/3
− 1. (5.9)

The kinetic energy of the eddy is given by Eeddy(de) = (π/4)ρd3
eC2(εde)

2/3.
Expressed in our non-dimensional units, the break-up efficiency is then

Ω(de/dH; d0/dH) = exp

(
− Γ (∆̃)(d0/dH)2

Wec(de/dH)11/3

)
, (5.10)

with the critical Weber number Wec necessary to link the scales of the bubble
and the turbulence.

With each component specified, eq. (5.7) is evaluated numerically and is shown
in Figure 20, using K = 2 picked through a comparison to the experimental
data given in Section 3. The break-up rate increases as bubbles approach the
Hinze scale and then plateaus due to two competing effects: while larger bubbles
are susceptible to a wider range of turbulent scales that may cause break-up,
they tend to break into many more bubbles than smaller ones do, leading to a
greater surface energy term in eq. (5.7). This means that while more eddies are
interacting with the parent bubble, each is less likely to have sufficient energy to
cause a break-up.

The thicker gray line in Figure 20 gives the inverse of the turbulent turn-
over time at the parent bubble scale, which we take to set the duration of
each break-up event. The break-up frequency is thus consistent with the break-
up duration, since ω̃(∆̃) = gTint being strictly less than Tint/Tturb(d0) means
that the typical duration of a break-up is never longer than the typical time
between such break-ups. Finally, the dotted orange line gives the inverse of
the (dimensionless) capillary timescale at the parent bubble scale, Tint/Tcap(d0),
showing that capillary effects happen faster than both the break-up duration and
time between break-ups (up until the largest bubbles we consider). The capillary
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Figure 20: The parent bubble break-up rate ω̃ as a function of its volume ∆̃,
computed using the value of dH/Lint for our dataset. The black line shows the

parent bubble break-up frequency given by eq. (5.7). The thicker gray line gives
the inverse of the eddy turn-over time at the parent bubble scale, which is taken
to be the upper limit in the duration of each break-up event. The dotted orange

line gives the inverse of the capillary timescale at the parent bubble scale.

pinching events responsible for sub-Hinze bubble creation thus occur over even
shorter durations, as the capillary timescales of the small child bubbles formed
will be much faster than that of the parent bubble.

5.5. Summary of parameters involved in the model

To summarize, Table 2 lists each parameter in the model and explains how each
is determined.

5.6. Model comparison to transient air cavity disintegration data

With p̃(δ̃; ∆̃) and ω̃(∆̃) now fully specifying f̃(δ̃; ∆̃), we can simulate the turbulent
disintegration of cavities we studied experimentally in Section 3 by picking the
appropriate initial condition for each (i.e., N (d/dH) giving one bubble of size
d0/dH) and integrating eq. (5.1) in time. Figure 21 compares the experimental and
modeled vales of the dimensionless bubble size distribution N (d/dH) at t/Tint = 1
and 3 for each value of d0/dH, with d0/dH = 2.1 in panel (a) and d0/dH = 8.3 in
panel (f).

First, the model accurately reproduces the observed magnitudes of the size
distributions near the Hinze scale, both in time and in the initial cavity size.
Second, an N (d/dH) ∝ (d/dH)−3/2 scaling is approached for d/dH < 1 with larger
d0/dH, and this scaling is adopted more rapidly with larger cavities. With d0/dH =
2.1 and 2.84, shown in panels (a) and (b), N (d/dH) is flat near the Hinze scale
at t/Tint = 1, as the child size distributions for parent bubbles of these cavity
sizes are largely flat (as shown in Figure 19 (a)). With larger parent cavities,
the sub-Hinze distribution steepens as the capillary mechanism contributes more
significantly to the child size distributions for parent bubbles of these larger cavity
sizes (as evidenced in the 〈χcap〉(∆̃) curve shown in Figure 19 (b)).
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Model element Equation Variable Description Constraints

number of
bubbles
produced

eq. (5.2) ∆Tbreak−up =
Tturb(d0)

break-up duration (over
which child bubbles are
formed)

theory (Section 5.1), in-
formed by experimen-
tal and numerical data
(Risso & Fabre 1998;
Rivière et al. 2021)

b1 = 4 prefactor for number
of bubbles formed per
break-up

fit to our experimental
and numerical data (Fig-
ure 17)

b2 = 2.3 power-law exponent in
parent volume for num-
ber of bubbles

child size
distri-
bution
shape

eq. (5.4) α = −7/6 power-law exponent for
the capillary contribu-
tion, corresponding to
N(d) ∝ d−3/2

theory (Rivière et al.
2022)

a(∆̃) magnitude of the capil-
lary contribution

Monte Carlo simulation
results (Figure 19)

b(∆̃) magnitude of the inertial
contribution

γ(∆̃) power-law exponent for
the inertial contribution

break-up
frequency

eq. (5.7) K = 2 break-up frequency pref-
actor

fit to transient experi-
mental data, within the
range suggested by Aiyer
et al. (2019)

C2 = 2.0 DLL(d)/(εd)2/3 in iner-
tial subrange for HIT

Pope (2000)

Cε = 0.7 εLint/u
′3 for HIT Sreenivasan (1998)

eq. (5.10) Wec = 1 critical Weber number experimental break-up
threshold

Table 2: Parameters involved in the bubble break-up model, their physical
origin and the experimental/numerical data constraints.

6. Conclusions

In this paper, we used results from two sets of experimental measurements to
describe the production of bubbles smaller than the Hinze scale by turbulent
bubble break-up. We experimentally demonstrate that a N(d) ∝ d−3/2 scaling
for bubbles smaller than the Hinze scale (d < dH) is obtained with the break-up
of air cavities much larger than the Hinze scale subjected to forced turbulence,
experimentally studying cavities up to d0 = 8.3dH with accurate measurements
of bubble sizes down to approximately 0.1dH. The N(d) scaling we find is similar
to the one reported in measurements and simulations of bubble size distributions
under breaking waves (Deane & Stokes 2002; Wang et al. 2016; Mostert et al.
2022).

The small bubbles that are produced are significantly separated in size from
the turbulent motions which are strong enough to cause break-up. Thus, the
link between their sizes and the turbulent motions which do instigate break-up
necessarily involves additional physics. Following Rivière et al. (2022), we identify
the capillary instability of deformed bubble ligaments which are involved in
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Figure 21: Comparisons of the experimental and modeled values of N (d/dH) at
t/Tint = 1 and 3 for each value of d0/dH. The dotted vertical line gives the value

of d0/dH for each condition. Dotted lines give the N (d/dH) ∝ (d/dH)−3/2

sub-Hinze scaling. Good agreement between the measured and modeled
distributions are observed for the full range of d0/dH and times.

larger-scale turbulent deformations as the mechanism responsible for small bubble
production. Crucially, significant small bubble production by this mechanism
is limited to parent bubbles with d0 � dH, as only bubbles much larger than
the Hinze scale can become deformed to a severe enough extent to produce the
ligaments from which the small bubbles originate.

The first piece of evidence we provide for this role of capillarity is visual:
Figures 9 and 10 show a number of instances of small bubbles being left behind
after the collapse of gas ligaments. Second, the experimental N(d) ∝ d−3/2 scaling
for d < dH with d0 � dH is coherent with the P (d) ∝ d−3/2 scaling for the break-
up child size distribution reported by Rivière et al. (2022), who showed that the
lifetime of ligaments before their collapse to produce a bubble of size d coincides
with the capillary time scale of a bubble of size d, Tcap ∝ d−3/2.

We implemented these physical ideas in a population balance model of turbu-
lent bubble break-up. The child size distributions describing individual break-up
events were constructed with a Monte Carlo approach involving simulations of
many break-ups. The statistics of each simulated break-up are prescribed by
our understanding of the role of capillarity and additional experimental results
on individual bubble break-up in which parent and child bubbles were tracked
dynamically in three dimensions. The resulting expression for the child size
distribution, eq. (5.4), involves two components: one describes the effect of the
large-scale deformation to a parent bubble by an energetic turbulent eddy, and the
other describes the action of capillarity in producing small bubbles. Finally, the
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rate at which parent bubbles undergo break-ups was determined by integrating
the action of eddies below the bubble’s size, which all contribute to break-up.
The complete model (consisting of the child size distributions and the parent
break-up frequency) yields a good match to our transient experimental data.

Along with the recent analysis of DNSs of bubble break-up in turbulence from
Rivière et al. (2021, 2022), this experimental work opens the door to a new
understanding role of capillarity in turbulent bubble break-up, in which surface
tension not only counteracts the initial turbulent deformation to a bubble but
also leads to the formation of sub-Hinze bubbles through capillary instabilities
that arise during the final stages of the break-up process.
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Appendix A. Appendix: air cavity disintegration data processing

A.1. Identification of bubble sizes

Bubble sizes are detected with image processing of the images of the cavity
disintegrations in multiple stages. First, a simple image intensity threshold is
applied to binarize each greyscale image, and the bright spots at the interior of
each bubble image is filled in. A first pass at extracting the bubble diameter
dintensity based on this intensity threshold is then made by computing the equiv-
alent diameter of a circle with the same projected area as the binarized bubble
image. As we find that the determined sizes of small bubbles (dintensity < dcutoff ,
with dcutoff = 1.5 mm) are sensitive to the image intensity threshold chosen,
we individually employ a Canny filter (Canny 1986) to the images of each of
these small bubbles to find their borders. Their diameter d is then defined as the
equivalent diameter of the projected area inside the bubble border. For larger
bubbles (with dintensity > dcutoff , for which the Canny edge detection often fails
due to the deformed bubble shape), we define the diameter as d = dintensity + σd,
where σd = −25 µm is the typical value to which dCanny− dintensity asymptotes for
bubbles approaching dcutoff .

A.2. Adjusting the size distribution to account for bubble advection and
smoothing of the size distributions

The time-dependent size distribution N (d/dH, t/Tint) is first computed on a
frame-by-frame basis, and then is averaged in time over a window with width
τ/Tint that increases with t/Tint. The width τ is first set as τ/Tint = 0.13 +
0.38(t/Tint) and then clipped at τ/Tint = 2.67, which it reaches at t/Tint = 6.68.

Due to the buoyant rise of the bubbles and their advection by the turbulence
in the air cavity disintegration experiments, bubbles leave the measurement
region over time. This complicates the analysis of our data: if we were to solely
consider bubbles viewed in-frame, we would calculate a rapid loss of bubble
volume as bubbles leave the field of view. Results would be further skewed by
any size dependence of the bubbles’ motions. Indeed, the transient bubble size
distributions based on the bubbles viewed in-frame shown in the left of Figure 22
exhibit a nonphysical decrease in N (d/dH) for small d at later times. Similarly,
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Figure 22: Visualization of the adjustment to the bubble size distributions
based on the advection of bubbles out of and into the field of view for each size

air cavity studied. (a) The original (unadjusted) size distributions of the
bubbles in-frame at four times. (b) The adjusted size distributions. (c) The

adjusted size distributions with the slight smoothing applied, which we consider
in the paper. (d) The total number of bubbles detected in-frame (gray) and the
total number of bubbles, including the advection adjustment (black). (e) The

sum of the volumes of the bubbles detected over time, normalized by the known
volume of the air cavity. The gray curve is the volume of bubbles detected

in-frame; the black curve is that curve added to the volume of bubbles from the
advection adjustment, in green.

the total volume and number of bubbles tracked, shown in the fourth and fifth
columns respectively as the gray lines, decreases as bubbles leave the field of view.

We address this experimental limitation by tracking the bubbles’ motion in two
dimensions and making note of when bubbles leave or enter the measurement
region near one of its four borders. Then, to compute N(d) for some time t, along
with the bubbles of size d imaged at time t, we add counts of all the bubbles of
size d that have left the measurement region before time t, and subtract counts
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of all the bubbles of size d that have entered the measurement region before time
t. The resulting adjusted size distributions are shown in the second column of
Figure 22.

The final step in the processing is to slightly smooth each N (d/dH, t) curve
in bubble size by an amount dependent on the total number of bubbles present
at each time, n(t) =

∫∞
0
Nd(d/dH). Size distributions are computed with 30

geometrically-spaced bins between d/dH = 0.14 and 17.5. Then, at each time, each
curve is smoothed with a Gaussian filter with a standard deviation of σsmooth(t)
bins, with σsmooth(t) picked given an empirical function of the number of bubbles
present. When fewer than three bubbles are present, σsmooth(t) is set to one bin;
when more than thirty are present, σsmooth(t) is 0.1 bins. σsmooth(t) is interpolated
between these two limits when a moderate number of bubbles are present. This
approach ensures minimal smoothing when a sufficient number of bubbles are
present and a moderate amount of smoothing when few bubbles are present. The
smoothed size distributions, which we consider in the paper, are shown in the
third column of Figure 22.

This advection adjustment approach effectively “freezes” in place the record of
bubbles as they leave the measurement volume. The green regions in the third
and fourth columns of Figure 22 show the additional number of bubbles and
corresponding additional bubble volume added to the bubble record with this
method. The black lines show the sum of the in-frame measurements and this
adjustment. Any limit obtained by the adjusted n curve is still not especially
physically meaningful, as some of the bubbles which have exited the field of view
are not much smaller than the Hinze scale, so they would eventually break apart
further if left within the turbulence region. However, it is qualitatively closer
representation of the “true” behavior than would be obtained through just the
in-frame measurements.

The plots of the summed bubble volume (normalized by the cavity volume)
shown in the fourth column of Figure 22 reveal a second limitation in our bubble
detection method: the total volume of bubbles considered,

∫∞
0
V NV (V )dV , is

not a constant value equal to the known volume of the air cavity V0. At early
times, the total bubble volume is under-counted, and becomes over-counted at
later times. This is due to the highly-deformed shapes of large bubbles, for which
the equivalent diameter determination we employ is only a rough approximation.
Further, bubbles whose images overlap can be detected as a single larger bubble.

We note that, aside from some representative images taken at late times, the
latest measurement ofN (d/dH) presented in the paper or employed in our analysis
is t/Tint = 5, at which point the advection adjustment has had only a moderate
impact on the size distribution for all cavity sizes.

Appendix B. Comparison of cavity disintegration with and without
turbulence

The cavity release experiment detailed in Section 2.2 was also run with the
turbulence-generating pumps turned off, such that the cavity was released into
otherwise still water. In these experiments, the extent of the bubble production
is greatly reduced. Figure 23 (a) and (b) shows snapshots of two bubbles of the
same size, at the same time after their release, into quiescence and turbulence,
respectively. The bubble released into quiescence is deformed by buoyancy but
has not broken apart; the bubble released by turbulence has undergone break-ups.
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Figure 23: The cavity release experiments with and without turbulence. (a-b) A
comparison between images taken in quiescence (a) and turbulence (b) for a

bubble with d0/dH = 5.8 (when in turbulence). (c-e) A comparison of the
transient number of bubbles present for initial cavities of varying sizes, in

turbulence (solid lines) and in quiescence (dashed lines). The quiescent cases
considered are limited to those within the range of cup spin velocities taken in

the experiments with turbulence.

Bubbles released into quiescence occaisionally break due to the cup’s motion or
their large buoyant deformations (Landel et al. 2008), but Figure 23 (c-e), which
show the number of bubbles produced over time in turbulence and quiescence
for the three largest cavity sizes, indicate that the moderate bubble production
from these break-ups is negligible compared to the much greater production in
turbulence.

Appendix C. Adjustment of the number of resolved bubbles to
account for the minimum resolved child size

Since we find a bubble size distribution that scales as N(d) ∝ dαd with αd < −1
for small bubbles, the total number of bubbles above some minimum size will
diverge as that minimum size decreases, up until some additional physical limit
is encountered. Therefore, to enable a more direct comparison between datasets
in which the experimental or numerical resolution differs, we can adjust the total
number of bubbles formed in a break-up to account for the different resolved
sizes.

Let us denote by m[d > zdH] the average number of resolved bubbles larger
than zdH that are formed in a break-up. Given a known value of m[d > xdH], we
can find the corresponding value of m[d > ydH], which is the hypothetical number
resolved had a minimum spatial resolution of ydH been employed. Following the
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conceptual model presented in section 3.3, we assume that all but two of the child
bubbles produced in each break-up follow a power-law scaling ∝ (d/dH)αd , with
αd = −3/2. With this assumption, we calculate the appropriate prefactor for
the sub-Hinze distribution given the observed value of m[d > xdH], then extend
the distribution to dmin/dH = y and integrate over all the larger bubble sizes
to get the effective number in the range that is resolvable in the hypothetical
experiment, yielding

m[d > ydH] = (m[d > xdH]− 2)

(
(d0/dH)(αd)+1 − y(αd)+1

(d0/dH)(αd)+1 − x(αd)+1

)
+ 2. (C 1)
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scale bubble production in turbulent bubble break-up. Journal of Fluid Mechanics 917,
A40.

Rivière, A., Ruth, D., Mostert, W., Deike, L. & Perrard, S. 2022 Capillary driven
fragmentation of large gas bubbles in turbulence p. http://arxiv.org/abs/2112.06480.

Rojas, G. & Loewen, M. R. 2007 Fiber-optic probe measurements of void fraction and bubble
size distributions beneath breaking waves. Experiments in Fluids 43 (6), 895–906.

Ruth, Daniel J, Mostert, Wouter, Perrard, Stéphane & Deike, Luc 2019 Bubble pinch-
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