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Marion Darbas1, Jérémy Heleine2, Renier Mendoza3 and Arrianne Crystal Velasco3,4,∗
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Abstract: Electrical impedance tomography (EIT) is an imaging technique that reconstructs the
conductivity distribution in the interior of an object using electrical measurements from the electrodes
that are attached around the boundary. The Complete Electrode Model (CEM) accurately incorporates
the electrode size, shape, and effective contact impedance into the forward problem for EIT. In this
work, the effect of the conductivity distribution and the electrode contact impedance on the solution
of the forward problem is addressed. In particular, the sensitivity of the electric potential with respect
to a small-amplitude perturbation in the conductivity, and with respect to some defective electrodes
is studied. The Gâteaux derivative is introduced as a tool for the sensitivity analysis and the Gâteaux
differentiability of the electric potential with respect to the conductivity and to the contact impedance
of the electrodes is proved. The derivative is then expressed as the unique solution to a variational
problem and the discretization is performed with Finite Elements of type P1. Numerical simulations
for different 2D and 3D configurations are presented. This study illustrates the impact of the presence
of perturbations in the parameters of CEM on EIT measurements. Finally, the 2D inverse conductivity
problem for EIT is numerically solved for some configurations and the results confirm the conclusions
of the numerical sensitivity analysis.
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1. Introduction

Electrical properties such as the conductivity and the permittivity determine the behaviour of
materials under the influence of external electric fields. Electrical Impedance Tomography (EIT)
is a non invasive, radiation-free imaging technique which reconstructs the conductivity distribution
inside an observation region. In practice, currents of prescribed magnitudes (typically in a frequency
range from several hundred Hz to several MHz) are injected at electrodes placed on the boundary
of the region. The current passes through the object and the resulting voltages are recorded. These
measurements are the data needed to estimate the conductivity within the object. EIT is known to be
a low cost and portable imaging modality. With these advantages, EIT is a thriving area of research
due to the variety of possible applications (e.g. geophysical [47, 65], medical [3, 23, 26, 45, 54], and
industrial [43, 49]).

In EIT systems, the quality and the accuracy of the measurements depend on many factors such
as the configuration of the electrodes and the injected current distribution. The size, geometry,
and location of the electrodes must be considered because they can affect the data needed for the
reconstruction. The voltage loss due to the effective contact impedance, which is the thin resistive
layer between the electrode and object, should also be taken into account to accurately measure the
boundary voltages. In medical applications, the skin surface is prepared using a certain gel to lower
and stabilize the contact impedance between the skin and the electrode. Moreover, current shunting
effect through the pickup electrodes is a well-known problem in EIT systems. This phenomenon can
be efficiently reduced by the geometry of the electrodes or by their separation. Also, boundary current
distribution or current patterns affect the data since they are linearly related, given a fixed conductivity
distribution [9]. It is essential to account all these parameters in order to produce more accurate data
for the imaging [50].

Mathematically, EIT is divided into two parts: the forward problem and the inverse problem. The
forward problem consists of finding the potential distribution inside the domain under examination
and on its boundary from the knowledge of the electrical conductivity distribution in the domain and
the injected surface current pattern. Solving the forward problem corresponds to the data acquisition.
Thus, it is important to correctly model the electrodes on the boundary, their effects, and also the
injected currents. For instance, we refer to the review article [4] and the references therein. The
simplest forward model for EIT is the continuum model but it does not take into account the electrodes.
The gap model attempts to represent the electrodes by points and approximates the current density by a
nonzero constant at the surface of each electrode and zero in the gaps between the electrodes. The shunt
model accounts the correct configuration of the electrodes but not the effective contact impedance. The
Complete Electrode Model (CEM) successfully considers the geometry and location of the electrodes,
and their shunting effects [11,53]. Consequently, CEM is the most accurate and commonly used model
for EIT. Many theoretical and numerical works have been devoted to the study of the CEM for EIT
(see e.g. [6, 12, 16, 24, 25, 32, 33, 56]).

The EIT inverse problem is the recovery of the electrical conductivity distribution from the surface
voltages and current density [4]. It is also known as Calderón’s problem [8] which is a very ill-posed
problem. An existence and uniqueness result is obtained by Kohn and Vogelius in [39], and they
proved that the conductivity can be uniquely determined by the knowledge of the entire corresponding
voltage-to-current or Dirichlet-to-Neumann map. However, only partial information on the Dirichlet-
to-Neumann map is available in practical applications. In [34, 35, 38], the identifiability is proved if
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only partial information is known. There is an extensive literature on the numerical resolution of the
EIT inverse problem. Most of the methods are iterative and are based on deterministic or stochastic
least squares reconstruction algorithms (e.g [15,36,42]). Several approaches have been considered for
dealing with inaccuracy on the known boundary shape, and in particular the position uncertainty of the
electrodes [15, 17, 18, 40, 41, 46, 52]. Simultaneous reconstruction of the conductivity distribution and
the contact impedances has been proposed in [30, 59]. We can also cite direct inversion methods for
EIT, in particular Calderón and D-bar (e.g [19, 28]). The use of neural networks and metaheuristic
algorithms has been explored too (e.g. [27, 57, 60, 61, 63, 64]).

In this paper, we focus on the study of the CEM forward problem. The accuracy of the EIT
reconstruction relies heavily on one of the associated forward model. We are interested in the sensitivity
of the electric potential, and thus of the measurements, with respect to the conductivity or with
respect to the contact impedance of the electrodes. This allows to measure the effect of uncertainty
in both conductivity and contact impedance values on the CEM forward model. This also permits to
understand the impact of possible perturbations of the conductivity (e.g. tumors or strokes in medical
applications, or uncertainties in tissue conductivities) or of small changes in the impedance due to
skin-to-electrode contact on the potential measurements. It can be viewed as a preliminary step for
improving (direct or iterative) inversion methods. For the definition of sensitivity, several definitions
exist in the literature. One can find works which are addressed by different communities (applied
mathematics, bioengineering, physics, physiology, . . .). The most simple and used is the numerical
computation of the difference between measurements before and after a conductivity change in a
known homogeneous medium. In [37], the authors observe numerically the sensitivity distribution
of the measured impedance signal with respect to the conductivity distribution. Other works define
the sensitivity as the fractional change of transfer impedance (ratio of the measured potential and the
applied current) with respect to a change of a conductivity inside a region [2, 51]. In [2], the impact of
the tissue conductivities and of the size of the electrodes on the performance of the EIT system in the
thorax imaging is numerically analyzed. In [62], the authors consider absolute and relative sensitivities
(defined by the difference between measured data with and without an anomaly in the conductivity) in
a Frobenius-type norm. Furthermore, in [62], conformal maps are employed to introduce an analytic
method to determine the sensitivity of boundary measurements to perturbations in conductivity for the
CEM on circular domains. Based on this information, well-adapted discretizations of the conductivity
space are proposed for the numerical solution of the inverse conductivity problem. The effect of the
characteristics of the electrodes (contact impedance, area, boundary shape under the electrode) on
the reconstructed EIT images has been studied in [7]. In the present work, an additional analysis
tool to investigate the sensitivity of the solution of the CEM to small variations in conductivity or
contact impedance is developed. We define in a rigorous way the mathematical setting of the sensitivity
equations and we address both theoretical and numerical aspects.

The paper is organized as follows. In Section 2, we introduce the CEM. In Section 3, we present
a sensitivity analysis of the CEM. In Section 4, we address the discretization of the CEM and the
resulting variational problems for the sensitivity equations using Lagrange finite elements. Section 5 is
devoted to the numerical part of the sensitivity analysis. Various two- and three-dimensional numerical
simulations, and discussions are provided. The end of Section 5 deals with the numerical solution of
the 2D EIT inverse conductivity problem for several configurations. Finally, we give some conclusions
and perspectives in the last section.
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2. The forward problem: the Complete Electrode Model

Let Ω be a bounded simply connected domain in Rd, d = 2, 3, with a smooth boundary ∂Ω. In
the low frequency range under consideration in EIT experiments, the electromagnetic field satisfies
the quasi-static Maxwell equations where the time derivatives are neglected [4, 10]. This yields the
following form of Maxwell’s equations in terms of the electric field E and the magnetic field H,

∇ · (εE) = ρ, (2.1a)

∇ · (µH) = 0, (2.1b)

∇ × E = 0, (2.1c)

∇ ×H = J. (2.1d)

Here, ρ is the charge density, ε and µ are the electric permittivity and magnetic permeability,
respectively, and J is the electric current density. Moreover, given the conductivity distribution σ

in the domain Ω, Ohm’s law gives
J = σE. (2.2)

It follows from (2.1c) that the electric field E derives from an electric (scalar) potential u, i.e.

E = −∇u. (2.3)

Taking the divergence of (2.1d), and using (2.2) and (2.3) yields the following elliptic equation for the
electrical potential u in Ω

∇ · (σ∇u) = 0. (2.4)

The conductivity σ ∈ L∞(Ω) is assumed to satisfy

σmin ≤ σ(x) ≤ σmax, x ∈ Ω, (2.5)

for some constants 0 < σmin ≤ σmax < +∞. Let n := n(x) be the exterior unit normal of ∂Ω. For
a known conductivity distribution σ in Ω and boundary data U (voltage) or I (current density), the
equation (2.4) together with either a Dirichlet boundary condition

u = U, on Γ

or a Neumann boundary condition

σ∂nu = I, on ∂Ω, with
∫
∂Ω

I ds = 0,

is called the continuum model for EIT.
In experiments, a finite number of surface electrodes, on which currents of prescribed magnitudes

are injected and voltages are recorded, are attached to the boundary. Different electrode models have
been proposed and studied but the most accurate mathematical model for real-life EIT is the Complete
Electrode Model (CEM) [11,53]. The electrodes are modeled by L subdomains {e`}L`=1 on ∂Ω at which
we inject current patterns I = (I`)L

`=1 ∈ R
L and measure the resulting potential vectors U = (U`)L

`=1 ∈
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RL. The electrodes are also assumed to be well-separated, i.e., em ∩ e` = ∅, if m , `, and we set

Γe :=
L⋃
`=1

e`. The current pattern I belongs to the mean-free subspace

RL
� :=

W = (W`)L
`=1 ∈ R

L

∣∣∣∣∣∣∣
L∑
`=1

W` = 0


due to conservation of electric charge. Each electrode e` is considered to be an open subset of the
boundary ∂Ω with positive surface measure. Electrodes are assumed to be perfect conductors (i.e. the
potential is constant on each electrode). This is the so-called shunting effect. Furthermore, effective
contact impedance, which is the thin, highly-resistive layer at the contact of e` with ∂Ω, is accounted
and denoted by Z = (z`)L

`=1 ∈ R
L that is assumed to satisfy

z` > zmin, (2.6)

with zmin a positive constant. According to Ohm’s law, this effect causes a voltage drop z`σ∂nu and is
modeled by a Robin-type boundary condition [53]

u + z`σ∂nu = U`, on e`, ` = 1, . . . , L. (2.7)

Now, assuming that the current flowing on each electrode is equal to the current injected and that
there is no current flow on the parts of the boundary where there is no electrode, we have∫

e`
σ∂nu ds = I`, ` = 1, . . . , L, (2.8)

σ∂nu = 0, on ∂Ω \ Γe. (2.9)

The CEM is the following forward problem for EIT: given a current pattern I = (I`)L
`=1 ∈ R

L
� , a

conductivity distribution σ satisfying (2.5) and contact impedances Z = (z`)L
`=1 ∈ R

L, find the pair
(u,U) ∈ H := H1(Ω)⊕RL

� solution to the boundary-value problem (2.4)-(2.7)-(2.8)-(2.9). Existence of
solution is ensured by the condition

L∑
`=1

I` = 0 (2.10)

whereas the uniqueness is proved by assuming

L∑
`=1

U` = 0. (2.11)

The variational formulation of the CEM forward problem reads: Find (u,U) ∈ H such that

Bσ((u,U), (w,W)) =

L∑
`=1

I`W`, (2.12)

for all (w,W) ∈ H, where the bilinear form Bσ : H × H −→ R is defined by

Bσ((u,U), (w,W)) :=
∫

Ω

σ∇u · ∇w dx +

L∑
`=1

1
z`

∫
e`

(u − U`)(w −W`) ds. (2.13)
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Existence and uniqueness of solution (u,U) ∈ H has been proved using the Lax-Milgram theorem
in [53]. Indeed, the bilinear form Bσ is bounded and coercive on H with respect to norm ‖ · ‖H given

by ‖(u,U)‖2H := ‖u‖2H1(Ω) +

L∑
`=1

U2
` .

Remark 1. The proof is based on the fact that the space (H, ‖ · ‖H) and the quotient space (H1(Ω) ⊕
RL)/R equipped with the following norm

‖(u,U)‖∗ =

‖∇u‖2L2(Ω) +

L∑
`=1

∫
e`
|u − U`|

2 dS

1/2

(2.14)

are norm-equivalent [53].

In the medical applications that we have in mind, the computational domain Ω may represent a
head model or a torso and is composed of different tissues or organs (see Section 5). In this context, we
consider a partition of Ω into M open disjoint subdomains (Ωi)i=1,...,M, Ωi ⊂ Ω, with smooth surfaces

such that Ω =

M⋃
i=1

Ωi. We require that σ|Ωi ∈ C(Ωi), 1 ≤ i ≤ M, and assumption (2.5) to prove the

existence and uniqueness of a weak solution (u,U) ∈ H for the CEM problem. The result is again a
consequence of the Lax–Milgram theorem [53].

3. Sensitivity analysis

Sensitivity indicates the behavior of the potential when there is a slight variation of physical
parameters. Here, we are interested in the sensitivity with respect to the conductivity and with respect
to the contact impedance of the electrodes, in order to understand the effect of uncertainty in their
values on the CEM forward model. This permits to understand the impact of possible perturbations of
the conductivity or small electrode defects on the potential measurements. Mathematically, a rigorous
way to describe sensitivity is given by Gâteaux differentiability which expresses a weak concept of
derivative.

Definition 1. Let w : X → Y be an application between two Banach spaces X and Y. Let O ⊂ X be an
open set. The directional derivative Dµw(p) of w at p ∈ O in the direction µ ∈ X is defined by

Dµw(p) = lim
h→0

w(p + µh) − w(p)
h

if the limit exists. If Dµw(p) exists for any direction µ ∈ X and if the map µ 7→ Dµw(p) is linear
continuous from X to Y, w is said to be Gâteaux differentiable at p.

3.1. Sensitivity analysis with respect to a perturbation of the conductivity

We introduce the (open) space of admissible conductivities

Padm := {σ ∈ L∞(Ω)|σmin < σ < σmax}.

We set (u,U) := (u(·, σ),U(σ)) as the solution of the variational formulation (2.12). Problem (2.12)
with conductivity σ ∈ Padm admits a unique solution (u,U) ∈ H. The aim is to prove differentiability
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of (u,U) with respect to σ and to identify its derivative in a given direction µ. We consider a direction
µ ∈ L∞(Ω) with ‖µ‖∞ = 1 such that σ + hµ ∈ Padm for any h ∈ [−h0, h0], h0 > 0. The solution of the
perturbed CEM forward problem with conductivity σ+ hµ is (uh,Uh) := (u(·, σ+ hµ),U(σ+ hµ)) ∈ H.
The associated variational formulation reads: find (uh,Uh) ∈ H such that

Bσ+hµ((uh,Uh), (w,W)) =

L∑
`=1

I`W`, (3.1)

for all (w,W) ∈ H, where the bilinear form is defined by

Bσ+hµ((uh,Uh), (w,W)) :=
∫

Ω

(σ + hµ)∇uh · ∇w dx +

L∑
`=1

1
z`

∫
e`

(uh − Uh
` )(w −W`) ds. (3.2)

In the sequel, we write a . b if there is a constant C > 0 independent from the quantities a and b such
that a ≤ Cb. We have the following preliminary lemma.

Lemma 1. Let σ ∈ Padm and h0 > 0 such that σ + hµ ∈ Padm for any h ∈ [−h0, h0] and any µ ∈
L∞(Ω) with ‖µ‖L∞(Ω) = 1. Let (u,U) and (uh,Uh) be the respective solutions in H of the variational
problems (2.12) and (3.1) for all (w,W) ∈ H. Then, we have the following estimate

‖∇(uh − u)‖L2(Ω) . h‖µ‖L∞(Ω).

Proof. Subtracting (2.12) from (3.1) leads to

Bσ((uh − u,Uh − U), (w,W)) = −h
∫

Ω

µ∇uh · ∇w dx, ∀(w,W) ∈ H. (3.3)

Taking (w,W) = (uh − u,Uh − U) and using the Cauchy-Schwarz inequality, we get

|Bσ((uh − u,Uh − U), (uh − u,Uh − U))| ≤ h‖µ‖L∞(Ω)‖∇uh‖L2(Ω)‖∇(uh − u)‖L2(Ω). (3.4)

Considering both the coercivity of Bσ on H and the equivalence of the norms ‖ · ‖H and ‖ · ‖∗ (see
Remark 1) in (3.4) leads to

‖(uh − u,Uh − U)‖2∗ . h‖µ‖L∞(Ω)‖∇uh‖L2(Ω)‖∇(uh − u)‖L2(Ω).

Furthermore, the definition of the ‖ · ‖∗-norm gives

‖∇(uh − u)‖L2(Ω) . ‖(uh − u,Uh − U)‖∗.

Thus we have
‖(uh − u,Uh − U)‖2∗ . h‖µ‖L∞(Ω)‖∇uh‖L2(Ω)‖(uh − u,Uh − U)‖∗. (3.5)

We study in the same way the variational problem (3.1), that is, we again use the coercivity of Bσ+hµ,
the definition of the ‖ · ‖∗-norm, and the equivalence of the norms ‖ · ‖H and ‖ · ‖∗ to prove that

‖∇uh‖L2(Ω) ≤ C(σmin)
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with C(σmin) a positive constant independent from h. Hence, (3.5) reads

‖(uh − u,Uh − U)‖∗ . h‖µ‖L∞(Ω)

and finally, applying again the definition of the norm ‖ · ‖∗, we conclude

‖∇(uh − u)‖L2(Ω) . h‖µ‖L∞(Ω).

�

Proposition 1. Let σ ∈ Padm and h0 > 0 such that σ + hµ ∈ Padm for any h ∈ [−h0, h0] and µ ∈ L∞(Ω)
with ‖µ‖L∞(Ω) = 1. Then the solution (u(·, σ),U(σ)) of (2.12) is Gâteaux differentiable with respect to
σ. Moreover, the Gâteaux derivative of (u,U) in the direction µ ∈ L∞(Ω) is the unique solution of the
following variational problem: find (u1,U1) ∈ H such that

Bσ((u1,U1), (w,W)) = −

∫
Ω

µ∇u · ∇w dx. (3.6)

for all (w,W) ∈ H.

Proof. Let us introduce the differential quotients

u1,h :=
uh − u

h
and U1,h :=

Uh − U
h

.

Subtracting (2.12) from (3.1) and dividing by h leads to

Bσ((u1,h,U1,h), (w,W)) = −

∫
Ω

µ∇uh · ∇w dx, ∀(w,W) ∈ H. (3.7)

We compare the previous formulation (3.7) with the variational formulation (3.6)∫
Ω

∇(u1,h − u1) · ∇w dx +

L∑
`=1

1
z`

∫
e`

((u1,h − u1) − (U1,h
` − U1

` ))(w −W`) ds = −

∫
Ω

µ∇(uh − u) · ∇w dx.

We take (w,W) = (u1,h − u1,U1,h − U1) and get

Bσ((u1,h − u1,U1,h − U1), (u1,h − u1,U1,h − U1)) ≤ ‖µ‖L∞(Ω)‖∇(uh − u)‖L2(Ω)‖∇(u1,h − uh)‖L2(Ω).

The coercivity of Bσ on H and the equivalence of the norms ‖ · ‖H and ‖ · ‖∗ (see (2.14)) give

‖(u1,h − u1,U1,h − U1)‖2∗ . ‖µ‖L∞(Ω)‖∇(uh − u)‖L2(Ω)‖∇(u1,h − uh)‖L2(Ω)

and the definition of the ‖ · ‖∗-norm leads to

‖(u1,h − u1,U1,h − U1)‖2∗ . ‖µ‖L∞(Ω)‖∇(uh − u)‖L2(Ω)‖(u1,h − u1,U1,h − U1)‖∗.

Hence, we obtain
‖(u1,h − u1,U1,h − U1)‖∗ . ‖µ‖L∞(Ω)‖∇(uh − u)‖L2(Ω). (3.8)
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Finally, from Lemma 1, (3.8) reads

‖(u1,h − u1,U1,h − U1)‖∗ . h‖µ‖2L∞(Ω).

This proves the strong convergence of the sequence (u1,h,U1,h)h to (u1,U1) in H.
Now it remains to show that the map µ 7→ (u1,U1) is linear continuous from L∞(Ω) to H. For

fixed µ, the derivative is defined by the solution of (3.6) and the right-hand side of (3.6) is linear in
µ. The continuity of the linear application µ 7→ (u1,U1) follows from the following estimate: taking
(w,W) = (u1,U1) in (3.6), we get

‖(u1,U1)‖∗ . ‖µ‖L∞(Ω).

This yields the continuity of the directional derivative with respect to µ and proves that (u(·, σ),U(σ))
is Gâteaux differentiable with respect to the conductivity σ. �

The derivative (u1,U1) of the potential (u,U) with respect to the conductivity σ in the direction µ is
solution of the following boundary value problem

−∇ · (σ∇u1) = ∇ · (µ∇u) in Ω,

u1 + z`σ∂nu1 = −z`µ∂nu + U1
` on e`, ` = 1, . . . , L,∫

e`
σ∂nu1 ds = −

∫
e`
µ∂nu ds ` = 1, . . . , L,

σ∂nu1 = −µ∂nu on ∂Ω \ Γe,

(3.9)

where u is the solution of the unperturbed problem, i.e., it satisfies ∇ · (σ∇u) = 0. Formally, consider
a perturbation of σ of the form σ + µh for fixed µ. The potential uh is the solution of the perturbed
equation ∇ · ((σ + µh)∇u) = 0. Subtracting the above equations and dividing by h yields

−∇ ·
(
σ∇

(uh − u
h

))
= ∇ · (µ∇u).

At the limit h → 0, we get that the sensitivity u1 satisfies the first equation of (3.9). The different
boundary equations can be obtained in a similar way. The variational formulation of the problem (3.9)
is given by (3.6).

Remark 2. The Fréchet differentiability of the map (σ, y) 7→ (u,U), where y := 1/Z, has been proved
by Kaipio et al (see [36] Theorem 2.3). Indeed, it implies the Gâteaux differentiability of the potential
with respect to both the conductivity σ and the inverse 1/Z of contact impedance. Nevertheless, the
sensitivity analysis of the forward CEM needs only the existence of all the directional derivatives of
(u,U). We have detailed the proof of Proposition 1 for readers who want to deepen the concept of
sensitivity analysis for PDEs. Furthermore, we propose a proof for the Gâteaux differentiability of
the potential with respect to Z (and not to 1/Z as in [36]) and give an expression of the directional
derivatives of (u,U) in that case (see Section 3.2 Proposition 2 and Appendix).

3.2. Sensitivity analysis with respect to a perturbation of the contact impedance

We introduce the set of admissible contact impedances

Zadm := {Z ∈ RL|zmin < z` < zmax},

with 0 < zmin ≤ zmax < +∞. Similar arguments to those in the proof of Proposition 1 lead to the
following result.
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Proposition 2. Let I be a fixed current pattern and σ a known conductivity distribution satisfying (2.5).
Let Z ∈ Zadm such that Z + ηh ∈ Zadm for any h ∈ [−h0, h0] and η ∈ RL. Then the solution (u,U) of
(2.12) is Gâteaux differentiable with respect to Z. Furthermore, its Gâteaux derivative in the direction
η is the unique solution of the following variational problem: find (u2,U2) ∈ H such that

Bσ((u2,U2), (w,W)) =

L∑
`=1

η`

z2
`

∫
e`

(u − U`)(w −W`) ds (3.10)

for all (w,W) ∈ H.

The full proof of Proposition 2 is given in the Appendix. The derivative (u2,U2) of the potential
(u,U) with respect to the contact impedance Z in the direction η is solution of the following boundary
value problem 

∇ · (σ∇u2) = 0 in Ω

u2 + z`σ∂nu2 = −η`σ∂nu + U2
` on e`, ` = 1, . . . , L,∫

e`
σ∂nu2 ds = 0 ` = 1, . . . , L,

σ∂nu2 = 0 on ∂Ω \ Γe.

(3.11)

The variational formulation of the problem (3.11) is given by (3.10) subject to the above boundary
conditions.

Remark 3. Using the same arguments as in the proofs of Propositions 1 and 2, we can show that (u,U)
is Gâteaux differentiable with respect to both σ and Z, simultaneously. The derivative (u3,U3) is the
unique element in H satisfying

Bσ((u3,U3), (w,W)) = −

∫
Ω

µ∇u · ∇w dx +

L∑
`=1

η`

z2
`

∫
e`

(u − U`)(w −W`) ds

for all (w,W) ∈ H. We recognize that

(u3,U3) = (u1,U1) + (u2,U2)

where (u1,U1) and (u2,U2) are the respective unique solutions of problems (3.7) and (3.10). It seems
that it is more interesting to study the sensitivity with respect to σ and Z separately to better understand
the influences of perturbations in each parameter on the CEM.

4. Finite element formulation

In this section, we address the discretization of the different variational problems. We use the
finite element method (FEM) to compute an approximate solution of the CEM and the sensitivity
equations (3.6) and (3.10).

4.1. Discretization for the CEM forward problem

We consider a triangular (respectively tetrahedral) mesh Th for 2D (respectively 3D) geometries Ω.
For any mesh parameter h, we denote by Ωh the discrete domain and by N the number of nodes. On Th,
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we introduce Xh the standard vector space of Lagrange finite elements of type P1. The approximation
uh ∈ Xh of the electric potential u is of the form

uh(x) =

N∑
j=1

v jϕ j(x), x ∈ Ωh, (4.1)

where the functions ϕ j are linear basis functions. We focus on the numerical implementation proposed
in [36]. We explain here the main lines of the approach.

To impose the uniqueness condition (2.11), a different representation of the voltage U is introduced.
Define a set of vectors φ` ∈ RL, ` = 1, . . . , L − 1, by φ1 = (1,−1, 0, . . . , 0)T , φ2 = (1, 0,−1, . . . , 0)T ,
. . . , φL−1 = (1, 0, . . . ,−1)T . The approximation Uh of U is expressed as

Uh =

L−1∑
k=1

βkφk, (4.2)

where βk ∈ R, k = 1, . . . , L− 1. Let β = (βk)T ∈ RL−1 and define the matrix P = (φ1| . . . |φL−1) ∈ RL×L−1.
Thus, the voltages Uh are determined by

Uh = Pβ. (4.3)

Consider the test functions (w,W) = (ϕi, 0). Substituting (4.1)-(4.2) to (2.12), we get for each
i = 1, . . . ,N

N∑
j=1

v j

∫
Ωh

σ∇ϕ j · ∇ϕi dx +

L∑
`=1

1
z`

∫
e`

 N∑
j=1

v jϕ j −

L−1∑
k=1

βkφk

ϕi ds = 0.

We get the following linear system [
S + M C

] [v
β

]
=

[
0RN

]
, (4.4)

with v = (v j)N
j=1 ∈ R

N , S = (S i j),M = (Mi j) ∈ RN×N of respective coefficients S i j =

∫
Ωh

σ∇ϕ j · ∇ϕi dx

and Mi j =

L∑
`=1

1
z`

∫
e`
ϕ jϕi ds, and C = (Ci`) ∈ RN×(L−1) with Ci` = −

(
1
z1

∫
e1

ϕi ds −
1

z`+1

∫
e`+1

ϕi ds
)
.

Furthermore, the conditions (2.7) and (2.8) give

1
z`

∫
e`

(U` − u) ds = I`, ` = 1, 2, . . . , L. (4.5)

Then, the approximations (4.1) and (4.2) are used in (4.5). In order to obtain a symmetric system
of equations in the end, the number of equations above should be reduced to L − 1 which is done by
subtracting from I1 all the remaining current values I`, ` = 2, 3, . . . , L. We have

I1 − I2 =

N∑
j=1

(
−

1
z1

∫
e1

ϕ j ds +
1
z2

∫
e2

ϕ j ds
)

uh
j +

(
1
z1

∫
e1

ds +
1
z2

∫
e2

ds
)
β1

+

L−1∑
`=1,`,1

(
1
z1

∫
e1

ds
)
β`
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I1 − I3 =

N∑
j=1

(
−

1
z1

∫
e1

ϕ j ds +
1
z3

∫
e3

ϕ j ds
)

uh
j +

(
1
z1

∫
e1

ds +
1
z3

∫
e3

ds
)
β2

+

L−1∑
`=1,`,2

(
1
z1

∫
e1

ds
)
β`

...

I1 − IL =

N∑
j=1

(
−

1
z1

∫
e1

ϕ j ds +
1
zL

∫
eL

ϕ j ds
)

uh
j +

(
1
z1

∫
e1

ds +
1
zL

∫
eL

ds
)
βL−1

+

L−1∑
`=1,`,L−1

(
1
z1

∫
e1

ds
)
β`.

Note that
∫

e`
ds = |e`|, where |e`| is the length (respectively the area) of the electrode in the two-

dimensional (respectively in the three-dimensional) case and that PT I = (I1 − I2, I1 − I3, . . . , I1 − IL)T .
Therefore, we have the following matrix form of the L − 1 equations equivalent to (4.5)[

CT G
] [v
β

]
=

[
PT I

]
, (4.6)

where G ∈ R(L−1)×(L−1) is given by

Gik =


|e1|

z1
, i , k

|e1|

z1
+
|ek+1|

zk+1
, i = k.

Finally, an approximate solution of the CEM is obtained by solving the following linear system of
size N + L − 1 [

S + M C
CT G

] [
v
β

]
=

[
0RN

PT I

]
. (4.7)

The vector v = (v j) j ∈ R
N gives the approximation uh of the potential u, and β leads to the calculation

of the voltages Uh at the electrodes using (4.3).

4.2. Discretization for the sensitivity equation with respect to the conductivity

We again apply the approach of Kaipio et al [36] described previously. The approximation u1
h of the

sensitivity u1 is defined by

u1
h(x) =

N∑
j=1

v1
jϕ j(x) (4.8)

where v1
j is the approximated value of u1 at the jth node. To ensure that the potential U1 satisfy the

condition (2.11), we search the approximation U1
h of U1 under the form

U1
h =

L−1∑
k=1

β1
kφk, (4.9)
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with U1
h = Pβ1 and β1 = (β1

k)T ∈ RL−1 (see (4.3)).
We set the test functions (w,W) = (ϕi, 0). We substitute (4.1), (4.8) and (4.9) to (3.6), and we get

for i = 1, . . . ,N
N∑

j=1

v1
j

∫
Ωh

σ∇ϕ j · ∇ϕi dx +

L∑
`=1

1
z`

∫
e`

 N∑
j=1

v1
jϕ j −

L−1∑
k=1

β1
kφk

ϕi ds = −

N∑
j=1

v j

∫
Ωh

µ∇ϕ j · ∇ϕi dx, (4.10)

where v = (v j)N
j=1 represents the approximation of the solution u of the unperturbed CEM (2.4)-(2.7)-

(2.8)-(2.9). Furthermore, from the boundary conditions in (3.9), we deduce

1
z`

∫
e`

(U1
` − u1) ds = 0 ` = 1, 2, . . . , L. (4.11)

We use the same method which is presented previously to treat (4.5). Finally, we obtain the following
linear system of size N + L − 1 [

S + M C
CT G

] [
v1

β1

]
=

[
Fv

0RL−1

]
, (4.12)

where v1 = (v1
j)

N
j=1, F = (Fi j) ∈ RN×N with coefficients Fi j = −

∫
Ωh

µ∇ϕ j · ∇ϕi dx. The vector v is

computed using the resolution of the linear system (4.7).

4.3. Discretization for the sensitivity equation with respect to the contact impedance

The approximation of the potential (u2,U2) is given respectively by

u2
h(x) =

N∑
j=1

v2
jϕ j(x), (4.13)

where v2
j is the approximation of the value of u2 at the jth node, and

U2
h =

L−1∑
k=1

β2
kφk, (4.14)

with U2
h = Pβ2 and β2 = (β2

k)T ∈ RL−1. The approximations (4.13) and (4.14), and the choice of test
functions (w,W) = (ϕi, 0) in (3.10) give for i = 1, . . . ,N

N∑
j=1

v2
j

∫
Ωh

σ∇ϕ j · ∇ϕi dx +

L∑
`=1

1
z`

∫
e`

 N∑
j=1

v2
jϕ j −

L−1∑
k=1

β2
kφk

ϕi ds

=

N∑
j=1

v j

 L∑
`=1

η`

z2
`

∫
e`
ϕiϕ j ds

 − L∑
`=1

U`
h

(∫
e`

η`

z2
`

ϕi ds
)
, (4.15)

where v = (v j)N
j=1 ∈ R

N is the approximation of the potential u of the unperturbed CEM (2.4)-(2.7)-
(2.8)-(2.9) and Uh = (U`

h) ∈ RL is obtained from (4.2). The boundary conditions in (3.11) lead to the
relation

1
z`

∫
e`

(U2
` − u2) ds =

η`I`
z`
, ` = 1, 2, . . . , L. (4.16)
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We get the following linear system of size N + L − 1[
S + M C

CT G

] [
v2

β2

]
=

[
Qv + DUh

PTI

]
, (4.17)

where v2 = (v2
j)

N
j=1 ∈ R

N , Q = (Qi j) ∈ RN×N with Qi j =

L∑
`=1

η`

z2
`

∫
e`
ϕiϕ j ds, D = (Di`) ∈ RN×L with

Di j = −
η`

z2
`

∫
e`
ϕi ds, and I =

(η`I`
z`

)
`
∈ RL.

5. Numerical sensitivity analysis

We study numerically how a slight variation of the conductivity or of the contact impedance of
the electrodes affect the electric potential u and the EIT measurements U ∈ RL for several two- and
three-dimensional configurations. To this end, we compute the numerical sensitivity u1

h of the electric
potential in the domain and the sensitivity U1

h of the measured voltages at electrodes (see (4.8) and (4.9)
respectively) with respect to a small-amplitude perturbation in the conductivity. And we compute the
numerical sensitivity u2

h of the electric potential in the domain and the sensitivity U2
h of the measured

voltages at electrodes (see (4.13) and (4.14) respectively) with respect to a small perturbation in the
contact impedance of some electrodes. This provides dimensionless qualitative indicators. The electric
potential and the voltages are more impacted if the values of their sensitivity are high.

5.1. Numerical results in two dimensions

5.1.1. Set up

We consider three geometries: the unit disk, a head model, and a thorax (see Figure 1). The
background conductivity in the unit disk is equal to 0.33S .m−1. The head model consists of three
concentric disks with respective (dimensionless) radii r1 = 0.87, r2 = 0.9, and r3 = 1 representing
the three main tissues of the head: brain, skull, and scalp. Each layer is assumed to be homogeneous
and isotropic. The adopted conductivity values are σ1 = σ3 = 0.33S .m−1 for the brain and the scalp,
respectively, and σ2 = 0.004S .m−1 for the skull. A CT scan of the thorax domain is obtained from [58].
Solving the CEM by means of finite elements requires the parametrization of the boundaries of the
lungs, the heart, and the chest. These parametric curves are approximated using Fourier series. The
coefficients of the Fourier series are estimated by finding the parametric curve that fits the data points on
the boundary curve. With this, any practical domain or object may be studied for real-life applications
of EIT. The background conductivity modeling the blood is set to 0.67S .m−1. The conductivities of the
lungs and the heart are, respectively, fixed to 0.09S .m−1 and 0.4S .m−1 [44].

For the numerical simulations, L = 32 electrodes are attached around the boundary of the studied
domain Ω (see Figure 2). The current pattern I = (I`)` is defined by

I` = sin
(
2π`
L

)
, ` = 0, 1, 2, . . . , L − 1.

In order to impose the conservation of charge in real-life systems, when a current is injected through
one electrode, its corresponding negative measure is injected through the opposite electrode. The
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sine function satisfies this requirement in 2D set-up and [53] discussed in detail this choice of current
pattern. All simulations are executed with the software FreeFem++ [29]. The different linear systems
are solved with the default direct sparse solver in FreeFem++.

Figure 1. 2D geometries: a unit disk, a head model, and a thorax.

Figure 2. Location of the electrodes.

5.1.2. Sensitivity with respect to conductivity

The sensitivity (u1
h,U

1
h) of the potential in the given direction µ is computed as the solution of the

linear system (4.12) presented in Section 4. The contact impedance is set to be constant across all
electrodes on the boundary, that is, z` = 0.1, ∀` = 0, . . . , L − 1.

Unit disk. We consider a small-amplitude perturbation in the conductivity. This perturbation is
modeled by a disk D = Dr(x0) of radius r centred at x0. The direction of the computed derivative is
µ = 1D. A FEM mesh structure with 17 662 triangular elements and 8 992 nodes is used with mesh
size h = 0.038. At the top of Figure 3, the perturbation of radius r = 0.1 is placed at two different
positions, namely x0 = (0.4, 0) (called configuration I) and x0 = (0.7, 0) (called configuration II). In the
bottom left of Figure 3, we report the sensitivity corresponding to the circular inhomogeneity centered
at x0 = (0.4, 0) for a bigger radius r = 0.3 (called configuration III). For each test-case, we report the
map of the numerical sensitivity u1

h. The simulations indicate how the position of the inhomogeneity
in the conductivity affects sensitivity. In particular, it shows that the largest values of the sensitivity
are observed around the inhomogeneity and the sensitivity decreases away from the defect. Also,
increasing the inhomogeneity’s size increases the amplitude of the sensitivity significantly. Finally,
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in the bottom right of Figure 3, we present the sensitivity corresponding to two circular perturbations
(called configuration IV): one centered at x0 = (0.4, 0) of radius r = 0.1 and the other centered at
x0 = (−0.4,−0.5) of radius r = 0.2.

To complete observations of Figure 3, Table 1 reports the sensitivity values U1
h of the voltages (i.e.

of the EIT measurements) at some chosen electrodes. For configurations I and II, we have selected the
electrodes e4 and e30 which are located on the side of the conductivity perturbation, and the electrodes
e13 and e17 which are on the opposite side. The sensitivity U1

h recorded at the electrodes near the
inclusion, namely the components U1

h(4) and U1
h(30) at electrodes e4 and e30, has bigger values than

at the ones far from it (i.e. the components U1
h(13) and U1

h(17) at electrodes e13 and e17). A factor of
10 is observed. Thus the electrodes e4 and e30 retain more information. Furthermore, as expected, the
sensitivity U1

h becomes larger when the inclusion is very close to the boundary (Configurations II and
IV) and when the inclusion is bigger in size (Configurations III and IV). Same conclusions are obtained
in [62] using another definition of the sensitivity.

(a) Unit disk - I (b) Unit disk - II

(c) Unit disk - III (d) Unit disk - IV

Figure 3. Unit disk. Numerical sensitivity u1
h of the electric potential with respect to the

conductivity (Top left (Configuration I): x0 = (0.4, 0), r = 0.1. Top right (Configuration II):
x0 = (0.7, 0), r = 0.1. Bottom left (Configuration III): x0 = (0.4, 0), r = 0.3. Bottom right
(Configuration IV): two disjoint perturbations, one is centered at x0 = (0.4, 0) with radius
r = 0.1 and the other is centered at (−0.4,−0.5) with radius 0.2).
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Table 1. Unit disk. Numerical sensitivity U1
h of the voltages

with respect to conductivity at selected electrodes for the four
configurations I-IV given in Figure 3.

Unit disk

Electrode I II III IV

4 -0.0444 -0.0720 -0.4054 -0.0926

13 0.0003 0.0013 0.0036 0.0354

17 -0.0004 0.0023 -0.0046 -0.1593

30 0.0409 0.0737 0.3779 0.0040

Head model. First, we study the effect of a small perturbation in the conductivity of the region
Ω1 modeling the brain. The mesh characteristics are h = 0.0368, 17 952 triangular elements, and
9 137 nodes. Figure 4 compares the sensitivity map of the potential with respect to a perturbation
of different locations and areas. We perform the same test-cases as for the unit disk (see Figure 3).
We observe a similar behaviour of the sensitivity, with respect to the location, size, and number of
perturbations. However, we note that there is a significant decrease in the sensitivity values for all
the test-cases. The values of the sensitivity U1

h of the voltages on the boundary are close to zero (see
Table 2). Nevertheless, here again the values are higher (factor of 10) at the electrodes which are on the
side of the perturbation. The skull with a very small conductivity plays an important role in EIT. The
adult skull is extremely resistive compared to the other tissues and acts as an electrical shield between
the scalp and brain.

Now, we consider the configuration when only the skull conductivity is perturbed (i.e µ = 1Ω2) and
there is no perturbation in the brain. Figure 5 shows the sensitivity map in this case. Furthermore,
the sensitivity values of the voltages at some electrodes for this simulation are given in Table 2 (last
column). They are notably larger than the ones obtained from Configurations I-IV. It confirms that EIT
measurements are highly sensitive to uncertainties in the value of the skull conductivity [20, 21].

Table 2. Head model. Numerical sensitivity U1
h of the voltages with respect to conductivity at

selected electrodes for the four configurations I-IV given in Figure 4 and the one in Figure 5.

Head model

Electrode I II III IV skull

4 -0.0040 -0.0063 -0.0368 -0.0102 -45.80

13 0.0001 0.0002 0.0010 0.0025 0.6728

17 -0.0001 7.7E-05 -0.0012 -0.0139 -14.24

30 0.0034 0.0062 0.0314 0.0011 26.24

Thorax. The numerical sensitivity is computed on a mesh with characteristics: h = 0.0428, 18 450
triangular elements, and 9 386 nodes. Figure 6 shows the effect of a perturbation in the heart and the
lungs conductivity on the sensitivity values. This perturbation may model a congenital cardiac defect
or a pulmonary anomaly in the lungs, respectively. We observe that the interior electric potential is less
sensitive to a presence of an anomaly (of the same size) in the heart than in the lungs. Furthermore, the
largest values of the sensitivity of the boundary voltages are recorded at the electrodes which are close
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to the perturbation (see Table 3).

(a) Head model - I (b) Head model - II

(c) Head model - III (d) Head model - IV

Figure 4. Head model. Numerical sensitivity u1
h of the electric potential with respect to the

conductivity (Top left (Configuration I): x0 = (0.4, 0), r = 0.1. Top right (Configuration II):
x0 = (0.7, 0), r = 0.1. Bottom left (Configuration III): x0 = (0.4, 0), r = 0.3. Bottom right
(Configuration IV): two disjoint perturbations, one is centered at x0 = (0.4, 0) with radius
r = 0.1 and the other is centered at (−0.4,−0.5) with radius 0.2).

Figure 5. Numerical sensitivity u1
h of the electric potential when the skull conductivity is

slightly perturbed.
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(a) Thorax - I (b) Thorax - II

Figure 6. Thorax. Numerical sensitivity u1
h of the electric potential with respect to the

conductivity. Left: perturbation inside the heart x0 = (1.9, 1.75), r = 0.05. Right:
perturbation inside the left lung x0 = (1.25, 1.65), r = 0.05

.

Table 3. Thorax. Numerical sensitivity U1
h of

the voltages with respect to conductivity at selected
electrodes for the configurations I and II given in
Figure 6.

Thorax

Electrode I II

2 -0.0020 -0.0103

19 -0.0001 -0.0004

25 0.0101 0.0046

29 0.0017 0.0139

5.2. Numerical results in three dimensions

5.2.1. Set up

We consider two geometries: the unit ball and a spherical head model. In the unit ball, the
background conductivity is fixed to 0.33S .m−1. The mesh size used for the unit ball is h = 0.074,
for a total of 501 044 tetrahedrons and 87 817 nodes. As in 2D, the spherical head model consists
of three concentric balls B1, B2 and B3, and of respective radii r1 = 0.87, r2 = 0.9 and r3 = 1 (see
Figure 7). The regions Ω1 = B1, Ω2 = B2 \ Ω1 and Ω3 = B3 \ Ω2 represent the brain, the skull, and
the scalp, respectively. The values chosen for the conductivity of these tissues are the same as the 2D
ones: 0.33S .m−1 for the brain and the scalp layers, and 0.004S .m−1 for the bone layer. The mesh uses
572 497 tetrahedrons and 99 546 nodes, ending up with a mesh size of h = 0.074.

We consider standard positioning for the electrodes and use the 10-10 system [22] (see Figure 7).
This system gives us the spherical coordinates of the centers of L = 71 electrodes which are represented
by small patches: the intersection of ∂Ω with a ball of radius 0.1. The contact impedance is the same
on all electrodes and fixed to 0.1. For ` = 0, 1, . . . , L − 1, the electrode e` is defined by the longitude
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θ` ∈ [0, 2π[ and latitude ϕ` ∈ [−π/2, π/2] of its center. The current pattern I` on this electrode is set to

I` = sin θ` cosϕ`, ` = 0, 1, . . . , L − 1.

Figure 7. Left: layers of the spherical head model. Middle: front view of the 10-10 system
for the electrodes positioning. Right: back view of the 10-10 system.

5.2.2. Sensitivity with respect to conductivity

We compute the numerical sensitivity (u1
h,U

1
h) by solving the linear system (3.6) with direction µ

set as the indicator function of the considered perturbation.
Unit ball. We first consider a spherical perturbation of center (0.45, 0, 0.45) and of radius 0.2.

We give on the top left of Figure 8 the sensitivity u1
h with respect to the conductivity in the direction

corresponding to the indicator function of the ball. Top right and bottom of Figure 8 show the sensitivity
in the direction of a perturbation centered at (0, 0.3, 0.35). This perturbation is of radius 0.2 on the top
right and of radius 0.35 on the bottom. As in 2D, we observe the largest values of the sensitivity around
the support of the perturbation. Increasing the volume of the inhomogeneity increases the amplitude
of the sensitivity.

Spherical head model. We run the same test-cases as for the unit ball. These three perturbations are
all contained in the brain layer. The corresponding sensitivities are given in Figure 9. We observe the
same behavior as with the unit ball if we look at the location of the biggest sensitivity values. However,
the amplitude of these values is significantly lower here than in the unit ball because of the presence of
the skull.

Surface measurements. The inverse problem we are interested in consists of the reconstruction of the
conductivity inside the domain from the knowledge of the electrical potential values on the electrodes,
which represent here the measurements. Assuming that the conductivity in healthy domains is known,
this problem is equivalent to looking for inhomogeneities in this background parameter. Then, a similar
argument to the one involved in [14] can be invoked: the Gâteaux derivative can be used to better
understand the difference between the measurements on healthy and unknown domains.

In Figure 10, we show on the left the values of the numerical sensitivity on the boundary of the
domain. On the right, we can observe the resulting values on the electrodes. Top of the figure is the case
of a spherical perturbation centered at (0, 0.3, 0.35) with radius 0.2. On the bottom, the perturbation is
of same radius and centered at (0,−0.3, 0.35). It appears that the highest absolute values of the surface
measurements are located on the electrodes that are the nearest from the perturbation. The sign of these
values seems to be governed by the sign of the injected current, which is the same as the sign of the
y-coordinate. In fact, we observe that the positive part of the sensitivity is oriented to the part of the
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boundary where a negative current is injected. This behavior matches the one we observed in the 2D
simulations.

Figure 8. Numerical sensitivity u1
h of the electric potential with respect to the conductivity in

the direction of the indicator function of the support of an inhomogeneity. Top left: centered
at (0.45, 0, 0.45) with radius 0.2. Top right: centered at (0, 0.3, 0.35) with radius 0.2. Bottom:
centered at (0, 0.3, 0.35) with radius 0.35.

Remark 4. We can see that the conclusions are qualitatively similar for 2D and 3D configurations.
Nevertheless, it seems easier to observe with eye the impact on the measurements in 3D. Thus, we
report the numerical sensitivity of the potential with respect to contact impedance in 3D only, but keep
the results in function of the conductivity in 2D and 3D for comparative purposes.

5.2.3. Sensitivity with respect to contact impedance

We compute the numerical sensitivity (u2
h,U

2
h) by solving the linear system (3.10) with direction

η ∈ {0, 1}L: for 1 ≤ ` ≤ L, η` is set to 1 if we consider a perturbation on the `-th electrode, and to 0
otherwise.

We model a small perturbation in the contact impedance of the 6th electrode, i.e. η` = 0 for all
1 ≤ ` ≤ L except for η6 = 1. We show on the top left of Figure 11 the values of the sensitivity on the
electrodes, i.e. the values of the vector U2

h . On the top right, we give the values of U2
h in the case of a

perturbation on the 31st electrode. The bottom of this figure reports the values in the case of both the
6th and the 31st electrodes are perturbed.

AIMS Mathematics Volume 6, Issue 7, 7333–7366.



7354

Figure 9. Numerical sensitivity u1
h of the electric potential with respect to the conductivity

in the direction of the indicator function of the support of an inhomogeneity in the brain.
Top left: centered at (0.45, 0, 0.45) with radius 0.2. Top right: centered at (0, 0.3, 0.35) with
radius 0.2. Bottom: centered at (0, 0.3, 0.35) with radius 0.35.

We first notice that a peak in the values of U2
h is easily visible: the highest amplitude is reached

at the perturbed electrode. This behavior has been observed in all cases where a single electrode
is perturbed. Moreover, the case of two perturbed electrodes indicate two peaks, each located at a
perturbed electrode. It is in fact an illustration of the linearity of the sensitivity equation (3.10) with
respect to the direction of differentiation: the vector η in the case of two perturbed electrodes is the sum
of the two vectors corresponding to each electrode perturbed independently. Then, the sensitivities can
also be summed to obtain the sensitivity corresponding to a perturbation of both electrodes.
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Figure 10. Boundary values of the sensitivity of the electric potential with respect to
the conductivity in the direction of the indicator function of the support of a spherical
inhomogeneity.
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Figure 11. Boundary values of the numerical sensitivity of the electric potential with respect
to the contact impedance in the direction of a small perturbation in the contact impedance
of the 6th electrode (top left in red color), of the 31st (top right in blue color) and of both
electrodes (bottom).
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5.3. Sensitivity analysis and inverse conductivity problem

The previous numerical sensitivity analysis shows the effect of a perturbation in the conductivity
or in the contact impedance of electrodes on the measured voltages U = (U`)` ∈ RL which are the
data of the EIT inverse problem. In particular, we have observed that a few number of electrodes
only are sensitive with respect to a small-amplitude perturbation in the conductivity medium and the
impact depends on both the size and location of the inclusion. This section gives some first numerical
simulations that confirm that the reconstruction process can be affected if the information recorded by
those electrodes is missing.

To this end, we consider a domain Ω containing one inclusion. The background conductivity of
the medium and the geometric characteristics of the inclusion are assumed to be known. We would
like to estimate the conductivity value σp inside the perturbation. To solve this inverse problem, we
reformulate it into a minimization problem in R. Then we minimize numerically the cost functional
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, which is a gradient-based optimization
algorithm. No regularization is applied. It was shown numerically in [57] that the BFGS algorithm
is effective in solving the inverse EIT problem if the supports of the inclusions are known. We
compare the numerical approximation of σp for different configurations: measurements taken on all
the electrodes or on some of them only, perturbation in the contact impedance of some electrodes.

5.3.1. Numerical set-up

Let Ω be the unit disk with a (fixed) circular inclusion Ωp centered at (0.7, 0) with radius r = 0.1.
This is Configuration II tested in Section 5.1.2. We work with synthetic data that are generated setting
a background conductivity σb = 0.33S .m−1 and a conductivity σp = 0.4S .m−1 inside the inclusion. The
contact impedance is constant across L electrodes and it is equal to z` = 0.1, ` = 0, . . . , L − 1 (unless
indicated otherwise). To obtain the voltage data U j

obs ∈ R
L, j = 1, . . . , 16, sixteen current patterns are

applied on the electrodes and the first current has the form

I1 = {I1
` }

L−1
`=0 = sin θ`.

The remaining fifteen current patterns are obtained by ‘rotating’ the values of the first current pattern,
that is, to get the second current pattern I2, we have I2(0) = I1(L − 1), I2(1 : L/2) = I1(0 : L/2 − 1),
and I2(L/2 + 1 : L − 1) = I1(L/2 : L − 2). This is repeated until we obtain the fifteen additional
current patterns. A 1% additive noise is applied to the data (compare with [31, 57]). For the numerical
resolution of the forward CEM, an FEM mesh structure with 25 858 triangular elements, 13 122 nodes,
and mesh size 0.0115 was used, while a different mesh system with 17 882 triangular elements, 9 102
nodes, and mesh size 0.0138 was adopted for the inversion method. We implemented the numerical
solver for the forward problem (4.7) with FreeFem++ [29]. The inverse conductivity problem is
reformulated as the minimization of the following cost functional J : R→ R

J(σ̃) =
1
2

16∑
j=1

‖U j(σ) − U j
obs‖

2
2, (5.1)

where the voltages U j(σ) ∈ RL are obtained by solving the forward CEM (2.4)-(2.7)-(2.8)-(2.9) with
the conductivity distribution σ (σb in the background Ω \ Ωp and σ̃ inside the inclusion Ωp) and
the current pattern I j. The minimization is done in MATLAB using the built-in command for BFGS
algorithm, fminunc. Tolerance is set to be the default (ε = 1E-06). Initial guess is set to σ̃0 = 0.6 S .m−1.
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5.3.2. Numerical results

Recall that we have observed in Section 5.1.2 that the sensitivity U1
h of the voltages with respect to

a small-amplitude perturbation in the conductivity has higher values on the electrodes 1-8 and 25-32
(see Configuration II Figure 3 and Table 1). Supposedly, these electrodes contain the main information
for the reconstruction process. On the contrary, the sensitivity values U1

h on electrodes 9-24 are small
or almost zero. This inspires us three first set-ups for the numerical resolution of the inverse problem:

A. The voltages are recorded on the L = 32 electrodes (see Figure 1 left).
B. We keep only the sixteen values of the voltages on electrodes 1-8 and 25-32 (see Figure 12 left)

which are located on the side of the inclusion.
C. We keep only the sixteen values of the voltages on electrodes 9-24 (see Figure 12 right) which

are located on the opposite side of the inclusion.

Furthermore, we have seen that the voltages are sensitive to a small change in the contact impedance
of electrodes and the impact is localized on the electrodes which are perturbed. It is interesting
to observe the effect of such a small variation in the contact impedance of some electrodes on the
numerical resolution of the inverse problem. We add two set-ups. The data are recorded on all the
L = 32 electrodes.

D. We set z = 0.07 for electrodes 1-8 and 25-32 and z = 0.1 for the rest.
E. We set z = 0.07 for electrodes 9-24 and z = 0.1 for the rest.

(a) Location of electrodes
with most information

(b) Location of electrodes
with little to no information

Figure 12. Unit disk with fixed circular inclusion. Location of electrodes that contain the
most information about the perturbation (left) and electrodes that have little to no information
(right).

We report on Figure 13 the numerical reconstruction of the conductivity for the different set-ups,
and in Table 4 the corresponding approximations of σp and relative errors. In agreement with the
numerical sensitivity analysis, the accuracy deteriorates when the EIT measurements on the electrodes
located on the side of the inclusion are missing. Set-up C leads to an error of 35% against 8% for Set-up
B which considers only the electrodes on the side of the inclusion. This confirms that those electrodes
contain the essential data for the reconstruction process. Furthermore, Set-ups D and E illustrate that
the accuracy of the reconstruction depends on the contact impedance of the electrodes too. This first
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study attests that the sensitivity analysis for the CEM leads to a very good understanding of the link
between the parameters of the model and the EIT measurements . We will give in the last part the
conclusions and the perspectives these numerical results suggest.

(a) True conductivity (b) Set-up A. (c) Set-up B.

(d) Set-up C. (e) Set-up D. (f) Set-up E.

Figure 13. Unit disk with a fixed circular inclusion. Numerical estimation of the conductivity
value inside the circular inclusion by solving the minimization problem (5.1) for set-ups A.-
E.

Table 4. Unit disk with a fixed circular inclusion. Numerical estimation of the conductivity
value inside the inclusion: approximated conductivity and relative error.

Unit disk
True A. B. C. D. E.

Approximation 0.4 0.3626 0.3671 0.5426 0.3731 0.3743
Relative error 0.0934 0.0822 0.3566 0.0670 0.0640

6. Conclusion and future works

In this work, we proposed a sensitivity analysis of both the interior electric potential and the EIT
measurements with respect to small changes in conductivity inside an object or in contact impedance of
the surface electrodes. We thoroughly studied the sensitivity of the electric potential using its Gâteaux
differentiability in the theoretical and numerical point of view. We conclude that the useful information
for the inversion process in EIT is essentially contained on a small part of the boundary, that is, at
the electrodes close to the perturbations in the conductivity. The boundary measurements, which
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are the data for the inverse conductivity problem, are more sensitive to anomalies that are located
near the boundary and to those that are larger in size. This study is insightful to know the critical
parameter values (size, location) of a small-amplitude perturbation in the conductivity under which the
measurements are not sensitive, and hence under which inhomogeneities could not be detectable. We
have also observed in the head model that an uncertainty of a tissue conductivity value could have a
great impact on the measurements, and by consequence on the EIT reconstruction.

Furthermore, we have shown that the sensitivity of the measurements to a small perturbation in the
electrode-skin interface is localized on the faulty electrode. By linearity, when the contact impedance
of another electrode is a little bit perturbed, the total sensitivity is the sum of the corresponding
sensitivities. This could be damageable for the EIT conductivity reconstruction if those electrodes are
located on the side of the sought inclusions. This observation is in agreement with other works which
propose to reconstruct the electrode contact impedance as part of the EIT inverse problem [7,17,30,59].

Sensitivity analysis is very instructive to understand how EIT detects changes in inhomogeneous
media with and without anomaly. It would be interesting to explicitly define the relations between the
sensitivity values and the characteristics of the perturbations as in [14, 62]. More precisely, one of our
objectives is to find explicit relations between the EIT measurements and the geometric parameters
(center, volume, . . .) of the inclusions. To know the supports of the inclusions could give good initial
guesses for an iterative reconstruction process. For instance, this would allow to retrieve with a good
accuracy the value of the conductivity inside the inclusions as we have seen in Section 5.3. The first
reconstruction tests presented in this work are promising but this is a full-fledged research project which
needs more time and investigation. This is beyond the scope of this paper. Although shape derivative
has been used in several studies to reconstruct conductivity distribution in EIT [1,31,48,55] but to our
knowledge, a rigourous sensitivity analysis with respect to the shape of the electrode has not been done.
Finally, another conclusion of our study is that the essential data for the inverse conductivity problem
are contained in a few number of electrodes. The accuracy deteriorates if those electrodes (and thus
this part of the boundary) are not taken into account. To be sure not to miss this main information,
data completion methods [5, 13] could be a possible way to get the values of the voltages on all the
boundary of the object under inspection. These are interesting future research directions which require
comprehensive separate studies.

Acknowledgments

This work was funded by the UP System Enhanced Creative Work and Research Grant (ECWRG-
2019-2-11-R).

Conflict of interest

The authors declare there is no conflict of interest in this paper.

References

1. Y. F. Albuquerque, A. Laurain, K. Sturm, A shape optimization approach for electrical impedance
tomography with point measurements, Inverse Probl., 36 (2020), 095006.

AIMS Mathematics Volume 6, Issue 7, 7333–7366.



7361

2. L. Andiani, A. Rubiyanto, Endarko, Sensitivity analysis of thorax imaging using two-dimensional
electrical impedance tomography (EIT), Journal of Physics: Conference Series, 1248 (2019),
012009.

3. A. P. Bagshaw, A. D. Liston, R. H. Bayford, A. Tizzard, A. P. Gibson, A. T. Tidswell, et al.,
Electrical impedance tomography of human brain function using reconstruction algorithms based
on the finite element method, Neuroimage, 20 (2003), 752–764.

4. L. Borcea, Electrical impedance tomography, Inverse Probl., 19 (2003), 997–998.

5. L. Bourgeois, A. Recoquillay, A mixed formulation of the Tikhonov regularization and its
application to inverse pde problems, ESAIM-Math. Model. Num., 52 (2018), 123–145.

6. G. Boverman, B. S. Kim, D. Isaacson, J. C. Newell, The complete electrode model for imaging
and electrode contact compensation in electrical impedance tomography, in 2007 29th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, (2007), 3462–
3465.

7. A. Boyle, A. Adler, The impact of electrode area, contact impedance and boundary shape on EIT
images, Physiol. Meas., 32 (2011), 745–754.

8. A. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its
Applications to Continuum Physics (Rı́o de Janeiro, 1980), 65–73.

9. Z. Chen, Reconstruction algorithms for electrical impedance tomography, PhD thesis, University
of Wollongong, New South Wales, Australia, 1990.

10. M. Cheney, D. Isaacson, J. Newell, Electrical impedance tomography, SIAM REVIEW, 41 (1999),
85–101.

11. K.-S. Cheng, D. Isaacson, J. Newell, D. Gisser, Electrode models for electric current computed
tomography, IEEE T. Biomed. Eng., 36 (1989), 918–924.

12. M. Crabb, Convergence study of 2D forward problem of electrical impedance tomography with
high order finite elements, Inverse Probl. Sci. En., 25 (2017), 1397–1422.

13. M. Darbas, J. Heleine, S. Lohrengel, Numerical resolution by the quasi-reversibility method of a
data completion problem for Maxwell’s equations, Inverse Probl. Imag., 14 (2020), 1107–1133.

14. M. Darbas, J. Heleine, S. Lohrengel, Sensitivity analysis for 3D Maxwell’s equations and its use in
the resolution of an inverse medium problem at fixed frequency, Inverse Probl. Sci. En., 28 (2020),
459–496.
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Appendix: Proof of Proposition 2

Proof. Let (u,U) be the solution in H of the variational problem (2.12). Suppose that Z = (z`)L
`=1 ∈

Zadm, h > 0, and η ∈ RL such that Z̃ := Z + ηh ∈ Zadm. Let (ũh, Ũh) the solution in H of the perturbed
CEM forward problem with contact impedance Z̃. The corresponding variational problem reads as
follows: find (ũh, Ũh) ∈ H such that

BZ̃((ũh, Ũh), (w,W)) =

L∑
`=1

I`W` (6.1)

for all (w,W) ∈ H, where the bilinear form is defined by

BZ̃((ũh, Ũh), (w,W)) :=
∫

Ω

σ∇ũh · ∇w dx +

L∑
`=1

1
z` + η`h

∫
e`

(ũh − Ũh
` )(w −W`) ds. (6.2)

Subtracting (2.12) from (6.1) and dividing by h, we have∫
Ω

σ∇

(
ũh − u

h

)
· ∇w dx +

L∑
`=1

∫
e`

1
h

(
ũh

z` + hη`
−

u
z`

)
−

1
h

 Ũh
`

z` + hη`
−

U`

z`

 (w −W`) ds = 0. (6.3)

A Taylor expansion yields
1

z` + hη`
=

1
z`
− h

η`

z2
`

+ O(h2),

from which we deduce
1
h

(
ũh

z` + hη`
−

u
z`

)
=

1
z`

ũh − u
h
−
η`

z2
`

ũh + O(h).

Now, the differential quotients defined by

uh,2 :=
ũh − u

h
and Uh,2 :=

Ũh − U
h

satisfy the variational formulation

Bσ((uh,2,Uh,2), (w,W)) =

L∑
`=1

η`

z2
`

∫
e`

(ũh − Ũh
` )(w −W`) ds + O(h) (6.4)

for all (w,W) ∈ H. Furthermore, suppose (u2,U2) ∈ H is the solution to the variational problem (3.10)
i.e.

Bσ((u2,U2), (w,W)) =

L∑
`=1

η`

z2
`

∫
e`

(u − U`)(w −W`) ds

for all (w,W) ∈ H. Next, subtracting (3.10) from (6.4), we obtain

Bσ((uh,2 − u2,Uh,2 − U2), (w,W)) =

L∑
`=1

η`

z2
`

∫
e`

((ũh − u) − (Ũh
` − U`))(w −W`) ds + O(h).
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Take (w,W) = (uh,2 − u2,Uh,2 − U2). From the continuity and coercivity of the bilinear form Bσ,
and using the equivalence of norms, we get

‖(uh,2 − u2,Uh,2 − U2)‖∗ . ‖η‖∞‖(ũh − u, Ũh − U)‖∗ + O(h) (6.5)

where ‖η‖∞ := max
1≤`≤L

|η`|. In the same way, we set (w,W) = (ũh − u, Ũh − U) in (6.4) and we get

‖(ũh − u, Ũh − U)‖∗ . h‖η‖∞‖(ũ, Ũ)‖∗ + O(h2)

and hence
‖(uh,2 − u2,Uh,2 − U2)‖∗ . h‖η‖2∞ + O(h2).

This proves the strong convergence of (uh,2,Uh,2)h to (u2,U2).
Lastly we prove that the map η 7→ (u2,U2) is linear continuous from RL to H. Since (u2,U2) is

defined by (3.10) and the right-hand side of (3.10) is linear in η, the map is also linear in η. Taking
(w,W) = (u2,U2) in (3.10), the continuity of the bilinear form gives us the following estimate

‖(u2,U2)‖∗ . ‖η‖∞.

This ends the proof of the Gâteaux differentiability of the CEM forward solution with respect to the
contact impedance. �
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