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Abstract
The pig is a well-known animal model used to investigate genetic and mechanistic aspects

of human disease biology. They are particularly useful in the context of obesity and meta-

bolic diseases because other widely used models (e.g. mice) do not completely recapitulate

key pathophysiological features associated with these diseases in humans. Therefore, we

established a F2 pig resource population (n = 564) designed to elucidate the genetics

underlying obesity and metabolic phenotypes. Segregation of obesity traits was ensured by

using breeds highly divergent with respect to obesity traits in the parental generation. Sev-

eral obesity and metabolic phenotypes were recorded (n = 35) from birth to slaughter (242 ±

48 days), including body composition determined at about two months of age (63 ± 10 days)

via dual-energy x-ray absorptiometry (DXA) scanning. All pigs were genotyped using Illu-

mina Porcine 60k SNP Beadchip and a combined linkage disequilibrium-linkage analysis

was used to identify genome-wide significant associations for collected phenotypes. We

identified 229 QTLs which associated with adiposity- and metabolic phenotypes at genome-

wide significant levels. Subsequently comparative analyses were performed to identify the

extent of overlap between previously identified QTLs in both humans and pigs. The com-

bined analysis of a large number of obesity phenotypes has provided insight in the genetic

architecture of the molecular mechanisms underlying these traits indicating that QTLs

underlying similar phenotypes are clustered in the genome. Our analyses have further con-

firmed that genetic heterogeneity is an inherent characteristic of obesity traits most likely
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caused by segregation or fixation of different variants of the individual components belong-

ing to cellular pathways in different populations. Several important genes previously associ-

ated to obesity in human studies, along with novel genes were identified. Altogether, this

study provides novel insight that may further the current understanding of the molecular

mechanisms underlying human obesity.

Introduction
Obesity, a condition represented by excessive accumulation of body fat, incurs massive eco-
nomic costs and predisposes individuals to a number of other diseases including diabetes,
cardiovascular disorders and osteoarthritis [1, 2]. Obesity is estimated to increase medical
expenses by as much as 2,741 US dollars per person every year [1], and its prevalence is rapidly
increasing worldwide. The etiology of obesity is highly complex and influenced by numerous
factors including genetics and environmental factors such as diet and exercise. Past studies [3]
have demonstrated genetic factors to determine as much as 60–70% of phenotypic variation,
though genetic determinants underlying only 10% of the total genetic variance have been iden-
tified so far [4]. Genetic heterogeneity, confounding between genetics, epigenetic and environ-
mental factors together with imprecise, costly and difficult measurement systems associated
with obesity phenotypes, are some of the factors that are likely to contribute to the discrepancy
between the overall genetic contribution to obesity and the identified genetic determinants.

For a complex trait like obesity, animal models can aid and accelerate the identification of
underlying genetic determinants. Advantages of animal models include the possibility to design
populations with certain genetic characteristics and much better control over environmental
factors. Mouse models have been widely used primarily due to their evolutionary proximity to
humans, their well characterized genome and the relatively low costs involved in housing, han-
dling and breeding them in controlled environments. However, findings from murine models
of obesity have often failed to translate to humans largely due to pathophysiological differences
[5]. Given these differences, alternative animal models for human obesity are needed where
research findings have a greater probability of being translatable to humans. Pig models are of
interest in this regard as the pig genome has been sequenced and they are genetically closer to
humans especially in the context of energy metabolism and obesity [6, 7]. Pigs are omnivores
like humans, and unlike mice, also exhibit almost all of the pathophysiological features related
to obesity and metabolic syndrome in a relatively short time span [7].

Given the potential benefits of using pigs to model human obesity, comprehensively pheno-
typed and genotyped porcine F2 intercross populations were established as a resource for obe-
sity studies. Genetic determinants (Quantitative Trait Loci–QTLs) underlying a broad range of
obesity and metabolic phenotypes were identified via combined linkage disequilibrium linkage
analysis (LDLA). Subsequently, human chromosomal regions syntenic to identified QTL
regions were investigated for previously reported associations with phenotypes comparable to
those in pigs. Brief descriptions of the resource population and statistical methods are pre-
sented herein together with an overview of results from analyses.

Results and Discussion
The overall aim of this study was to identify genetic determinants underlying a broad range of
obesity phenotypes in a porcine resource population, and also to evaluate the efficacy of using
a porcine model of human obesity for genomic investigations. The porcine resource population
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was constructed by crossing two sets of Göttingen minipig boars with Duroc and Yorkshire
sows separately. Göttingen minipigs are susceptible to diet-induced obesity, and by crossing
them to commercial pig breeds that have been genetically selected for leanness over several
generations, we aimed to maximize genetic variance for obesity phenotypes in the resultant F2
populations (see Fig 1 for example). The pigs used in this study were raised in highly controlled
conditions in order to minimize variation associated with environmental factors, and were sub-
sequently extensively phenotyped. Consequently, these phenotypes (e.g. the body adiposity
index, BAI and body mass index, BMI) more accurately represent genetic variation as opposed
to corresponding human phenotypes that also include substantial environmental variation.

In order to perform genome-wide association analyses, a strategy based on combined LDLA
was used instead of traditional single marker analyses. Given that the resource population was
based on an F2 design with a structured pedigree, combined LDLA offered the opportunity to
leverage linkage disequilibrium (LD) both within families and across the population, thereby
mapping QTLs with narrower confidence intervals [8]. This is in contrast to traditional single
marker GWAS which only leverages population-wide LD. On the other hand, since extensive
LD has been demonstrated in several livestock genomes, it should be kept in mind that com-
bined LDLA may not offer significant advantage in terms of resolution compared to GWAS in
genomic regions of high LD. By mapping QTLs separately in the two crosses derived from

Fig 1. Genetic variance of BMI in F2 population. (A) Yorkshire (B) Minipig (C) Duroc are representative images of pig breeds used to create the F2
resource population. D-G are representative images of animals from the F2 population. H represents the distribution of BMI in F2 pigs measured at 220 ± 45
days. (Photos: A and C courtesy DanBred; B courtesy Ellegaard Göttingen Minipigs; D, E, F, G courtesy Thomas Jakob Olsen).

doi:10.1371/journal.pone.0137356.g001
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Durocs and Yorkshires, we hoped, to be able to exploit differences in the breed-specific LD
structure to map QTLs segregating in both crosses to narrower chromosomal regions. This
however, could not be exploited to a great extent since few QTLs underlying obesity and meta-
bolic traits of comparative interest were found to segregate in both crosses. This may be due to
limitations associated with statistical power and sample size that did not allow the identifica-
tion of all QTLs in both crosses, or due to founder effects associated with the limited number of
animal used in the founding generation. Although, compared to the human population the
individual pig breeds are much more homogeneous genetically, the fact that different QTLs
segregate in the two breeds supports the hypothesis that genetic heterogeneity is inherent to
obesity traits. Combined LDLA is based on a linkage disequilibrium multi-locus iterative peel-
ing (LDMIP) algorithm [8] that uses marker information surrounding a locus to compute IBD
probabilities. Since the pig genome is incompletely annotated and some markers are either mis-
placed or their position is not currently known, this could potentially influence the analyses
and should be considered as a potential limitation.

A total of 229 QTLs for 35 different phenotypes (Table 1) were identified as genome-wide
significant (S1 Table). Some of these overlap with QTLs for comparable phenotypes in human
syntenic regions. Overlapping QTLs for comparable phenotypes in human syntenic regions are
indicative of similar genetic mechanisms driving obesity phenotypes in both pigs and humans.
Therefore, it was important for us to assess the extent of overlap to determine the efficacy of
using pigs as a model for human obesity. However, a few limitations were associated with our
assessment of this overlap. Firstly, the NHGRI GWAS catalog [9] was used as a reference data-
base for identification of comparable QTLs in human syntenic regions and our analysis was
confined to results included in this catalog. Secondly, syntenic human chromosomal regions
could not be defined for all porcine QTLs. This was primarily due to QTLs spanning synteny
breakpoints and to ambiguities in the assembly of the porcine genome.

In addition to overlapping human QTLs, several overlapping pig QTLs for comparable or
related phenotypes (e.g. subcutaneous fat, BMI, BAI etc.) were also identified by querying the
AnimalQTLdb [10] (S1 Table). Contrary to the NHGRI GWAS catalog, the AnimalQTLdb
does not use predefined criteria to determine inclusion of QTLs, but instead exhaustively
curates all previously reported QTLs in the literature. Several of these QTLs have confidence
intervals that span across the length of entire chromosomes. Consequently, AnimalQTLdb was
only queried for previously reported pig QTLs up to 3 Mb in size that overlapped QTLs identi-
fied in this study. Thus, information on potential overlap between QTLs spanning larger
regions has not been included.

Of the 35 porcine phenotypes analyzed in this study, 11 phenotypes constituted 114 QTLs,
of which 20 had QTLs for comparable or related phenotypes in human syntenic regions
(Table 2). All porcine autosomes had at least three QTLs each, with the exception of chromo-
some 17 that harbored a single QTL for total cholesterol measured directly in plasma (ct_s).
Porcine autosome 1 (SSC1) harbored the maximum number (n = 44) of QTLs that represented
16 out of the 35 different phenotypes analyzed in this study. However, the highest density of
QTL is on SSC13, harboring 0.83 QTLs per Mb (Figs 2 and 3). Overall, clustering of QTLs
underlying similar phenotypes can be observed providing support for the notion that genes
assigned to the same pathway are clustered in the genome [11].

A substantial proportion of QTLs were identified within the Minipig-Duroc cross compared
to the Minipig-Yorkshire cross (S1 Table, second column). We have defined individual signifi-
cant positions as independent QTLs if located more than 1 cM apart. However, many of the
Minipig-Duroc QTLs are located close together and at the same time, extent of LD is greater in
the Minipig-Duroc cross (S1 Fig). Hence, our definition of QTLs, while appropriate in the
Minipig-Yorkshire cross, may inflate the number of QTLs in the Minipig-Duroc cross by

Comparative Analysis of QTLs in Pigs and Humans

PLOS ONE | DOI:10.1371/journal.pone.0137356 September 8, 2015 4 / 22



splitting up a single QTL into multiple adjacent QTLs. Also, it should be noted that some of the
Minipig-Duroc QTLs are in fact detected in the Minipig-Yorkshire cross, however, at signifi-
cance levels that are borderline to the level considered to be genome-wide significant in this
study (data not shown).

Table 1. Description of phenotypes measured in pigs at different ages, and covariates used in the statistical model for association analyses.

Obesity Phenotypes Model Covariates

back_fat1 Thickness of Subcutaneous Adipose Tissue in Lower Trunk (Measured in mm at Age 3) Sex, Age 3, (Age 3)2

back_fat2 Thickness of Subcutaneous Adipose Tissue in Upper Trunk (Measured in mm at Age 3) Sex, Age 3, (Age 3)2

bai_g Body Adiposity Index (Measured at Age 2) Sex, Age 2, (Age 2)2

bai_s Body Adiposity Index (Measured at Age 1) Sex, Age 1

birth_wgt Birth Weight (Measured in Kgs) Sex

bmi_g Body Mass Index (Measured at Age 2) Sex, Age 2, (Age 2)2

bmi_s Body Mass Index (Measured at Age 1) Sex, Age 1

dg1 Average Daily Weight Gain from Birth to Age 1 (Weight in Kgs) Sex, Age 1

dg2 Average Daily Weight Gain From Age 1 to Age 2 (Weight in Kgs) Sex, Age 2, (Age 2)2

mes_fat Excision of an 8 cm Diameter Section of Mesenteric Fat in the Triangle Between Ileum and Cecum
(Weight in gms)

Sex, Age 3, (Age 3)2

leaf_fat Blunt Removal of Retroperitoneal Fat (Weight in Kgs) Sex, Age 3, (Age 3)2, Length
(Age 3)

ome_fat Blunt Removal of Greater Omentum (Weight in gms) Sex, Age 3, (Age 3)2, Length
(Age 3)

tr_pfat Fat Percentage Trunk Region (DXA scanning) Sex, Age 1

wb_lean Total Lean Mass in Whole Body (DXA scanning, Weight in Kgs) Sex, Age 1, Length (Age 1)

wb_pfat Fat Percentage in Whole Body (DXA scanning) Sex, Age 1

wb_tf Total Fat in Whole Body (DXA scanning, Weight in Kgs) Sex, Age 1, Length (Age 1)

Blood Glucose and Lipoprotein Phenotypes Measured in Plasma

cetp_per Cholesteryl ester transfer protein Activity (CETP activity—Expressed in Percentage at Age 1) Sex, Age 1

ce_s Esterified Cholesterol (Expressed in mmol/L at Age 1) Sex, Age 1

cl_s Free Cholesterol (Expressed in mmol/L at Age 1) Sex, Age 1

ct_g Total Cholesterol (Expressed in mmol/L at Age 3) Sex, Age 3, (Age 3)2

ct_s Total Cholesterol (Expressed in mmol/L at Age 1) Sex, Age 1

hdl_c_g High-density-lipoprotein Cholesterol (Expressed in mmol/L at Age 3) Sex, Age 3, (Age 3)2

hdl_c_s High-density-lipoprotein Cholesterol (Expressed in mmol/L at Age 1) Sex, Age 1

ldl_c_g Low-density-lipoprotein Cholesterol (Expressed in mmol/L at Age 3) Sex, Age 3, (Age 3)2

ldl_c_s Low-density-lipoprotein Cholesterol (Expressed in mmol/L at Age 1) Sex, Age 1

pl_s Phospholipids (Expressed in mmol/L at Age 1) Sex, Age 1

tg_s Triglycerides (Expressed in mmol/L at Age 1) Sex, Age 1

fructosamin Fructosamin (Expressed in μmol/L at Age 3) Sex, Age 3, (Age 3)2

glucose Fasting Glucose (Expressed in mmol/L at Age 3) Sex, Age 3, (Age 3)2

lipase Lipase (Expressed in U/L at Age 3) Sex, Age 3, (Age 3)2

Blood Glucose and Lipoprotein Phenotypes Measured in ApoB depleted Plasma

hdl_ce_s High-Density-Lipoprotein Esterified Cholesterol (Expressed in mmol/L at Age 1) Sex, Age 1

hdl_cl_s High-Density-Lipoprotein Free Cholesterol (Expressed in mmol/L at Age 1) Sex, Age 1

hdl_ct_s High-Density-Lipoprotein Cholesterol (Expressed in mmol/L at Age 1) Sex, Age 1

hdl_pl_s High-Density-Lipoprotein Phospholipids (Expressed in mmol/L at Age 1) Sex, Age 1

hdl_tg_s High-Density-Lipoprotein Triglycerides (Expressed in mmol/L at Age 1) Sex, Age 1

Age 1: 63 ± 10 days; Age 2: 218 ± 45 days; Age 3: 242 ± 48 days

doi:10.1371/journal.pone.0137356.t001
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There were 19 chromosomal regions that were associated with more than one phenotype
(Fig 2) (Table 3), of which 2 QTL regions on chromosome 3 (SSC3:56,689,989 and
SSC3:56,723,081), and another 2 QTL regions on chromosome 5 (SSC5:58,544,792 and
SSC5:60,364,446) are in so close proximity that they may represent two single QTLs influenc-
ing multiple phenotypes. Most of these QTLs (n = 14) influenced cholesterol related pheno-
types. Two QTLs on SSC1 (15,748,172 bp) and SSC5 (58,544,792 bp) influenced fat percentage
of the trunk region as well as of the whole body measured via DXA scanning. QTLs on SSC1

Fig 2. QTLs influencing Obesity related Phenotypes in pigs. Fig 2. (Figure created using Phenogram-
http://visualization.ritchielab.psu.edu/phenograms/plot). Vertical columns labeled 1–18 represent porcine
autosomes SSC1–18. QTL locations are marked on the chromosomes using a proximity algorithm that
minimizes the overlap between individual QTLs for different phenotypes. Different phenotypes are
represented by circles filled with different colors. The description of the abbreviated phenotypes is presented
in Table 1.

doi:10.1371/journal.pone.0137356.g002
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(218,448,574 bp) and SSC7 (132,308,360bp) influenced BMI and the average daily weight gain
measured at different ages. Finally, one QTL on SSC10 (19,668,169) influenced both BMI mea-
sured at 63 ± 10 days and whole body lean mass measured via DXA scanning at the same age.
Hence in most cases, the multiple phenotypes influenced by the same chromosomal position
are interrelated phenotypes most likely influenced by similar cellular pathways.

Fig 3. QTLs influencing Metabolic Phenotypes in pigs. Fig 3. (Figure created using Phenogram- http://
visualization.ritchielab.psu.edu/phenograms/plot). Vertical columns labeled 1–18 represent porcine
autosomes SSC1–18. QTL locations are marked on the chromosomes using a proximity algorithm that
minimizes the overlap between individual QTLs for different phenotypes. Different phenotypes are
represented by circles filled with different colors and the description of the abbreviated phenotypes is
presented in Table 1.

doi:10.1371/journal.pone.0137356.g003
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In addition to identifying QTLs for specific phenotypes, some general inferences can also be
drawn with respect to the biology driving different phenotypes. For example, storage of fat in
intra-abdominal fat compartments (retroperitoneal fat, mesenteric fat, omental fat) appears to
be controlled by separate loci except for a locus from 241.4 to 244.7 Mb on SSC1 which is asso-
ciated with both retroperitoneal and omental fat. None of the loci associated with intra-abdom-
inal fat accumulation are associated with accumulation of subcutaneous fat (back_fat1 and 2).
Even accumulation of subcutaneous fat of upper (back_fat2) and lower trunk region (back_
fat1) seems to be influenced by different genetic loci i.e. lower trunk subcutaneous fat is associ-
ated with loci on SSC15, whereas upper trunk subcutaneous fat is associated with loci on SSC1,
3, 4 and 18. A single locus on SSC1 (15.7 Mb) is associated with both trunk and whole body fat
percentage measured via DXA scanning. On the other hand, trunk fat percentage (tr_pfat) as
measured by DXA scan does not overlap with upper or lower trunk subcutaneous fat except
for a locus on SSC4, 83 Mb. DXA scanning was performed in the young pig whereas trunk sub-
cutaneous fat was measured in adult pigs. The difference in associated QTL may therefore indi-
cate that different molecular mechanisms are involved in fat deposition in the trunk region at
different ages, except for the locus on SSC4 which seems to have a role independent of age.
Another locus on SSC1 (213.9–215.0 Mb) is associated with weight of omental fat, BMI and
daily weight gain in adolescent pigs (dg2). Four regions on SSC3; around 46.1 Mb, from 51.1 to
58.1 Mb, from 109.5 to 120.2 Mb and from 124.6 to 125.0 Mb, are associated with several blood
lipid traits in both early life and during adolescence (Fig 3). Thus, this region seems to harbor a
number of different genes affecting different aspects of the phenotypes involved in plasma cho-
lesterol levels indicating that there is genomic clustering of functionally related genes and co-
regulatory elements [11]. A locus on SSC4 (69.2 Mb) is associated with total HDL-cholesterol
and esterified HDL-cholesterol but not with overall cholesterol level or LDL-cholesterol levels.
The same locus is associated with overall phospholipid level as well as HDL-phospholipid level.

Table 3. Chromosomal positions associated with multiple phenotypes in the pig resource population.

Position Phenotypes

Chr1:11134679 ce_s, ct_s, ldl_c_s

Chr1:15748172 tr_pfat, wb_pfat

Chr1:67106130 hdl_ce_s, hdl_ct_s

Chr1:114718770 hdl_ce_s, hdl_ct_s

Chr1:218448574 bmi_g, dg2

Chr3:46117851 hdl_ce_s, hdl_ct_s

Chr3:56689989 ct_g, ldl_c_g

Chr3:56723081 ce_s, ct_s, ldl_c_s

Chr4:45434589 hdl_pl_s, pl_s

Chr4:69198075 hdl_ce_s, hdl_ct_s, hdl_pl_s, pl_s

Chr5:58544792 tr_pfat, wb_pfat

Chr5:60364446 ce_s, ct_s

Chr7:132308360 bmi_s, dg1

Chr9:2418857 ct_g, hdl_c_g

Chr9:62416702 cl_s, ct_s, ldl_c_s

Chr10:19668169 bmi_s, wb_lean

Chr15:45350470 hdl_ce_s, hdl_ct_s

Chr18:9431105 ce_s, ct_s, ldl_c_s

Chr18:32618335 ce_s, ct_s

doi:10.1371/journal.pone.0137356.t003
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Several QTL regions contained evidence indicative of biological significance. In some cases,
similar QTLs have previously been found in human studies but in other cases, the identified
QTLs are novel and to our knowledge not described before in humans, rodents or pigs. A selec-
tion of the most attractive and biologically significant results is described below:

Obesity Phenotypes
Body Adiposity Index (BAI). A total of 11 QTLs were identified for BAI, of which 8

QTLs were identified for BAI measured at around two months of age (64 ± 11 days, bai_s), and
3 other QTLs were identified for BAI measured at slaughter (220 ± 45 days, bai_g). Amongst
these, an interesting 2 Mb QTL is located on SSC13 (135,407,662–137,685,786) that includes
two genes BACH1 and GRIK1. The corresponding human syntenic region is located on HSA21
that also includes both these genes. Human investigations have identified an intronic SNP
(rs17744121) in BACH1 to be associated with visceral fat in men (p = 6.0E-6) [12], and another
intronic SNP (rs933117) in GRIK1 to be associated with BMI (p = 6.0E-6) [13]. Functionally,
BACH1 is a transcription factor that interacts with MAFK, and can suppress expression of
heme-oxidase 1. GRIK1 encodes a glutamate receptor that serves as the predominant excitatory
neurotransmitter in the mammalian brain.

Body Mass Index (BMI). A total of 23 QTLs were identified for BMI in this study, 6 of
which were identified for BMI measured at around two months of age (64 ± 11 days, bmi_s),
and another 17 were identified for BMI measured at the time of slaughter (220 ± 45 days,
bmi_g). Several of these QTLs, particularly those identified for bmi_g, are located on SSC1, and
overlap with QTLs for comparable phenotypes in human syntenic chromosomal regions. For
example, QTL5 (Table 2) spanning approximately 5 Mb (168,007,706–172,796,697) contains
SMAD6, and is syntenic to a 2.5 Mb chromosomal region on HSA15 containing a SMAD6
intronic variant (rs11858577) associated with subcutaneous fat tissue volume in men and
women (p = 9.0E-06) [12].

QTL6 (Table 2) located on SSC1 (187,060,595–195,320,076) is syntenic to a chromosomal
region on HSA14 that contains three intergenic SNPs associated with BMI (rs7350721,
p = 6.0E-07) [14], visceral adipose tissue to subcutaneous adipose tissue ratio in women
(rs8013477, p = 4.0E-06) [12], and visceral fat in men (rs1530947, p = 5.0E-06) [12]. The por-
cine QTL region along with its corresponding human syntenic region both contains the genes
RPS29, encoding a ribosomal protein, and PELI2, encoding a ubiquitin protein ligase family
member. None of these have a known biological function that relate directly to obesity.

QTL7 (Table 2) covers approximately 20 Mb (196,439,311–215,457,206) on SSC1. This
extended QTL probably represents a series of BMI QTLs on SSC1 which, however, cannot
be precisely delimited in the present study. The region corresponds to a human syntenic
region extending more than 10 Mb on HSA9 which is also rich in obesity QTLs and contains
several variants associated with a range of obesity phenotypes like BMI in asthmatic adults
(rs3780215, p = 7.0E-06) [15], fat mass (rs1340043, 9.0E-06), trunk fat mass (rs6475216,
p = 9.0E-06) [16], subcutaneous adipose tissue of upper trunk in HIV infected men treated
with antiretroviral therapy (rs1944766, p = 3.0E-06) [17], weight (rs2225614, p = 3.0E-06),
waist circumference (rs613391, p = 5.0E-06) [18] and overall volume of subcutaneous and vis-
ceral fat (rs4978053, p = 6.0E-06) [12]. However, none of these human genetic variants have
syntenic porcine positions that are in close proximity to the porcine QTL position with the
strongest association (p = 3.7E-06). In fact, the position of strongest association within QTL7 is
closer to another variant (rs1927702) that has been associated with BMI (p = 6.0E-06) [19], but
is located marginally outside the chromosomal extent of QTL7. Though there are three genes
contained in the human syntenic region (ADAMTSL1, TUSC1 and BNC2), none of these seems
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to have any presently known biological relationship with obesity or any of its related
phenotypes.

QTL10 (Table 2) is a narrow QTL (~ 1.15 Mb) extending between 246,441,732–247,595,657
on SSC1, syntenic to a chromosomal regions on HSA9 that includes a variant (rs10972341)
associated with ‘weight in males’ (p = 9.0E-06) [19].

QTL11 (Table 2) on SSC1 extending between 248,776,413–251,138,962 includes PAX5, and
is syntenic to a narrow human chromosomal region on HSA9 (36,738,650–38,472,147) that
contains an intronic variant (rs16933812) of PAX5 associated with BMI (p = 5.0E-06) and total
fat mass (p = 9.0E-06) [20]. PAX5 is a member of the PAX transcription factor family with a
highly conserved DNA binding motif known as the paired box. PAX5 has been described as a
B-cell specific transcription factor and its dysregulation is associated with different types of leu-
kemia. The gene is also expressed in brain and testes. The protein plays a role in cell prolifera-
tion and is an important regulator in early development.

Upper Trunk Subcutaneous Fat. A total of 13 QTLs for Upper Trunk Subcutaneous Fat
were identified in this study, of which 3 QTLs located on SSC4 overlap with QTLs for compara-
ble traits in corresponding human syntenic chromosomal regions.

QTL 1 and 2 (Table 2) are large QTLs and consequently contain several relevant associa-
tions reported in human syntenic regions. However, none of them seems to be located close to
corresponding porcine chromosomal positions with strongest associations within the QTL
regions. For example, QTL1 (SSC4:30,776,117–46,626,364) with its strongest association at
SSC4:37,649,495, is syntenic toHSA8 (90,948,835–106,785,287) that contains several variants
associated with upper trunk subcutaneous adipose tissue (rs921231, HSA8:91,348,168) [17],
arm fat distribution (rs10504906, HSA8:91,406,400) [17], and Type 2 diabetes (rs7845219,
HSA8:94,925,274; rs896854, HSA8:94,948,283) [21, 22]. One of these genetic variants
(rs921231) is located in the intron of SLC26A7 that belongs to a family of anion transporters
(solute carrier family) reported to be primarily involved in renal physiology [23]. Other mem-
bers of the solute carrier family have been implicated in obesity [24].

Similarly QTL2 (SSC4:54,865,387–75,907,976) with its strongest association at SSC4:
58,665,823, is syntenic to HSA8 (59,931,695–83,944,860) that contains several variants associ-
ated with obesity (rs4735692, HSA8:75,703,428) [25], BMI (rs2922763,HSA8:75,661,476) [4],
waist circumference (rs4471028, HSA8:74,382,740) [26], and overall visceral fat (rs16909318,
HSA8:81,532,989) [12]. One variant (rs16909318) is located in the intron of FABP12 that
belongs to a family of fatty acid transport proteins that has been linked to both obesity [27] and
metabolic syndrome [28].

Blood Glucose and Lipoprotein Phenotypes
Fasting glucose. Three distinct QTL regions were identified to be significantly associated

with fasting glucose levels measured at 242 ± 48 days of birth, of which one QTL position on
SSC9 (5,534,785, p = 3.7E-04) is located within an intron of STIM1. This is a novel QTL and
association between fasting glucose and this locus has, to our knowledge, not been reported
before neither in rodents nor in humans or pigs. Due to its localization within STIM1 it is how-
ever a very interesting QTL. This gene encodes a transmembrane calcium sensor located on the
endoplasmic reticulum that regulates store-operated calcium entry (SOCE). In-vitro studies
using insulin secreting beta cell lines indicate that non-specific inhibitors of SOCE (e.g. SKF-
96365) can inhibit glucose-induced insulin secretion in these cells [29]. Murine studies have
demonstrated that high glucose levels can induce Stim1 expression in micro vessel endothelial
cells [30] and can restore coronary endothelial function in type 1 diabetic mice [31].
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Free Cholesterol. A total of 5 QTLs were identified for free cholesterol measured directly
in plasma. One QTL on SSC12 (12,081,814, p = 4.0E-04) is especially interesting since it has
not been identified in rodents or humans before, and because it is located within an intron of
STRADA. This gene encodes an adaptor protein that interacts and activates STK11 (Also
known as LKB1), which in turn phosphorylates and activates AMPK, a central metabolic sen-
sor that regulates lipid, cholesterol and glucose metabolism in liver, muscles and adipose tissue
[32].

Free cholesterol was also measured in apoB depleted plasma and 5 QTLs were identified for
this phenotype. One QTL (QTL16, Table 2) had a matching QTL for HDL in its corresponding
human syntenic region. QTL16 extends between 29,131,900–31,654,951 on SSC4, and is synte-
nic toHSA6 (96,545,315–96,733,074) containing an intergenic variant (rs7004587) associated
with HDL cholesterol (p = 3.0E-06) [16] that is located between three genes ANGPT1, OXR1,
and ABRA/STARS. Mechanistically, there is no evidence that indicates a role of either of these
genes in regulating plasma cholesterol levels. However, STARS (striated muscle activator of
Rho signaling), encodes a membrane bound protein expressed in cardiac and striated muscles
that enhances Rho-dependent transcription in muscle cells [33]. Rho-GTPases are small signal-
ing G proteins that can also be activated by HDL proteins (e.g. ApoA1) to influence ‘reverse
cholesterol transport’ via HDL carriage from peripheral tissues to liver for eventual elimination
from the body [34]. The colocation of human and porcine QTLs in syntenic chromosomal
regions together with its known biological function, make STARS a putative candidate for fur-
ther studies with respect to cholesterol levels in plasma.

Esterified Cholesterol in Plasma. A total of 10 QTLs were identified for this phenotype,
of which only one QTL (QTL12, Table 2) had a QTL for an indirectly comparable phenotype
in the corresponding human syntenic region. QTL15 extends over a narrow chromosomal
region on SSC3 (56,636,950–57,391,731) and is syntenic toHSA2:81,091,886–81,826,661 that
contains a genetic variant (rs12052359, HSA2:81,645,798) associated with serum bilirubin lev-
els in an African American population (p = 7.4E-06) [35]. While both the porcine QTL region
and the corresponding human syntenic regions do not contain any known genes, the coloca-
tion of these QTLs is interesting because serum bilirubin concentration is known to be
inversely correlated to concentration of esterified cholesterol in serum [36].

Low Density Lipoprotein Cholesterol. A total of 22 QTLs (the maximum for any pheno-
type in this study) were identified for low density lipoprotein cholesterol measured directly in
plasma at 63 ± 10 days of birth. However, half of these QTLs (n = 11) are located on SSC3 in
two separate chromosomal regions extending over approximately 10 Mb. One of these QTL
positions on SSC3 (115,804,895, p = 8.2E-06) is a novel QTL not previously reported in rodents
or human. It is located in an intron of LPIN1 encoding a phosphatidic acid phosphohydrolase
that is a member of a broader family of Lipin proteins that play key roles in triglyceride and
membrane phospholipid biosynthesis [37]. Murine studies indicate that Lipin expression can
influence fat storage capacity of adipocytes and whole-body energy expenditure and fat utiliza-
tion, both of which can directly influence obesity [38]. Human studies have also found LPIN1
expression in visceral adipose tissue to be correlated with body fat percentage, plasma triglycer-
ide level and plasma leptin level. Additionally, LPIN1mRNA levels have been found to be posi-
tively correlated with PPARG and ADIPOQmRNA levels in visceral and subcutaneous adipose
tissue [39]. PPARG and ADIPOQ are highly expressed in adipose tissue [40, 41]; are involved
in cholesterol homeostasis, differentiation of adipocytes and accumulation of lipids (PPARG)
[42–44]; and in modulation of glucose levels and fatty acid oxidation (ADIPOQ) [45].

High Density Lipoprotein Cholesterol. High density lipoprotein-cholesterol measured
directly in plasma at 63 ± 10 and 242 ± 48 days of birth; and indirectly at 63 ± 10 days of birth
in apoB depleted (high-density-lipoprotein fraction) plasma. All these measurements were
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treated as separate phenotypes in the analyses and a total of 26 QTLs were identified, of which
5 chromosomal regions are associated with two different measures of cholesterol and therefore
represent 10 QTLs. Two additional sets of QTLs are within 1.2 Mb of each other that could rep-
resent two QTLs instead of four.

In the context of high-density-lipoprotein cholesterol, an interesting novel QTL associated
with both total cholesterol (p = 1.2E-04) and its esterified fraction (p = 2.1E-04) in apoB
depleted plasma was identified on SSC1 (114,718,770). This chromosomal position is located
in the intron of the RORA gene that encodes a receptor for cholesterol sulphate, 7-dehydroxy-
cholesterol and cholesterol [46–48]. Functionally, it is a key regulator of cholesterol levels [49].
We categorize this QTL as a novel QTL even though human studies have identified genetic var-
iants around RORA that are weakly associated with cholesterol (both HDL and LDL fractions)
[50]

Conclusion
The combined analysis of a large number of obesity phenotypes has provided new and con-
firmed previous insight in the genetic architecture of the molecular mechanisms underlying
these traits. Our analyses have further confirmed that genetic heterogeneity is an inherent char-
acteristic of obesity traits most likely caused by segregation or fixation of different variants of
the individual components belonging to cellular pathways in different populations. Overall,
several QTLs reported in this study are in good accordance with previously reported QTLs for
comparable or related phenotypes in pigs (S1 Table). Several of these QTLs also overlap with
previously reported QTLs for comparable human phenotypes which indicate that similar
genetic mechanisms drive obesity phenotypes in both pigs and humans. The study provides
support for novel QTL regions and candidate genes for obesity and metabolic traits which can
be exploited in future whole genome sequencing projects in humans. Several possibilities of
further analyses of causative variants and molecular pathways exist since the porcine resource
described in this study has not only been extensively phenotyped and genotyped, but also sub-
jected to extensive tissue sampling at slaughter. Results of such future investigations could pro-
vide valuable and novel biological insights into obesity that could potentially be translatable to
humans.

Materials and Methods

Experimental Design and Genotyping
The resource population was established in the following way: In the parental generation seven
purebred Yorkshire (YY) sows and seven purebred Duroc (DD) sows from a DanBred breeding
herd were mated to 14 Göttingen Minipig (MM) boars from Ellegaard A/S (all animals unre-
lated at the grandparental level). Among the DM F1 animals 28 gilts and 16 boars were mated
to produce 285 animals; among the YM F1 animals 26 gilts and 13 boars were mated to pro-
duce 279 animals. The animals were produced and slaughtered in three batches with approxi-
mately the same number of F2 animals from the Duroc and Yorkshire crosses in each batch.
The pigs were kept under normal condition for production pigs in Denmark in pens with 10–
15 animals per pen at a temperature around 20±3°C with ad libitum administration of standard
pig feed and free access to water. Both Duroc and Yorkshire are production breeds that have
undergone extensive selection for leanness and growth traits, while Göttingen minipigs are
mainly used for research purposes and are bred primarily for their small size and ease of han-
dling. Unlike the production pigs, Göttingen minipigs are also susceptible to diet induced obe-
sity and share many metabolic dysfunctions associated with human obesity [51] (Fig 1). All
564 pigs were genotyped using Illumina Porcine 60k SNP Beadchip.
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The project was approved by the Danish Animal Experimentation Board. Animal care and
maintenance have been conducted according to the Danish “Animal Maintenance Act” (Act
432 dated 09/06/2004). The animals were housed at a regular pig farm, and slaughtered at a
commercial slaughterhouse by stunning and bleeding under veterinary supervision. Tissue and
blood samples were collected at slaughter.

Collection of Phenotypes
Extensive phenotypic collection was performed from birth to slaughter (242 ± 48 days) includ-
ing obesity, obesity-related, and metabolic phenotypes; and measurements of fat compartments
at slaughter. In addition, body composition was determined after weaning using dual-energy x-
ray absorptiometry (DXA) scanning at about two months of age (63 ± 10 days). Further details
of pedigree and phenotyping of obesity traits are available in Kogelman et al. [52]. Plasma lipid
levels were assayed by standardized techniques using a Konelab 20 Clinical Chemistry Analyzer
(Thermo Scientific, Sweden) and commercial reagent kits from Roche Diagnostics for Total
Cholesterol (CT) and from ThermoElectron for triglycerides (TG) and High Density Lipopro-
tein Cholesterol (HDL-C) levels (direct method). Free cholesterol (CL) and phospholipid con-
centrations were measured using reagents from Diasys, Germany. Cholesteryl ester (CE) mass
was calculated as CT–CL. Fasting plasma Low Density Lipoprotein-Cholesterol (LDL-C) was
calculated using the Friedewald formula [53]. Plasma HDL-C levels were determined after dex-
tran sulfate-magnesium precipitation of apolipoprotein B-containing lipoproteins. Plasma
CETP activity was assayed by using the method of Guerin et al. [54], which estimates CE trans-
fer from HDL to apoB-containing lipoprotein particles (expressed as percentage). A list of the
35 phenotypes included in the study is provided in Table 1.

Statistical Analyses
Phenotype data were checked for normality and log or square-root transformations were
applied when required. Four phenotypes had 1–3 data points that were several standard devia-
tions (5–13) away from the mean, and were consequently considered outliers that were
excluded prior to analyses. Statistical analyses were carried out separately within the Duroc
and Yorkshire crosses. Preliminary quality control of genotype data was performed by exclud-
ing all SNPs that had a minor allele frequency (MAF)< 0.05, Hardy Weinberg equilibrium test
p-value< 0.001, and a genotype call rate< 0.95.

Subsequently, identity by descent (IBD) probabilities were estimated chromosome-wise for
each sliding marker bracket at its midpoint using the linkage disequilibrium (LD) multi-locus
iterative peeling (LDMIP) method as described by Meuwissen and Goddard [8]. Variance com-
ponent analysis was then performed with ASReml [55] using a mixed linear model. Genome-
wide association analysis was performed via a likelihood ratio test, where the test statistic was
calculated as follows:

2Dl ¼ 2ðlq � lnÞ ffi w2 with 1 d:f :

Where:

- 2Δl is the likelihood ratio test statistic;

- lq is the maximum likelihood estimate of a full model that included the fixed effect of gender,
a number of covariates depending upon the phenotype (Specified in Table 1), a random
QTL effect based on the estimated IBD relationships, as well as a numerator relationship
matrix to account for polygenic effects. Batch effect due to production of the animals in
three contemporary groups was found to be non-significant, and hence excluded as a
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covariate from statistical analyses. Using matrix notation, the full model can be described as
follows:

y ¼ 1mþ Xbþ Z1uþ Z2vþ e

y = vector of phenotypes

μ = mean

X, Z1 and Z2 are design matrices

b = vector of fixed effects

u = vector of random polygenic effects

v = vector of random QTL effect

e = vector of random residuals.

Assuming the following mutually independent distributions of random variables:

u � Nð0;As2
uÞ

v � Nð0;Gs2
vÞ

e � Nð0; Is2
eÞ

Where: A = Additive genetic relationship matrix

G = Average Identity by Descent matrix

I = Identity matrix

- ln is the maximum likelihood estimate of a null hypothesis that included all effects in the full
model except for the QTL effect.

Level of significance (p-values) was computed by assuming 2Δl to follow a chi-squared dis-
tribution with one degree of freedom under the null-hypothesis of no QTL in the tested marker
bracket. QTLs with a statistical significance of p<0.0001, or those with a point-wise p<0.001
and whose–log10(p) was>3 times greater than the average–log10(p) in the flanking 5 Mb (i.e.
10 Mbs in total) chromosomal window, were considered to be genome-wide significant. Adja-
cent significant positions were regarded as individual QTLs if located more than 1 Mb apart.

To evaluate extend of LD in each cross, decay of r2 over distance was calculated using the
method described by Badke et al. (2012) [56].

Comparative Analyses
The liftOver tool available via UCSC Genome Browser [57] was used to convert genome coor-
dinates between porcine and human assemblies and to map human chromosomal regions syn-
tenic to porcine chromosomal regions containing QTLs associated with different phenotypes.
Since liftovers are currently not available between Sscrofa 10.2 build and the current human
genome build, we used Sccrofa 9.2 build for the liftover procedure. Additional information on
porcine gene annotation was obtained from Sscrofa 10.2. Successive QTL positions that were
genome-wide significant were considered to represent a single QTL whose extent was deter-
mined by the genomic positions of the first and the last genome-wide significant QTL position.
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Chromosomal extents of QTLs smaller than 100 kilobases were extended to a minimum of 100
kilobases. The National Human Genome Research Institute (NHGRI) catalog [9] was used to
identify human SNP-trait associations in chromosomal regions syntenic to porcine QTLs.
These associations were manually curated to identify SNP associations with human phenotypes
that were comparable to the porcine phenotypes. Data on 12,618 pig QTLs from 461 publica-
tion representing 656 different traits were also downloaded from the Animal QTL database
(Animal QTLdb) [10] and subsequently used to identify previously identified porcine QTLs up
to 3 Mb in size that overlapped QTL regions identified in this study. These overlapping QTLs
were manually curated to identify phenotypes comparable or related to those identified in the
present study. Results of these comparisons are presented in S1 Table. All porcine chromo-
somal locations described in this study are based on the Sscrofa 9.2 assembly of the pig
genome.

Supporting Information
S1 Fig. Decay of average r2 over distance. Decay of average r2 over distance calculated by the
method describe by Badke et al. (2012) [56]. Average LD over short distances corresponds well
to within-population LD observed previously [56]. Over longer distances, significantly stronger
LD is found in the present cross which is in accordance with the LD generated by crossing dif-
ferent breeds.
(PDF)

S1 Table. Complete list of QTLs. Description of the number of QTLs identified for each
phenotype, the cross in which they were identified, their genomic position, size and signifi-
cance levels; along with previously reported QTLs derived from the AnimalQTLdb for compa-
rable phenotypes that overlap QTLs identified in the current study. Name (No. of QTLs) =
abbreviations for each phenotype as described in Table 1, along with the number of QTLs
identified for this phenotype; Cross = cross in which QTL was identified; Chr = Chromosome;
Pos = Chromosomal positions with peak significance (Sscrofa 9.2); start, end = QTL start and
end chromosomal positions (Sscrofa 9.2); Pvalue = peak significance of the QTL; Ani-
mal_QTL_DB_qtls (QTL id) = Previously reported QTLs for comparable phenotypes derived
from the AnimalQTLdb along with their QTL ids.
(XLSX)
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