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Abstract 

This paper presents the results of an extensive experimental campaign on the 

dynamic interactions between an elastic structure and a non-Newtonian fluid. The 

structure consists of a thin circular cylindrical shell, with the bottom end clamped to a 

shaking table, and the top end carrying a heavy mass. The fluid is a mixture of water and 

cornstarch, also known as oobleck. The system dynamics has been analysed in the 

presence of different fluid levels (i.e., empty, partially, and full-filled). The experimental 

modal analysis has been carried out to identify the modal properties of the system. High 

energy tests have been performed by means of a seismic excitation consisting in a 

stepped sine sweep, spanning the forcing frequency within the neighbourhoods where 

strong resonance phenomena take place. Different excitation amplitudes have been 

considered in order to induce phase transitions in the fluid, and the onset of complex 

dynamics has been detected using Fourier spectra and bifurcation diagrams of the 

Poincaré maps: when the fluid-solid transition occurs, the entangled non-Newtonian 

fluid rheology results in a complex dynamic scenario where period-doubling cascades, 

quasiperiodic and chaotic responses can be observed. 

Keywords 

Fluid-structure interaction; non-Newtonian fluids, nonlinear vibrations, shells, 

complex dynamics, experiments. 
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1. Introduction 

Fluid-structure interaction (FSI) phenomena are of interest in several fields, from 

Mechanical Engineering to Medical Science. The FSI can cause dramatic changes in the 

dynamic response of a system and static and dynamic instabilities can arise, such as the 

flutter of airplane wings or the interaction between the human aorta and the blood. 

The literature on the FSI is mainly focused on the interactions between elastic 

structures and Newtonian fluids. Nevertheless, there are many examples where the 

Newtonian fluid models cannot be considered, as in the case of blood or toothpaste. 

The present work involves three topics: i) shell dynamics, ii) fluid-structure 

interaction, and iii) non-Newtonian (NN) fluids. 

In the following, a literature review is given to provide a solid background. 

In 1983, Babcock [1] published a review paper counting about 50,000 papers on shell 

stability claiming that the open topics were: experimental investigations, sensitivity to 

imperfections, plastic and dynamic buckling, and post-buckling. Despite this large 

number of papers, Refs. [2-6] pointed out the need for further research on the dynamics 

and stability of shells, which were not well understood topics. 

For a deep analysis of models and phenomena associated with shell vibrations, 

covering a wide range of cases in the linear and nonlinear fields, see Refs. [7, 8]. 

Theoretical works using Donnell’s nonlinear shallow shell theory for studying the 

instabilities due to axial periodic loads and seismic excitations are given in Refs. [9,10]. 

Nagai and Yamaki [11] studied the parametric oscillations of circular cylindrical shells; 

they clarified that when the membrane approximation is used in calculating the in-plane 

stresses, the model leads to excessive errors when axisymmetric modes are resonant. 

Bondarenko and Galaka [12] published experimental results on shells instabilities due 

to parametric excitations, a particularly violent phenomenon was observed when the 

principal parametric instability region is met, they defined the phenomenon as a “bang” 

to stress the sudden appearance of a very strong noise; the authors were not able to 

give a clear explanation of the experimental observations. 
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Further studies on the parametric excitation of thin circular cylindrical shells can be 

found in Refs. [13-16], and comparisons among the different shell theories are discussed 

in Refs. [17, 18]. 

Recent studies on the dynamic instabilities of cylindrical shells can be found in Refs. 

[19-24], where the Sanders-Koiter theory has been used for modelling the strain-

displacement relationships. A good agreement between theories and experiments was 

shown, and the role of the axial load on the onset of chaotic vibrations, with an 

associated extreme noise production, was clarified. 

Regarding the FSI in the presence of inviscid and Newtonian fluids, Païdoussis 

reported and discussed a variety of models and applications in his seminal two-volume 

treatise [25, 26]. 

In 2003 Amabili and Païdoussis [27], reviewed more than 300 papers on the  nonlinear 

vibrations of shells with or without FSI, highlighting the lack of experimental results. 

In Refs. [28-31], the nonlinear vibrations and stability of a circular cylindrical partially 

filled tank were investigated through theoretical models. By considering Donnell’s shell 

theory along with the potential theory for an inviscid and incompressible fluid, the 

internal resonance between sloshing and shell modes was addressed. 

Gonçalves and Batista [32] analysed the nonlinear dynamics of fluid filled shells. By 

using Sanders’ nonlinear theory of shells with a multimode expansion and retaining the 

potential flow assumption, the authors showed how the presence of a dense fluid within 

the shell leads to an increment of the softening nonlinearity compared to the same shell 

in vacuo. 

Experiments on partially water-filled and partially submerged shells are given in Ref. 

[33]. The results evidenced both softening and hardening type nonlinearity, depending 

on the mode shape and the level of water filling. 

Chiba [34-36] investigated the large-amplitude vibrations of polymeric vertical 

circular cylindrical shells partially filled with water to different levels. It was observed 

that the strongest nonlinearity happens for the fundamental mode. Similarly, higher 

nonlinearity is observed for shorter circular cylindrical shells. Intermediate liquid levels 

show higher nonlinearity than empty or full filled shells. Traveling waves were observed 
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experimentally when conjugate (double) modes are excited, both in the case of sloshing 

and bulging modes. Interesting experimental expedients were described in the paper, 

for example the use of a thin film on the water surface. Further experimental and 

numerical results, with discussions on traveling waves and internal resonance, are 

reported in Refs. [37-39]. 

A finite element method was proposed in Ref. [40] to study FSI problems and 

nonlinear dynamics of open cylindrical shells; inviscid and incompressible fluids were 

considered. 

Using a semi analytical model based on the Donnell shallow shell theory for the 

structure and the potential flow theory for the inviscid and incompressible fluid, Amabili 

et al. [41-46] published a series of papers where the effect of a quiescent or flowing 

heavy fluid was investigated. Further investigations focused on the interactions of 

circular shells with supersonic flows, compressible, annular, and unbounded flows can 

be found in Refs. [47-50]; in such a series of studies the presence of compressive forces 

was accounted for as well [51]. 

Païdoussis [52] presented at the IUTAM Conference an interesting work where some 

paradoxes in FSI were discussed. 

Muha and Canic ́ [53] presented a theoretical study on the existence of the solution 

to the FSI problem consisting of an incompressible viscous (Newtonian) fluid interacting 

with an elastic pipe modelled through Koiter’s shell model. 

Balasubramanian et al. [54] analysed the nonlinear vibrations of a very soft 

(corrugated) circular cylindrical shell made of polymeric material, filled with pressurized 

water; the study was experimental, and a phenomenological model was used for the 

identification of nonlinear stiffness and damping. 

Girchenko et al. [55] studied numerically the interaction of a nonlinear pseudoplastic 

fluid, with a helical shell. They combined the commercial software FlowVision (finite 

volumes) and Simulia ABAQUS (finite elements) for showing the differences between 

Newtonian and NN flows in terms of stresses on the helical structure. Another study 

regarding FSI and NN fluids was focused on arterial bypass [56], where the effects of wall 
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elasticity and NN fluid rheology were investigated numerically through the commercial 

software ANSYS. 

The experimental study on the rheology and processing of solvent-free core shell 

“polymer opals”, given in Ref. [57], analysed an elastic shell grafted to hard colloidal 

polymer core particles in order to study the optical properties under deformation. 

Wu et al. [58] presented a numerical study on the interaction between elastic multi-

layered spheres and a NN fluid. They analysed gold nanospheres immersed in water and 

calculated theoretically the natural frequencies and quality factors. 

The literature analysis clearly shows that, even though many publications can be 

found about FSI problems, and many papers are available about NN fluids, the 

interaction between vibrating structures and NN fluids appears to be an almost 

unexplored field. 

The goal of the present paper is to give a contribution toward filling the  knowledge 

gap. A series of experiments has been carried out on the dynamic interactions between 

a polymeric circular cylindrical shell and a NN fluid consisting of a mixture of corn starch 

flour and water (Oobleck), which is a dilatant fluid. Low energy tests have been carried 

out to identify the system modal properties. Numerous experiments have been 

conducted to analyse the behaviour of the systems in resonance conditions, when the 

amplitudes of vibration become high, and the waves induced into the fluid cause state 

transitions and complex interactions. Finally, the results are reported and discussed 

through frequency response diagrams, bifurcation diagrams of Poincaré maps, spectra, 

and phase portraits. 
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2. Experimental setup and test procedure 

The test specimen  consists of a thin polymeric circular cylindrical shell filled with a 

NN fluid. The shell axis is vertical, the shell bottom is clamped to a shaking table, and a 

rigid disk closes the top of the shell, see Fig. 1(a,b). The specimen dimensions and 

material properties are listed in Table 1. 

(a) 

 

(b) 

 

Fig. 1. (a) Test specimen partially filled with oobleck, and (b) shell-disk assembly technical drawing. 

Table 1. Specimen geometric dimensions and material properties. 

Shell     

 Material  PET 

 Density ρS 1366 kg/m3 

 Young modulus E 3.2∙109 Pa 

 Length L 0.135 m 

 External radius Re 0.040 m 

 Thickness h 0.38∙10-3 m 

Top disk    

 Material  Steel 

 Mass mD 1.34 kg 

In Fig. 2, a scheme of the test setup is shown. An electrodynamic shaker, controlled 

in an open-loop configuration, has been used for imposing a seismic excitation to the 

test specimen, and the measurement of the actual base excitation has been guaranteed 

by an accelerometer fixed to the shaker base. Three accelerometers have been placed 
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on the top surface of the top-mass, close to its circular edge and angularly spaced by 

120°. The purpose of these sensors is to measure the acceleration of the disk in the 

vertical direction (along the shell axis) since, under resonance conditions, this 

acceleration can be different with respect to the base vibration. In addition, from the 

correlation of the signals measured by these accelerometers, one could detect possible 

rotations of the top disk about the shell axis and beam modes. 

The vibrometer and telemeter have been used for measuring the shell vibrations in 

the radial direction, i.e., orthogonal to the shell surface. The laser beam of both sensors 

focuses on points at half-length of the shell and, to avoid redundancies in the 

measurements of the velocity (vibrometer) and displacement (telemeter) of the shell 

wall for a wide range of possible radial modes that can be excited in the non-linear 

regime, an angle of 57° between the vibrometer and the telemeter has been chosen. 

To identify natural frequencies, mode shapes, and the frequency bands where the 

most important dynamic phenomena due to linear and nonlinear resonances could take 

place, the modal analysis has been performed through the roving hammer method (i.e., 

low energy and broadband excitations)  and prior to the harmonic base excitation test.  

The second part of this study has been dedicated to the nonlinear dynamic scenario. 

A stepped sine motion has been imposed to the shaker base and high-energy tests have 

been carried out. The excitation frequency has been varied in the neighbourhoods of 

the resonance frequency of the first axisymmetric mode, as identified from the modal 

analysis. The shell has been tested under different conditions of shaker input voltage 

(i.e., different base acceleration amplitudes), and the forcing frequency has been swept 

in the range 150-270Hz in both upward and downward directions with a step of 1 Hz. 

The sampling frequency has been set to 12800 Hz to guarantee enough samples-per-

forcing period. Thus, the minimum value of the samples-per-forcing period is 47 at the 

maximum excitation frequency (270 Hz). 
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Fig. 2. Test setup scheme: (1) electrodynamic shaker, (2) specimen, (3) top disk accelerometers, (4) 

laser telemeter, (5) base accelerometer, (6) laser vibrometer. 
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3. Results

3.1. Low energy test: modal analysis 

In this subsection, the modal analysis results are given. Following the well-established 

notation, the shell-like mode shapes are identified by the number of longitudinal half-

waves (m), and the number of nodal diameters (n). Because of the symmetry, shell 

structures exhibit conjugate modes (c), i.e., modes with same frequency and number of 

nodal diameters but angularly shifted of π/2n. Experimentally, the presence of

imperfections in the test specimen leads to the splitting of frequencies between 

conjugate modes. It is worth noting that a generic axisymmetric mode having no waves 

in the circumferential direction, i.e., no nodal diameters, is identified by (m, 0). 

The modal parameters have been identified through the PolyMax algorithm [59], and 

Table 2 reports the first eight natural frequencies, mode shapes, and modal damping 

ratios for the three investigated cases: i) empty shell, ii) half-filled shell with oobleck, 

and iii) full filled shell with oobleck. 

For the empty shell carrying the top mass, a comparison of the experimental results 

with the numerical ones obtained from a finite-element analysis (FEA) is given. The 

comparison shows a good matching for the first three modes, while discrepancies can 

be observed for the shell-like modes (<10%). The first mode of vibration involves the 

lateral bending of the structure; therefore, this mode shows similarities with the first 

flexural mode of a cantilever beam, see Fig. 3(a, b). The second mode is axisymmetric 

with one half-wave in the longitudinal direction, Fig. 3(c, d). The third mode involves 

mainly a pure rotation (tilting) of the top mass with respect to a transversal axis, Fig. 3(e, 

f). After the tilt mode, the structure exhibits shell-like modes, Fig. 3(g, h), characterized 

by the presence of one or more circumferential waves (n≠0).
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Table 2. Numerical (FEM) and experimental mode shapes, natural frequencies (f), and linear damping 

ratios (ζ). 

Test case Mode shape FEM Experimental 

 (m, n) f [Hz] f [Hz] ζ [%] 

Empty shell   
  

 Beam-like 55.06 56.58 0.71 

 (1,0) 233.49 235.47 0.85 

 Tilt 396.00 394.63 0.87 

 (1, 5) 596.09 643.09 0.93 

 (1, 5, c) - 652.57 1.10 

 (1, 4) 619.16 677.21 1.23 

 (1, 6) 716.54 780.15 1.04 

 (1, 6, c) - 784.82 1.06 

Half-filled shell 

50% empty 

50% oobleck 

    

 Beam-like - 55.63 0.52 

 (1, 5) - 182.90 1.30 

 (1, 6) - 222.67 1.65 

 (1, 0) - 232.08 1.03 

 (1, 3) - 236.81 1.59 

 (1, 7) - 283.48 1.76 

 (1, 2) - 331.09 1.57 

 Tilt - 367.14 1.00 

Full-filled shell     
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100% oobleck 

Beam-like - 53.27 1.05 

(1, 4) - 130.44 2.64 

(1, 5) - 136.49 2.96 

(1, 3) - 165.49 1.97 

(1, 6) - 183.81 2.45 

(1, 6, c) - 189.57 2.63 

(1, 2) - 225.90 1.67 

(1, 0) - 238.77 1.47 

FEM Experimental 

Beam 

(a) (b) 

(1,0) 

(c) (d) 
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Tilt 

(e) (f) 

(1, 5) 

(g) (h) 

Fig. 3. Empty shell mode shapes: (a, b) cantilever beam-like mode, (c, d) first axisymmetric mode, (e, f) 

tilt mode, and (g, h) first shell-like mode. 

In Fig. 4(a-c), the sum of the FRF amplitudes is displayed for the range 20 Hz-270 Hz. 

For the empty shell, Fig. 4(a), low frequency modes are the cantilever beam-like mode 

and the tilt, while no shell-like modes can be observed. When the shell is half-filled with 

oobleck, the order of the modes is altered, Fig. 4(b). The presence of the fluid leads to 

an added modal mass effect that causes an abrupt decrease in the natural frequencies 

of the shell-like modes. Interestingly, one can observe that the natural frequencies of 

the beam tilt modes are not affected by the presence of the NN fluid. For the full-filled 

shell, the beam mode is still the first mode of vibration of the system, while a further 

decrease in the natural frequencies of the shell-like modes takes place and the highest 

amplification is related to the shell mode (1,6) as visible from Fig. 4(c). 

(a) (b) 
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(c) 

Fig. 4. Sum of the experimental FRFs. (a) empty shell, (b) half-filled and (c) full-filled shell with NN fluid. 



16 

3.2. High energy test: harmonic base excitation 

3.2.1. Frequency response diagrams: empty shell VS non-Newtonian fluid filled shell 

The results obtained by forcing the shell with a base motion are presented herein, 

and the frequency-response curves of the empty shell are compared to the full-filled 

shell with oobleck, Fig. 5(a, d). To investigate the role of the NN fluid on the overall 

system response, the signal provided to the shaker amplifier is harmonic, and different 

conditions of shaker input voltage amplitudes (0.01 V-0.03V) have been considered. By 

limiting to the downward frequency variation case, the analysis of the empty shell shows 

that the resonance of the axisymmetric mode (1,0) at 233.49 Hz gives rise to large 

amplitude of vibration and a saturation of the top disk vibration at about 600 m/s2 takes 

place, Fig. 5(b). According to Refs. [23, 24, 60], this phenomenon leads to an energy 

transfer from longitudinal to lateral vibration. The analysis of the NN fluid filled shell 

shows a different scenario. The saturation disappears and, considering a shaker input 

voltage of 0.03 V, a parametric resonance is visible between 173-205 Hz, Fig. 5(b). This 

strong resonance results in an amplification of the base acceleration of about ten times 

in the vertical direction and involves the shell-like modes: the shell lateral response in 

Fig. 5(c, d), reveals different frequency bands where phenomena related to the fluid 

phase transitions occur, and the amplitude of vibrations is one order of magnitude 

higher than the case of empty shell, although the forcing amplitude trend does not 

change among the different cases as displayed in Fig. 5(a). 

(a) (b) 
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(c) (d) 

Fig. 5. Empty shell VS NN fluid-filled shell: frequency-response curve comparison at different excitation 

amplitudes. (a) shaker base vertical acceleration, (b) top disk vertical acceleration, (c) shell lateral velocity, 

and (d) shell lateral displacement. 
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3.2.2. Fluid-Structure Interaction in the presence of a non-Newtonian fluid: 

bifurcation analysis of the full filled shell 

For the case of periodically forced shell full filled by the NN fluid a bifurcation analysis 

has been carried out, and the results are given and discussed by considering the forcing 

frequency as the bifurcation parameter. 

By keeping constant the shaker input voltage (0.01 V – 0.08 V) and varying the forcing

frequency within the range 150-270 Hz, the dynamic scenario is analysed for specific 

regimes where the most interesting complexities have been observed. In particular, to 

identify periodic patterns or chaos in the oscillations, the following signal features are 

shown: frequency response curves, bifurcation diagrams, time histories, spectra, phase 

portraits and Poincaré maps. 

The frequency response curves for the downward stepped-sine tests are given in Fig. 

6(a, d). For a shaker input voltage of 0.001 V (blue lines), the response is regular all over 

the frequency range, with peaks in proximity of the vibration modes. For a shaker input 

voltage of 0.02 V (orange lines), a parametric resonance arises in the range of 179-209 

Hz leading to a sudden activation of the lateral vibrations. The curves envelope around 

the resonance peak of the axisymmetric mode (238.77 Hz) shows a softening behaviour, 

and strongly nonlinear vibrations with shell amplitude displacements of about ten times 

the shell thickness can be observed in Fig. 6(d). 
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(a) (b) 

(c) (d) 

Fig. 6. Full-filled shell with oobleck. Frequency-response curves at different excitation amplitudes. (a) 

base acceleration, (b) top disk vertical acceleration, (c) shell lateral velocity, and (d) shell lateral 

displacement. 

Fig. 7(a, b) show the bifurcation diagrams of the Poincaré sections computed by using 

the top mass acceleration in the vertical and circumferential direction, respectively, 

while the shell radial displacement and velocity bifurcation diagrams are given in Fig. 

7(c, d), respectively. The base excitation input signal level is 0.06 V, and the frequency 

varies in the downward direction. The dynamic scenario is extremely rich and different 

sub-harmonic responses (1/2, 1/3, 1/4, 1/8), quasiperiodic and chaotic vibrations can be 

observed. In the velocity diagram some spurious spikes are present induced by reflection 

effects due to the shell surface lateral movement, see Fig. 7(d). 
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(a) (b) 

(c) (d) 

Fig. 7. Full-filled shell. Shaker input voltage 0.06 V. Downward frequency variation. Bifurcation 

Diagrams of the Poincaré maps. Top disk (a) vertical and (b) circumferential accelerations, shell lateral (c) 

displacement and (d) velocity.  

Fig. 8(a, b) show the bifurcation diagrams considering a base excitation input signal 

of 0.06 V and an increasing forcing frequency. Between 200Hz and 215Hz, the vertical 

response of the system is governed by sub-harmonic oscillations. In particular, 4T-

subharmonic oscillations take place at 202 Hz and 244 Hz, while the system response at 

207 Hz is 2T subharmonic with amplitude modulation, see Fig. 9, where the Poincaré is 

given by using the top mass acceleration in the vertical and circumferential directions. 
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(a) (b) 

Fig. 8. Full-filled shell. Shaker input voltage 0.06 V. Upward frequency variation. Bifurcation Diagrams 

of the Poincaré maps. Top disk (a) vertical and (b) circumferential accelerations. 

Fig. 9. Full-filled shell. Shaker input voltage 0.06 V. Upward frequency variation. Bifurcation Diagrams 

and Poincaré map evolution. 

Fig. 10 (a, b) show the bifurcation diagrams obtained from the Poincaré sections 

computed by using the top mass acceleration in the vertical and circumferential 

directions, respectively. The base excitation input signal level is 0.07 V of a stepped sine 

between 150 Hz and 270 Hz with a resolution of 1 Hz in the downward direction. The 

response is unstable as can be seen from the top mass circumferential acceleration. 

1/4 sub-harmonic 

2T sub-harmonic with 

amplitude modulation 

1/4 sub-harmonic 
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More in detail in Fig. 11, the system response at 205 Hz and 245 Hz exhibits 4T and 5T 

subharmonic oscillations, respectively. 

(a) (b) 

Fig. 10. Full-filled shell. Shaker input voltage 0.07 V. Downward frequency variation. Bifurcation 

Diagrams of the Poincaré maps. Top disk (a) vertical and (b) circumferential accelerations, shell lateral (c) 

displacement and (d) velocity.  

Fig. 11. Full-filled shell. Shaker input voltage 0.07 V. Downward frequency variation. Bifurcation 

Diagrams and Poincaré map evolution. 

Fig. 12(a-d) show the bifurcation diagrams obtained from Poincaré sections 

computed by using the top mass acceleration in the vertical and circumferential 

directions, the radial displacement, and the radial velocity of the shell, respectively. The 

1/5 sub-harmonic 

1/4 sub-harmonic 
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base excitation input signal is 0.07 V (upward stepped sine test). Different sub-harmonic, 

quasiperiodic and chaotic responses have been observed and highlighted in Fig. 13: at 

216 Hz a period doubling is present but it seems yet to move towards a chaotic 

behaviour; at 217 Hz and 250 Hz the motion is chaotic; a quasiperiodic response appears 

at 263 Hz, as shown by the Poincaré maps of the velocity and circumferential 

acceleration. 

(a) (b)

(c) (d) 

Fig. 12. Full-filled shell. Shaker input voltage 0.07 V. Upward frequency variation. Bifurcation Diagrams 

of the Poincaré maps. Top disk (a) vertical and (b) circumferential accelerations, shell lateral (c) 

displacement and (d) velocity. 
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Fig. 13. Full-filled shell. Shaker input voltage 0.07 V. Upward frequency variation. Bifurcation Diagrams 

and Poincaré map evolution. 

By increasing the input voltage up to 0.08 V, and considering an upward frequency 

sweep, the bifurcation diagrams are displayed in Fig. 14(a, d). At this level of excitation, 

all the frequency range appears unstable. In Fig. 15 is highlighted the response at 239Hz 

and 249 Hz. The bifurcation diagram of the response of the shell radial velocity shows 

3T and 4T subharmonic responses at 239 Hz and 249 Hz, respectively. 

quasiperiodic 
chaotic chaotic 

period doubling with 

chaotic behaviour 
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(a) (b) 

(c) (d) 

Fig. 14. Full-filled shell. Shaker input voltage 0.08 V. Upward frequency variation. Bifurcation Diagrams 

of the Poincaré maps. Top disk (a) vertical and (b) circumferential accelerations, shell lateral (c) 

displacement and (d) velocity. 
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Fig. 15. Full-filled shell. Shaker input voltage 0.08 V. Upward frequency variation. Bifurcation Diagrams 

and Poincaré map evolution. 

Considering the following settings for the drive input: voltage 0.06 V, forcing 

frequency equal to 242 Hz, and downward frequency sweep. The time histories of the 

top mass vertical acceleration and shell radial velocity in Fig. 16(a) and Fig. 16(d), 

respectively, show periodic oscillations. The response is 4T-subharmonic, as displayed 

by the spectra with peaks at 60.5Hz and its multiples, Fig. 16 (b, e), and yet confirmed 

by the phase plane trajectory and the 4 sets in the Poincaré section, Fig. 16(c, f), 

respectively. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 16. Full-filled shell. Shaker input voltage 0.06 V, 242 Hz, downward. 1/4 subharmonic response. (a, 

d) time histories, (b, e) FFT spectra, (c) phase-plane, and (f) Poincaré map. 

For a drive frequency of 169 Hz, there is clear evidence of a nonstationary and 

irregular response, see Fig. 17(a-f). Non-recursive patterns are shown by the time 

histories of the top mass vertical acceleration and shell lateral displacement, Fig. 17(a, 

d), respectively. The spectra show the carrier frequency at 169Hz accompanied by 1/3 

and 2/3 subharmonics and superharmonics, with a high level of noise present overall in 

the spectra. The phase portrait, Fig. 17(c), shows an irregular orbit while the Poincaré 

map shows an irregular set of points, with three limited dense regions, this proves the 

weakly chaotic response with a 1/3 subharmonic dominant content. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 17. Full-filled shell. Shaker input voltage 0.06 V, 169 Hz, downward. Chaotic response with 1/3-

subharmonic content. (a, d) time histories, (b, e) FFT spectra, (c) phase-plane, and (f) Poincaré map. 

For a drive frequency of 168 Hz, Fig. 18(a-f), the response is still subharmonic but a 

slight amplitude modulation is visible in the shell radial displacement time history, Fig. 

18(d). In Fig. 18(b, e), the spectra confirm the 1/3 subharmonic frequency at 56 Hz, 

corresponding to 1/3 of the excitation frequency and sidebands of about 10 Hz. The 

phase portrait shows an almost closed orbit, Fig. 18(c), the Poincaré map clarifies that 

the 1/3 subharmonic response is also amplitude modulated, indeed, it shows three 

closed orbits. 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 18. Full-filled shell. Shaker input voltage 0.06 V, 168 Hz, downward. 1/3 subharmonic response 

with amplitude modulation. (a, d) time histories, (b, e) FFT spectra, (c) phase-plane, and (f) Poincaré map. 

By reducing the drive frequency to 167 Hz, 1/3 subharmonic response occurs, see Fig. 

19(a-f). The spectra show peaks at 55.67 Hz (and multiples) and the periodicity is 

confirmed by the closed orbit in the phase portrait as well as by the 3 sets displayed by 

the Poincaré section.  
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(a) (b) (c) 

(d) (e) (f) 

Fig. 19. Full-filled shell. Shaker input voltage 0.06 V, 167 Hz, downward. 1/3 subharmonic response. (a, 

d) time histories, (b, e) FFT spectra, (c) phase-plane, and (f) Poincaré map.

Fig. 20(a-f) show details of the dynamic response for an excitation frequency of 

160Hz for the downward stepped sine test. Fig. 20(a, d) show the time histories of the 

vertical acceleration of the top disk and the lateral displacement of the shell, 

respectively. There is clear evidence of a quasiperiodic response with a beating period 

of about 0.17 s, i.e., about 7.2 Hz beating frequency. This is confirmed by the Fourier 

spectra, Fig. 20(b, e), where can be observed the carrier frequency at 160Hz 

corresponding to the excitation frequency, and the sidebands spaced of 7.2Hz 

correspond to the beatings in the time histories. The phase portrait Fig. 20(c) shows an 

orbit that fills a portion of the phase space; unfortunately, the Poincaré map is quite 

polluted and seems to show a closed curve, see Fig. 20(f). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 20. Full-filled shell. Shaker input voltage 0.06 V, 160 Hz, downward. Quasiperiodic response. (a, d) 

time histories, (b, e) FFT spectra, (c) phase-plane, and (f) Poincaré map. 

The case of 0.06V upward exhibits strong analogies with the 0.06V downward case. 

In Fig. 21(a-e), a sequence of Poincaré maps shows how a small frequency variation gives 

rise to impressive changes: at 207Hz, a 1/2 subharmonic with amplitude modulation can 

be observed; at 208Hz a chaotic response with 1/2 subharmonic dominant character 

takes place; at 209 Hz the chaotic response loses the 1/2 subharmonic component, at 

210Hz the response is still chaotic with a strong quasiperiodic feature; at 211Hz the 

chaotic behaviour is disappearing and the response is 1/3 subharmonic. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Fig. 21. Full-filled shell. Shaker input voltage 0.06 V, upward. Sequence of Poincaré maps at (a) 207 Hz, 

(b) 208 Hz, and (c) 209 Hz, (d) 210 Hz, and (e) 211 Hz. 

Considering a shaker input voltage of 0.07 V along with an upward frequency sweep, 

some of the most interesting Poincaré sections are shown in Fig. 22(a-c). The 

representations are selected in order to show the best projection of the map in a 2D 

figure. In Fig. 22(a) the map, given in terms of the top disk vertical acceleration and shell 

lateral vibration, shows a chaotic regime modulated by a 1/2 subharmonic. Fig. 22(b) 

shows an irregular map (shell lateral vibration vs top disk circumferential acceleration), 

probably having a fractal character, representing a chaotic response. In Fig. 22(c), the 

quasiperiodic oscillation is modulated for the lateral velocity at 1/4 subharmonic. 

(a) (b) (c) 
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Fig. 22. Full-filled shell. Shaker input voltage 0.07 V, upward. Sequence of Poincaré maps at (a) 216 Hz, 

(b) 217 Hz, and (c) 262 Hz. 

For an excitation level of 0.07 V, excitation frequency 199 Hz and downward 

frequency sweep, the results are given in Fig. 23(a-f). Fig. 23(a) and Fig. 23(d) show the 

time histories of the top disk vertical and circumferential accelerations, respectively, 

where the response is nonstationary and irregular. Fig. 23(b) and Fig. 23(e) show the 

spectra of the signals, the carrier frequency of 199Hz is present and the spectrum is 

dominated by noise. The phase portrait, Fig. 23(c), shows an irregular orbit and the 

Poincaré map is an irregular, without any evident shape or specific accumulation of 

points, see Fig. 23(f). 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 23. Full-filled shell. Shaker input voltage 0.07 V, 199 Hz, downward. Chaotic response. (a, d) time 

histories, (b, e) FFT spectra, (c) phase-plane, and (f) Poincaré map. 

For a drive input amplitude of 0.08 V, a forcing frequency equal to 241 Hz and a 

downward frequency sweep, the dynamic scenario is given in Fig. 24(a-d). From the 

analysis of the time histories, Fig. 24(a, d), and spectra, Fig. 24(b, e), of the top mass 

vertical acceleration and shell lateral vibration, the system response is 2T-subharmonic 

with a broadband noise distribution. This is in agreement with the irregular trajectory 
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within the phase plane, Fig. 24(c), and the two weakly sparse sets shown by the map, 

Fig. 24(f). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 24. Full-filled shell. Shaker input voltage 0.08 V, 241 Hz, downward. Chaotic response. (a, d) time 

histories, (b, e) FFT spectra, (c) phase-plane, and (f) Poincaré map. 

Fig. 25(a, d) show the time histories of the top disk vertical acceleration and shell 

lateral vibration, respectively, for a drive input amplitude of 0.08 V, a forcing frequency 

of 177 Hz and an upward frequency sweep. The top disk presents a time history with 

irregular amplitude modulation, while the lateral vibration shows an irregular 

behaviour, with an evident amplitude jump at t = 0.08 s. This behaviour is probably due 

to the internal change of the state in the contained fluid, and it did not affect the top 

disk motion. Further evidence of this fluid-solid transition lies (i) in the spectra, Fig. 25(b, 

e), where a strong 1/2 subharmonic component is present only in the shell lateral 

vibration, Fig. 25(e), and (ii) in the strange attractor with a coherent fractal structure, 

see Fig. 25(c, f). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 25. Full-filled shell. Shaker input voltage 0.08V, 177 Hz, upward. Chaotic response with fluid-solid 

phase transition. (a, d) time histories, (b, e) FFT spectra, (c) phase-plane, and (f) Poincaré map. 
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4. Conclusions

In this paper, an extensive experimental campaign focused on the analysis of the 

dynamic interactions between an elastic structure and a non-Newtonian fluid, has been 

presented. A polymeric circular cylindrical shell filled with corn starch-water mixture, i.e. 

oobleck, under the action of a seismic resonant excitation is investigated. The low 

energy tests allowed identifying the basic system properties: natural frequencies, 

damping ratios, and mode shapes; this revealed how the fluid influences the vibrating 

properties of the systems and which modes are more sensitive to the added inertia due 

to the presence of the fluid. Stepped sine tests have been carried out at high excitation 

intensity and close to the resonance conditions of the shell. The investigation highlights 

how the presence of the non-Newtonian fluid induces parametric resonances in the 

system and how other nonlinear phenomena, such as the top mass acceleration 

saturation that is prominent in empty shells, are absent in the case of fluid-filled shells. 

The high amplitudes of vibration induced in the structure cause strong wave 

propagations in the fluid and the onset of complex dynamics when the fluid-solid 

transition takes place. The dynamic scenario reveals an exceptional complexity with 

alternate harmonic, sub-harmonic, quasiperiodic, and chaotic responses. 
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Figure caption list 

Fig. 1. (a) Test specimen partially filled with oobleck, and (b) shell-disk assembly 

technical drawing.Fig. 1. (a) Test specimen partially filled with oobleck, and (b) shell-disk 

assembly technical drawing. 

Fig. 2. Test setup scheme: (1) electrodynamic shaker, (2) specimen, (3) top disk 

accelerometers, (4) laser telemeter, (5) base accelerometer, (6) laser vibrometer.  

Fig. 3. Empty shell mode shapes: (a, b) cantilever beam-like mode, (c, d) first 

axisymmetric mode, (e, f) tilt mode, and (g, h) first shell-like mode. 

Fig. 4. Sum of the experimental FRFs. (a) empty shell, (b) half-filled and (c) full-filled 

shell with NN fluid. 

Fig. 5. Empty shell VS NN fluid-filled shell: frequency-response curve comparison at 

different excitation amplitudes. (a) shaker base vertical acceleration, (b) top disk vertical 

acceleration. 

Fig. 6. Full-filled shell with oobleck. Frequency-response curves at different excitation 

amplitudes. (a) base acceleration, (b) top disk vertical acceleration, (c) shell lateral 

velocity, and (d) shell lateral displacement. 

Fig. 7. Full-filled shell. Shaker input voltage 0.06 V. Downward frequency variation. 

Bifurcation Diagrams of the Poincaré maps. Top disk (a) vertical and (b) circumferential 

accelerations, shell lateral (c) displacement and (d) velocity. 

Fig. 8. Full-filled shell. Shaker input voltage 0.06 V. Upward frequency variation. 

Bifurcation Diagrams of the Poincaré maps. Top disk (a) vertical and (b) circumferential 

accelerations. 

Fig. 9. Full-filled shell. Shaker input voltage 0.06 V. Upward frequency variation. 

Bifurcation Diagrams and Poincaré map evolution. 

Fig. 10. Full-filled shell. Shaker input voltage 0.07 V. Downward frequency variation. 

Bifurcation Diagrams of the Poincaré maps. Top disk (a) vertical and (b) circumferential 

accelerations, shell lateral (c) displacement and (d) velocity. 

Fig. 11. Full-filled shell. Shaker input voltage 0.07 V. Downward frequency variation. 

Bifurcation Diagrams and Poincaré map evolution. 
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Fig. 12. Full-filled shell. Shaker input voltage 0.07 V. Upward frequency variation. 

Bifurcation Diagrams of the Poincaré maps. Top disk (a) vertical and (b) circumferential 

accelerations, shell lateral (c) displacement and (d) velocity. 

Fig. 13. Full-filled shell. Shaker input voltage 0.07 V. Upward frequency variation. 

Bifurcation Diagrams and Poincaré map evolution. 

Fig. 14. Full-filled shell. Shaker input voltage 0.08 V. Upward frequency variation. 

Bifurcation Diagrams of the Poincaré maps. Top disk (a) vertical and (b) circumferential 

accelerations, shell lateral (c) displacement and (d) velocity. 

Fig. 15. Full-filled shell. Shaker input voltage 0.08 V. Upward frequency variation. 

Bifurcation Diagrams and Poincaré map evolution. 

Fig. 16. Full-filled shell. Shaker input voltage 0.06 V, 242 Hz, downward. 1/4 

subharmonic response. (a, d) time histories, (b, e) FFT spectra, (c) phase-plane, and (f) 

Poincaré map. 

Fig. 17. Full-filled shell. Shaker input voltage 0.06 V, 169 Hz, downward. Chaotic 

response with 1/3-subharmonic content. (a, d) time histories, (b, e) FFT spectra, (c) 

phase-plane, and (f) Poincaré map. 

Fig. 18. Full-filled shell. Shaker input voltage 0.06 V, 168 Hz, downward. 1/3 

subharmonic response with amplitude modulation. (a, d) time histories, (b, e) FFT 

spectra, (c) phase-plane, and (f) Poincaré map. 

Fig. 19. Full-filled shell. Shaker input voltage 0.06 V, 167 Hz, downward. 1/3 

subharmonic response. (a, d) time histories, (b, e) FFT spectra, (c) phase-plane, and (f) 

Poincaré map. 

Fig. 20. Full-filled shell. Shaker input voltage 0.06 V, 160 Hz, downward. Quasiperiodic 

response. (a, d) time histories, (b, e) FFT spectra, (c) phase-plane, and (f) Poincaré map. 

Fig. 21. Full-filled shell. Shaker input voltage 0.06 V, upward. Sequence of Poincaré 

maps at (a) 207 Hz, (b) 208 Hz, and (c) 209 Hz, (d) 210 Hz, and (e) 211 Hz. 

Fig. 22. Full-filled shell. Shaker input voltage 0.07 V, upward. Sequence of Poincaré 

maps at (a) 216 Hz, (b) 217 Hz, and (c) 262 Hz. 

Fig. 23. Full-filled shell. Shaker input voltage 0.07 V, 199 Hz, downward. Chaotic 

response. (a, d) time histories, (b, e) FFT spectra, (c) phase-plane, and (f) Poincaré map. 



46 

Fig. 24. Full-filled shell. Shaker input voltage 0.08 V, 241 Hz, downward. Chaotic 

response. (a, d) time histories, (b, e) FFT spectra, (c) phase-plane, and (f) Poincaré map. 

Fig. 25. Full-filled shell. Shaker input voltage 0.08V, 177 Hz, upward. Chaotic response 

with fluid-solid phase transition. (a, d) time histories, (b, e) FFT spectra, (c) phase-plane, 

and (f) Poincaré map. 

Table caption list 

Table 1. Specimen geometric dimensions and material properties. 

Table 2. Numerical (FEM) and experimental mode shapes, natural frequencies (f), and 

linear damping ratios (ζ). 
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