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1. Introduction

Fix a prime p. Let R be a perfect valuation ring of characteristic p and denote the

valuation by v. Assume v is of rank 1 and nondiscrete and that R is complete with respect

to v. Let A := Ainf := W (R) be the ring of Witt vectors of R. This ring plays a central role

in p-adic Hodge theory as it is the basic ring from which all of Fontaine’s p-adic period

rings are built. It is also central to the construction of the (adic) Fargues–Fontaine curve

[4]. Recently, Bhatt, Morrow and Scholze constructed Ainf-cohomology, a cohomology

theory that specializes to étale, de Rham and crystalline cohomology [3]. In these works,

there is a useful analogy between A and a two-dimensional regular local ring. In this

paper, we prove the following theorem.

Theorem 1.1. The ring A has infinite Krull dimension.

Bhatt [2, Warning 2.24] and Kedlaya [5, Remark 1.6] note that the Krull dimension of

A is at least 3. To see this, fix a pseudouniformizer $ ∈ R and let κ denote the residue

field of R. Let W (m) be the kernel of the natural map W (R)→ W (κ) and [−] : R→ W (R)
the Teichmüller map. Then Bhatt and Kedlaya point out that A contains the following

explicit chain of prime ideals:

(0) ⊂ p :=

∞⋃
k=0

[$ 1/pk
]A ⊂ W (m) ⊂ (p,W (m)).
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As suggested in [5, Remark 1.6], we use Newton polygons to find an infinite chain of

prime ideals between p and W (m).

The equal characteristic analogue of Theorem 1.1 is the statement that the power series

ring RJXK has infinite Krull dimension. This was first proved by Arnold [1, Theorem 1],

and the structure of our argument is very similar to his. We axiomatize Arnold’s argument

in Section 3.

Notation. We use the convention that the symbols <,>,⊂,⊃ denote strict inequalities

and inclusions with the exception that we allow the statement “∞ <∞” to be true.

Otherwise, if equality is allowed, it will be explicitly reflected in the notation using the

symbols 6,>,⊆,⊇. An inequality between two (R∪ {±∞})-valued functions means that
the inequality holds pointwise.

2. Review of Newton polygons

As above, let R be a perfect valuation ring of characteristic p that is complete with

respect to a nondiscrete valuation v of rank 1. Let m be the maximal ideal of R, and fix

an element $ ∈ m of valuation v($) = 1.

Let A := W (R) be the ring of Witt vectors of R. Write [−] : R→ A for the Teichmüller

map, which is multiplicative. Recall that every element of A can be written uniquely in

the form
∑

n>0[xn]pn with xn ∈ R.

As in [4, Section 1.5.2], given f ∈ A with f =
∑

n>0[xn]pn , we define the Newton

polygon N ( f ) of f as the largest decreasing convex polygon in R2 lying below the

set of points {(n, v(xn)) : n > 0}. We shall often view N ( f ) as the graph of a function

N ( f ) : R→ R∪ {+∞}. In particular, if n f is the smallest integer such that xn f 6= 0,

then N ( f )(t) = +∞ for t < n f and N ( f )(n f ) = v(xn f ). Furthermore, limt→∞N ( f )(t) =
infnv(xn).

Following the conventions in [4, Section 1.5.2], for any integer i > 0 define

si ( f ) := N ( f )(i)−N ( f )(i + 1).

We call si ( f ) the slope of N ( f ) on the interval [i, i + 1] even though one would typically

call that slope −si ( f ). With this convention, the slopes form a nonnegative decreasing

sequence; that is, si ( f ) > si+1( f ) > 0 for all i . We say that n is a node of N ( f ) if

N ( f )(n) = v(xn).

We recall the theory of Legendre transforms from [4, Section 1.5.1]. Given a function

ϕ : R→ R∪ {+∞} that is not identically equal to +∞, define

L(ϕ) : R→ R∪ {−∞}
λ 7→ inft∈R{ϕ(t)+ λt}.

If ϕ is a convex function, then one can recover ϕ from L(ϕ) via the formula

ϕ(t) = sup
λ∈R
{L(ϕ)(λ)− tλ}.

From these definitions, it is easy to see that N ( f ) 6 N (g) if and only if L(N ( f )) 6
L(N (g)).
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As explained in [4, Section 1.5], for any f, g ∈ A, we have

L(N ( f g)) = L(N ( f ))+L(N (g)). (1)

Motivated by this, one defines a convolution product on the set of (R∪ {+∞})-valued

convex functions on R that are not identically +∞ by

(ϕ ∗ψ)(t) := sup
λ∈R
{L(ϕ)(λ)+L(ψ)(λ)− tλ}.

Thus we have N ( f g) = N ( f ) ∗N (g). In particular, if N ( f ) > 0, then N ( f m) < N ( f m+1)

for all m > 1, and for any t ∈ R we have limm→∞N ( f m)(t) = +∞.

There is another way of describing N ( f g) in terms of N ( f ) and N (g) without explicitly

using Legendre transforms. Write f =
∑

n>0[xn]pn and g =
∑

n>0[yn]pn , and let n f
(respectively, ng) be the smallest integer such that xn 6= 0 (respectively, yn 6= 0). Then

N ( f g)(t) = +∞ for all t < n f + ng, and N ( f g)(n f + ng) = v(xn f )+ v(yng ). The slopes of

N ( f g) are given by interlacing the slopes of N ( f ) and N (g). That is, the slope sequence

of N ( f g) is given by combining the sequences {si ( f ) : i > 0} and {si (g) : i > 0} into a

single decreasing sequence that incorporates all positive elements of both sequences. The

relationship between this description and equation (1) is explained in [4, Section 1.5].

Lemma 2.1. Let f be an element of A such that N ( f ) > 0. If g is an element of A and

t0 > 0 is such that for all t > t0 we have N (g)(t) 6 N ( f )(t), then for all m sufficiently

large we have N (g) 6 N ( f m).

Proof. As noted above, since N ( f ) > 0, the sequence {N ( f m)}m converges to +∞. This

convergence is uniform on the compact interval [0, t0]. Thus for m sufficiently large, it

follows that N (g)(t) 6 N ( f m)(t) for all t ∈ [0, t0]. On the other hand, for all t > t0 we

have

N (g)(t) 6 N ( f )(t) < N ( f m)(t).

Thus N (g) 6 N ( f m) for all m sufficiently large.

Proposition 2.2. The ideal p :=
⋃
∞

k=0[$
1/pk
]A is a prime ideal of A.

Proof. Note that an element f of A lies in p if and only if limt→∞N ( f )(t) > 0. If g, g′ ∈
A\p, then limt→∞N (gg′)(t) = limt→∞(N (g) ∗N (g′))(t) = 0 and so gg′ /∈ p.

3. The strategy

We define infinitely many sequences in R as follows. For all i > 0, define a1,i := $
1/pi
∈ R.

For n > 1 and i > 0, define an,i recursively by

an,i := an−1,i2 ∈ R.

Thus an,i = $
1/pni , where ni := i2n−1

, and v(an,i ) = p−ni . For each n > 1, define

hn :=

∞∑
i=0

[an,i ]pi
∈ A.
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Note that N (hn) > 0, for any n we have limt→∞N (hn)(t) = 0, and N (hn) has a node at

every integer.

Finally, we define the following subsets of A. For n > 1, let

Sn := {g ∈ A : 0 < N (g) 6 N (hm
n ) for some m > 1}.

In particular, hn ∈ Sn .

Proposition 3.1. The sets Sn satisfy the following three properties:

(1) for all n > 1 we have Sn+1 ⊂ Sn;

(2) each Sn is multiplicatively closed;

(3) for any g ∈ Sn+1 and f ∈ A, we have that g+ f hn ∈ Sn+1.

We prove this proposition in Section 4.

Theorem 3.2. The ring A has infinite Krull dimension.

Proof. We follow Arnold’s proof of [1, Theorem 1]. We prove that for any n > 1, there
exists a chain of prime ideals of A, say p1 ⊂ · · · ⊂ pn , such that pn ∩Sn = ∅.

For n = 1, let p1 = p. To see that p∩S1 = ∅, note that if f ∈ p, then f ∈ [$ 1/pk
]A for

some k > 0, and so N ( f ) > 1/pk . On the other hand, if f ∈ S1, then for some m > 1 we

have that limt→∞N ( f )(t) 6 limt→∞N (hm
1 )(t) = 0.

Fix n > 1 and suppose for induction that there is a chain p1 ⊂ · · · ⊂ pn of prime ideals

of A such that pn ∩Sn = ∅. Consider the ideal an := pn + hnA. Note that an 6= pn since
hn ∈ Sn and pn ∩Sn = ∅. We claim that an ∩Sn+1 = ∅. Indeed, given g ∈ Sn+1, we have

that g+ hn f ∈ Sn+1 for all f ∈ A by property (3) of the sets Sn . By property (1), it

follows that g+ hn f ∈ Sn for all f ∈ A. If g ∈ an , then there is some f ∈ A such that

g+ hn f ∈ pn . But pn ∩Sn = ∅, so it follows that g 6∈ an .

Since Sn+1 is multiplicatively closed by property (2), there is a prime ideal pn+1 of A
such that pn ⊂ an ⊆ pn+1 and pn+1 ∩Sn+1 = ∅. By induction on n, it follows that A has

infinite Krull dimension.

Remark 3.3. (a) Arnold has used an argument as above to show that the ring RJXK
has infinite Krull dimension [1, Theorem 1]. In fact given any ring A, if one can

exhibit elements hn of A and sets Sn satisfying the properties in Proposition 3.1
together with a prime ideal p such that p∩S1 = ∅, then the above argument shows

that A has infinite Krull dimension.

(b) There is a rigorous way to view the power series ring RJXK as an equal characteristic
version of A (see [4, Section 1.3]). Our definitions make sense in this more

general setting, and our arguments give another proof that RJXK has infinite Krull

dimension.

4. The proof of Proposition 3.1

In this section we prove Proposition 3.1. Recall that v is the valuation on R and si (hn) :=

v(an,i−1/an,i ) is the ith slope of N (hn).
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Proposition 4.1. Fix n,m > 1. For t > 2m2 we have that

N (hm
n+1)(t) < N (hn)(t).

Proof. Let ` = km+ r ∈ Z with k > 2m and 0 6 r < m. We have

N (hn)(`) = v(an,`) = v(an,km+r )

and

N (hm
n+1)(`) = mv(an+1,k)− sk+1(hn+1)r 6 mv(an+1,k) = mv(an,k2).

To see that mv(ak2) < v(an,km+r ), recall that v(an,i ) = p−i2n−1
. Thus we must show that

m < pk2n
−(km+r)2

n−1

.

Since r < m, it suffices to show that m < pk2n
−((k+1)m)2

n−1
. One checks this quickly using

that k > 2m and therefore k2
− (km+m) > m.

Corollary 4.2. For all n > 1 we have Sn+1 ⊂ Sn.

Proof. If g ∈ Sn+1 then for some m > 1 we have 0 < N (g) 6 N (hm
n+1). By Proposition 4.1

and Lemma 2.1, it follows that for m′ sufficiently large (depending on m and n), we have

N (hm
n+1) < N (hm′

n ), so g ∈ Sn . To see that the inclusion is strict, note that Proposition

4.1 also implies that hn 6∈ Sn+1, but hn ∈ Sn .

Proposition 4.3. Let h be an element of A such that N (h) > 0. Then for any f ∈ A,

N ( f h) > N (h).

Proof. The Newton polygon N ( f h) starts at n f + nh . Note that the slopes of N ( f h) are
all positive and form a monotone sequence converging to zero. Therefore all slopes si (h)
of h eventually occur as slopes of N (h f ). It follows that for any l > n f + nh , N ( f h)(l) >∑
∞

i>l si (h) = N (h)(l).

Proposition 4.4. For each n > 1, the set Sn is multiplicatively closed.

Proof. Let f, g ∈ Sn . Then by Proposition 4.3, we have that N ( f g) > N (g) > 0.

For m sufficiently large, we have 0 < N ( f ),N (g) 6 N (hm
n ). Thus for any λ, t ∈ R we

have

N ( f )(t)+ λt 6 N (hm
n )(t)+ λt.

Taking the infimum over t ∈ R, it follows that L(N ( f ))(λ) 6 L(N (hm
n ))(λ) for all λ ∈ R.

Similarly, L(N (g)) 6 L(N (hm
n )). Therefore

L(N ( f g)) = L(N ( f ))+L(N (g)) 6 2L(N (hm
n )) = L(N (h2m

n )).

Hence, we have that L(N ( f g))(λ)− tλ 6 L(N (h2m
n ))(λ)− tλ for all t, λ ∈ R. It follows

that

N ( f g)(t) = sup
λ

{L(N ( f g))(λ)− tλ} 6 sup
λ

{L(N (h2m
n ))(λ)− tλ} = N (h2m

n )(t)

for all t ∈ R. Therefore f g ∈ Sn .
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Let f, g ∈ A, and write f =
∑
∞

n=0[xn]pn and g =
∑
∞

n=0[yn]pn . In order to prove

property (3) from Proposition 3.1 we need to understand the Newton polygon of f + g
in terms of those of f and g. For that, we show a property of Witt vector addition in

Lemma 4.5 below. First, recall the translation between Teichmüller expansions and Witt

coordinates:
∞∑

n=0

[xn]pn
= (x0, x p

1 , x p2

2 , . . . , x pn

n , . . .).

Recall also that addition of Witt vectors is governed by the polynomials

Sn(X0, . . . , Xn; Y0, . . . , Yn),

which are defined recursively by

S0(X0; Y0) := X0+ Y0

and
n∑

k=0

pk Sk(X0, . . . , Xk; Y0, . . . , Yk)
pn−k
=

n∑
k=0

pk(X pn−k

k + Y pn−k

k ).

Thus

f + g = (S0(x0; y0), . . . , Sn(x0, . . . , x pn

n ; y0, . . . , y pn

n ), . . .)

=

∞∑
n=0

[Sn(x0, . . . , x pn

n ; y0, . . . , y pn

n )p−n
]pn .

Lemma 4.5. For all n > 0 we have that

Sn(x0, . . . , x pn

n ; y0, . . . , y pn

n ) = x pn

n + y pn

n +Σn,

where Σn is a sum of terms of the form
∏n−1

k=0 x pk ik
k y pk jk

k such that
∑n−1

k=0 pk(ik + jk) = pn.

Proof. Note that if the lemma holds for some n, then S p
n is a sum of terms of the form∏n

k=0 x pk ik
k y pk jk

k such that
∑n

k=0 pk(ik + jk) = pn+1. The lemma then follows from the

definition of Sn and induction on n.

Proposition 4.6. Let f =
∑
∞

n=0[xn]pn, g =
∑
∞

n=0[yn]pn
∈ A. Assume that N (g) is strictly

decreasing. Suppose there exists a t0 > 0 such that for all t > t0 we have N (g)(t) <
N ( f )(t). Then there exists t1 > t0 such that for all t > t1, we have that N (g+ f )(t) 6
N (g)(t).

Proof. We first show the desired inequality when t > t0 is a node of N (g); these exist since

g is strictly decreasing. Let n > t0 be a node of N (g). Since N (g) is strictly decreasing,

we have that

v(yn) = N (g)(n) < v(ym)

for all m < n. Since n > t0 and N ( f ) is decreasing, for all m 6 n we have that

v(yn) = N (g)(n) < N ( f )(n) 6 v(xm).
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Thus v(y pn

n ) < v(x pn

n ) and for any i0, j0, . . . , in−1, jn−1 such that
∑n−1

k=0 pk(ik + jk) = pn ,

it follows that

v

(n−1∏
k=0

y pk ik
k x pk jk

k

)
> pnv(yn) = v(y

pn

n ).

By Lemma 4.5, it follows that

v(Sn(y0, . . . , y pn

n ; x0, . . . , x pn

n )p−n
) = v(yn).

Therefore

N (g+ f )(n) 6 v(Sn(y0, . . . , y pn

n ; x0, . . . , x pn

n )p−n
) = v(yn) = N (g)(n),

and the inequality holds at all nodes of N (g) beyond t0.

Let t1 > t0 be the first node of N (g). Given t > t1, let n1 and n2 be two consecutive nodes

such that n1 6 t 6 n2. On this segment, N (g) is the straight line connecting (n1, v(yn1))

and (n2, v(yn2)). Since N (g+ f ) is a convex function lying below N (g) at the two end

points n1 and n2, it follows that N (g+ f )(t) 6 N (g)(t), as desired.

Corollary 4.7. If g ∈ Sn+1 and f ∈ A, then g+ f hn ∈ Sn+1.

Proof. Since g ∈ Sn+1, it follows that N (g) is strictly decreasing and there exists m > 0
such that N (g) 6 N (hm

n+1). By Propositions 4.1 and 4.3, for all t > 2m2, we have

N (g)(t) 6 N (hm
n+1)(t) < N (hn)(t) 6 N ( f hn)(t).

By Proposition 4.6, it follows that for all t sufficiently large,

N (g+ f hn)(t) 6 N (g)(t) 6 N (hm
n+1)(t).

By Lemma 2.1, it follows that g+ f hn ∈ Sn+1.
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