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Part 1 Summary of ULM processing step 
This chapter details the ULM processing and localisation algorithms with graphical illustrations, 
and analytical formulas for weighted average and radial symmetry algorithms. 

Supplementary figure 1-1 ULM processing steps 

 
This illustrates the full processing of ULM algorithm. 

1. Images of a perfused organ with microbubbles are acquired at high frame rate 
2. Raw images are filtered to remove tissue signal 
3. Microbubbles are detected and localized with a sub-pixel precision 
4. Successive positions are paired together into tracks 
5. After interpolation, tracks are projected on a rendering grid. Intensity pixel is incremented by 1 

if a trajectory is present 
6. By accumulating a large number of tracks, vascularisation can be reconstructed. (rendering with 

power law compression) 
All this process has been implemented in this article and is provided in the supplementary online scripts. 
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Supplementary figure 1-2 Example of density rendering of the in vivo rat brain perfusion dataset 

 

The density rendering represents the number of 
trajectories passing through a single pixel. Here, the 
square pixel’s size has been defined to 𝜆𝜆

10
= 10𝜇𝜇𝜇𝜇. A 

power compression factor of 1/4 is applied to magnify 
the rendering. 
This example image has been processed with the 
radial symmetry algorithm. The associated code is 
provided in the online code package. 
Scale bar: 1 mm 

 

Supplementary figure 1-3 Example of density rendering with axial velocity encoding of the in vivo 
rat brain perfusion dataset 

 

As ULM provides hemodynamic information, the axial 
direction of flow can be encoding in colors on the 
density image. 
Upward and backward flow can be distinguished. In 
this image, the blue color encodes the upward flows 
and the red color encodes the backward flows. This 
color encoding helps to differentiate arteries from 
veins in the neocortex. A power compression factor of 
1/4 is applied on the density. 
Scale bar: 1 mm 

 

Supplementary figure 1-4 Example of velocity rendering of the in vivo rat brain perfusion dataset 

 

In this image, the mean velocity is encoded with color. 
Slowest velocities appear blue, and high velocity 
regions are red with a max velocity of 70 𝜇𝜇𝜇𝜇/𝑠𝑠. The 
velocity display range can be modified by users. A 
velocity power compression factor of 1/1.5 is applied 
to increase the dynamics of the rendering. Pixel’s 
saturation is defined by the density image, with a 
power compression of 1/4, in order to shadow low 
density regions. 
Scale bar: 1 mm 
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Supplementary figure 1-5 Illustrations localisation algorithms on a centered and cropped image of a 
simulated microbubble of in silico dataset 

 

Simulated beamformed image centered on a microbubble. 
The pixel size is  𝜆𝜆 × 𝜆𝜆. The real position of the simulated 
scatterer is  20.3𝜆𝜆 in the lateral position, and  61.3𝜆𝜆 in the 
axial position and is represented by the yellow solid dot. 
To apply the localisation kernel, the full image is cropped 
and centered on the pixel with the highest intensity. The 
localisation kernel returns the position shift of the 
estimated. The No-shift algorithm will always return a null 
shift. 
The image is rendered with a log compression. 

 

Interpolation based algorithm 
Simulated beamformed image centered on a microbubble 
with interpolation to illustrate interpolation-based 
algorithms. Each pixel is divided into 10x10 subpixels.  
Different localisation methods can be used: cubic, Lanczos, 
spline. 

 

Weighted average algorithm 
Simulated beamformed image centered on a microbubble. 
Arrows illustrate the process of weighted average 
algorithm. For the axial shift, the image intensity (without 
log compression) is summed over the 5 lateral pixels, and 
weighted with [-2; -1; 0; 1; 2] coefficients and divided by the 
total intensity. 

𝑧𝑧𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 =
∑ ∑ 𝐼𝐼(𝑖𝑖, 𝑗𝑗) ∗ 𝑗𝑗2

𝑗𝑗=−2
2
𝑖𝑖=−2

∑ ∑ 𝐼𝐼(𝑖𝑖, 𝑗𝑗)2
𝑗𝑗=−2

2
𝑖𝑖=−2

 

 

 

Gaussian fitting algorithm 
The top right-hand image is the input image of a centered 
microbubble with a log compression. The bottom right-hand 
image shows the Gaussian function used for the fitting. 

 

Radial symmetry algorithm 
Simulated beamformed image centered on a microbubble 
with equipotential lines plotted in blue. The red arrows show 
the direction and amplitude of the gradient and point on the 
microbubble position. 
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Supplementary method 1-6 Analytical solution for the weighted average method 

Let's assume you have an image of a microbubble composed of a grid of [𝑁𝑁𝑧𝑧,𝑁𝑁𝑥𝑥] pixels. To recover 
the position of the centroid, the interpolation schemes will upsample that image on a grid of [𝑁𝑁𝑧𝑧 ∗
𝑟𝑟𝑟𝑟𝑠𝑠,𝑁𝑁𝑥𝑥 ∗ 𝑟𝑟𝑟𝑟𝑠𝑠] pixels, with 𝑟𝑟𝑟𝑟𝑠𝑠 the upscaling resolution factor and then either find the maximum 
intensity or the centroid of the intensity distribution. The intensity 𝐼𝐼𝑠𝑠𝑠𝑠 coming out of the interpolation 
will be expressed as a linear combination of original intensities: 

𝐼𝐼𝑠𝑠𝑠𝑠(𝑖𝑖, 𝑗𝑗) = � 𝐼𝐼𝑘𝑘𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖 − 𝑘𝑘𝑖𝑖 , 𝑗𝑗 − 𝑘𝑘𝑗𝑗)
�𝑘𝑘𝑖𝑖,𝑘𝑘𝑗𝑗�∈𝑍𝑍𝑞𝑞

 

where (i, j) belong to the interpolated space 𝑍𝑍𝑠𝑠𝑠𝑠 and (𝑘𝑘𝑖𝑖,𝑘𝑘𝑗𝑗) belong to the original space 𝑍𝑍𝑞𝑞. 

The function 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖  is called the synthesis function and can take many forms as long as it satisfies 
the interpolation property: it must vanish for all already known samples of the intensity except for 
the origin where it must take the value 1 - more simply put, if the intensity is known at the pixel in 
the departure grid, interpolation can not change its value in the arrival grid. This is the classical 
approach to interpolation, there is a more general approach where the synthesis function does not 
satisfy the interpolation property and is not necessarily finite support and where the coefficients 
are calculated based on the original intensity values but are not necessarily equal to them. The 
operation defined above is a discrete convolution equation. 

Our assumption under the weighted average localisation scheme is that one does not need to 
calculate all of the intensities on the refined grid to perform localisation, but we can calculate the 
position of the maximum intensity based on centroids. 

Mathematically speaking, our problem becomes: zc = �z ∈ Zsr Isr(z)⁄ = max
z∈Zsr

I�    ;    xc =

�x ∈ Xsr Isr(x)⁄ = max
x∈Xsr

I� 

with (𝑧𝑧𝑐𝑐 ,𝑥𝑥𝑐𝑐) the coordinates of the centroid, (𝑍𝑍𝑠𝑠𝑠𝑠 ,𝑋𝑋𝑠𝑠𝑠𝑠) the subset of coordinates in the super-
resolved basis, and 𝐼𝐼 the intensity of the image. 

We assume that we have centered our subset space 𝑍𝑍𝑘𝑘 on the maximum known value of 𝐼𝐼𝑘𝑘 at 𝑧𝑧𝑐𝑐𝑘𝑘 
a and a Gaussian distribution of the intensity in our subset. The sub-pixel location of the peak can 
be estimated by calculating the centroid of the intensities29. In an image with intensities 𝐼𝐼(𝑖𝑖, 𝑗𝑗), we 
can define the image moments as:   𝑀𝑀𝑝𝑝𝑞𝑞 = ∑ ∑ 𝑖𝑖𝑝𝑝𝑗𝑗𝑞𝑞𝑗𝑗𝑖𝑖 𝐼𝐼(𝑖𝑖, 𝑗𝑗), 

and the centroid is defined by :   (zc, xc) = �M10

M00
, M01

M00
� 

This centroid is equal to the location of the peak only if the intensity is Gaussian and in our 
discrete case, it can be written as: 

𝑧𝑧𝑐𝑐 = 𝑧𝑧𝑐𝑐𝑘𝑘 +
∑ ∑ 𝐼𝐼(𝑖𝑖, 𝑗𝑗)𝑤𝑤𝑧𝑧(𝑖𝑖, 𝑗𝑗)

�𝑖𝑖𝑥𝑥2 �

𝑗𝑗=−�𝑖𝑖𝑥𝑥2 �

�𝑖𝑖𝑧𝑧2 �

𝑖𝑖=−�𝑖𝑖𝑧𝑧2 �

∑ ∑ 𝐼𝐼(𝑖𝑖, 𝑗𝑗)
�𝑖𝑖𝑥𝑥2 �

𝑗𝑗=−�𝑖𝑖𝑥𝑥2 �

�𝑖𝑖𝑧𝑧2 �

𝑖𝑖=−�𝑖𝑖𝑧𝑧2 �

   ;    𝑥𝑥𝑐𝑐 = 𝑥𝑥𝑐𝑐𝑘𝑘 +
∑ ∑ 𝐼𝐼(𝑖𝑖, 𝑗𝑗)𝑤𝑤𝑥𝑥(𝑖𝑖, 𝑗𝑗)

�𝑖𝑖𝑥𝑥2 �

𝑗𝑗=−�𝑖𝑖𝑥𝑥2 �

�𝑖𝑖𝑧𝑧2 �

𝑖𝑖=−�𝑖𝑖𝑧𝑧2 �

∑ ∑ 𝐼𝐼(𝑖𝑖, 𝑗𝑗)
�𝑖𝑖𝑥𝑥2 �

𝑗𝑗=−�𝑖𝑖𝑥𝑥2 �

�𝑖𝑖𝑧𝑧2 �

𝑖𝑖=−�𝑖𝑖𝑧𝑧2 �

 

with the weights defined as: wz(i, j) = i   ;  wx(i, j) = j ; and (zck, xck) = {I(z, x) > I(i, j),∀(i, j)}  

And fz = FWHMz, fx = FWHMx the Full Width at Half Maximum of the intensity profile in the 𝑧𝑧, 𝑥𝑥 direction 
respectively.  
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Supplementary method 1-7 Analytical solution for the radial symmetry algorithm 

Let 𝐼𝐼 be a 5x5 matrix containing a microbubble: 𝐼𝐼 =

⎣
⎢
⎢
⎢
⎡
𝐼𝐼11 𝐼𝐼12 𝐼𝐼13 𝐼𝐼14 𝐼𝐼15
𝐼𝐼21 𝐼𝐼22 𝐼𝐼23 𝐼𝐼24 𝐼𝐼25
𝐼𝐼31 𝐼𝐼32 𝐼𝐼33 𝐼𝐼34 𝐼𝐼35
𝐼𝐼41 𝐼𝐼42 𝐼𝐼43 𝐼𝐼44 𝐼𝐼45
𝐼𝐼51 𝐼𝐼52 𝐼𝐼53 𝐼𝐼54 𝐼𝐼55⎦

⎥
⎥
⎥
⎤

 

We define (𝑢𝑢�⃗ , �⃗�𝑣) the basis as the rotation of the original basis (𝑧𝑧, �⃗�𝑥), rotated by 𝜃𝜃 = + 3𝜋𝜋
4

, and the 
rotation matrix 𝑅𝑅(𝑢𝑢��⃗ ,𝑣𝑣�⃗ ): 

  
We set: dIdv = I(1: Nz − 1, 1: Nx − 1) − I(2: Nz, 2: Nx), and dIdu = I(1: Nz − 1, 2: Nx) − I(2: Nz, 1: Nx − 1) 

The line given by the equation 𝑑𝑑𝐼𝐼𝑑𝑑𝑢𝑢. 𝑢𝑢�⃗ + 𝑑𝑑𝐼𝐼𝑑𝑑𝑣𝑣. �⃗�𝑣 is the line that defines the gradient of intensity 
according to the basis (𝑢𝑢�⃗ , �⃗�𝑣). The line given by the equation: 

(𝑢𝑢.𝑢𝑢�⃗ + 𝑣𝑣. �⃗�𝑣)(𝑑𝑑𝐼𝐼𝑑𝑑𝑢𝑢.𝑢𝑢�⃗ + 𝑑𝑑𝐼𝐼𝑑𝑑𝑣𝑣. �⃗�𝑣) = 0�⃗  

will define the subset (𝑢𝑢, 𝑣𝑣) of coordinates defining an orthogonal to the intensity gradient and 
we can write it as: 

�𝑢𝑢𝑣𝑣�
𝑇𝑇
�𝑑𝑑𝐼𝐼𝑑𝑑𝑢𝑢𝑑𝑑𝐼𝐼𝑑𝑑𝑣𝑣� = 0 ⇔ �𝑢𝑢𝑣𝑣�

𝑇𝑇
.𝑅𝑅(𝑢𝑢��⃗ ,𝑣𝑣�⃗ )→(𝑧𝑧,�⃗�𝑥) �

𝑑𝑑𝐼𝐼𝑑𝑑𝑢𝑢
𝑑𝑑𝐼𝐼𝑑𝑑𝑣𝑣� = 0 

⇔ �𝑢𝑢𝑣𝑣�
𝑇𝑇

.−
√2
2 �1 −1

1 1 � �𝑑𝑑𝐼𝐼𝑑𝑑𝑢𝑢𝑑𝑑𝐼𝐼𝑑𝑑𝑣𝑣� = 0 

⇔ [𝑢𝑢 𝑣𝑣]. �𝑑𝑑𝐼𝐼𝑑𝑑𝑢𝑢 − 𝑑𝑑𝐼𝐼𝑑𝑑𝑣𝑣
𝑑𝑑𝐼𝐼𝑑𝑑𝑢𝑢 + 𝑑𝑑𝐼𝐼𝑑𝑑𝑣𝑣� = 0 

⇔ 𝑢𝑢. (𝑑𝑑𝐼𝐼𝑑𝑑𝑢𝑢 − 𝑑𝑑𝐼𝐼𝑑𝑑𝑣𝑣) + 𝑣𝑣. (𝑑𝑑𝐼𝐼𝑑𝑑𝑢𝑢 + 𝑑𝑑𝐼𝐼𝑑𝑑𝑣𝑣) =  0 

Let (𝑢𝑢𝑘𝑘 ,𝑣𝑣𝑘𝑘) = (𝑧𝑧𝑘𝑘 ,𝑥𝑥𝑘𝑘) be the coordinates belonging to the orthogonal to the gradient, we need to 
find the center  (𝑧𝑧𝑐𝑐 , 𝑥𝑥𝑐𝑐) minimizing the distance to the orthogonal of the gradient. If we want our 
basis to be centered around (𝑧𝑧𝑐𝑐 , 𝑥𝑥𝑐𝑐), the equation above becomes: (zk − zc) − m(xk − xc) = 0 

with m = dIdu+dIdv
dIdv−dIdu

. 

The distance from the point 𝐶𝐶(𝑧𝑧𝑐𝑐 , 𝑥𝑥𝑐𝑐) to the point 𝐾𝐾(𝑧𝑧𝑘𝑘 ,𝑥𝑥𝑘𝑘) belonging to the line directed by the 
vector 𝑢𝑢𝑑𝑑����⃗  orthogonal to the gradient in 𝐾𝐾 is 

𝑑𝑑(𝑐𝑐,𝐾𝐾 ∈ 𝑢𝑢𝑑𝑑����⃗ ) =
||𝐾𝐾𝐶𝐶�����⃗  ∧ 𝑢𝑢𝑑𝑑����⃗ ||

||𝑢𝑢𝑑𝑑����⃗ ||  

thus :  𝑑𝑑(c, K ∈ ud���⃗ ) = dk =
|(zk−zc)−m(xk−xc)|

1+m2  

Let χ2 = ∑ dk2wkk  with 𝑤𝑤𝑘𝑘 a weight given to each pixel. The goal of this is to compensate for low 
SNR in areas where the gradient is low, and: 

𝑤𝑤𝑘𝑘 =
dImag2

�(zk − zc)2 + (xk − xc)2
 

and dImag2 = dIdu2 + dIdv2 

As 𝑤𝑤𝑘𝑘, is defined with respect to (𝑧𝑧𝑐𝑐 ,𝑥𝑥𝑐𝑐)  , we will use the classical weighted average method as 
an initial guess of (𝑧𝑧𝑐𝑐 , 𝑥𝑥𝑐𝑐)   to calculate each 𝑤𝑤𝑘𝑘. To find the maximum intensity point, one must 
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minimize all of the distance 𝑑𝑑𝑘𝑘, for example, minimize the sum of all distances 𝑑𝑑𝑘𝑘 . We will thus 
differentiate 𝜒𝜒2 with respect to (𝑧𝑧𝑐𝑐 , 𝑥𝑥𝑐𝑐)  and solve for (𝑧𝑧𝑐𝑐 , 𝑥𝑥𝑐𝑐). 

∂χ2

∂xc
 =  

∂∑ dk2wkk

∂xc
 =  �

∂�
�(zk − zc) − mk(xk − xc)�2wk

mk
2 + 1 �

∂xck

=  �
2((zk − zc) − mk(xk − xc))mkwk

mk
2 + 1

k

 

solving for ∂χ
2

∂xc
= 0 leads to: 

�
𝜇𝜇𝑘𝑘𝑤𝑤𝑘𝑘
𝜇𝜇𝑘𝑘
2 + 1

�(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑐𝑐) −𝜇𝜇𝑘𝑘(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑐𝑐)� = 0
𝑘𝑘

 

�
𝜇𝜇𝑘𝑘𝑤𝑤𝑘𝑘
𝜇𝜇𝑘𝑘
2 + 1 

∗ 𝑧𝑧𝑐𝑐 −�
𝜇𝜇𝑘𝑘
2𝑤𝑤𝑘𝑘

𝜇𝜇𝑘𝑘
2 + 1 

∗ 𝑥𝑥𝑐𝑐 = �
𝜇𝜇𝑘𝑘𝑤𝑤𝑘𝑘
𝜇𝜇𝑘𝑘
2 + 1 

∗ (𝑧𝑧𝑘𝑘 − 𝜇𝜇𝑘𝑘𝑥𝑥𝑘𝑘)
𝑘𝑘𝑘𝑘𝑘𝑘

 

and for ∂χ
2

∂zc
= 0 

�
𝑤𝑤𝑘𝑘

𝜇𝜇𝑘𝑘
2 + 1 

∗ 𝑧𝑧𝑐𝑐 −�
𝜇𝜇𝑘𝑘𝑤𝑤𝑘𝑘
𝜇𝜇𝑘𝑘
2 + 1

∗ 𝑥𝑥𝑐𝑐
𝑘𝑘

= �
𝑤𝑤𝑘𝑘

𝜇𝜇𝑘𝑘
2 + 1

∗ (𝑧𝑧𝑘𝑘 − 𝜇𝜇𝑘𝑘𝑥𝑥𝑘𝑘)
𝑘𝑘𝑘𝑘

 

If we write this with matrices, it becomes: 
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⎥
⎥
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=
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⎢
⎡�
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𝜇𝜇𝑘𝑘
2 + 1
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𝑘𝑘
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𝑤𝑤𝑘𝑘
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⎥
⎥
⎥
⎤
 

Calculating the values of (𝑧𝑧𝑐𝑐 , 𝑥𝑥𝑐𝑐) , is straightforward from the expression above: 

Let Ω = �
∑ mkwk
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2+1k

∑ wk
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� 
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𝜇𝜇𝑘𝑘
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∗ (𝑧𝑧𝑘𝑘 −𝜇𝜇𝑘𝑘𝑥𝑥𝑘𝑘)
𝑘𝑘

�
𝑤𝑤𝑘𝑘

𝜇𝜇𝑘𝑘
2 + 1

∗ (𝑧𝑧𝑘𝑘 −𝜇𝜇𝑘𝑘𝑥𝑥𝑘𝑘)
𝑘𝑘 ⎦

⎥
⎥
⎥
⎤
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Part 2 : Point Spread Function In Silico Data 
We will present supplementary figures related to the dataset containing simulated scatterers 
designed to investigate the PSF inhomogeneity in space and its effect on localisation. The goal of 
these few figures is to help us understanding how the algorithms are affected by sub-wavelength 
displacements and how well they can recover one scatterers position with different SNR but 
without any motion and without trying to reconstruct canals. No tracking is performed in this 
chapter. 

Supplementary figure 2-1 Simulated scatterers position over a λ space 

 

In an empty medium of size 5𝜆𝜆 × 5𝜆𝜆, a scatterer was 
placed in the center and was moved in a (𝜆𝜆 × 𝜆𝜆) space 
with 𝜆𝜆

21
 steps. Above, the points simulated are 

represented with black filled dots. The grid has a step of 
𝜆𝜆
21

× 𝜆𝜆
21

, and inside each one of the 441 squares, 3 
random positions are chosen for the scatterer. With all 
these positions, maps with 𝜆𝜆

21
 increments can be 

estimated by averaging results from the 3 positions of 
each square, avoiding gridding due to the 𝜆𝜆

21
× 𝜆𝜆

21
 grid. 

Supplementary figure 2-2 Beamformed image of scatterer moved in a (𝝀𝝀 × 𝝀𝝀) space 

 

The response to an ultrasound wave of the scatterer positions 
depicted in figure 1-1 was simulated with the Verasonics Research 
Ultrasound Simulator (3 tilted plane wave, 15MHz, linear probe with 
128 elements, pitch 1,116 × 𝜆𝜆). The speed of sound was set to 
1540 𝜇𝜇/𝑠𝑠. Radiofrequency data were beamformed by the provided 
beamformer in square pixels of 𝜆𝜆. The beamformed image is 
presented above and was limited to a 5𝜆𝜆 × 5𝜆𝜆 space. The Signal to 
Noise Ratio of the final beamformed image was clutter noise modeled 
by a Gaussian filtered white Gaussian noise. We used the wgn 
Matlab function to generate a 0.2 ohm impedance noise, with a +/- 
10dB amplitude. The resulting noise was then smoothed using a 2D 
Gaussian kernel of size 0.7 pixel. Finally, the noise was added to 
beamformed image by choosing an amplitude in dB between the 
maximum intensity value of the beamformed image and the average 
intensity of the generated noise. This process results in noised 
images, with a user-selected SNR, and a pseudo clutter with 20dB of 
amplitude (more details in figure 2-3). 7 different SNR values were 
tested. 
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Supplementary figure 2-3 Simulated clutter noise explanation 

Supplementary figure 2-4 Localisation errors for in silico PSF dataset 

 
For each position simulated, localisation with the 7 different algorithms was calculated and compared to 
the true position. The axial, lateral and Root Mean Square error (RMSE) are plotted here. We can see 
that the standard deviations of the error for the interpolation schemes (Cub-Interp for cubic, Lz-Interp for 
Lanczos, Sp-Inter for spline) are almost constant as these schemes have a high average error and 
standard deviation. The No-Shift has the maximum error in all cases as it is reporting the scatterer to be 
exactly centered regardless of its intensity. The Gaussian fitting (Gauss-Fit) and radial symmetry (RS) 
scheme are more affected by SNR than the other schemes but have considerably lower lateral errors 
and standard deviations. Finally, it is important to note that the weighted average (WA) scheme has 
similar standard deviations to the best localisation algorithms until SNR drops below 40dB making it a 
very good candidate for high SNR applications such as in harmonic imaging in both directions. For the 
axial direction, it continues being a good candidate up until SNR drops below 25dB. This is very useful 
for vascularisation aligned in a preferential axis (i.e. the brain or the kidney). 

 

Supplementary figure 2-5 Distributions of directional errors for PSF at various SNR levels 

For each of the position simulated, the lateral and axial error distributions are plotted. 

 

Simulated beamformed images have been 
noised using a custom method to generate a 
clutter like noise. 
First, a white noise is generated using the wgn 
Matlab function with power of -2dBW and an 
impedance of 0.2 Ohms. The amplitude of this 
noise is set to 10dB, which is the clutter 
amplitude. The mean clutter amplitude is set 
to adjust the SNR wanted in dB related to the 
maximal intensity of the raw image. A 
gaussian filter is finally applied with a standard 
deviation of 1.5 pixel. 
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Distributions are not always centered for 
the interpolation scheme. 
At 10dB, all algorithms seem to have 
poor localisation precision except for the 
Lanczos and Spline interpolation. The 
Gaussian fitting seems to perform a bit 
better than the radial symmetry. 

 

At 15dB, the Gaussian fitting takes the 
lead for lateral error localisation. The 
Lanczos and spline interpolation perform 
very well, only surpassing the radial 
symmetry-based algorithm moderately. 

 

At 20dB, The Gaussian fitting and radial 
symmetry surpass all other algorithms for 
the first time. Their result for the lateral 
error are similar. For the axial error, the 
reprojection along the diagonals of the 
radial symmetry scheme enables its 
distribution to be centered around 0. The 
Lanczos and Spline Interpolation come 
second. 

 

At 25dB, the Gaussian fitting and radial 
symmetry alleviate all other algorithms 
chances to perform as well. This confirms 
the pivotal point observed at 15dB. The 
weighted average outperforms the 
interpolation-based algorithms in terms 
of standard deviation for the axial errors 
for the first time. 

 

At 30dB, the clear advantage of 
Gaussian fitting and radial symmetry is 
confirmed. The weighted average 
continues its slow progression towards 
being the third best of the schemes. 
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At 40dB, the radial symmetry 
outperforms all other algorithms, even 
the Gaussian fitting. For the axial error, 
the weighted average interestingly 
comes on par with the radial symmetry, 
making it the ideal candidate for high 
SNR applications and vascularisation 
with a preferential direction. 

 

At 60dB, the weighted average comes 
out on top for the axial error with a two-
peak distribution. Although hindered by 
lower lateral precision, it is the best 
candidate for high SNR applications. The 
Gaussian fitting and radial symmetry 
localisation algorithms seem to be best 
for complex vascularisation with multiple 
directions (i.e. cardiac or tumor imaging). 
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Supplementary figure 2-6 Error maps for a scatterer moved in a λ space at various SNR levels 

For each of the position simulated, the lateral, axial error and RMSE are rendered with respect to their 
location. 
 

 

The radial symmetry-based localisation 
has a simili random pattern for the error 
at 10dB. For the interpolation schemes, 
the errors are symmetrically distributed 
around the center axis. The axial error is 
larger than the lateral error as could be 
expected. 

 

The Gaussian fitting axial error starts to 
adopt a symmetrical pattern at 15dB. 
The radial symmetry-based algorithm 
retains a simili random pattern for the 
lateral errors. 

 

At 20dB, the radial symmetry-based 
algorithm starts to adopt a symmetrical 
pattern but retains a lower axial error 
than the Gaussian fitting. There is a 
slight shift in the axial direction of the 
RMSE values appearing in the weighted 
average scheme. This can be 
compensated for as it is a static error. 
The Lanczos and spline interpolation 
schemes retain low lateral errors. 

 

At 25dB, the cubic interpolation scheme 
degenerates to a ring distributed RMSE. 
The Gaussian fitting and radial 
symmetry-based algorithms draw away 
from a random distribution in the lateral 
error distribution. Their axial error 
distribution is separated into two 
symmetrical lines also visible in the 
RMSE. 
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At 30dB, the Gaussian fitting and radial 
symmetry-based algorithm adopt their 
specific droplet shaped distribution on 
the lateral error for the first time. They 
possess two peaks of error at 
approximately 𝜆𝜆

4
 in the axial direction. 

This case is specific to localisation 
schemes relying on the shifts along the 
diagonal (so-called reprojection) and 
explains the very low value of lateral 
error for Gaussian fitting and radial 
symmetry. The errors for the weighted 
average schemes decrease and 
concentrate on the furthest positions 
from the center. The cubic interpolation 
RMSE continues to adopt a ring shape 
distribution. 

 

The trends observed at 30dB continue at 
40dB. The weighted average error 
exhibits a large advantage over the 
interpolation-based schemes. The radial 
symmetry confirms its advantage over 
the Gaussian fitting for the lateral error. 

 

The weighted average exhibits the 
smallest axial error but retains a 
symmetrical distribution at 60dB. The 
advantage of the radial symmetry-based 
algorithm over the Gaussian fitting is 
clear for the axial error. 
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Part 3 : In silico canal simulation 
We will present here the dataset comprised of simulated canals. We have produced additional 
figures to explain how the dataset was devised, how well the different algorithms perform on this 
dataset with the addition of tracking. The idea behind this set is to be able to perform the complete 
ULM process and to have access to the ground truth to calculate statistical indices and look at 
complicated structures designed by our team. The errors of each algorithm are presented, as well 
as our separation index which was used to calculated the maximum attainable resolution. 

 

In the next 7 figures, the density renderings are obtained by counting the number of trajectories 
passing through each pixel of size 𝜆𝜆

10
× 𝜆𝜆

10
. These trajectories are obtained by applying the 7 

different localisation algorithms and then Kuhn-Munkres assignment-based tracking with a custom 
defined interpolation of microbubbles’ trajectories. This will smooth the trajectories and restore a 
more natural curvature. 

Supplementary figure 3-1 Simulated canals in silico with Verasonics Vantage Research Simulator 

 

Rendering of the simulated canals devised for the 
second in silico dataset. It comprises of complex 
3D tubes in the imaging plane mimicking an actual 
2D imaging situation. Inside, point-like scatterers 
are placed at random in each of the tubes section 
and then are propagated through 20,000 frames 
according to a Poiseuille flow model assuming 
continuity on streamlines. The concentration, 
speeds and noise level can all be adjusted by the 
user. We studied the localisation errors and the 
effect of different signal to noise ratio using this 
dataset. The point-like scatterer’s ultrasound 
response is simulated using the Verasonics 
Research Ultrasound Simulator using a 128 
elements linear probe, with elements’ pitch of 
1.116𝜆𝜆, and with 𝜆𝜆 × 𝜆𝜆 beamformed pixels. The top 
white line represents a length of 10 pixels (i.e. 10 
wavelengths). 

 
Supplementary figure 3-2 Density based rendering of localisation algorithms and tracking algorithm 

 

No-shift algorithm 
The errors in the lateral and axial direction are 
corrected by the tracking algorithm. However, for 
the two bifurcating canals, the errors have a clear 
effect: the separation is not well resolved and 
pinpointing its location would be largely 
erroneous. It is interesting to note that even 
without sub-pixel localisation, the large vessels 
are well resolved. To evaluate the quality of ULM, 
one should then really look at subwavelength 
vessels. The top white line represents a length of 
10 pixels (i.e. 10 wavelengths). 
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Weighted average algorithm 
For this localisation scheme, the bifurcation is 
better resolved than with the no-shift algorithm 
and the separation appears more distinct. The 
horseshoe is not well resolved however, the 
curved canals have a sharp delineation of their 
borders. The smaller vessels suffer from the 
gridding effect which is in line with what was seen 
in the previous dataset in terms of lateral error 
distribution. The top white line represents a 
length of 10 pixels (i.e. 10 wavelengths). 

 

Cubic interpolation-based algorithm 
The most notable facts are the ends of the large 
canals which reflect an aggregation of 
localisation around lines, especially in the left end 
of the largest of the canals. This is due to the 
distribution of the errors around the centered 
axis. The smallest canals suffer from the gridding 
effect and are projected on the beamforming grid. 
The top white line represents a length of 10 pixels 
(i.e. 10 wavelengths). 

 

Lanczos interpolation-based algorithm. 
The gridding effect can only be seen in the 
smallest canal. The separation is well resolved 
albeit the canals in the axial direction seem to be 
very parallel. This can be due to the tracking 
algorithm. The aggregation seen in the Cubic 
interpolation can also be seen in that scheme. 
The horseshoe is not well resolved. The top white 
line represents a length of 10 pixels (i.e. 10 
wavelengths). 

 

Spline interpolation-based algorithm. 
This scheme is very similar to the Lanczos based 
algorithm. The same effects can be seen. The top 
white line represents a length of 10 pixels (i.e. 10 
wavelengths). 
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Gaussian fitting-based algorithm 
This scheme does not appear to suffer from the 
gridding effect except if we zoom in on the 
smallest of the canal. A slight bulge is observable 
when large canals change direction as in the 
other schemes. This effect is exacerbated in the 
horseshoe pattern. All other structures are well 
resolved. The lateral bifurcating canals do not 
suffer from the “parallel” effect seen in the 
Lanczos based algorithm. The top white line 
represents a length of 10 pixels (i.e. 10 
wavelengths). 

 

Radial symmetry-based algorithm 
The radial symmetry algorithm does not suffer 
from gridding. All structures are well resolved 
except the horseshoe. One interesting thing to 
note is an increased number of crossing 
trajectories when the bifurcating canals come 
close to each other. This might be due to an 
increased number of close microbubbles at some 
point during the simulation. The separation is 
very well resolved. The top white line represents 
a length of 10 pixels (i.e. 10 wavelengths). 
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Supplementary figure 3-3 Distribution of errors for in silico canal simulation for localisation and 
tracking schemes for various SNR levels 

 

SNR = 10dB 
A microbubble detection is 
considered as true positive if the 
RMSE between the localized 
position and the ground truth is 
smaller than 𝜆𝜆/4, otherwise the 
detection is considered as a false 
negative. The localisation error is 
computed up to 𝜆𝜆/2. 
Except for the interpolation-based 
localisations, all schemes have a 
round shaped distribution. 
Localisation is at its limits for that 
SNR. 

 

SNR = 15dB 
The Gaussian fitting adopts a linear 
shaped distribution for the lateral 
error. 

 

SNR = 20dB 
The Gaussian fitting and radial 
symmetry distribution start to 
behave like the interpolation 
schemes. However, for the axial 
error, the reprojection along the 
diagonals of those algorithms 
prevent the formation of regular 
peaks around the interpolation grid. 
This is where these two algorithms 
draw their advantage from. 

 

SNR = 25dB 
The Gaussian fitting and radial 
symmetry-based algorithm confirm 
their advantage. The radial 
symmetry-based algorithm does not 
follow a symmetrical axial 
distribution because of the 
asymmetry of the Point Spread 
Function in that direction. The 
Gaussian fitting confirms that by 
having two maxima in its error 
distribution. 
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SNR = 30dB 
The Gaussian fitting and radial 
symmetry alleviate all the other 
algorithms’ chances in the lateral 
direction. For the axial direction, the 
previously observed behavior 
continues. The weighted average 
algorithm adopts a linear distribution 
for the lateral error and comes close 
to the interpolation schemes in 
terms of the axial error standard 
deviation. 

 

SNR = 40dB 
The weighted average has an axial 
distribution resembling that of the 
Gaussian fitting algorithm. For both 
Gaussian fitting and radial 
symmetry-based algorithm, their 
clear advantage in the lateral 
direction is well established with a 
very sharp centered distribution. 

 

SNR = 60dB 
The weighted average clearly 
becomes the best in the axial 
direction with its second peak very 
close to the center line. For the 
lateral direction it suffers a slightly 
higher standard deviation of the 
error but remains better than the 
interpolation schemes with a highly 
centered distribution. The Gaussian 
fitting and radial symmetry keep 
their advantage. 
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Supplementary figure 3-4 Explanation of separation estimation 

 
In the first image, the intensity profiles are plotted for different positions following the main direction of 
the canals. These profiles are overlaid on the image of the bifurcation produced by the algorithms. For 
each of these profiles, a threshold of 3% the maximum intensity is calculated. The maximum distance 
between the intensities dropping below this threshold is then measured and is reported as the width of 
the measured gap. 

 

Supplementary figure 3-5 Measured gap for separation estimation 

 
Measured gap for separation estimation. The gap value measured, as presented in Supplementary figure 
3-4, is reported here for all localisation algorithms and plotted against the simulated canal to canal 
distance. As soon as its value stays above zero, the simulated canal-to-canal distance is registered as 
the separation criteria index. This gives us the minimal distance between two close structures. The radial 
symmetry (RS) outperforms all algorithms with a significant margin of 19% over the Gaussian fitting 
algorithm (Gauss-Fit). Interestingly, the weighted average localisation (WA) yields better separation than 
the interpolation-based algorithms. The no-shift algorithm has a separation index of 0.77, the maximum 
of that index being 1. Even the poorest localisation algorithms can yield better than expected result with 
an adequate post-processing tracking algorithm. 
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Supplementary figure 3-6 Definition of statistical classification and results for different localisation 
and tracking schemes 

 
On the left image, the filled points represent the scatterer simulated. Scatterers localized within 𝜆𝜆/4 of the 
original scatterers simulated by the algorithms are marked as true positive. Scatterers localized outside of 
this margin are classified as false negatives. If an algorithm localizes a scatterer where there was nothing, 
it is classified as a false positive. The true negatives ensemble is always empty. 
The precision, sensitivity and Jaccard indices calculated with these classifications are reported on the 
right plot. For the three indices, the Gaussian fitting and radial symmetry come out on top with as much 
as 85.9 % simulated scatterers being picked up by the best localisation algorithm. The sensitivity of 
weighted average and the best interpolation-based algorithms are quite low at around 40 %, while the 
precision is higher for the latter at 71.8 %. The no-shift algorithm has the lowest values albeit not as low 
as one would expect given that no localisation is involved. The Jaccard index which represents a detection 
rate is at most 63.2 % and can be as low as 11.8 % for the no-shift scheme. Gaussian fitting and radial 
symmetry are more precise than others. This is due to a low localisation error, and as such a high 
cardinality of true positives. 
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Part 4 : In vivo ULM datasets 
In this chapter, we will present the in vivo rat brain perfusion dataset. The ULM rendering was 
applied with and without track interpolation. Non-interpolated tracks reveal the behavior of 
localisation methods. The aim of this chapter is to present real-life images and to better understand 
the different steps of the ULM process. It also helps us to illustrate the gridding effect on in vivo 
data and calculate a gridding index. 

At the end of this chapter, we present the ULM redering for the three in vivo additional datasets: 
“in vivo rat brain bolus”, “in vivo rat kidney”, and “in vivo mouse tumor”. 

 

Supplementary figure 4-1 Power Doppler rendering of in vivo rat brain dataset 

 
Contrast enhanced Power Doppler rendering of in vivo data, field of view 12.1mm x 
8.0mm. 
Beamformed IQ images are filtered with a Singular Value Decomposition to remove 
tissue signal. The remaining signal corresponds to blood motion and reveals brain 
vascularisation. 
One can note that the top of the brain has been removed manually with a mask during 
the acquisition. Unfortunately, it affects localisation of microbubbles in the pial vessels’ 
region. 

 

In the next 7 figures, the density renderings are obtained by counting the number of trajectories 
passing through each pixel of size 𝜆𝜆

10
× 𝜆𝜆

10
. These trajectories are obtained by applying the 7 

different localisation algorithms and then Kuhn-Munkres assignment-based tracking without 
interpolation of microbubbles’ trajectories. 
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Supplementary figure 4-2 Positions localized by all algorithms 

 

No-shift algorithm 
For each pixel, the intensity is the number of trajectories 
passing through that pixel with the No-Shift algorithm. 
6.92M microbubbles were detected.d 
As the no-shift algorithm puts the center of the scatterer 
in the center of the pixel, only a few pixels have a high 
intensity. No image quality enhancement is visible on 
this highly sparse image. The high number of detected 
scatterers can be explained by the tracking algorithm. 
Indeed, one would expect that for such poor localisation, 
no pairing would be possible. However, the algorithm 
will easily pair microbubbles localized at the same 
position because its goal is minimisation of total 
distance between points. 

 

Weighted average algorithm 
For each pixel, the intensity is the number of trajectories 
passing through that pixel with the weighted average 
algorithm. 7.00M microbubbles were detected. 
The quality enhancement from a contrast enhanced 
Doppler image is already visible with that algorithm. 
The gridding effect is visible, especially in high density 
areas such as large vessels. In the zoomed area, we 
can see the large vessel affected by the gridding effect 
but their borders are satisfactorily resolved. 

 

Cubic interpolation-based algorithm 
For each pixel, the intensity is the number of trajectories 
passing through that pixel with the cubic interpolation 
algorithm. 5.68M microbubbles were detected. 
Compared to the weighted average method, this 
algorithm still suffers from the gridding effect but in a 
different manner. Local maxima are concentrated on 
the corners of the grid whereas the weighted average 
scheme has minima on the corners. This will affect the 
delineation of the vessel borders making it irregular. 

 

Lanczos interpolation-based algorithm 
For each pixel, the intensity is the number of trajectories 
passing through that pixel with the Lanczos interpolation 
algorithm. 5.58M microbubbles were detected. With this 
scheme, almost no gridding is present except in the 
large vessels. The small vessels are well delineated. 
One can note that the pial vessels have a square 
aspect. This is not a mis-localisation effect, this is due 
to how the images are acquired. A mask was made 
during the acquisition to reject the area not belonging to 
the brain (see Supplementary figure 4-1) 
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Spline interpolation-based algorithm 
For each pixel, the intensity is the number of trajectories 
passing through that pixel with the spline interpolation 
algorithm. 5.72M microbubbles were detected. 
The gridding effect is a bit more visible than in the 
Lanczos interpolation. The same effects on the pial 
vessels are visible. 

 

Gaussian fitting algorithm 
For each pixel, the intensity is the number of trajectories 
passing through that pixel with the Gaussian fitting 
algorithm. 6.78M microbubbles were detected. 
Almost no gridding effect for this localisation 
implementation. We see that the delineation of vessels 
is not too sharp and the areas around vessel often 
contain many isolated pixels. Track interpolation will 
fully reconstruct the shape of these vessels as they are 
described by a very few numbers of microbubbles. This 
can be related to the high sensitivity of this algorithm. 
The pial vessels are also affected by the mask applied 
during the acquisition.  

 

Radial symmetry-based algorithm 
For each pixel, the intensity is the number of trajectories 
passing through that pixel with the radial symmetry-
based algorithm. 6.61M microbubbles were detected. 
Similar observations can be made than for the Gaussian 
fitting localisation algorithm. In this implementation, we 
seem to see a bit more isolated localisations than on the 
Gaussian fitting. The pial vessels are also affected by 
the acquisition mask and this tends to cause spikes 
towards the top of the brain. 
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Supplementary figure 4-3 Density rendering localisation algorithms with track interpolation 

In the next 7 figures, the density renderings are obtained by counting the number of trajectories 
passing through each pixel of size 𝜆𝜆

10
× 𝜆𝜆

10
. These trajectories are obtained by applying the 7 

different localisation algorithms and then Kuhn-Munkres assignment-based tracking with a custom 
defined interpolation of microbubbles’ trajectories. This will smooth the trajectories and restore a 
more natural curvature. A compression factor of 1/3 is applied. 

 

  
No-shift algorithm 

For the No-Shift localisation, we can see that the track 
interpolation tends to enhance image quality by reducing the 
image sparsity. This is because it will try to align the positions 
to minimize the total length of each trajectory. Therefore, the 
image enhancement is real but still largely unsatisfactory to 
call that technique ULM. 

Weighted average algorithm 
The weighted average localisation yields accurate results after 
track interpolation. Moderate gridding is present, especially in 
small vessels. A very interesting thing to note is that it does not 
seem to suffer from artifacts caused by the acquisition mask. 

  
Cubic interpolation-based algorithm 

The cubic interpolation-based localisation after track 
interpolation remains highly affected by gridding effect. The 
small vessels are the ones who suffer most from this effect and 
some of the large close vessels in the neocortex have links in 
between them which follow the grid. The acquisition mask 
affects this method 

Lanczos interpolation-based algorithm 
The Lanczos interpolation-based localisation after track 
interpolation yields high quality imaging. The whole range of 
vessels are correctly represented. 
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Spline interpolation-based algorithm 

The spline interpolation-based localisation yields imaging 
close to the Lanczos based algorithm. It is also affected by the 
acquisition mask. 

Gaussian fitting algorithm 
The Gaussian fitting-based localisation yields one of the best 
images in the algorithms analyzed. Almost no gridding can be 
perceived and the tracking algorithm seems to perform 
accurately 

 
Radial symmetry-based algorithm 

The radial symmetry yields the best image of the set if we don’t consider the artifacts caused by the acquisition mask. It seems 
to have more of the smaller vessels compared to the Gaussian fitting-based algorithm, which we hypothesize to be vessels 
because of its high sensitivity index. 
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Supplementary figure 4-4 Peak to peak Power Spectral Density analysis to devise a gridding index 

 
These graphs represent the Power Spectral Density of the signal present in the in vivo images post-
localisation and tracking, but before track interpolation. The PSD is averaged along the z direction, 
leading to a lateral frequency dependency. 
Two of the main peaks are chosen to calculate the value of the peak to baseline (the fundamental 
frequency and its first harmonic). By summing these two values, we obtain an index that will characterize 
the amount of gridding present in the images. We can see that both the Gaussian fitting (Gauss-Fit) and 
radial symmetry (RS) based algorithm do not present large peaks. The No-Shift on the other hand has a 
periodic Power Spectral density at frequency corresponding to the reconstruction grid scale. These 
values are calculated and presented in the main article. 
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Supplementary figure 4-5 Density renderings for dataset “in vivo rat brain bolus” 

  
No-shift algorithm Weighted average algorithm 

  
Cubic interpolation-based algorithm Lanczos interpolation-based algorithm 

  
Spline interpolation-based algorithm Gaussian fitting algorithm 
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Radial symmetry-based algorithm 
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Supplementary figure 4-6 Density renderings for dataset “in vivo rat kidney” 

  
No-shift algorithm Weighted average algorithm 

  
Cubic interpolation-based algorithm Lanczos interpolation-based algorithm 

  
Spline interpolation-based algorithm Gaussian fitting algorithm 

 
Radial symmetry-based algorithm 
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Supplementary figure 4-7 Density renderings for dataset “in vivo mouse tumor” 

  
No-shift algorithm Weighted average algorithm 

  
Cubic interpolation-based algorithm Lanczos interpolation-based algorithm 

  
Spline interpolation-based algorithm Gaussian fitting algorithm 

 
Radial symmetry-based algorithm 
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Part 5 : Global Scoring 
In this chapter, we present the PALA global score devised with our study and explain additional 
information such as how we simulated noise in the two first datasets, classical ULM rendering. 

Supplementary figure 5-1 PALA global score obtained for all the 7 algorithms tested 

 
The PALA global score is obtained by summing 7 of the different indices chosen with user specified 
weights. The weights are inscribed in the legend of the figure in parenthesis. 
The radial symmetry (RS) comes out as the clear winner of our tests with an index 14% higher than 
the second-best algorithm: the weighted average (WA). It is important to note that the weighted 
average surpasses the Gaussian fitting (Gauss-Fit) based algorithm thanks to it amazingly low time 
of calculation and not because it produces the highest quality images. The Spline (Sp-Inter), 
Lanczos (Lz-Interp) interpolations are tightly packed with a similar global score. Depending on your 
application, the weighted average method might be better than the radial symmetry method, for 
example if you want to have real-time reconstruction of ULM. 

 

Supplementary table 5-2 Table with all the index values and score conversion 

  
No-Shift WA Cub-

Interp Lz-Interp Sp-Interp Gauss-Fit RS 

RMSE 𝜆𝜆 0.38 0.17 0.25 0.19 0.19 0.11 0.10 
Score 23.5 65.4 50.3 61.2 62.0 77.2 80.8 

Processin
g Time 

S 1563 1598 8429 7627 5531 75640 1984 
Score 100.0 99.5 63.4 65.6 72.6 15.8 94.8 

Gap 𝜆𝜆 0.77 0.50 0.68 0.58 0.59 0.46 0.36 
Score 22.9 50.1 32.1 41.6 40.6 53.9 64.1 

Gridding [AU] 21.7 12.2 16.2 8.2 12.0 6.6 7.3 
Score 27.7 59.4 45.9 72.5 60.1 78.1 75.8 

Jaccard Score 11.8 27.4 28.1 43.5 44.9 63.2 55.7 
Precision Score 24.0 48.6 51.7 71.1 71.8 85.9 79.0 

Saturation % 35.1% 46.3% 37.6% 37.8% 38.6% 45.1% 48.2% 
Score 35.1 46.3 37.6 37.8 38.6 45.1 48.2 

This table presents the highest values in green and the lowest in red. One can note that the radial 
symmetry (RS) based algorithm comes first or close second for all indices. 
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Supplementary table 5-3 Table of weights for different scoring scenarii 

 RMSE Pro Time Gap Gridding Jaccard Precision Saturation 
Non-
Weighted 1 1 1 1 1 1 1 

3D ULM 2 3 1 2 1 1 2 
2D Scanning 1 2 1 1 1 1 2 
Real-time 1 3 1 1 1 1 1 
Low SNR 2 0.5 2 2 2 2 1 
PALA global 
Score 2 2 1 1 2 1 1 

This table presents weighting scenarii to reflect experimental requirements: e.g. for real-time 
imaging, the processing time is primordial. 
The final scores are then computed by a weighted average of indices presented in the next 
table. 

 

Supplementary table 5-4 Table weighted average scores for the 6 scenarii 

 No-Shift WA Cub-
Interp Lz-Interp Sp-Interp Gauss-Fit RS 

Non-
Weighted 35.0 56.7 44.2 56.2 55.8 59.9 71.2 

3D ULM 44.3 63.9 47.5 58.0 58.0 54.2 74.4 
2D 
Scanning 42.2 60.3 45.6 55.2 55.7 53.3 71.3 

Real-time 49.4 66.2 48.4 58.3 59.5 50.1 76.5 
Low SNR 26.5 52.0 42.2 56.6 55.1 66.9 70.1 
PALA global 
Score 38.0 58.9 45.1 56.4 57.0 57.5 73.0 

This table presents the weighted average scores for each scenarii over 100. 
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Part 6 : Tables 
Supplementary figure 6-1state of the art of localisation methods for ULM 

Localisation method Related articles Comments 

Gaussian fitting 

(Ackermann and Schmitz, 2016; 
Luke et al., 2016; OˈReilly and 
Hynynen, 2013; Song et al., 
2018b)19–22 

Usually, these works use a Gaussian 
convolved PSF rather than a 
Gaussian fitting with an optimizer. 

Weighted average 
based 

(Christensen-Jeffries et al., 2015; 
Hansen et al., 2016; Heiles et al., 
2019; Lin et al., 2017; Song et al., 
2018a; Soulioti et al., 2018; 
Viessmann et al., 2013; Zhang et al., 
2018; Zhu et al., 2019)10,13,15,23–28 

Except for Heiles et al 2019, these 
work on data beamformed with pixels 
of sizes below the wavelength or data 
beamformed with commercial 
scanners which might affect PSF 
shape and full width at half maximum. 

Lanczos based 
interpolation and 
Gaussian fitting 

(Errico et al, 2015)9  

Spline based 
interpolation 

(Huang et al., 2020; Song et al., 
2018b)22,29  

Linear based 
interpolation (Song et al., 2018a)15 

On top of the linear-based 
interpolation, this paper convolves 
with a Gaussian profile. 

Cubic based 
interpolation (Song et al., 2018b) 22 This paper is a comparison of 

algorithms 

Radial symmetry (Parthasarathy, 2012)30 (optic 
super-resolution only)  

RF-based 
(Brown et al., 2019; Christensen-
Jeffries et al., 2017a, 2017b; 
Desailly et al., 2013, 2015) 16,17,31–33 

These papers are based on 
radiofrequency data before 
beamforming. In particular, the papers 
from the team at Imperial 
College/Kings College London use 
the onset of the Hilbert transform of 
the RF signals. 

 

Supplementary figure 6-2 Summary of the media simulated 

Structure Diameters Maximal velocities 

A pseudo double helix 3 𝜆𝜆 
2 𝜆𝜆 

𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = 3 𝜆𝜆/𝑓𝑓𝑟𝑟𝑓𝑓𝜇𝜇𝑟𝑟 
𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = 2 𝜆𝜆/𝑓𝑓𝑟𝑟𝑓𝑓𝜇𝜇𝑟𝑟 

A curved tube with a constant diameter and a 
horseshoe pattern 0.5 𝜆𝜆 𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = 0.5 𝜆𝜆/𝑓𝑓𝑟𝑟𝑓𝑓𝜇𝜇𝑟𝑟 

3 curved tubes with 3 different diameters 
0.2 𝜆𝜆 
0.1 𝜆𝜆 

0.05 𝜆𝜆 

𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = 0.2 𝜆𝜆/𝑓𝑓𝑟𝑟𝑓𝑓𝜇𝜇𝑟𝑟 
𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = 0.1 𝜆𝜆/𝑓𝑓𝑟𝑟𝑓𝑓𝜇𝜇𝑟𝑟 
𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = 0.05 𝜆𝜆/𝑓𝑓𝑟𝑟𝑓𝑓𝜇𝜇𝑟𝑟 

4 spreading tubes with a constant diameter 0.1 𝜆𝜆 𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = 0.9 𝜆𝜆/𝑓𝑓𝑟𝑟𝑓𝑓𝜇𝜇𝑟𝑟 
A watermark comprised of the word ULM that does 
not serve other purposes but identification 0.1 𝜆𝜆 𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = 0.4 𝜆𝜆/𝑓𝑓𝑟𝑟𝑓𝑓𝜇𝜇𝑟𝑟 

 

Supplementary figure 6-3 Summary of the metrics 

      
Number 

 
Measurement 

Dataset 
In silico PSF In silico flow In vivo 

1 Lateral error X X  
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2 Axial error X X  
3 RMSE X X  
4 True Positive  X  
5 False Negative  X  
6 False Positive  X  
7 Gap  X  
8 Number of detections   X 
9 Saturation   X 
10 Gridding Index   X 
11 Processing time   X 

 

Supplementary figure 6-4 Conversion of metrics to score 

Metric Unit Conversion Score Range 

RMSE Wavelengths 𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖) = 100 ∗ (1 −
𝑥𝑥𝑖𝑖

0.5𝜆𝜆 
) 0 𝜆𝜆 : 100/100 

0.5 𝜆𝜆 : 0/100 

Processing 
Time Seconds 

𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖) = 100 ∗ (1 − 0.5
∗ 𝑙𝑙𝑆𝑆𝑙𝑙10 �

𝑥𝑥𝑖𝑖
𝜇𝜇𝑖𝑖𝑚𝑚(𝑥𝑥)�) 

𝜇𝜇𝑖𝑖𝑚𝑚(𝑥𝑥): 100/100 
100 ∗ 𝜇𝜇𝑖𝑖𝑚𝑚(𝑥𝑥)
∶ 0/100 

Separation 
Index Wavelengths 𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖) = 100 ∗ (1 −

𝑥𝑥𝑖𝑖
1𝜆𝜆 

) 0 𝜆𝜆 : 100/100 
1 𝜆𝜆 : 0/100 

Gridding 
Index dB 𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖) = 100 ∗ (1 −

𝑥𝑥𝑖𝑖
30 

) 0 𝑑𝑑𝑑𝑑 : 100/100 
30 𝑑𝑑𝑑𝑑 : 0/100 

Jaccard [%] 𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖) = 𝑥𝑥𝑖𝑖 
100 % : 100/100 
0 % ∶  0/100 

Precision [%] 𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖) = 𝑥𝑥𝑖𝑖 
100 % : 100/100 
0 % ∶  0/100 

Saturation [%] 𝑆𝑆𝑐𝑐𝑆𝑆𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖) = 𝑥𝑥𝑖𝑖 
100 % : 100/100 
0 % ∶  0/100 
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