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these agents as individual sensors to map the region of imaging by accumulating thousands of events and adding them through density-based methods. When implemented at kilohertz frame rates, ULM can also retrieve the trajectories of microbubbles carried in the bloodstream and reconstruct several centimeters deep, hemodynamic maps of the vasculature both in 2D and 3D 9- 11 , a feat rising to the challenge of multiscale imaging tools for both the vasculature and microvasculature. For example, typical imaging of a rat brain with craniectomy in vivo with Doppler contrast-enhanced ultrasound and ULM is shown in Figure 1 next to a post mortem microangio-computed tomography (microangio-CT) for reference. Microvessels appear on each modality but sharper and brighter on the ULM rendering (red triangles on Figure 1). Several teams have been implementing ULM using various localization techniques over the last few years [START_REF] Couture | Microbubble ultrasound superlocalization imaging[END_REF][START_REF] Christensen-Jeffries | In Vivo Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles[END_REF][START_REF] Viessmann | Acoustic super-resolution with ultrasound and microbubbles[END_REF][START_REF] Lin | 3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound[END_REF][START_REF] Oˈreilly | A super-resolution ultrasound method for brain vascular mapping: Super-resolution ultrasound method for brain vascular mapping[END_REF] . The quality of ULM images is directly dependent on the signal-to-noise ratio of the original images or detection filters but most importantly on the localization and rendering techniques. However, because each team uses different in vitro and in vivo models as well as different probes, ultrasound machines, and acquisition parameters, comparing these algorithms, along with their general approaches, is difficult. Progress in the field of ultrasound super-resolution is hindered by a lack of widely accepted comparison metrics, even though several attempts have been published on filtering [START_REF] Song | Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking[END_REF] , localization [START_REF] Brown | Investigation of Microbubble Detection Methods for Super-Resolution Imaging of Microvasculature[END_REF][START_REF] Christensen-Jeffries | Microbubble Axial Localization Errors in Ultrasound Super-Resolution Imaging[END_REF][START_REF] Kanoulas | Super-Resolution Contrast-Enhanced Ultrasound Methodology for the Identification of In Vivo Vascular Dynamics in 2D[END_REF] , and tracking [START_REF] Song | Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking[END_REF] errors.

In this paper, we present a comprehensive open data-processing framework for ULM, including six datasets, in vitro and in vivo -available at http://doi.org/10.5281/zenodo.4343435complemented by a series of universal performance metrics to evaluate quantitatively different ULM implementations. We provide five of the most used algorithms for microbubble localization to compare their performances: Lanczos, spline and cubic interpolation (Lz-Interp, Sp-Interp, Cub-Interp), Gaussian fitting of the PSF (Gauss-Fit), and a no-shift method that assumes ideal centering of the microbubble in the pixel. The scripts along with our Localization and tracking Toolbox for Ultrasound Super-resolution (LOTUS), are available on a GitHub repository (https://github.com/AChavignon/PALA). In the table below, we have compiled the localization methods used and their related articles as well as a few comments.

Localization method Related articles Comments

Gaussian fitting (Ackermann and [START_REF] Brown | Investigation of Microbubble Detection Methods for Super-Resolution Imaging of Microvasculature[END_REF][START_REF] Christensen-Jeffries | Microbubble Axial Localization Errors in Ultrasound Super-Resolution Imaging[END_REF][START_REF] Christensen-Jeffries | 3-D In Vitro Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles[END_REF][START_REF] Desailly | Sono-activated ultrasound localization microscopy[END_REF][START_REF] Desailly | Resolution limits of ultrafast ultrasound localization microscopy[END_REF] These papers are based on radiofrequency data before beamforming. In particular, the papers from the team at Imperial College/Kings College London use the onset of the Hilbert transform of the RF signals.

In addition, we introduce two algorithms developed by our team called weighted average (WA) and radial symmetry (RS). We provide all algorithms ready for use so that labs lacking the expertise to implement ULM can contribute to the fast development of ultrasound super-resolution imaging (see supplemental data). Importantly, we introduce metrics that address still unanswered questions such as: how accurate and sensitive is the localization algorithm [START_REF] Christensen-Jeffries | Microbubble Axial Localization Errors in Ultrasound Super-Resolution Imaging[END_REF] , how much is ULM affected by low SNR [START_REF] Lin | 3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound[END_REF] , what affects the precision of the code, how well is it possible to reconstruct difficult structures such as highly tortuous vessels, aneurysms, stenosis, where do the grid artifacts come from [START_REF] Song | On the Effects of Spatial Sampling Quantization in Super-Resolution Ultrasound Microvessel Imaging[END_REF] , and finally how can 3D ULM be implemented without a dramatic increase in computational power and time? The platform is designed to allow the integration of new metrics and answers to questions the user might come up with on its own.

Results

Ultrasound localization microscopy is a multi-step process comprising the acquisition of a large number of frames, pre-processing, detection, localization, and image reconstruction as described in Figure 2 and Supplementary Figure 1-1. Although this article is mostly focused on the comparison of localization algorithms, readers will find, in supplementary material, the scripts and appropriate open software (LOTUS) to perform each of these steps in the most straightforward way. These scripts can be easily adapted to different acquisition types or various computer setups and parallelized. In LOTUS, users can load their own acquired data, filter it, localize microbubbles, track them and generate ultrasound super-resolution renderings.

In silico and in vivo datasets

To study the performances of different localization algorithms, the first step was to create and acquire 3 different datasets, each of which we make fully available for reuse in supplementary materials. The first one ("in silico PSF"), the point-spread function (PSF) simulation, is designed to study non-uniformity effects on localization and spatial sampling effect on the beamforming process. It consists of a point-like scatterer moved in a 𝜆𝜆 × 𝜆𝜆 space, the size of one pixel, by speeds, and noise level can all be modified by the user and are presented in the online methods section. The maximum velocities in each of these tubes range from 0.05𝜆𝜆/𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓 to 3𝜆𝜆/𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓.

We studied the localization errors and the effect of different signal-to-noise ratios (SNR) using this dataset. For these datasets, the point-like scatterer's ultrasound response is simulated using the Verasonics Research Ultrasound Simulator (Verasonics Inc., Kirkland Washington, USA), using a 128 elements linear probe, with elements' pitch at a wavelength (𝜆𝜆 = 100 𝜇𝜇𝑚𝑚).

Figure 2: Description of the framework for data simulation and performance assessment

The framework presented here fits easily into the classical layout of ULM acquisition, filtering/pre-processing, detection of microbubbles, localization of events' centers, tracking, and mapping of the flow. Each dataset gives different information about the localization process. The separation criteria, which defines maximum resolution attainable is given by dataset "in silico PSF". The ground truth based metrics are given by in silico datasets. In vivo datasets, "in vivo rat brain perfusion", "in vivo rat brain bolus", "in vivo rat kidney", "in vivo mouse tumor", give information about the in vivo visual aspect, the influence of the algorithms on the grid effect and on computation time. Visual analysis is also provided by dataset "in silico Flow". The PALA global score is calculated based on a combination of the metrics on the right column computed on in vivo and in silico datasets. By summing and weighting each of these metrics derived scores, we obtain the global score, designed to grade the algorithms' performance.

While the simulation-based datasets give access to the ground truth and are useful to compare the error of localization-based metrics, the best validation is still in vivo experiments as we are confronted with multi-factorial signal noise, breathing motion, speed of sound changes coming from propagation through fatty tissue, pulsating blood and other phenomena arduous to reproduce in simulation. Imaging different organs allow us to compare different physiologies, hemodynamics, and anatomical geometries. The in vivo datasets comprise of:

• "in vivo rat brain perfusion", "in vivo rat brain bolus": two Sprague Dawley rat brains at different coronal sections. One was acquired while continuously injecting microbubbles through the jugular vein (192,000 ultrasound images at a SNR of 29 dB), another one by injecting a bolus of microbubbles in the caudal vein (170,000 frames at a SNR of 28 dB).

• "in vivo rat kidney": a Sprague Dawley rat kidney (188,020 frames at a SNR of 26 dB)

• "in vivo mouse tumor": A subcutaneous tumor implanted in an FvB strain mouse (30,000 frames at a SNR of 25 dB)

The in vivo angiography of the rat brain with continuous injection is named "in vivo rat brain", which is the most complete dataset and one that has already been used as reference [START_REF] Couture | Ultrasound Localization Microscopy and Super-Resolution: A State of the Art[END_REF][START_REF] Hingot | Microvascular flow dictates the compromise between spatial resolution and acquisition time in Ultrasound Localization Microscopy[END_REF] . The skull of the rat was previously removed following craniotomy surgery protocol (detailed in the Online methods section). The other rat brain we imaged went through the same protocol with a different method for injection. The rat kidney dataset was acquired after isolation of the kidney outside of the rat following lumbotomy protocol (detailed in Online methods). The tumor dataset was obtained on a subcutaneous tumor in mice after implantation of primary cancerous cells developed in mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT) donor mice (detailed in Online methods). The kidney and mouse tumor datasets are more subject to breathing motion than the rat brain since the animal is not fixed. These datasets will thus allow us to compare the performance of the algorithms in low SNR, moderate motion situations. The mouse tumor which is expected to have a disorganized vasculature is of particular interest.

On each of these datasets, and based on the state of the art we selected and applied 7 different localization algorithms to retrieve subwavelength positions. They are then processed by a Kuhn-Munkres assignment to perform tracking and velocimetry [START_REF] Kuhn | The Hungarian method for the assignment problem[END_REF][START_REF] Heiles | Ultrafast 3D Ultrasound Localization Microscopy using a 32x32 Matrix Array[END_REF] . Final images are reconstructed by density projection or velocity renderings. The whole framework is presented in Figure 2.

General comparisons of 7 algorithms using 11 metrics

To alleviate the current difficulty in comparing the attainable resolution in different organs and by different groups, we report here 11 different metrics to compare various ULM algorithms. In each simulated dataset, we look at the directional errors, statistical measures using a binary classification test, and separation criteria to define maximum attainable resolution. For in vivo results, we report an in-depth visual analysis as well as grid effect characterization, and computation time. In the end, the localization algorithms are rated with an overall scoring called PALA global score that takes into account errors, the ability to detect microbubbles accurately, RMSE, "in silico flow" dataset: minimum separation measured between the two canals (i.e. maximum resolution), Jaccard index, precision value, and "in vivo rat brain perfusion": the time factor, gridding index and saturation index based on saturation curves (see Figure 7). The bigger the score, the higher is the performance of the algorithm. To reflect the importance of the different indices, some of them were multiplied by coefficients (value in legend). These arbitrary coefficients allow us to double the impact of RMSE, time factor, and Jaccard index, the three indices we consider most critical. The weights used as well as the exact formulae for the conversion of the metrics to arbitrary unit scores on a scale of 0 to 100 are available in the online methods and a supplementary dynamic table "PALA_GlobalScores_DynamicTable.xlsx" Different weights have also been chosen to reflect implementations where time or SNR influence might be less crucial in the supplementary information. b) Computation time for each algorithm compared to the fastest implementation, the no-shift implementation taking 3 minutes on our high-end computer (Intel Core i9 @ 2.9 GHz 12cores, NVidia RTX 2080Ti, 128GB RAM @ 2133 MHz). c) Maximum resolution attainable on the dataset "in silico Flow" at 𝑆𝑆𝑆𝑆𝑆𝑆 = 30 𝑑𝑑𝑑𝑑 with different localization schemes. For each rendering, the point where the intensities of the two canals reconstructed are distinct by more than 3% is calculated. The lateral position at which it is located is taken to calculate the real distance between the two simulated canals. That is taken as the minimum separation that can be accurately recovered by the algorithm. It is the separation index. d) Root mean square error of the localization schemes for recovery of simulated points in dataset "in silico Flow" with different SNR. 158

Overall the radial symmetry (RS) based and weighted average (WA) algorithms showed the highest performance with the weights chosen. Looking closer, the maximum resolution attainable measured as the separation criteria is the highest for the RS and Gauss-Fit based algorithms at 0.36 𝜆𝜆 and 0.46 𝜆𝜆. The time factor, however, is the lowest for the WA with under 3 minutes of calculation which is lower than the acquisition time with our computer. The large increase and very low root mean square error (RMSE) minimum of the weighted average algorithm (0.13 𝜆𝜆) confirm that it is a very good candidate for localization at a high signal-to-noise ratio (SNR) but that one should switch to either Gauss-Fit or RS when the SNR worsens below 30 𝑑𝑑𝑑𝑑. At 15 𝑑𝑑𝑑𝑑 and downwards, one should theoretically consider using interpolation-based algorithms (see Supplementary Figures 3-3). The gridding index, which is a quantitative measure of the reprojection of localized microbubbles on the original beamformed grid, impairing accurate vessel delineation, is maximized for both RS and Gauss-Fit approaches. This gridding index increases when specific spatial frequencies are overexpressed.

Accuracy metrics in simulated datasets

We simulated both in silico datasets with 7 different signal-to-noise ratios from 10 𝑑𝑑𝑑𝑑 to 60 𝑑𝑑𝑑𝑑 (white Gaussian noise model -0.2 ohm impedance noise, ± 10 dB amplitude -for clutter filtered with 0.7 pixel wide 2D Gaussian kernel, see Supplementary figure 23). The different localizations in the 30 dB set were classified depending on their distance to the scatterer simulated position. When this distance is lower than 𝜆𝜆 4 , the localization is deemed successful, otherwise, it is either classified as a false negative (FN) if an existing scatterer was not detected or as a false positive if no real scatterer was present (FP) (see Figure 4 a, and Supplementary Figure 3456). The highest number of localizations 386,000, calculated as the total of false and true positives is obtained in the radial symmetry case, with 12% more than the worst-rated algorithm, the Cub-Interp. The number of true positives is the highest in the Gauss-Fit/RS-based algorithms with a value of 3.7 and 3.5 times higher respectively than the no-shift algorithm. The interpolation-based algorithms have similar TP values while the cubic interpolation fares the worst. The same trends in FP and FN numbers can be observed. To interpret these more easily, the precision, Jaccard, and sensitivity indices were also plotted (Figure 4 b). For the three indices, the Gauss-Fit and RS come out on top with as much as 85.9% simulated scatterers being picked up by the best localization algorithm.

The sensitivities of WA and the best interpolation-based algorithms are quite low at around 40 %, while the precision is higher for the latter at 71.8 % (see Figure 4 b). The no-shift algorithm has the lowest values albeit not as low as one would expect given that no localization is involved. The Jaccard index which represents a detection rate is at most 63.2 % and can be as low as 11.8 % for the no-shift scheme. Gauss-Fit and RS are more precise than others. This is due to a low localization error, and as such a high cardinality of true positives. As the total number of {𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑆𝑆} is finite, this also means that the sensitivity index is high. For the weighted average scheme, we measure a high precision and high sensitivity although its localization error is the The largest standard deviation of the lateral error was found for the no-shift method as expected.

For the axial error, the algorithms have standard deviations between 0.06 and 0.23, with the lowest being the GF and the highest being the no shift. For the Gauss-Fit and RS-based algorithm, their lateral standard deviation error is around half lower than their axial error. The Lanczos and Spline interpolations schemes have similar ratios between the lateral and axial error standard deviation.

The histogram distributions in the lateral direction for these algorithms seem to follow a Powerlaw with a high exponent whereas the weighted average, Lanczos, and spline kernel-based interpolation follow a linear law. The axial error distributions all present sharp peaks in different patterns. The most notable pattern is the fork pattern at The spatial frequency peak to baseline analysis detailed in the methods section is presented in 

Image quality metrics in silico and in vivo

With the provided datasets, both simulated and real microcirculation can be evaluated with the various algorithms. For instance, Figure 6 shows the whole view of the ULM rendering of the simulated microcirculation. There are notable differences in how well algorithms manage to recover the initial shapes. In some cases, the overall contrast of the structures compared to the target is lower, with some vessels or part of vessels disappearing for example in the no-shift or cubic interpolation schemes. The horseshoe pattern and ULM watermark (Figure 6 b) are the hardest structures to recover, few algorithms seem to perform well. Gauss-Fit/RS/Sp-Interp seem to yield the rendering closest to what was simulated, especially the curvature before and after the horseshoe. This shape is interesting as it is similar to saccular aneurysms. The smallest tubes are correctly represented in most cases but the separation index presented in Figure 3 gives us an idea of the maximum resolution attainable which is the gold standard for resolution determination. The no-shift is valuable to study a hypothesis made in a previous paper about 3D ULM [START_REF] Heiles | Ultrafast 3D Ultrasound Localization Microscopy using a 32x32 Matrix Array[END_REF] stating that the grid effect appears because of erroneous localization in areas of low SNR. Because the noshift does not involve sub-pixel localization, it should suffer the most from the grid effect and one can see that it does, appearing in all of the structures smaller than the wavelength of the ultrasound sent (100 𝜇𝜇𝑚𝑚). Some behaviors are only visible when zooming in (Figure 6 c). The WA and the Cub-Interp scheme seem to suffer similar grid effects on the same tubes. The Sp-Interp only suffers gridding on the two smaller curved tubes (10 and 5 𝜇𝜇𝑚𝑚). The Gauss-Fit and RS, on the other hand, adapt completely and do not suffer from any gridding on any curved tubes. More renderings are produced in Supplementary Figures 3-1, 3-2, 4-2, and 4-3.

We devised an index to measure the grid-effect by a spatial frequency peak to baseline analysis in both directions. The value of that index grows with the severity of gridding. The values are reported in Figure 7 next to the renderings of the brain vasculature. The no-shift-based ULM performs very poorly in vivo as predicted by the simulation and has the highest gridding index. The vessels in the cortex rendered by that scheme suffer from considerable gridding making their structure disorganized. The Cub-Interp also suffers from gridding as predicted, however, the WA localization-based ULM is in appearance not gridded.

To further investigate the effects of localization, we zoomed in on a specific subcortical region where the grid effect is maximum, and where there is a large variety of vessel sizes (Figure 7 b).

Our previous conclusion holds partially. The Cub-Interp is still massively subjected to gridding and we can see some gridding appearing in specific regions in WA (indicated by white triangles).

For the four best-ranked algorithms, almost no gridding is present in the images in vivo. One considerable difference can be noted though between the RS-based ULM and the interpolation schemes: the vessels seem more detailed and sharper in the interpolation schemes. In RS, there seems to be a lot of small crossing trajectories in between the brightest and largest vessels.

Further insight can be drawn from Figure 8 where the other in vivo datasets are presented. In the kidney, where the vasculature is organized differently than in the brain, these small crossing trajectories are not observed for the RS scheme. In the tumor, the vasculature is disorganized but no crossing trajectories are observed anyway. The difference between the best of the interpolation schemes (Sp-Interp) and the GF or RS algorithms is notable in the tumor where fewer vessels are being picked up by the former than the latter.

The saturation curves, counting the number of illuminated pixels throughout the reconstruction,

show us the capacity of algorithms to detect new structures. When interpolated based localizations saturate, WA/Gauss-Fit/RS are still recovering new pixels in the image. Finally, the RS obtain the highest final saturation value at 48.2%, 1.9% above the Weighted-Average.

Figure 7: 2D ULM density-based renderings of "in vivo rat brain perfusion", with gridding index and saturation

The different renderings are obtained by giving each pixel in the image a value that is the number of trajectories passing through that coordinate a) Whole rat brain rendering using radial localization algorithm b) Gridding index calculated on the dataset "in vivo rat brain perfusion" for every algorithm. 

Discussion

The ULM workflow evaluated here includes every step after data acquisition/generation to final rendering, along with the calculations of the various proposed metrics for ULM quality. The localization step alone was benchmarked as it is the most variable aspect of ULM algorithms used by different teams. However, filtering, ultrasound acquisition parameters, contrast agent types, and tracking algorithms should also be studied. Partial studies have been made about filtering [START_REF] Heiles | Ultrafast 3D Ultrasound Localization Microscopy using a 32x32 Matrix Array[END_REF][START_REF] Song | Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking[END_REF] , contrast agent types [START_REF] Luke | Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets[END_REF][START_REF] Zhang | Acoustic wave sparsely activated localization microscopy (AWSALM): Super-resolution ultrasound imaging using acoustic activation and deactivation of nanodroplets[END_REF] ; ultrasound acquisition parameters [START_REF] Song | On the Effects of Spatial Sampling Quantization in Super-Resolution Ultrasound Microvessel Imaging[END_REF] as well as tracking algorithms [START_REF] Song | Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking[END_REF] but it is hard to draw general conclusions for the techniques as these papers do not use the same datasets. We hope that with the datasets provided in this paper, comparison and accurate characterization of all the steps will be feasible. Devising metrics to compare and rate specific aspects of localization is a crucial step in providing a better understanding of super-resolution imaging. Visual scoring by radiologists, neurologists, or physiologists will be required to establish quality grading for each application. However, ULM will first need to gain better uniformity through quantitative and objective metrics assessments.

Thanks to the different datasets generated, we can quantify the influence of PSF inhomogeneity, size, complexity, the position of the shape to recover, and behavior in vivo of the localization schemes. The in vivo datasets are particularly important as they validate the different approaches in a pre-clinical setting. Specifically, they focus on brain, kidney, subcutaneous tumors which have very different vascular organizations and exhibit different experimental characteristics. For example, the tumor and kidney images will be subjected to more significant breathing motion, the tumor will also be fed by disorganized and low perfused vessels. The metrics were chosen to be as universal as possible and should work in any workflow, especially the ground truth-based metrics. The availability of the in vivo datasets should be seen as an incentive to both enhancing existing localization algorithms and comparing the imaging quality of new in vivo applications.

These in vivo datasets can also be used to try new approaches without going through the many stumbling points strewn along with preclinical experimentation.

We think the metrics presented here could be used whenever a new processing step or technology for ULM is implemented. Firstly, the improvement in localization following the integration of this innovation should be characterized by using the in silico PSF and in silico flow datasets. Rather than relying on the full width at half maximum of vessels, these metrics are based on the ground truth and thus are more accurate in quantifying localization improvements. Secondly, the increase in the number of localizations should be quantified by using the statistical indices (True Positive, False Negative, and Positive), and the impact of that increase be measured with the Separation Index thanks to the codes available on the platform. Finally, we recommend that the impact of any innovation in ultrasound super-resolution is benchmarked on in vivo data as this technique's main application is pre-clinical and clinical imaging of the microvasculature. In order to include this, the in vivo datasets given here should be used as databases and the metrics Number of detections, Saturation, Gridding Index, and Processing Times should be computed and discussed in the report.

The combination of these scores in a global score (identical to the PALA global score or with different weights to reflect other scenarii) is made easy by the dynamic table on the platform and will allow the community to evaluate the innovation at a quick glance.

An interesting aspect brought by the distribution errors point of view is the peaks present in the cubic, Lanczos, and spline interpolation schemes for the axial error. They are periodic with a frequency corresponding to the 𝜆𝜆 10 interpolation grid. This would lead to a clear pattern on the final images.

On image quality metrics, we notice that the grid effect is especially present for interpolationbased localization algorithms. It is very similar to quantization in its form and as the no-shift method confirms, it is due to errors in the localization. This means that in interpolation schemes, gridding comes from a reprojection of the localized center towards the center of the original pixel grid. It can be linked to low SNR in certain regions following this line of thought: if SNR is low, the full width at half maximum of the intensity increases so much that covered by the clutter noise, not enough information is present in the profiles to perform an accurate interpolation or localization. When confronted with low SNR images, the algorithms tend to calculate the superresolved center very close to the original center because it lacks sufficient signal, and thus all positions align along one line, tracing that gridding pattern. This is confirmed by looking at where gridding happens in Lz-Interp and Sp-Interp schemes in silico or in vivo. In the large vessels, the number of events is sufficient to compensate for that effect, but for smaller vessels, the density of microbubbles is too low. This can be seen in the tumor images.

As such, attention should be paid to the reconstruction grid used for rendering. Decreasing the pixel size too much would increase the grid effect and the interpolation kernels, making the calculations more time-consuming. In vivo, the interpolation factor depends on the maximum theoretical resolution attainable, and as such, we advise that the super-resolved image pixel size and the maximum theoretical resolution be matched. One can note that even though localization is performed poorly in the no-shift scheme, the rendering still appears believable and that should be kept in mind when evaluating the quality of ULM. Additionally, as was seen in the no-shift localization scheme, if the reconstruction grid is too fine but the tracking algorithm contains an interpolation of tracks or smoothing, the grid effect may disappear and some artifacts may appear.

These artifacts will lead to erroneous velocity estimations which can be measured and characterized by looking at the Poiseuille distributed profiles for these small vessels. Another difference to be noted is the lower gridding index calculated for WA compared to Sp-Interp although in Figure 7 b the gridding effect is clearly higher. With 7.00M events localized in the in vivo rat brain perfusion dataset, WA is the algorithm that localizes the most events (1.3M more than Sp-Interp). The lower precision and higher RMSE compared to the Sp-Interp means that the final rendering contains a lot more erroneous localizations thus decreasing the principal peaks' amplitude in the frequency analysis devised for the gridding index.

In vivo, interpolation-based localizations seem to have a very sharp delineation of the vessels whereas RS/Gauss-Fit have many small trajectories going in and out of the most intense vessels.

This makes the image obtained by the spline interpolation localization look better than that obtained with the radial symmetry-based localization. The latter looks like it has more noise than its interpolation-based counterpart. However, the in silico metrics tell us that the RS localization is more sensitive and precise, meaning that it localizes microbubbles more correctly. It is confirmed by looking at the total number of particles localized (see Figure 4), where the increase in the number of microbubbles localized in the radial symmetry-based algorithm is 21%, and by the saturation, 4% higher than the second algorithm. We hypothesize that the small trajectories in between vessels are also small vessels that can represent the capillary bed. When looking at how the kidney and tumor images are depicted by the different algorithms, we note the absence of cross trajectories. The duration of ultrasound imaging in these organs does not allow to represent the capillary bed clearly as the recovery of small vessels needs longer acquisition times. If the cross trajectories were due to noise, however, we would see them regardless of recording duration. A possible way to verify this in vivo would be to have access to the ground truth for example by observing fluorescently labeled microbubbles with ULM and optical imaging. A recently published study has indeed used such microbubbles [START_REF] Lowerison | Ultrasound localization microscopy of renal tumor xenografts in chicken embryo is correlated to hypoxia[END_REF] . Although coming in second after the Gaussian fitting algorithm in precision, and Jaccard index, the radial symmetry remains a good candidate for analysis of the capillary bed. Globally if time and low RMSE are more critical than an accurate classification of microbubbles, then the radial symmetry should be favored.

The time factor, measured for the fastest algorithm, is critical to the fast testing of many different parameters. If the algorithm of localization runs for hours before being able to deliver a full image, changing parameters and waiting for the result will take days. This becomes critical in 3D as the third dimension makes everything considerably more complex. In our team, we have chosen to give priority to speedy calculations. That meant that in 2D, it only takes us 3 minutes to perform full ULM on 192,000 images which is less than the total acquisition time (4 minutes). Our computer is largely above average in terms of performance (Intel Core i9 @ 2.9 GHz 12 cores, NVidia RTX 2080Ti, 128GB RAM @ 2133 MHz) but the ratio of speed improvement would be similar for any machine. This implementation appears much faster than many other algorithms. It improves the applicability of ULM, by allowing a simultaneous acquisition and reconstruction. In a clinical setting, that also means that the practitioner does not have to wait for its result and can either make another image in a matter of minutes or deliver his diagnosis.

The PALA global score we have devised and presented here aims at compiling all of these different metrics to aid algorithm selection. Our own defined global score was aimed at favoring fast and low error algorithms. However, one might want to favor calculation time above all other metrics for real-time applications or 3D. Several limitations remain in this study. For instance, the localization is performed on microbubbles imaged at a high-frequency (15 MHz), limiting the effects linked to the resonant oscillations of microbubbles [START_REF] Christensen-Jeffries | Microbubble Axial Localization Errors in Ultrasound Super-Resolution Imaging[END_REF] . While that allows all of the results on the errors to be readily transposable to other frequencies, this is only applicable if linear imaging is used. Also as we have no access to ground truth in vivo at these depths in living animals, the structure of the capillary can only be hypothesized. We have not included the impact of beamforming techniques aimed at enhancing the PSF and CNR, as well as the different tracking algorithms available for ULM.

However, thanks to the versatility of our framework, these can be easily included and benchmarked ad hoc. This versatility can be put to use to develop new metrics. One very valuable metric would be an index to benchmark the quality of ULM algorithms in between organs and in between datasets coming from different groups. Comparing organs that have a very different vascular organization, such as the kidney or the brain, remains a challenge. In 2D, the possibility to have an atlas of the vasculature of the rat's brain could be explored but will probably run into out-ofplane related issues (motion, size of the plane at focus, interrupted tracks, reprojection of vessels).

The noise simulated in the in silico dataset is a simple model aimed at imitating clutter noise.

Added to the beamformed images, it does not take into account jitter, false peak errors in the radiofrequency data, readout noise from the electronics, nor does it represent potential motion. As the in vivo data we have presented have been filtered with a spatiotemporal clutter filter, our aim, by choosing this simplistic approach, was to reproduce SNR values and aspects seen in the in vivo cases. However, thanks to the versatility of our platform, any noise model could be added to the in silico dataset easily.

We hope that these algorithms, datasets, and metrics will improve the comparisons and discussions among the growing ULM community and allow more users with less ultrasonic expertise to exploit these new methods. Besides potentially becoming a valuable clinical imaging modality, ULM opens a new window to observe the microcirculation in-depth and complements other laboratory imaging methods that lack either resolution or penetration.

Outlook

We 𝜆𝜆 × 𝜆𝜆 space. For each of these positions, the radiofrequency response, as well as its beamformed image, was produced using 3 tilted plane waves emitted from a 15MHz linear probe, with 128 elements spaced by one wavelength. The speed of sound was set to 1540 m/s.

In silico angiography dataset ("in silico Flow")

The media simulated comprised of 11 tubes with various geometries with various complexity (see Figure 6 and Supplementary Figure 2-1):

Structure Diameters Maximal velocities

A pseudo double helix To simulate moving microbubbles, we chose initial random positions in the tubes and recorded them as point-like scatterers. For each of these positions, a trajectory calculated by Poiseuille's law was assigned based on their position in the cross-section of the tube. We considered that microbubbles could not jump from one trajectory to another and so had to follow the same trajectory for as long as it is simulated. Using the Verasonics Research Ultrasound Simulator, we simulated radiofrequency and beamformed images of a moving scatterer in a 7 × 14.9 For each image in the two in silico datasets, we added clutter noise modeled by a Gaussian filtered white Gaussian noise (see Supplementary Figure 4-2). The parameters for the white Gaussian Noise were matched with a typical 30𝑑𝑑𝑑𝑑 noise present in our in vivo images: we used wgn Matlab (The MathWorks, Inc., Natick Massachusetts, USA) function to generate a 0.2 ohm impedance noise, with a ±10𝑑𝑑𝑑𝑑 amplitude. The resulting noise was then filtered using a 2D Gaussian kernel of size 0.7 pixel. Finally, the noise was added to the beamformed image by choosing an amplitude in dB between the maximum intensity value of the beamformed image and the average intensity of the generated noise. This process results in noised images, with a user-selected SNR, and a pseudo clutter with 20𝑑𝑑𝑑𝑑 of amplitude.

In vivo dataset ("in vivo rat brain perfusion" and "in vivo rat brain bolus") in receiver mice. Tumors were dissociated mechanically and incubated for 30 minutes at 37°C

with DNase I (100 µg/ml, Roche Diagnostics GmbH, Mannheim, Germany), collagenase (1mg/ml, Roche Diagnostics GmbH, Mannheim, Germany), and hyaluronidase (1 µg/ml, Sigma-Aldrich, St.

Louis Missouri, USA) in RPMI with 2% serum. After red blood cell lysis and filtration on a 70 µm sieve, the cell suspension was rinsed 3 times in PBS and used for tumor transplantation. Thus, 

ULM workflow and detection

ULM is a multi-step method. The general layout is presented in Figure 2 and Supplementary Figure 45678. Firstly, one needs to acquire a large number of frames in the region of imaging. Then, a detection process takes place to enhance the signal of microbubbles. Close microbubbles are isolated. In silico, such a step is dispensed with as the signal-to-noise ratio is set high enough in the simulation. For the in vivo dataset, we use the Singular Value Decomposition approach [START_REF] Demene | Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity[END_REF][START_REF] Forsberg | Assessment of hybrid speckle reduction algorithms[END_REF][START_REF] Ledoux | Reduction of the Clutter Component in Doppler Ultrasound Signals Based on Singular Value Decomposition: A Simulation Study[END_REF] .

By rearranging a continuous set of beamformed images as a Casorati matrix (𝑆𝑆 𝑧𝑧 × 𝑆𝑆 𝑎𝑎 , 𝑆𝑆 𝑖𝑖 ), we will use the new basis given by the SVD to filter the tissue from the microbubbles according to its spatiotemporal decorrelation [START_REF] Desailly | Contrast enhanced ultrasound by real-time spatiotemporal filtering of ultrafast images[END_REF] . We remove the four highest energy vectors out of a basis of 800.

Tracking algorithm

Figure 1 :

 1 Figure 1: Rat brain vascular imaging with in vivo ULM and post mortem microangio-CT

𝜆𝜆 21 steps

 21 , resulting in 441 positions. The second dataset ("in silico Flow"), the microcirculation simulation, allows for testing in silico more fundamental aspects of resolution such as the separability of microvessels and the accuracy of microbubble tracking. It is comprised of complex 3D tubes in the imaging plane mimicking an actual 2D imaging situation. Inside, point-like scatterers are placed at random in each of the tubes section and then are propagated through 20,000 frames according to a Poiseuille flow model assuming continuity on streamlines. Concentrations,

Supplementary Figure 5 -1 to 5 - 4 ). The results are presented in Figure 3 .

 5543 and computation time, computed on in silico and in vivo datasets (see Online methods and Two algorithms, Gaussian fitting, and radial symmetry come out on top on almost every quantitative index that we have devised. However, when looking at the time it takes to perform ULM with tracking and localization, the ranking is modified. The weighted average and the radial symmetry-based algorithms are the fastest localization implementations, while the Gaussian fitting is almost 50 times slower. The values presented in Figure 3 b were normalized according to the fastest implementation which takes for the in vivo dataset around 3 minutes, faster than the actual acquisition of the images.

Figure 3 :

 3 Figure 3: Results of the study combined in the PALA global score for each algorithm

Figure 4 :

 4 Figure 4: Directional errors and statistical indices for performance on the dataset "in silico Flow" at 30 dB

𝜆𝜆 10 on 3 .Figure 5 .-5 to 2 -6 and 3 - 3 .

 1035233 the interpolation-based methods reproducing the interpolation grid used. Another pattern present in the radial symmetry and Gaussian fitting-based methods takes the shape of two sharp peaks on either side of the center value showing a bimodal behavior where the microbubble is localized in two preferred locations outside of the actual center. The RMSE is highly affected by this difference in localization in both directions and while the RMSE of the radial symmetry and Gaussian fitting-based schemes are better than the others, the improvement in localization brought by these algorithms in the lateral direction is diminished in the final value of the RMSE. These errors were calculated for seven different SNR and are presented in Supplementary Figures 3-The various algorithms spatially shift the expected localization in different ways. To study this effect more precisely, it is useful to look at the results of the PSF simulation. The results are presented in The two main results are visible at once: first, the interpolation-based algorithms are scarcely affected by noise as they only take into account the closest neighboring sample to build the final function, and second, they exhibit a quite high standard deviation of their errors in the axial direction (𝑠𝑠𝑑𝑑�𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 � = 0.19 𝜆𝜆, 𝑠𝑠𝑑𝑑(𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝑖𝑖𝑎𝑎 )) = 0.22 𝜆𝜆). Putting it into perspective when plotting the absolute error at each of the 𝜆𝜆 21 grid points helps to understand the dynamics of the noise impact (Figure 5 b). When the SNR diminishes, the errors of the best-ranked algorithms tend to show the bimodal behavior of the worst-ranked: axial and lateral errors are distributed in two bands in each direction up until a certain SNR value. At 15 𝑑𝑑𝑑𝑑 the weighted average exhibits this behavior very clearly for the lateral error while the GF and RS have an almost uniform distribution. All distributions and maps are presented in Supplementary Figures 2If we look more closely at the intensity profiles generated by our framework (Figure 5 c), we can see that displacement in any direction induces a displacement of the maximum amplitude.

Figure 5 :𝜆𝜆 5 �

 55 Figure 5: Study of PSF non-uniformity in direction and its effect on localization

Figure 7 .

 7 Figure 7. The cubic interpolation has a large score that is in line with what is described in the next

Figure 6 :

 6 Figure 6: 2D ULM density-based renderings of "in silico Flow" along with a focus on particular areas

Figure 8 :

 8 Figure 8: 2D ULM density-based renderings of 3 other in vivo datasets, with partial scores

  𝑣𝑣 𝑚𝑚𝑎𝑎𝑎𝑎 = 0.2 𝜆𝜆/𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓 𝑣𝑣 𝑚𝑚𝑎𝑎𝑎𝑎 = 0.1 𝜆𝜆/𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓 𝑣𝑣 𝑚𝑚𝑎𝑎𝑎𝑎 = 0.05 𝜆𝜆/𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓 4 spreading tubes with a constant diameter 0.1 𝜆𝜆 𝑣𝑣 𝑚𝑚𝑎𝑎𝑎𝑎 = 0.9 𝜆𝜆/𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓 A watermark comprised of the word ULM that does not serve other purposes but identification 0.1 𝜆𝜆 𝑣𝑣 𝑚𝑚𝑎𝑎𝑎𝑎 = 0.4 𝜆𝜆/𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓

  𝑚𝑚𝑚𝑚 2 area insonified with 3 tilted plane waves with a 15MHz linear probe, with 128 elements spaced by one wavelength. The simulation sequence was based on the Vantage example script (Vantage release 4.0.0) FlashAngles and adapted to save either radiofrequency data and beamformed images with 𝜆𝜆 × 𝜆𝜆 pixel size. The speed of sound was set to 1540 𝑚𝑚/𝑠𝑠.

10 6

 6 cells isolated from tumors of MMTV-PyMT mice were injected in 100 µl of PBS in the mammary fat pad of 8 weeks-old FvB mice. About 10 d after inoculation, transplanted PyMT tumors reached a diameter of ∼ 6mm. A continuous ultrasound acquisition comprised of 150 blocs of 200 frames taken at a compounded frame rate of 500Hz with 5 tilted plane waves [-10; -5; 0; 5; 10]° using a 15 MHz centered frequency probe manufactured by Vermon®, Tours, France with a 0.1 𝑚𝑚𝑚𝑚 pitch. The acquisition lasted 2 min 30 sec. Elevation focusing is provided through a plastic lens to reach 500 𝜇𝜇𝑚𝑚 at 8 𝑚𝑚𝑚𝑚.

  

  

  

  Schmitz, 2016; Luke et al., 2016; OˈReilly and Hynynen, 2013; Song et al., 2018b)[START_REF] Ackermann | Detection and Tracking of Multiple Microbubbles in Ultrasound B-Mode Images[END_REF][START_REF] Luke | Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets[END_REF][START_REF] Oˈreilly | A super-resolution ultrasound method for brain vascular mapping: Super-resolution ultrasound method for brain vascular mapping[END_REF][START_REF] Song | On the Effects of Spatial Sampling Quantization in Super-Resolution Ultrasound Microvessel Imaging[END_REF] Usually, these works use a Gaussian convolved PSF rather than a Gaussian fitting with an optimizer.

	Weighted average based	(Christensen-Jeffries et al., 2015; Hansen et al., 2016; Heiles et al., 2019; Lin et al., 2017; Song et al., 2018a; Soulioti et al., 2018; Viessmann et al., 2013; Zhang et al., 2018; Zhu et al., 2019) 10,13,15,23-28	Except for Heiles et al 2019, these work on data beamformed with pixels of sizes below the wavelength or data beamformed with commercial scanners which might affect PSF shape and full width at half maximum.
	Lanczos based		
	interpolation and Gaussian	(Errico et al, 2015) 9	
	fitting		
	Spline based interpolation	(Huang et al., 2020; Song et al., 2018b) 22,29	
			On top of the linear-based interpolation,
	Linear based interpolation	(Song et al., 2018a) 15	this paper convolves with a Gaussian profile.
	Cubic based interpolation	(Song et al., 2018b) 22	This paper is a comparison of algorithms
	Radial symmetry	(Parthasarathy, 2012) 30 (optic super-resolution only)	
		(Brown et al., 2019; Christensen-	
	RF-based	Jeffries et al., 2017a, 2017b; Desailly et	
		al., 2013, 2015)	

  have developed a platform to analyze and measure the performance of the most used localization schemes in Ultrasound Localization Microscopy. This led us to integrate these in an open-source algorithm, which is available in the supplementary information, to facilitate the dissemination of the technique for research groups around the world. Furthermore, we provide the data and scripts needed to benchmark future techniques or other aspects of the ULM process. Also, these algorithms can be readily used on novel contrast agents such as acoustically activated nanodroplets, biogenic gas vesicles, or novel imaging applications such as 4D ultrasound or nonlinear imaging. This open framework could benefit from further development such as non-linear behavior simulation or tracking improvement. Finally, we have presented two novel algorithms, one of which obtains the highest score according to the criteria proposed here. With the advent of new artificial intelligence-based super-resolution methods, the metrics devised will help to compare and characterize such methods. We see great potential in the collective use of these

	animale Paris Descartes", APAFIS #25169-202008071746473 (mouse tumor), and the
	institutional committee C2EA-54 "Comité d'éthique Normandie en matière d'expérimentation
	animale" under the protocol APAFIS #22544-2019093017523797 (rat brain with micro-CT)
	Online methods	
	Point Spread Function dataset ("in silico PSF")	
	The Point-Spread Function (PSF) simulation is designed to study non-uniformity effects on
	localization and spatial sampling effect on the beamforming process. A point-like scatterer is
	simulated using the Verasonics Research Ultrasound Simulator (Verasonics Inc., Kirkland
	Washington, USA). The position of the scatterer is moved by	𝜆𝜆 7 increments in both directions in a
	resources to improve our knowledge of ULM, increase its quality, and provide better and faster
	imaging for 3D developments.	
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c) Zoomed in portions of rat brain ULM using cubic interpolation, weighted average, spline interpolation, and radial symmetry-based localizations. d) Saturation coefficient calculated for each algorithm For more detailed renderings, see Supplementary Figures 4-2 to 4-3.

The results obtained on the three other in vivo datasets are presented in Figure 8 (see also Supplementary Figures 45). The patterns described in the previous dataset still hold. In the in vivo rat brain bolus, the superiority of the GF and RS algorithms is confirmed, the overall score obtained by the RS is even higher than its score on the rat brain perfusion dataset. This superiority and the GF algorithms' high-quality imaging is best illustrated with the tumor where few vessels are present and are characterized by a disorganized structure. The GF and RS algorithm depict evidently more vessels than the other schemes. The gridding effect is clearly seen in the WA and Cub-Interp localization schemes. As for the Sp-Interp, its imaging quality is quite high for example in the kidney, it is almost identical to the GF algorithm, but in the tumor dataset, we can see clear evidence that it localizes fewer vessels than GF and RS. The partial score (obtained from time, gridding, and saturation) difference between rat brain and tumor for the RS is 23% while for the Weighted Average it is considerably less at 15%. This difference for the interpolationbased schemes is interestingly constant at 22%. For the no-shift, the ratio is 19%. BH wrote the original codes for localization algorithms with significant improvements brought by AC. AC wrote the simulation framework and implemented the metrics. VH, AC, ET, and PL acquired in vivo data. BH wrote the manuscript with input from all authors. OC has directed the work of BH, AC, and VH as thesis/postdoctoral supervisor.
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Animal experimentation

Reconstruction

We build the final image by accumulating all the super-resolved positions of the microbubbles through time in a user defined pixel grid in a Maximum Intensity Projection fashion. The pixel intensity represents the number of tracks passing through this pixel (see Supplementary Figure 456789).

In silico metrics

Thanks to the simulation tool, we have access to the ground truth and can devise numerical and several statistical metrics based on classification:

the error of localization in two directions 𝑍𝑍, 𝑋𝑋 and calculate the average root mean square error (RMSE). (𝑧𝑧 0 ; 𝑥𝑥 0 ) represent the absolute position of the scatterer, and (𝑧𝑧; 𝑥𝑥) the position measured by algorithms. Finally, the computation time was evaluated for each algorithm in the in vivo case and compared to the fastest algorithm.

All 

Micro angiography Computed Tomography (microangio-CT) with µAngiofil

The animal was heparinized and carotid arteries were cannulated. The brain was perfused with saline (NaCl) at the animal's temperature to wash out the blood. Then the µAngiofil (Fumedica AG, Switzerland) was perfused until the brain, tongue, and eyes became blue. After polymerization of the µAngiofil (at least 30 minutes), the head was removed and fixed with paraformaldehyde (PFA). Later, the brain was carefully extracted from the skull. The brain was scanned with a preclinical micro-CT Siemens Inveon PET-CT (Siemens, Germany) with a voxel size of 37 µ𝑚𝑚.