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A Graph-based Approach to the Initial Guess of UWB Anchor
Self-Calibration

Cédric Pradalier!-?, Pete Schroepfer':3, Antoine Richard':?

Abstract— This article considers the challenge of recovering
an initial topology of a mesh of devices based on noisy and
incomplete measurements of their inter-distances. In compar-
ison to earlier approaches, this paper provides a first guess
of the topology, as opposed to recovering a precise geometry
of each device. Using a graph-based model of the problem
and properties of the 2D and 3D simplices, we show: (a)
a topologically correct solution can be recovered when the
solution is unique; (b) we can identify which vertices cannot
be recovered and why, using a graph structure; and (c) the
challenges due to local symmetries in making the solution non-
unique. Results in simulation and with a mesh of UWB anchors
demonstrate the applicability of the approach.

I. INTRODUCTION

The advent of Ultra-Wide Band (UWB) ranging devices
has led to a wealth of articles describing their use in the
context of robotic localization, i.e. a robot or mobile device
can measure its range to the anchors and infer its localization
assuming the robot knows the 3D location of the anchor
devices (“anchor(s)”’). While determining the 3D location
of the anchors is fairly simple when all inter-distances are
known, it is significantly more complex with a partial set
of measurements. With UWB it is often the case that only a
portion of the inter distances are recovered when the anchors
measure themselves the distance to their neighbours. This
paper considers the challenge of automatically recovering the
initial anchor locations, a problem named “self-calibration”
with an incomplete inter-anchor measurement set. As will
be discussed further, this self-calibration generally requires
a good initial ”guess” (often this must be acquired manually).
After the initial guess, the self-calibration is typically solved
using a non-linear gradient descent with knowledge of inter-
anchor ranges to recover the anchor locations. This initial
“guess” turns out to be non-trivial to recover automatically
in practical situations, and the subject is poorly addressed in
the current literature.

As a solution, this paper proposes a graph-based self-
calibration approach to the extraction of this initial “guess”
of the UWB anchor mesh topology from a set of inter-
anchor measurements. By using graph data structures, we
were able to robustly recover this initial guess of the topology
despite noisy or missing measurements. Moreover, we were
able to identify and qualify challenging parts of the mesh,
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Fig. 1. Examples of mesh geometries used to validate the concept proposed
in this paper. Circles are anchors, and edges are present when the range
between the corresponding anchors is known. The dashed lines and empty
anchors represent an alternative crown configuration.

allowing us to propose new anchor or tag placement so as to
uniquely define the geometry. As an additional benefit, the
approach proposed here does not make any assumption on
the dimension of the problem, which can be in 2D or 3D
depending on the practical setup. Once this initial guess is
generated, it is assumed a non-linear optimization process
can be instantiated from this initial guess to generate a more
precise geometry, however, this point will not be discussed
in this paper.

II. DEFINITIONS

Before presenting the related work and methodology, we
introduce the formal definitions of the concepts and variables
used in this paper.

We assume the problem at hand requires recovery of the
2D or 3D locations of N anchors, denoted as (z;,y;) or
(i, ¥i, 2i), from a set of M inter-anchor measurements d; ; ,
with 4, j € [1,N], ¢ < j and k € [1, M]. Importantly, we do
not assume a range has been observed between every pair of
anchors. In cases where the range between a pair of anchors
has been measured at least once, we denote the range as Ji, j
the mean range measurement between these two anchors.

The graph structure we will define relies on the geometric
notion of simplex. In practical terms, a simplex is the
smallest shape in a given space, i.e. a segment in 1D, a



triangle in 2D or a tetrahedron in 3D. In order to be generic,
we will refrain from using the term triangle or tetrahedron in
the following, but instead refer to Simplex[D] for a simplex
in dimension D. A Simplex[D] is defined by D + 1 vertices,
and possesses D + 1 “faces” which are Simplex[D — 1]
objects.

In the context of a localization problem, a vertex V' of
a Simplex[D] can be estimated from the knowledge of the
location of the vertices of the opposite Simplex[D — 1] face,
and D range measurements from V' to the D known vertices.
This is typically referred to as the trilateration problem.
Similarly, the shape of Simplex[D] can be recovered from
D(D — 1)/2 inter-vertex ranges. In this case, the location
of the vertices is defined up to an unknown isometry (i.e.
translation, rotation or symmetry). In particular, the symme-
tries lead to 2 equivalent solutions in 2D, and 4 equivalent
solutions in 3D. The challenge we address in this paper is to
build a globally consistent geometry from the reconstruction
of a set of simplices assuming we have more than D + 1
anchors.

If the ranges are noisy, the two trilateration problems can
be solved using a least square minimization with its own
initial guess. In 2D, one vertex is set at the origin, the second
at the observed range on the x axis, the third just needs to be
off the = axis, so we start from an equilateral triangle. The
sign of the y coordinate of the third vertex is not decidable
from the ranges. In 3D, the 3 first vertices are set in the
(z,y)-plane, as in 2D. The 4th vertex is set to obtain a regular
tetrahedron. The sign of its z coordinate is not decidable
either.

Finally, let us now consider two simplices S; and Ss
sharing a face F, and let V; and V5 the respective vertices of
S1 and S2 opposite to F. If the locations of the vertices of
S are known, and the distance between V; and V5 is known,
then V5 can be uniquely estimated. In other words, the
knowledge of this distance lifts the reconstruction ambiguity
stemming from the symmetries. We will denote V> as the
validation vertex of V7 over the face F'.

III. RELATED WORK

The related work on self-calibration of UWB networks has
been thoroughly surveyed in [1]. Among the various issues
considered, this survey lists 36 reference articles dealing
specifically with the issue of self-calibration. For space sake,
only a limited number of references are listed here.

In this list, many papers focus on distributed estimation
[2], where every anchor tries to obtain an estimate of its
own location from the surrounding anchors. By contrast,
we are considering a global estimation of geometry, thus
the challenge of distributed estimation will not be discussed
further. A subset of articles solving the global self-calibration
problem [3] consider iterative estimations where a group of
N landmarks is already known. When a new one is observed,
an iterative estimator refines its position, taking into account
the movement of the observer. The iterative nature of the
algorithms and the reliance on some estimate of the observer

leads to a different set of hypotheses than those we are
considering.

For the papers solving the global self-calibration problem
without the iterative approach or observer, a two-stage ap-
proach can be seen in all of them: first an initial geometry
is obtained in various ways, then the final geometry is
computed through a refinement process, often deploying non-
linear optimization or Bayesian inference. However, unlike
the article presented here, the initial stage of the problem has
yet to be solved explicitly, verifiable, or practically (e.g. with
missing measurements). Further, the methods deployed do
not provide any feedback when reconstruction is not possible.

For example, some papers solving the global self-
calibration problem using a set of inter-anchor measure-
ments, assumes the initial guess of the geometry can be
recovered but do not explicitly state how [4]. Other papers,
use a first guess resulting from a set of linear equations[5].
However, this method assumes either all the inter-anchor
distances are measured or that at least the distance from one
anchor to all the others is already known. Just considering the
examples from fig. 1, one can see these hypotheses cannot
be verified in practical cases. More importantly, the linear
approach does not provide an explainable analysis of the
distribution when the mesh geometry cannot be recovered.

The closest paper that comes to solving the initial guess is
[6], which solves a form of global self-calibration using only
set-constraints (anchor A is within communication range
of anchor B, anchor C is east of anchor A). The global
optimization resulting from these set-constraints is similar
in spirit to our approach. However, using only the set
representation leads to a coarser reconstruction than what can
be achieved taking into account the range measurements, the
simplex geometry, and the graph structure we are proposing.

Another very close work is presented in [7] which also
use a graph theoretic approach to present the problem math-
ematically as a multidimensional scaling with missing data,
but also makes the link to the very significant amount of
work related to the rigidity of truss structure in mechanics.
Although the mathematical framework in [7] is more formal,
it is only evaluated in 2D. Our approach is evaluated both in
2D and 3D and the simplex graph structure provides a level
of explainability not present in [7].

In comparison to the related work, this paper focuses on
solving the global self-calibration problem when there is
an incomplete set of inter-anchor measurements. Its main
advantages being it does not depend on a complete set of
inter-anchor measurements and its ability to provide an initial
guess of the mesh geometry in 2D or 3D, with an explainable
analysis explicitly highlighting the part of the mesh that
cannot be recovered correctly. This allows us to also propose
a strategy for adding new anchors or moving an anchor to
specific locations to disambiguate the geometry.

IV. METHODOLOGY

Our approach to the UWB mesh geometry recovery is
based on the construction of multiple graph data structures



from which a globally consistent reconstruction can be
achieved.

A. Simplex identification

From the set of averaged range measurements Jz}j’ our
first task is to identify potentially recoverable simplices. To
this end, we build a graph of vertices where every node is an
anchor, and edges exists where range measurements exists. In
such a graph, recoverable simplices|[D] are cliques of D + 1
nodes. Finding cliques in a graph is a costly enumeration
problem for large cliques and dense graphs, but a fairly
innocuous problem in the graphs we are considering here.
From the exhaustive list of (D + 1)-cliques in the graph, we
now assume that we have recovered a list of simplices. An
example of such a graph is visible in fig. 2 (left), and the
resulting simplices are visible as nodes on the right-hand-side
graph in the same figure.

Note that any node with a degree lower than D will not
be localizable. We flag all such vertices at this stage and
remove them from the graph. This may reduce the degree of
other nodes, which are in turn removed from the graph, until
all the anchors that cannot be localized have been identified
and excluded.

Fig. 2.
in fig. 1.

Point graph and resulting simplex graph from the floppy example
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Point graph and resulting simplex graph from the crown example

Fig. 3.
in fig. 1.

B. Simplex graph definition

The goal of this stage is to build a graph of simplices. Let
us define Gg the graph where each node is a Simplex[D],
and there is an edge between two nodes if the corresponding

simplices share a face and the distance between vertices
opposite to this face is known. The resulting graph can be
seen in fig. 2 (right). In fig. 2, simplices (0,1, 2) and (3,4, 5)
(the ears) are not connected, so they cannot be uniquely
reconstructed.

Extracting the connected components of Gg is easily
done. This provides sets of simplices for which symmetry
ambiguities can all be lifted. If there are multiple connected
components, this may be an indication the mesh geometry
cannot be uniquely recovered. We will discuss special cases
in IV-E and propose remediation action in IV-D.

To further exploit the graph structure, we build a spanning
tree on every connected component. A spanning tree is a
subset of the graph that contains all the nodes, but only
enough edges to create a tree and maintain connectivity. This
can be simply implemented with a depth-first search through
the graph because we don’t need a minimum spanning tree.
A spanning tree must be built from a given root, which can
be any node of the connected component. In practice, we
select the largest Simplex[D] because its reconstruction may
be less sensitive to the measurement noise.

C. Geometry estimation

At this stage, we assume that Gg contains a single con-
nected component and a spanning tree 7g has been con-
structed over Gg. From this, we can iteratively reconstruct a
unique mesh geometry up to an unobservable global isometry
(translation, rotation and flip). We start with the root of 7g.
Unless we have different prior knowledge, we set this first
simplex on the origin and align with the axis, as mentioned
in II. Then we recursively iterate through the nodes of 7Tg.
For a node S, we assume the vertices of the parent S, are
known. Because S and S, share a face, there is only one
vertex V' to recover in S. As mentioned in II, this vertex
can be estimated by trilateration using the D known ranges.
Any reconstruction ambiguity can then be lifted by using the
distance between V' and its validation vertex in S, known
from the construction of Gg. Hence, V is uniquely defined
as long as S, is not a degenerated simplex (flat triangle or
flat tetrahedron). Note that, because a vertex may belong to
many simplices, its location may be estimated in different
ways in different simplices. An example of the resulting
reconstruction can be seen in fig. 4. As mentioned before, the
reconstruction is up to an unknown rotation and translation,
and only the anchors that can be uniquely reconstructed are
displayed in these graphs.

At the end of this process, all the nodes of Gg have
been processed and as a result all the anchor location have
been estimated. Importantly, beyond the specific trilateration
algorithm, which differs in 2D or 3D, this process does not
make any assumption on the dimension of the reconstruction
problem.

D. Identifying ambiguous simplices

When Gg is made of more than one connected component,
this often means the mesh geometry cannot be recovered
uniquely from the set of ranges. In this section, we consider



Fig. 4. Reconstructed geometry from the diamond and fox example in
fig. 1. The fox ears on the right are not reconstructed because they cannot
uniquely be identified from the ranges.

different configurations that can lead to this situation and
detail how they can be addressed.

In order to formally describe the different situations, we
first define a new graph structure, a bipartite graph Gp,
where nodes are the simplices and their faces. Edges in Gp
connect the simplices with their faces, and the faces with
the simplices containing them. Fig. 5 provides an example
of such graphs for the crown example.
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Fig. 5. Bipartite simplex graph from the crown and floppy (insert) examples
in fig. 1. Simplex nodes are represented with boxes and face nodes with
circles. The truss on top of the crown leads to the clear cycle on the right
of the graph.

In Gp, it can be shown that an edge between simplices
S1 and S, of Gg is equivalent to the existence of a cycle!
containing S7 and S in Gg. By extension, it can be seen
that a simplex truss structure (as seen in the top part of the
crown example, fig. 5), even if it does not lead to edges in
Gs, leads to a cycle in Gp. In practice, the presence of a
cycle usually defines a unique geometry, but it is possible
to produce pathological cases where symmetries lead to
ambiguities despite a cycle.

We can now categorize the situations resulting from a
disconnected Gg graph. Let us first consider that Gg and
Gp are both made of several connected components. In this
case, the geometry cannot be recovered completely, so we

'In graph theory, a cycle is a sequence of node starting and finishing at
the same vertex, with no other repetition.

typically only consider the biggest connected component of
Gp and assume the other parts of Gg cannot be recovered.

From now on, we consider that Gg is disconnected and
Gp is connected. Furthermore, we assume that the simplices
belonging to the largest connected component in Gg have
been identified and labelled as “known”. If we consider
an “unknown” simplex S made of D + 1 faces, then, by
construction, there is at least one face that starts a path in
Gp leading to the “known” nodes. If only one face leads
to the “known” simplices, then the geometry of the current
simplex cannot be recovered uniquely.

This can be seen, in fig. 5, in floppy with simplices
(1,2,3), (3,4,5), (3,4,6) and (3,6,7).

Note, however, the length of the shortest path can indicate
an ambiguity of a simplex reconstruction. For instance, with
a length of 1, the considered simplex has one face made
of known vertices, and only one unknown vertex, which
can be on either side of the known face. This is the case
with the “ears” of the fox. With a length of 2, there are 2
unknown vertices and 4 possible configurations. This level
of ambiguity happens in the “floppy” ear of the floppy
example, with a sequence of 3 unrecoverable nodes. This
information may be useful when considering where to move
an active agent to collect new ranges and lift ambiguities.
Simplices must be solved in order of their graph distance
to the known vertices to maximize the confidence in the
recovered geometry.

E. Handling long cycles

When a cycle in a graph is long, in most cases, you can
still recover the geometry, but as it lengthens the chances
diminish. To combat this, we can use the properties of the
two different graphs to help with reconstruction. Let us now
consider a truss structure as seen in the top of the crown
example. In this case, any simplex belonging to the truss
has two different paths reaching the “known” nodes through
different faces (these paths are clearly visible in the string of
nodes on the bottom of fig. 5), and this long path is a part
of a cycle in Gp.

With respect to the detection, we are looking for a simplex
which is not connected in Gg and connected in Gg. We
then conduct a breadth-first search from every face of such
a simplex until we can find a “known” node. If two such
searches find a half-path to the set of known simplices, this
simplex belongs to a truss structure and the two half-paths
can be combined in a single path. It is critical, however,
that the half-paths do not share either a simplex or even
a face: their destinations can be the same known simplex,
but they cannot enter it via the same face, otherwise the
reconstruction will be ambiguous. One must also avoid that
the faces from which the path leaves the first known simplex
and enters the last known simplex ((0,2) and (8,6) in the
crown example) are not collinear/coplanar, as this would lead
to another ambiguity.

As discussed in the floppy example, every new simplex in
a string of Gp-connected simplices multiplies the number
of possible configurations of the string by two, due to



symmetries (this is valid in 2D and in 3D). Because we
are considering a string of simplices starting from known
vertices and finishing on known vertices, the solution we
propose is then to recursively trilaterate every simplex on the
string, starting from the known vertices on one end. At the
other end, the correct configuration will be the one predicting
correctly the position of a known vertex. In most practical
cases, this approach will recover uniquely an estimate of the
complete geometry, as can be seen for the crown example
in fig. 6. Modifying this example by moving anchors 3
and 5 to position 3’ and 5° creates an ambiguous geometry
that cannot be recovered uniquely, as seen on the right of
the figure. This situation may be detected when multiple
configurations predict correctly the position of the reference
known vertex. However, this detection requires adding many
manual thresholds and our statistical analysis showed there
are always ambiguous situations, especially in presence of
measurement noise (table I).

Fig. 6. Left: reconstruction of the crown example using the data shown in
fig. 1. Right: reconstruction failure in an ambiguous case.

F. Proposed algorithm

Building on the sections above, the proposed algorithm
can be summarized as follows:

1) Build a graph of points and use a clique enumeration
algorithm to identify the simplices, but reject the
simplices which cannot be trilaterated.

2) Build a graph of vertices with validation constraints
(Gs), extract its connected components and spanning
forest.

3) Initialize the root simplex from the largest tree in the
forest to an arbitrary position and orientation, then
iteratively follow the tree, trilaterating one vertex at
a time.

4) Identify truss structure linking a known simplex to
another one, and recursively reconstruct the truss struc-
ture hypotheses to select the most likely.

5) Mark any remaining vertex as unrecoverable.

V. EVALUATION

A. Simulations

The first evaluation of the proposed algorithm is through
a set of randomized simulations. We consider the random
placement of 10 anchors in 2D in [—5,5]? or in 3D in

D Noise mean median 3rd max #warn
err(m) err(m) quart.(m) | err(m) | #manual
0.05 A 0.07 0.04 0.06 11.66 25
G 0.05 0.04 0.06 0.52 0
2 0.10 A 0.14 0.09 0.12 12.16 42
G 0.1 0.09 0.12 0.63 1
0.15 A 0.21 0.13 0.18 11.72 67
G 0.15 0.13 0.17 1.07 5
0.05 A 0.19 0.08 0.12 18.63 78
G 0.09 0.07 0.11 1.19 6
3 0.10 A 0.37 0.16 0.25 18.68 173
G 0.18 0.15 0.22 1.46 25
0.15 A 0.56 0.24 0.37 15.37 298
G 0.27 0.22 0.33 1.49 80

Reconstruction error (m) as a function of dimension D, measurement noise
(m), averaged over 6 maximum ranges and 1000 trials. The first line show
statistics over all the trials, and the second one considers only trials for
which no ambiguity warning has been raised.

TABLE I
SIMULATION RESULTS FOR 2D AND 3D RECONSTRUCTION

[—5,5]? (at least 1m apart), and 100 anchor-to-anchor mea-
surements. The measurements are affected by a variable
noise in {0.05,0.10,0.15} and a variable maximum range
in {5,6,7,8,9,10}. For each combination, 1000 random
distributions and measurements are generated and evaluated.
For every configuration, we compute the maximum recon-
struction error with respect to the ground truth distribution,
and we issue a warning if the reconstruction is ambiguous.
For every dimension and noise level, we report, in tables I,
the statistics of this error over all the trials (for all the max
ranges) and the number of ambiguous configuration detected
(see fig. 6). In some extreme cases, large reconstruction er-
rors occur for ambiguous geometries that cannot be decided.
These have been flagged by hand, and the number of the
manual flags is also reported. Finally, we also compute the
reconstruction statistics excluding the configuration deemed
ambiguous, in the G’ lines in the tables.

These results show that the reconstruction error of the
proposed method stays below 1m in average over the range
of conditions, except when the geometry is ambiguous.
Every line of the tables summarizes 6000 trials. In 2D, the
detection of ambiguous cases is relatively rare, and the need
to manually flag extreme cases only occurs in the presence
of noise. In 3D, the problem is much harder and ambiguous
situations occurs much more often, which results also in
much more manual flags.

B. Real experiments

Our second set of experiments involves 11 UWB anchors
(MDEK1001) with anchor names taken from a popular book.
With the proper driver, these anchors can be requested to
establish a mesh network and estimate the ranges to their
neighbours. A calibration of the error distribution showed
a standard deviation of 0.15m for the ranges considered
here. With this setup, 4 experiments in 2D are reported here
(printed figures do not lend themselves well to 3D plots).
Here we show the reconstructed geometry in comparison
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Fig. 7. Comparison of geometry recovery indoor, from laser (left) and
UWB (right) ranges, experiment 1.

to the real one, as we are only considering the problem of
obtaining the initial guess.

Dosty na Doty

Fig. 8. Comparison of geometry recovery indoor, from laser (left) and
UWB (right) ranges, experiment 2.

In the first two experiments, with an indoor setup, we
measured the inter-anchor distances with a high-precision
laser range finder, reconstructed the geometry, and manually
validated it. We then compare this with the automatically
reconstructed geometry obtained from UWB ranges in fig-
ures 7 and 8. In both cases, the topology is well recovered.
Note that the geometry is defined up to an isometry, so we
manually selected the appropriate translation and rotation to
simplify the comparison.

Finally, two experiments were conducted outdoor. In this
case, the reference position of the anchors was measured
using an RTK GPS and overlayed on Google Earth. The
resulting reconstructions can be seen in figures 9 and 10.
In both cases, the topology is accurately recovered. In the
second case, however, it was incomplete as anchor ‘Ron’
had noisy range measurements leading to a missing simplex
in Gg, thereby resulting in an ambiguous geometry. Also
note that the pose of ‘Dumbledore’ in fig. 10 is probably
incorrect due to overestimated ranges by the UWB anchors.
Nonetheless, refining the geometry over time with more
measurements would likely make ‘Ron’ recoverable and
‘Dumbledore’s position more precise.

VI. CONCLUSIONS

This paper proposes an algorithm to estimate an initial
guess of the geometry of a mesh of devices, knowing a subset
of inter-device distances. This has been developed for and
tested on UWB anchors, but the approach is potentially more
generic. In comparison with earlier approaches, the graph-
based approach provides an explainable solution, is robust

Fig. 9. Comparison of geometry recovery outdoor, from RTK GPS (left)
and UWB (right) ranges, experiment 1.

Fig. 10. Comparison of geometry recovery outdoor, from RTK GPS (left)
and UWB (right) ranges, experiment 2.

to missing measurements and capable of providing identified
guesses when appropriate. Statistical tests on random config-
urations show the sensitivity of the geometry reconstruction
to local symmetries, in particular in presence of measurement
noise. Tests on real configurations with UWB beacons show
the applicability of the approach, but also highlight the
challenges of recovering a unique geometry in the presence
of symmetries.
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