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Abstract

Differential Linear Logic (DiLL) adds to Linear Logic (LL) a symmetrization of three out of the
four exponential rules, and by doing so allows the expression of a natural notion of differentiation.
In this paper, we introduce a codigging inference rule for DiLL and study the categorical semantics
of DiLL with codigging using differential categories. The addition of codigging makes the rules
of DiLL completely symmetrical. We will explain how codigging is interpreted thanks to the
exponential function ex, and in certain cases by the convolutional exponential. In a setting
with codigging, every proof is equal to its Taylor series, which implies that every model of DiLL
with codigging is quantitative. We provide examples of codigging in relational models, as well
as models related to game logic and quantum programming. We also construct a graded model
of DiLL with codigging in which the indices witness exponential growth. Since codigging makes
the exponential of-course connective ! in LL into a monad, such that monad axioms enforce
Taylor expansion, codigging opens the door to applications in programming languages, as well
as further categorical generalizations.

1 Introduction

The quantitative point of view for programming languages consists in measuring through syntax,
types or models their usage in time, space or resources. This has in particular led to refined
results in λ-calculus [1][2][3] and innovations in probabilistic programming [4][5]. In denotational
semantics, this consists of interpreting programs by power series, whose coefficients represent the
quantitative information one would like to retrieve. In an analytic context, power series are in
particular those functions which equal their Taylor series at 0:

∀x, f(x) =
X

n∈N

1

n!
D

(n)
0 (f)(x).

The introduction of differentiation as a core primitive of the λ-calculus was made possible by Linear
Logic (LL). We will show that Taylor expansion can be expressed in terms of a monad structure
on the main connective ! in LL. The monad unit represents differentiation at 0, while the monad
multiplication will correspond to the convolutional exponential.

The introduction of LL by Girard [6] and its development is intertwined with the rise of quanti-
tative semantics [7]. It brought forward the distinction between linear proofs and non-linear proofs.

1



The logical interpretation of linear, meaning using an argument exactly once, coincides through
dwith the mathematical interpretation from algebra, meaning as a function that preserves sums.
The non-linear proofs and functions are retrieved from the introduction of a so-called exponential
unary connective denoted !. In LL, there are four exponential laws ruling the use of !A called
weakening (w), contraction (c), dereliction (d), and promotion (prom):

Γ⊢∆ w
Γ, !A ⊢∆

Γ, !A, !A ⊢∆
c

Γ, !A ⊢ ∆

Γ, A ⊢∆
d

Γ, !A ⊢∆
!Γ⊢ A

P
!Γ⊢ !A

Proofs of A ⊢ B are interpreted as linear implications A ⊸ B, while non-linear implication is defined
as A ⇒ B := !A ⊸ B. As such, the dereliction rule forgets the linearity of a proof, allowing linear
proofs to be considered a special case of non-linear proofs. Categorically speaking, the dereliction
is the counit of a comonad !, while promotion is interpreted thanks to the comultiplication of !.
Thus P can be replaced by two rules expressing the functoriality of ! (functorial promotion !d) and
the comultiplication of !, called digging (p):

Γ ⊢A !f!Γ ⊢ !A
Γ, !!A ⊢ ∆

p
Γ, !A ⊢ ∆

Differential Linear Logic (DiLL) was introduced by Ehrhard and Regnier [8] as an extension
of LL with a syntactical notion of differentiation. It led to a number of work concerning the
syntax and semantics of differentiable and probabilistic programming languages [4][9] as well as
new proof methods on λ-terms [1]. In classical DiLL there are three extra exponential rules called
coweakening (w), cocontraction (c), and codereliction (d):

⊢
w⊢ !A

⊢ Γ, !A ⊢ ∆, !A
c⊢ Γ,∆, !A

⊢ Γ, A
d⊢ Γ, !A

The ability to differentiate a proof is encoded in the codereliction rule. Dual to the dereliction,
the codereliction takes a non-linear proof and produces a linear proof via linearization, that is, by
differentiating at zero. The other new rules are necessary for the cut-elimination of DiLL, and have
a miraculous symmetric presentation to the usual exponential rules. For an in-depth introduction
to DiLL, we refer the reader to [10].

Remarkably, the interactions (i.e. the cut-elimination in sequent calculus or the coherence
diagram in categorical models) between the standard exponential rules and the added rules for
DiLL are symmetrical. For example, the interaction between the dereliction and cocontraction is a
mirror dual to the interaction between the codereliction and the contraction. Furthermore, these
interactions are nicely illustrated by the basic rules of differential calculus, as explained in Ehrhard
and Regnier’s original paper [11]. While DiLL is solidified as an elegant typing system for higher-
order functional analysis, the mystery of the symmetrical nature of its rules and their interactions
is unexplained. In particular, observe that c,w, and d have their dual rule introduced in DiLL with
c, w, and d. Missing is a dual rule for digging. Thus a natural question to ask is if there is such
thing as a codigging rule, and if it makes sense semantically? By dualizing the digging rule, we
easily write a codigging rule (p) as follows:

Γ ⊢ !!A p
Γ ⊢ !A
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Contributions In this work, we define the notion of categorical model of DiLL with codigging,
study their properties and express codigging in term of Taylor expansions. We show that the
codigging should be interpreted as an exponential of distributions, which gives ! a monad structure
that enforces a quantitative setting. We exhibit several models of DiLL with codigging, such as the
weighted relational model or quantum related examples. We construct a new graded model in a
smooth setting based on the notion of the convolutional exponential and exponential growth.

In the rest of the introduction, we give more details about the interpretation of the monad
structure on !, and how the quantitative setting follows. In categorical models, formulas are inter-
preted as objects A,B of a category L and proofs A ⊸ B as morphisms f : A → B between these
objects1. As part of the Curry-Howard correspondence, these morphisms should be invariant under
the cut-elimination procedure.

Due to its invariance under differentiation and its behavior with respect to sums, we argue that
codigging should be interpreted as a sort of generalized version of the exponential function2 ex.
To justify this last claim, we must consider what ex in the context of DiLL would even be. The
answer to this question comes from an independent categorical exploration by Lemay [12]. We will
explain how the axioms of codigging precisely state that p fits in this categorical axiomatization of
exponential map.

Now in categorical models of DiLL, each inference rule is interpreted by a natural transformation.
Since the digging is a natural transformation of type pA : !A → !!A, it follows that the codigging
should be a natural transformation of type pA : !!A → !A. Since we claimed that codigging is a
generalization of ex, we may take inspiration from the power series formula for ex to provide a
formula for p (ignoring any problems infinite sums for now):

ex =
X

n

xn

n!
p : x ∈ !!A 7→

X

n

cn(d(x)⊗
n
)

n!
∈ !A.

When !A is interpreted by spaces of distribution [13], c corresponds the the convolution law and
so p maps x to the convolutional exponential of d(x).

On the other hand, the codereliction is a natural transformation of type d : A → !A, and
precomposing a map f : !A → B by d results in its differential at 0: dA; f = D0(f) : A → B. Since
(!, p, d) is a comonad, dually we will have that (!, p, d) a monad. In particular, the monad axioms
between p and d relate codigging to its differentiation and Taylor expansion. The law d!; p = 1 is an
analogue of the invariance of ex under differentiation, while the law !d; p = 1 accounts for the fact
that all non-linear maps are equal to their Taylor series. Therefore, models of DiLL with codigging
are strongly related with quantitative models. What a quantitative model can lack to have a proper
monad structure on ! is the convergence of p on every element x of !!A. This is strongly related to
the convergence of infinite sums in the model, and the growth allowed to non-linear maps.

1We assume the reader is familiar with the basic concepts of category theory such as categories, functors, natural
transformations, monoidal categories and (co)monads. In a category we write maps as f : A → B, identity maps as
1A : A → A, and we write composition diagrammatically, that is, the composition of maps f : A → B and g : B → C
is denoted f ; g : A → C.

2Beware that we face a difficult overlap in terminology. In LL, the connectives ! and ? are traditionally named
”exponential connectives” for the fact they transform additive connectives into the multiplicative ones. Here, we
refer to the mathematical exponential function exp : x 7→ ex. As much as possible, we will refer to the latter as the
”exponential function”, as opposed with ”exponential rules” or ”exponential connectives” in LL.
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Related Work In their PhD thesis [14], Gimenez studies codigging as a proof-net construction
which is used in the definition of a super-promotion. As far as we can see, it does not mentions
its denotational interpretation, which is the heart of our work. The notion of Taylor expansion
has been otherwise widely studied in denotational semantics [10, 15, 16, 17, 18], exhibiting models
which sometimes interpret codigging, and otherwise interpret codigging only on a restricted subset
of functions. Quantitative semantics is not restricted to the LL settings, and relates to intersection
types [19] and quantitative properties of programs [20]. Differential calculi [11] considers differen-
tiation as a program transformation, leading to resource calculi [21] in which programs computes
on quantitative data. To the best of the authors’ knowledge, these have never been explained in
terms of monads nor exponential functions. In the setting of quantitative algebras [22], Mio and
Vignudelli studied the lifting of the probability monad to quantitative equational theories [23]. To
the best of our understanding, this is distinct from the codigging story of this paper.

Outline We begin in Section 2 by giving background on the categorical models of DiLL, and
also review !-differential exponential maps in Section 3.1. Section 3 is the categorical heart of our
paper. In Section 3.2, we define and study monadic differential categories, which are categorical
models of DiLL with codigging. We show that codigging is a generalized version of the exponential
function ex. The coherence rules of codigging are defined symmetrically to the one of digging,
and we explain why this makes sense semantically in terms of ex. In Section 3.3, we introduce
the novel concept of Taylor differential categories, which are differential categories where Taylor
expansion is well-defined, and show that the “illegitimate formula” for codigging holds in such a
setting. Section 4 provides examples of models of DiLL with codiging, including the well known
relational models, as well as models related to game logic and quantum theory. In Section 5, we
give our first counter examples of differential categories that do not have a codigging. That said,
we will then show in section 5.2 that the convolutional exponential, which is a preexisting notion
in functional analysis, interprets codigging in an alternative way and allows the discovery of new
smooth, graded and polarized models of DiLL. We explain the symmetry of DiLL in terms of the
Laplace transformation. We conclude with Section 6, where we discuss future work on codigging
in category theory, the λ-calculus, etc.

2 Differential Categories: the Categorical Semantics of DiLL

In this section we review the categorical semantics of DiLL, which was first developed by Blute, and
Cockett under the name differential categories in [24], and later revisited by these three authors
along with Lemay in [25], also by Fiore in [26], and Ehrhard in [10]. In this paper, we will mostly be
following Ehrhard’s notation and terminology in [10], as it takes a more DiLL like perspective (rather
than a purely categorical one). For a more in-depth introduction to the categorical semantics of
LL, we refer the reader to the introductory source [27].

The underlying category is a symmetric monoidal category, which interprets the multi-
plicative fragment of LL. For an arbitrary symmetric monoidal category, we denote the underlying
category as L, the monoidal product as ⊗, the monoidal unit as I, and the natural symmetry
isomorphism by σA,B : A ⊗ B → B ⊗ A. For simplicity and following the convention done overall
in differential category literature, in this paper we will work in the setting of a symmetric strict
monoidal category, meaning that the associativity and unit properties of the monoidal product are
equalities, so we write A1 ⊗A2 ⊗ . . .⊗An and A⊗ I = A = I ⊗A. For Classical DiLL, one in fact
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needs a star-autonomous category, which interprets the involutive linear negation. However, since
the closed structure does not play a central role in the story of codigging, we will not assume it in
our categorical definitions.

For DiLL, in order to express the product rule for differentiation and that the derivative of a
constant function is zero, we will also require the ability of taking sums of maps and having zero
maps. So an additive symmetric monoidal category [25, Def 3] is a symmetric monoidal
category L which is enriched over the category of commutative monoids, that is, each homset
L(A,B) is a commutative monoid with addition operation + and zero 0 : A → B, and such that
composition and the monoidal product ⊗ are compatible with the additive structure. We will also
assume that we have finite products, which interprets the additive fragment of LL. If an additive
symmetric monoidal category has finite products, then by the additive structure it follows that
said products are in fact biproducts, and these distribute with the monoidal product. Recall that a
biproduct can be defined as a product that is also a coproduct such that the projection maps and
injection maps are compatible. Since the product structure plays a slightly more central role, we
use product notation for biproducts. So if an additive symmetric monoidal category L has finite
(bi)products, we denote the binary product as ×, with projections πi : A0 × A1 → Ai, and zero
object ⊤, and we have that A⊗ (B × C) ∼= (A⊗B)× (A⊗ C) and A⊗⊤ ∼= ⊤.

For the exponential fragment, there are many equivalent ways to provide a categorical inter-
pretation of the ! exponential modality such as a monoidal coalgebra modality (also called a linear
exponential modality), an additive bialgebra modality, or a storage modality. We have chosen the
latter which is defined in terms of the biproduct structure and the Seely isomorphisms.

Definition 2.1. For an additive symmetric monoidal category L with finite (bi)products, a storage
modality [25, Def 10] is a tuple (!, p, d, c,w) consisting of an endofunctor ! : L → L and four
natural transformations: pA : !A → !!A called the digging, dA : !A → A called the dereliction,
cA : !A → !A⊗ !A called the contraction, and wA : !A → I called the weakening, and such that:
1. (!, p, d) is a comonad:

pA; !pA = pA; p!A pA; !dA = 1!A = pA; d!A (1)

2. (!A, cA,wA) is a cocommutative comonoid:

cA; (cA ⊗ 1!A) = cA; (1!A ⊗ cA) cA;σ!A,!A = cA

cA; (1!A ⊗ wA) = 1!A = cA; (wA ⊗ 1!A)
(2)

3. The digging p is a comonoid morphism:

pA; c!A = cA; (pA ⊗ pA) pA;w!A = wA (3)

4. The natural transformation χA,B : !(A×B) → !A⊗ !B, defined as χA,B := cA×B; (!(π0)× !(π1)),
and the weakening w⊤ : !⊤ → I are isomorphisms, called the Seely isomorphisms, so !(A×B) ∼=
!A⊗ !B and !⊤ ∼= I.

From now on we will simply write ! for a storage modality. There are two important canonical
natural transformations that can be constructed using the biproduct structure and the inverse of
the Seely isomorphisms [25, Sec.7]. These are cA : !A ⊗ !A → !A, and wA : !A → I, respectively
called the cocontraction and the coweakening. There are many interesting identities that follow
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from these extra maps. Of particular importance to the story of this paper is that:
5. (!A, cA,wA) is a commutative monoid:

(cA ⊗ 1!A); cA = (1!A ⊗ cA); cA σ!A,!A; cA = cA

(1!A ⊗ wA); cA = 1!A = (wA ⊗ 1!A); cA
(4)

and in fact, !A is a bimonoid:

cA; cA = (cA ⊗ cA); (1!A ⊗ σ!A,!A); (cA ⊗ cA)

cA;wA = wA ⊗ wA wA; cA = wA ⊗ wA

wA;wA = 1I

(5)

6. The dereliction d is compatible with the monoid structure:

cA; dA = wA ⊗ dA + dA ⊗ wA wA; dA = 0 (6)

It is well known that using the Seely isomorphisms, digging, and dereliction, we can construct a
natural transformation µA,B : !A⊗ !B → !(A⊗ B) and a map µI : I → !I which make ! into a lax
monoidal functor, but we also that:
7. The digging p is compatible with the monoid structure:

cA; pA = (pA ⊗ pA);µ!A,!A; !cA wA; pA = µI ; !wA (7)

We may now properly state the definition of a codereliction.

Definition 2.2. A differential storage category is an additive symmetric monoidal category
with finite (bi)products and a storage modality ! that comes equipped with a codereliction [25, Def
9] which is a natural transformation dA : A → !A such that the following equalities hold:

dA; pA = (wA ⊗ dA); (pA ⊗ d!(A)); c!(A) dA; dA = 1A

dA; cA = wA ⊗ dA + dA ⊗ wA dA;wA = 0
(8)

To be precise, a categorical model of (Classical) DiLL is a differential storage category that is
also monoidal closed (star-autonomous). As discussed in the introduction, the key dynamic in LL
is that we have an interpretation of non-linear maps and linear maps. In DiLL, we also have the
ability of differentiating the non-linear maps infinitely many times, and therefore non-linear maps
are better understood as smooth maps. From a categorical point of view, the non-linear maps are
in fact maps of the coKleisli category. For a differential storage category L with storage modality
!, recall that the coKleisli category of ! is the category L! whose objects are the same as L but
where a map from A to B in L! is a map of type !A → B in L. So from the point of view of DiLL,
a non-linear map from A to B is a coKleisli map !A → B, while a linear map A to B is simply of
map of type A → B.

All the natural transformation which interpret DiLL proofs have a natural interpretation in term
of basic calculus. In particular, for a coKleisli map f : !A → B:

• Precomposing a map ℓ : A → B by the dereliction d forgets that ℓ a linear map, d; ℓ : !A → B.

• The digging p intervenes in the composition of two non-linear maps as usual in coKleisli
categories.
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• Precomposing by the contraction c turns a function into its composition with the diagonal,
(c; f)(x) = f(x, x).

• Precomposing by the weakening w turns a point b : I → B into a constant function, w; b :
!A → B.

• Precomposing by the cocontraction cmeans summing in the domain of the function, (cA; f) :=
(x, y) 7→ f(x+ y).

• Precomposing by the coweakening w corresponds to evaluating at 0, wA; f = f(0).

• Precomposing by the codereliction d means taking the derivative of a function at 0, so
(dA; f) = D0(f) : A → B is the linear map mapping v to the differential of f at 0 accord-
ing to the vector v.

These intuition were discovered in discrete models, but also hold in models based on the classical
differential calculus.

3 Codigging

In this section, we introduce the notion of codigging from a categorical point of view. We will
demonstrate how codigging fits naturally in the categorical semantics and explain that codigging
can be interpreted as a generalization of the classical exponential function ex, and how it’s related
to the Taylor series formula for smooth functions.

3.1 Exponentials in Differential Categories

As mentioned above, we will explain below why codigging should be interpreted as a generalized
expentional function. To help justify this claim, let us first quickly review the generalization of
the exponential function ex in context of differential storage categories, called a !-differential expo-
nential map, which was introduced by Lemay in [12]. Classically, ex admits numerous equivalent
characterization either as the inverse of the natural logarithm function, or as a limit or converging
power series, or even as the unique solution to a differential equation. What is surprising about
!-differential exponential maps is that they can be defined for any commutative monoid in a differ-
ential storage category without the need of some notion of convergences, or infinite sums, or even
unique solutions for differential equations. Instead, their axioms are based on three well-known
identities of ex which are (1) that ex is its own derivative, (2) ex+y = exey, and (3) e0 = 1.

Definition 3.1. In a differential storage category, for a commutative monoid (A,C : A ⊗ A →
A,W : I → A), a !-differential exponential map [12, Def 14] is an endomorphism e : A → A
such that the following equalities hold:

dA; e = 1A cA; e = (e⊗ e);C wA; e = W (9)

A !-differential exponential algebra is a commutative monoid equipped with a !-differential
exponential map.
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Categorically speaking, for a !-differential exponential map e, the first axiom says that e is a
retract of the codereliction d, while the other two say that e is a monoid morphism. From the
point of view of DiLL, a !-differential exponential map e is a non-linear map from A to A. For the
first axiom, recall that precomposing by the codereliction is interpreted as differentiating and then
evaluating at zero. So the first axiom interprets the fact that the derivative of ex at 0 is x. For the
other two axioms, recall that precomposing by the cocontraction corresponds to evaluating at the
sum of two arguments, while precomposing by the coweakening corresponds to evaluating at zero.
On the other hand, the multiplication C is interpreted as a bilinear multiplication on A, and the
unit W is a constant function which gives the mutliplicative unit point of A. Therefore, the other
two axioms of e are indeed analogues of ex+y = exey and e0 = 1.

3.2 Codigging

In this section we introduce the notion of a differential storage category with codigging, which we
call a monadic differential category. Before giving the definition of codigging, let us first take a
step back and remember our original motivation. In the added exponential rules of DiLL there was
a cocontraction, coweakening, and codereliction, but there is an astonishing lack of a codigging.
The beautiful part of DiLL is that not only c,w, c,w, d, and d are symmetrical in their types, but
they are also symmetrical in their interaction rules. Indeed, equations (2) and (4) are dual of one
another, while the two last axioms of equation (8) are dual of equation (6). As such, this naturally
leads us to the fact that codigging p should be the dual type of the digging, so p : !!A → !A, and
the rules involving p should be symmetrical to the ones of p. So the axioms of codigging can be
split into three parts. Since p and d make ! into a comonad (1), symmetrically, we will require that
p and d will make ! into a monad, which is where the name monadic differential category comes
from. Similarly, since p is a comonoid morphism with respect to c and w (2), we will also have that
p is a monoid morphism with respect to c and w. Lastly, we will also require that p and d together
satisfy the dual of the chain rule (8), which is the compatibility axiom between p and d.

Definition 3.2. A monadic differential category is a differential storage category whose storage
modality ! comes equipped with a codigging which is a natural transformation pA : !!A → !A, such
that the following equalities hold:
1. (!, p, d) is a monad:

p!A; pA = !pA; pA d!A; pA = 1!A = !dA; pA (10)

2. The codigging p is a monoid morphism:

c!A; pA = (pA ⊗ pA); cA w!A; pA = wA (11)

3. The codigging p and the dereliction d are compatible in the following sense:

pA; dA = c!A; (pA ⊗ d!A); (wA ⊗ dA) (12)

Let us give some more intuition for these codigging axioms. The type of codigging says that
p is a non-linear map from !A to !A. The next thing we can say is that codigging is indeed a
generalized version of ex for !A. Indeed, (10) and (11) are precisely the requirements which makes
pA a !-differential exponential map.
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Lemma 3.3. In a monadic differential category, the codigging pA : !A → !!A is a !-differential
exponential map for the commutative monoid (!A, cA,wA).

Proof. One of the monad axioms in (10) is that pA is a retract of d!A, while (11) says that pA is
a monoid morphism between the commutative monoids (!!A, c!A,w!A) and (!A, cA,wA). These are
precisely the requirements which makes pA a !-differential exponential map.

So the equations of (11), which express the interactions between p and both c and w, are indeed
analogues of ex+y = exex and e0 = 1, while the first part of the second equation of (10), expressing
the interaction between p and d, says that the derivative evaluated at 0 of p is the identity. To help
understand the other codigging axioms, since p is a generalization of ex, it will be usefuly to use a
very naive “illicit formula” for p based on the exponential function’s power series:

ex =
X

n

xn

n!

In classical DiLL, elements of !A can be interpreted as distributions, that is, linear scalar maps
acting on non-linear maps, so J!AK := L(L!(JAK, I), I), where I is often interpreted as the field of
real or complex numbers. From this point of view, cocontraction is interpreted by the convolution
of distributions :

cA : ϕ⊗ ψ 7→ ϕ ∗ ψ := (f 7→ ϕ(x 7→ ψ(y 7→ f(x+ y)))

Now recall that for each element x of A, the dirac distribution at x is distribution which evaluates
a non-linear map at x, so δx : f 7→ f(x). In many cases, it is sufficient to define what a non-linear
map does on dirac distributions. As such, the dereliction maps a dirac distribution to the element
it tests functions with, dA : δx 7→ x, while the contraction duplicates the dirac distribution’s test
element, cA : δx 7→ δx ⊗ δx. These intuitions are explained in more details in [13]. Assuming that
we have proper convergences and can scalar multiply by rationals, we may generalize x with the
dereliction and xn with applying contraction and cocontraction to the dereliction, to obtain the
following formula for codigging:

pA : δϕ 7→ exp∗(ϕ) =
X

n

ϕ∗n

n!
(13)

where ϕ∗n = ϕ ∗ . . . ∗ ϕ. This is called the convolutional exponential. We will make this formula
precise in Section 3.3, and relate it with new models in Section 5.

Now the other monad axioms involving the codigging and the codereliction is that !dA; pA = 1!A.
On dirac distributions, the codereliction gives the differential operator at zero, dA : δx 7→ D0( )(x).
Then on the left hand side, we have:

!dA; p : δx 7→ exp (D0( )(x)) =
X

n

D0( )(x)
∗n

n!

However, D0( )(v)
∗n is exactly the distribution mapping a function to its n-th differential at 0,

f 7→ D
(n)
0 (f)(x). Therefore, if !dA; pA = 1!A holds, this means that for every x ∈ A and f : !A → B:

X

n

D
(n)
0 ( )(x)

n!
= δx thus

X

n

D
(n)
0 (f)(x)

n!
= f(x)
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In other words, in a model with codigging, every non-linear map is equal to its Taylor approximation
at 0. This implies that any model of DiLL with codigging needs to be a quantitative model, with
non-linear maps being power series, such that the exponential function series also converges.

The third monad axiom that p!A; pA = !pA; pA essentially explains how to interpret the expo-
nential of the exponential, ee

x
. In particular, we have exp(exp(ϕ)) = pA (exp(δϕ)). Lastly, equation

(12) states the interaction between p and d, which we call the ”cochain rule”, since the compatibility
between d and p is the chain rule. On the one hand,

pA; dA : δδx 7→
X

n

nx

n!

By factoring out x, we know that the righthand side should be e1x, which is indeed what the other
side of (12) is. On one hand we have that: d!A; dA : δδx 7→ x. While on the other hand, since
weakening maps dirac distributions to 1, wA : δx 7→ 1, we have also have that pA;wA : δδx 7→ e1.
Therefore, (12) precisely tells us that:

X

n

nx

n!
= e1x.

At this point it may be worth discussing how one could argue that codigging p is just a special
case of the dereliction d. Indeed, note that pA : !!A → !A and d!A : !!A → !A have the same types.
However, by comparing (6) and (12), we see that the interactions with c and w differ significantly.
Intuitively what this means is that the dereliction d and the codigging p are both ways to embed
linear maps into non-linear ones, where the dereliction does this by merely forgetting about linearity,
while codigging creates non-linearity via exponentiation. This can also be compared to the action
of p and d, where p has the same type of a restricted d. While the digging creates linearity by going
to higher-order, dereliction is more radical and creates linearity through differentiation.

A natural question to ask is if there is also any interaction laws between codigging and contrac-
tion, or weakening, or even digging. For contraction and weakening, by dualizing the constructions
of [25, Sec.7], we use the codigging to construct a natural transformation µA,B : !(A⊗B) → !A⊗ !B
and a map µI : !I → I respectively as follows:

µA,B := !(dA ⊗ dB); !χ
−1
!A,!B; pA×B;χA,B

µI := !(wI); pI ;wI

(14)

It is important to point out that while µ and µI make ! into a lax comonoidal functor, they are
not inverses to µ and µI . Indeed, on dirac distributions, we have that µA,B : δx ⊗ δy 7→ δx⊗y and
µI : 1 7→ δ1. While µ gives a version of partial Taylor approximation in two variables:

µA,B : δx⊗y 7→
X

n

D
(n)
0 ( )(x)⊗D

(n)
0 ( )(y)

n!

We stress that the above formula is not the full Taylor approximation of a smooth function in two
variables, and therefore its composition with µ is not equal to the identity in a codigging setting.
On the other hand for µI , recall that the monoidal unit is often interpreted as the field of real or
complex numbers I = K. Then µK : !K → K, interpreted as a non-linear map K → K, does indeed
recapture the classical exponential function ex : K → K. So on dirac distributions, µI : δx 7→ ex.
We can make this precise as:

10



Lemma 3.4. In a monadic differential category, the map µI : !I → I, as defined in (14), is a
!-differential exponential map for I (with respect to the canonical monoid structure on the monoidal
unit).

Proof. By construction, µI is the composite of monoid morphisms, and therefore is itself a monoid
morphism. Furthermore, since both wI ◦ wI = 1I and d!I ◦ pI = 1!I , and by the naturality of d, we
have that ηI ◦ µI = 1I . Therefore, we conclude that µI is a !-differential exponential map on I as
desired.

Turning our attention back to the relation between codigging and the comonoid structure, we
can use µ and µI to obtain the dual of equation (7) for codigging.

Lemma 3.5. In a monadic differential category, the codigging p is compatible with the comonoid
structure in the sense that the following equalities hold:

pA; cA = !cA;µ!A,!A; (pA ⊗ pA) pA;wA = !wA;µI (15)

Proof. By symmetry of all the axioms, the calculations to prove (15) are precisely dual to the
calculations to prove (7), which can be found in [25, App.B].

Unfortunately there does not seem to be any obvious compatibility between digging and codig-
ging, specifically what pA; pA may be equal to. Even when investigating in well-behaved models,
there does not seem to be any immediate answer. So, for now, we do not require any extra coherence
between p and p, and discuss possibilities in the conclusion.

Let us briefly focus our attention back to codigging and its relation to exponential functions.
Whenever one has a monad, an important question to ask is what can we say about the algebras
of said monad. It turns out that in a monadic differential category, every algebra for the monad
! comes equipped with a natural !-differential exponential map. Recall that an algebra for the
monad !, also called a !-algebra, is a pair (A, a) consisting of an object A and a map a : !A → A,
called the !-algebra structure map, such that pA; a = !a; a and dA; a = 1A. Then not only does
every !-algebra have a canonical commutative monoid structure, the !-algebra structure map is a
!-differential exponential map.

Lemma 3.6. In a monadic differential category, let (A, a) be a !-algebra. Define the maps caA :
A⊗A → A and wa

A : I → A respectively as follows:

caA := (dA ⊗ dA); cA; a wa
A := wA; a (16)

Then (A, caA,wA) is a commutative monoid and a : !A → A is a !-differential exponential map. In
other words, every !-algebra is a !-differential exponential algebra.

Proof. A well-known result about storage modalities is that every !-coalgebra (the dual of !-algebra
for the comonad !) comes equipped with a canonical cocommutative comonoid structure and the
!-coalgebra structure map is a comonoid morphism [27, Prop.28]. The above proposed construction
for !-algebras is precisely the dual of the one for !-coalgebras. Therefore, by dualizing the proof, we
indeed have that (A, caA,wA) is a commutative monoid and a is a monoid morphism. Furthermore,
by definition of !-algebra, we have that a is a retract of the codereliction dA. So we conclude that
a is a !-differential exponential map, as desired.

11



3.3 Codigging via Taylor Expansion

In the previous sections, we discussed how codigging was closely linked to Taylor expansion and
gave an “illicit formula” for codigging (13), which is based on the Taylor series of the exponential
function ex. The objective of this section is to make the “illicit formula” for codigging legitimate
and argue that it makes sense in well-behaved differential categories where Taylor expansion is
well-defined. We will justify this even further in Section 4 by providing examples where the “illicit
formula” for codigging holds.

Taylor expansion is an important concept in DiLL, as first developped by Ehrhard in Regnier
in [28] and later studied by many others, such as Pagini and Tasson in [17] or Boudes et al in [18].
From the categorical point of view, the concept of Taylor expansion in a differential category was
first discussed by Ehrhard in [10, Sec 3.1]. However, as discussed above, in order for codigging to
properly give a monad, not only do we need Taylor expansions in a differential category but also
that every non-linear map is equal to its Taylor series. As such, in this section we introduce the
novel concept of a Taylor differential category, which is essentially a differential category where if
two coKleisli maps have the same Taylor expansion, then they must be equal. This implies that in
a Taylor differential category, every coKleisli map is equal to its Taylor series, which can be made
even more precise in a setting with some notion of well-defined convergence for infinite sums. The
main result of this section is that a Taylor differential category has codigging if and only if there is
a non-linear map whose Taylor expansion is precisely given by the “illicit formula” for codigging.
In Section 4, we will provide numerous examples of Taylor differential categories with codigging.

As Taylor differential categories are inspired by Ehrhard’s work, we will continue using mostly
the same notation as in [10]. Let us first define some useful natural transformations. For every
n ∈ N, for an object A or a map f , we denote A⊗n

and f⊗n
as a short hand for the monoidal

product of n copies of A or f , with the convention that A⊗0
= I and A⊗1

= A, and that f⊗0
= 1I

and f⊗1
= f . Now for every n ∈ N, define cnA : !A → !A⊗n

to be the map which comultiplies !A into
n-copies of !A, and cnA : !A⊗n → !A which multiplies n-copies of !A together. By convention, we set
that c1A = 1!A, c

1
A = 1!A, c

2
A = cA, and c2A = cA. Now define dnA : !A → A⊗n

and d
n
A : A⊗n → !A

respectively as the composites dnA := cnA; d
⊗n

A and d
n
A := d

⊗n

A ; cnA.
In order to properly define the main natural transformation for Taylor expansion, it is necessary

to be able to multiply by 1
n! , which is an important ingredient in the Taylor expansion formula. As

such, we now need to assume we are working in a setting where we can scalar multiplying maps
by the non-negative rationals Q≥0. Thus for the remainder of this section, we will be working in a
Q≥0-differential storage category, which means a differential storage category such that each homset
is also a Q≥0-module. In particular, this implies we may scalar multiply any map f : A → B by any
p
q ∈ Q≥0 to obtain a map p

q · f , and scalar multiplication is compatible with composition and the
monoidal product. This is not a very heavy requirement, and is often a desirable setting of interest,
especially when working with differential categories that have some notion of antiderivatives [10, 29]
or integration [30].

Then define Mn
A : !A → !A as:

Mn
A :=

1

n!
·
�
dnA; d

n
A

�
(17)

Observe that M0
A = wA;wA and M1

A = dA; dA. Intuitively, pre-composing a coKleisli map f : !A →
B gives the n-th term in Taylor series of f at 0, (Mn

A; f)(x) = 1
n! · D

(n)
0 (f)(x). Here, we call the

composite Mn
A; f the n-th Taylor monomial of f . In [10, Sec 3.1], Ehrhard defined the natural

12



transformation Tn
A : !A → !A as the sum Tn

A :=
Pn

k=0M
n
A and described Tn

A; f as the n-th Taylor
polynomial of f . We may now define the notion of a Taylor differential category:

Definition 3.7. A Taylor differential category is a Q≥0-differential storage category such that
for any pair of parallel coKleisli maps f : !A → B and g : !A → B, if for all n ∈ N, Mn

A; f = Mn
A; g,

then f = g.

In other words, if two non-linear maps have the same Taylor monomials (or Taylor polynomials),
then they must be equal. This implies that every non-linear map is completely determined by its
Taylor expansion. In fact, we will explain how in a Taylor differential category, every Taylor series
converges in a well-defined way and how every non-linear map is equal to its Taylor series.

While Taylor differential categories are interesting on their own and merit further exploration,
we are particularly interested in when a Taylor differential category has a codigging. So assume
that a codigging pA : !!A → !A exists. Using all three of the axioms for a !-differential exponential
map, it is straightforward to compute that d

n
!A; pA = cnA. Thus, the Taylor monomials of the

codigging are Mn
!A; pA = 1

n! · (dn!A; cnA). Observe that M0
!A; pA = w!A;wA and M0

!A; pA = d!A. Now
observe that the Taylor monomials of the codigging can be defined in any Q≥0-differential storage
category. Therefore a Taylor differential category has a codigging if there exists maps whose Taylor
monomials are those of a codigging.

Proposition 3.8. A Taylor differential category is a monadic differential category if and only if
for every A, there exists a (necessarily unique) map pA : !!A → !A such that for every n ∈ N, the
following equality holds:

Mn
!A; pA =

1

n!
· (dn!A; cnA) (18)

Proof. Let us start with proving that pA is a monoid morphism. Starting with preservation of the
unit, note that the case n = 0 of (18) says that w!A;w!A; pA = w!A;w!A. Pre-composing each side by
w!A, by the bimonoid identity (5), we have that w!A; pA = w!A as desired. Next to prove that pA also
preserves the multiplication, we will first show that χ!A,!A; c!A; pA is equal to χ!A,!A; (pA ⊗ pA); cA
using the Taylor property. Then carefully using the bimonoid identities (5) and binoemial coefficient
identities, we can compute that:

Mn
!A×!A;χ!A,!A; c!A; pA =

=
nX

k=0

1

k!(n− k)!
·
�
dn!A; (!π0)

⊗k ⊗ (!π1)
⊗n−k

; cnA

�

= Mn
!A×!A;χ!A,!A; (pA ⊗ pA); cA

So by the Taylor property we have that χ!A,!A; c!A; pA = χ!A,!A; (pA ⊗ pA); cA. Pre-composing both
sides by χ−1

!A,!A we obtain that c!A; pA = (pA ⊗ pA); cA. So pA is indeed a monoid morphism as
desired.

Now let us explain why ! is a monad. Note that the case n = 1 of (18) says that d!A; d!A; pA = d!A.
Pre-composing each side by d!A, by the codereliction identity (8), we have that d!A; pA = 1!A. Next,
by naturality of Mn and dn, it easy to compute that for all n we have that Mn

A; !dA; pA = Mn
A.

Therefore by the Taylor property, it follows that !dA; pA = 1!A. On the other hand, using the
naturality of d

n
, that p is a monoid morphism, and d!A; pA = 1!A, for every n we can show that:

Mn
!!A; p!A; pA =

1

n!
·

dn!!A; p

⊗n

A ; cnA
�
= Mn

!!A; !pA; pA

13



So by the Taylor property, we have that p!A; pA = !pA; pA. So we have that ! is indeed a monad.
Lastly, using (6), for every n, we can compute that:

M0
!A; pA; dA = 0 = M0

!A; c!A; (pA ⊗ d!A); (wA ⊗ dA)

Mn+1
!A ; pA; dA =

1

n!
·

dn+1
!!A ; dA ⊗ w⊗n

A

�

= Mn+1
!A ; c!A; (pA ⊗ d!A); (wA ⊗ dA)

Note that in the n+1 case, the factor 1
n! is indeed correct since we obtain n copies of dn+1

!!A ; dA⊗w⊗n

A ,
which when multiplied by 1

(n+1)! gives 1
n! . So by the Taylor property, we obtain that pA; dA =

c!A; (pA ⊗ d!A); (wA ⊗ dA). So we conclude that p is a codigging as desired.

Now let us explain why in a Taylor differential category L, Taylor series converge. To do so, we
must define a metric on the homset L(!A,B) in which the sequence of Taylor polynomials converges.
So define D : L(!A,B) × L(!A,B) → R as D(f, g) = 2−n, where n is the smallest natural number
such that Mn

A; f ̸= Mn
A; g, and D(f, g) = 0 if for all n, Mn

A; f = Mn
A; g. Then D is not only a metric

but an ultrametric, making L(!A,B) an ultrametric space. At first glance this metric may seem a
bit ad hoc, but D is in fact a generalization of the metric for power series, which is used to make
power series properly converge.

Lemma 3.9. In a Taylor differential category, for every coKleisli map f : !A → B, the following
series converges to f with respect to ultrametric D:

f =
∞X

n=0

Mn
A; f (19)

Proof. First note that Mn;Mn = Mn while Mn;Mm = 0 if n ̸= m. Therefore, it follows that

D

�
mP

n=0
Mn

A; f, f

�
≤ 2m+1 and so lim

m→∞
D

�
mP

n=0
Mn

A; f, f

�
= 0. So we conclude that the desired

series converges to f .

As a consequence, the “illicit formula” for codigging is perfectly legitimate in a Taylor differential
category.

Corollary 3.10. In a Taylor differential category that is also a monadic differential category, the
following series converges to the codigging p with respect to ultrametric D:

pA =
∞X

n=0

1

n!
·

cn!A; d

⊗n

!A ; cnA
�

(20)

We leave it to reader to check for themselves that (20) is indeed a proper generalization of (13).
A very natural, and important, question to ask is what if there was already some other es-

tablished notion of infinite sum or convergence. Would the resulting Taylor series be the same as
the one given by the ultrametric D. Under mild assumption, the answer is yes. Since many of
the examples in Section 4 have an algebraic notion of infinite sums, let us focus on this setting.
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Briefly, recall that a countably complete Q≥0-module is a Q≥0-module which also has arbitrary
countable sums, and such that these countable sums satisfy certain distributivity and partitions
axioms (see [31, Chap 23] for more details). Then by a QΣ

≥0-differential storage category, we
mean a differential storage category that is enriched over the category of countably complete Q≥0-
modules, that is, such that each homset is also a countably complete Q≥0-module such that both
composition and the monoidal product are compatible with the countable sums in the obvious way.
In particular, this means we can scalar multiply maps by Q≥0 and we have countable infinite sums
of maps

P∞
n=0 fn : A → B. With one other assumption, we obtain both the Taylor property and

codigging. In the following lemma, all infinite sums are the one given by the countable additive
enrichment.

Lemma 3.11. Let L be a QΣ
≥0-differential storage category such that the following equality holds:

∞X

n=0

Mn
A = 1!A (21)

Then L is a Taylor differential category and for every coKleisli map f : !A → B, f =
P∞

n=0M
n
A; f .

Furthermore, L is also a monadic differential category where the codigging pA : !!A → !A is defined
as pA =

P∞
n=0

1
n! · (dn!A; cnA).

Proof. Since composition preserves countable sums, (21) implies that f =
∞P
n=0

Mn
A; f . It then

clearly follows that we have a Taylor differential category. Lastly, it easy to check that Mn
!A; pA =

1
n! · (dn!A; cnA). Therefore by Proposition 3.8, we have that p is a codigging as desired.

The above lemma also tells us that for Taylor series, the infinite sum given by the ultrametric
D is the same as the infinite sum given by the countable additive enrichment.

4 Examples of Codigging

In this section, we provide many examples of models with codigging, some of which are already
well known quantitative models of LL and/or DiLL.

4.1 Relations

One of the most important categorical models of LL and DiLL is the relational model. We will now
explain how the relational model is also a monadic differential category. Since this model holds
such an important role in LL, we take the pain of providing quite a bit of detail for this example.

So let REL be the category of sets and relations, that is, the category whose objects are sets X
and whose morphism R : X → Y are relations, i.e., subsets R ⊆ X × Y . It is already well known
that REL is a differential storage category [24, 2.5.1]. The tensor product is given by the Cartesian
product of sets, X ⊗ Y = X × Y (which is not the categorical product) and the unit is a chosen
singleton I = {∗}. The (bi)product is given by the disjoint union of sets X ⊔ Y and the terminal
object is the empty set ∅. While the additive structure is given by the union of sets, that is, the
sum of relations is there union R+ S = R ∪ S and the zero maps are the empty subsets 0 := ∅.
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The storage modality ! is given by finite multisets (also sometimes called finite bags), so !X =
Mf (X), the set of all finite multisets of X. The dereliction dX ⊆ !X × X and codereliction
dX ⊆ X × !X relates elements of X to the multisets containing that one element:

dX := {([x], x) | ∀x ∈ X} dX := {(x, [x]) | ∀x ∈ X}

The contraction cX ⊆ !X × (!X × !X) and cocontraction cX ⊆ (!X × !X) × !X relate pairs of
finite multisets to their disjoint union, while the weakening wX ⊆ !X × {∗} and coweakening
wX ⊆ {∗} × !X relate ∗ to the empty multiset:

cX := {(m, (m1,m2)) | ∀m,m1,m2 ∈ !X,m = m1 ⊔m2}
cX := {((m1,m2),m1 ⊔m2) | ∀m1,m2 ∈ !X}

wX := {(∗, ∅)} wX := {(∅, ∗)}

While the digging pX ⊆ !X × !!X relates a finite multiset to all possible finite multiset of finite
multisets (of any size) whose disjoint union is the original multiset:

pX :=

(
(m, [m1, . . . ,mn]) |∀m,mi ∈ !X, s.t.

G

i

mi = m

)

Now there are many ways to argue why REL is also a monadic differential category. Of particular
interest for this paper is using the results of Section 3.3. Now REL is a QΣ

≥0-differential storage
category [30, Ex 7.2], where scalar multiplying by a non-zero rational does nothing, p

q · R = R,
since in particular R + R = R, and where countable sums are given by the countable unions,P

nRn =
S
Rn. Furthermore, for each n, Mn

X ⊆ !X× !X relates finite bags of size n to themselves:

Mn
X = {(m,m)| ∀w ∈ !X, |m| = n}

where |m| denotes the cardinality of a multiset. Then it is easy to see that (21) holds. There-
fore, REL is both a Taylor differential category and a monadic differential category. As such, the
codigging pX ⊆ !!X × !X relates a finite multiset of finite multisets to its disjoint union:

pX := {([m1, . . . ,mn],m1 ⊔ . . . ⊔mn) | ∀n ∈ N,mi ∈ !X}

In REL, there is also a notion of transpose, where for a relation R ⊆ X × Y , its transpose
R† ⊆ Y ×X is defined as R† = {(y, x)| ∀(x, y) ∈ R}. Observe that the codigging is the transpose

of the digging, the codereliction is the transpose of the dereliction, etc. So we have that pX = p†X ,

dX = d†X , cX = c†X , and wX = w†
X . This fits into a more general story which we will discuss in

Section 4.4.

4.2 Weighted Relations

In this section we discuss how the weighted relational model, which is a generalization of the
relational model, also gives a monadic differential category. While this example is very similar
to the one gives above, we still cover this example in some detail to demonstrate how certain
coefficients appear in the definition of codigging, which were swept under the rug in the relational
model. For an overview on the weighted relational model, we invite the reader to see Ong’s paper
[32].

16



Briefly, a complete commutative Q≤0-semiring is a commutative semiring R, which is also a Q≤0-
modules and admits arbitrary set indexed sums, and that are compatible with the Q≤0-semiring
structure, see [31, Chap 15]. Then define RΠ to be the category whose objects are sets X and
where a map from X to Y is an arbitrary set function f : X × Y → R. Intuitively, maps of RΠ

are interpreted as generalized matrices with coefficients in R. It is already established that RΠ is
a differential storage category [29, Sec 6], where most of the structure is essentially similar to that
of REL. Indeed, the monoidal structure and (bi)product structure of RΠ are the same as in REL,
while the additive structure of RΠ is given by the sum of R. The storage modality ! is also given
by finite multisets, so !X = Mf (X).

To define the remaining structure, first define for any set X and elements x, y ∈ X, the Kroe-
necker delta δx,y as checking if x and y are equal, that is, δx,y = 1 if x = y and δx,y = 0 (where
1 and 0 are viewed as elements in R). So the dereliction dX : !X × X → R and codereliction
dX : X × !X → R check for singletons:

dX(m,x) := δm,[x] dX := (x,m) := δm,[x]

The contraction cX : !X × (!X × !X) → R and cocontraction cX : (!X × !X)× !X → R check if a
finite multiset is equal to the disjoint uion of a pair of finite multisets, while on the other hand the
weakening wX : !X × {∗} → R and coweakening wX : {∗} × !X → R check for the empty multiset:

cX (m, (m1,m2)) = δm,m1⊔m2

cX ((m1,m2),m) =

�|m1|+ |m2|
|m1|

�
δm,m1⊔m2

wX (m, ∗) := δm,∅ wX := (∗,m) := δm,∅

where the binomial coefficient in cX is necessary for the bimonoid equations (5) to hold. The
digging pX : !X × !!X → R checks if the disjoint union of a finite multiset of finite multisets in the
second argument is equal to the first argument:

pX (m, [m1, . . . ,mn]) := δm,
F

i mi

Now RΠ is a QΣ
≥0-differential storage category [29, Thm 6.1], since R is a Q≥0-module and has

infinite sums. For each n, Mn
X : !X × !X → R checks if a finite multiset is of size n: Mn

X(m1,m2) =
δm1,m2δ|m1|,n. Then clearly (21) holds, and so by Lemma 3.11, RΠ is both a Taylor differential
category and a monadic differential category. Using the formula for codigging, one computes that
the codigging pX : !!X × !X → R checks if the disjoint union of a finite multiset of finite multisets
is equal to the second argument:

pX([m1, . . . ,mn],m) =
1

n!
·
� |m|
|m1|, . . . , |mn|

�
· δF

i mi,m,

where the coefficients are necessary for the monad identities (10). Observe that REL is a specific
case of the weighted relational model for the Boolean algebra B = {0, 1}, that is, REL is isomorphic
to BΠ. Since in B we have that 1 + 1 = 1, the coefficients in the codigging and cocontraction
definitions disappear in REL.
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4.3 General Construction

Both of the previous examples are in fact examples of a more general construction. It turns out
that the storage modality in both examples is constructed in the same way, since in particular it
is a free exponential modality, meaning that !A is the cofree cocommutative comonoid over A.
So suppose that we are in a setting with infinite products Π and all symmetrized monoidal powers
Sn(A), that is, the joint equalizer of all permutations of A⊗n

. Then the free exponential modality
can be constructed as !A =

Q
n S

n(A). If one further assumes that Π is an infinite biproduct and
we can scalar multiply by Q≥0, then Mn

A : !A → !A precisely picks out Sn(A) via projection and
then injection, !A → Sn(A) → !A, and so (21) is simply the biproduct identity. Therefore, as a
consequence of Lemma 3.11, we may construct a codigging and state the following:

Lemma 4.1. A symmetric monoidal category which is enriched over Q≥0-modules, has countable
biproducts which are preserved by the monoidal product, and that has symmetrized monoidal powers,
is a Taylor differential category and a monadic differential category.

Models with infinite biproducts were in particular studied by Laird et al [33] with the objective
of building models of DiLL related to game logic. In particular in [33, Sec 5], Laird et al also give
a general recipe for how to build differential storage categories that also satisfy precisely the extra
assumptions needed for the above. Briefly, for any symmetric monoidal category L, one can first
freely make it enriched over Q≥0-modules, then taking the countable biproduct completition, and
lastly taking the Karoubi envelope to split idempotents in order to obtain symmetrized monoidal
powers. After all this, the resulting category is not only a differential storage category, but by
the above lemma, also a monadic differential category. By tweaking the construction slightly with
regards to enrichment, it is possible to recover both the relational model and the weighted relational
models when applying this construction to the terminal category [33, Ex 5.6]. Therefore, thanks
to Laird et al’s construction, from any symmetric monoidal category, we can construct a monadic
differential category, providing us with a bountiful source for examples of codigging.

4.4 Quantum Related Examples

We now very briefly discuss how, surprisingly, there also models of DiLL with codigging that are
related to quantum theory. The first is Pagani et al’s categorical model of a quantum lambda
calculus [34], called CPMs

⊕
. In particular, CPMs

⊕
is a compact closed category, enriched over

R≥0, has infinite biproducts, and storage modality constructed using symmetrized monoidal powers.

Therefore, by Lemma 4.1, it follows that CPMs
⊕

is a monadic differential category. The other
example is given by examples of Vicary’s categorical quantum harmonic oscillator as proposed in
[35]. The key to this example is the notion of dagger monoidal category, which is a category such
that for every map f : A → B, there is a map f † : B → A such that † is contravariant, involutive,
and preserves the monoidal structure. Then briefly, a categorical quantum harmonic oscillator is a
dagger symmetric monoidal category, with †-biproducts, and a free exponential modality ! such that
!(f †) = (!f)†. Then every categorical quantum harmonic oscillator is also a monadic differential
category by setting p = p†, d = d†, c = c†, and w = w†. The main reason for this fact follows
from the contravariant property of † and that the necessary codigging axioms are dual to those of
a storage modality. REL is a categorical quantum harmonic oscillator, and in [35, Sec 6], Vicary
conjectures that another model based on complex inner product spaces is as well.
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4.5 Vector Spaces over Z2

We now provide a toy example which is important to highlight nonetheless since this is an example
without infinite sums and yet still admits a codigging. So let Z be the ring of integers and let Z2

be Z modulo 2, that is, the two element field Z2 = {0, 1}. Let FVECZ2 be the category of finite
dimensional vector spaces and Z2-linear maps between them. The monoidal structure, (bi)product
structure, and additive enrichment are all given in the standard algebraic way for vector spaces.
The storage modality ! is given by the exterior algebra, so !V = Ext(V ), which recall is a Z2-algebra
with multiplicaiton given by the wedge product ∧. In particular, recall that the wedge product
is anti-symmetric, so x ∧ x = 0, and elements of !V are given as finite sums of words of the form
w = x1 ∧ . . . ∧ xn, of any size n. Of course, the exterior algebra can be defined for vector spaces
of any dimension over any field. Normally the exterior algebra is anti-commutative, meaning that
x ∧ y = −y ∧ x. However for Z2, since 1 = −1, the exterior algebra is a commutative algebra, and
! is a well-defined (co)monad on FVECZ2 .

The dereliction dV : !V → V projects out words of length one, while the digging pV : !V → !!V
maps a word to the sum of all possible word of words whose wedge product is the original word:

dV (w) = δw,x pV (w) :=
X

V
wi=w

[w1] ∧ . . . ∧ [wn]

The sum for the digging is finite and well-defined by anti-symmetry of ∧. The (co)contraction and
(co)weakening are given by the (co)multiplication and the (co)unit of the canonical Z2-bialgebra
structure of the exterior algebra. The codereliction dV : V → !V maps an element of V to the one
letter word, while the codigging pX : !!V → !V maps a word of word to its wedge product:

dV (x) = x pX([w1] ∧ . . . ∧ [wn]) =
^

wi

One can check that all the necessary identities do indeed hold, and we conclude that FVECZ2 is a
monadic differential category, but does not have infinite sums.

5 The codigging in functional analysis

Most examples of Section 4 are settings where any power series converge. In this section, we
study the notion of codigging in models of DiLL closer to standard textbook analysis. We show
that codigging implies a bound on the growth of functions, explaining why neither Köthe [36] nor
quantitative convenient spaces [37] interpret it. By indexing the exponential with the exponential
growth of functions, we will show that work by Ouerdiane and al. [38] [39] results in a new higher-
order, polarized, graded model of DiLL with codigging.

5.1 The convolutional exponential

In several models of DiLL [13] [37] [40], formulas are interpreted as various sorts of topological vector
spaces (tvs) over R or C, and non-linear proofs are interpreted as higher-order smooth functions. In
[13], Blute, Ehrhard and Tasson studied a smooth model of (Intuitionnistic) DiLL, which was later
refined to a quantitative simplification by Kerjean and Tasson in [37]. This later version, which we
will denote by QMco, only applies to complex Hausdorff and locally convex tvs (lcs). Recall that
by distribution we mean the scalar linear morphisms acting on non-linear morphisms, in a sense
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to be adapted to each model. Then in both models, ! is interpreted as the completion of the set of
distributions generated by all dirac distributions δx. In QMco, if one denotes S(E,C) the lcs of
all power series between a lcs E and C, the interpretation of the exponential !E is included in the
linear dual S(E,C)′ of S(E,C), that is, the space of all linear scalar bounded morphisms acting on
power series.

!E = ⟨δx⟩x∈E ⊆ S(E,C)′

As always, !E is endowed with a comonad structure and a bialgebra structure, which is nicely defined
on the dirac distributions. For example, the dereliction is dE : δx ∈ !E 7→ x, the cocontraction
is c : δx ⊗ δy ∈ !E⊗̂!E 7→ δx+y, the codereliction is d : v 7→ limt→0

δtv−δ0
t and the promotion is

p : δx → δδx . The codigging however is not here the dual of the diggin.
The category QMco has Taylor expansions [37, Cor 5.18] such that the Taylor series of a

coKleisli map f converge to f [37, Cor 5.37]. Furthermore, in QMco, Mn
E : !E → !E corresponds

exactly to 1
n!Θn in [37]. Therefore, it follows that QMco is in fact a Taylor differential category.

Now suppose we have some sort of codigging. Then the convolutional exponential formula (13)
gives (where · denotes the scalar multiplication):

pE(δδx) : f 7→
X

n

1

n!
f(n · x) (22)

Let’s observe what happens for the complex exponential power series, exp : z 7→ ez.

pE(δδx)(exp) =
X

n

1

n!
en·x =

X

n

1

n!
(ex)n = ee

x

This shows that for functions f that behave like an exponential function, that pE(δδx)(f) would be
well defined. Unfortunately, it turns out this codigging cannot converge on every power series, as
it cannot converge on tower of exponentials. Indeed, for f : z 7→ ee

z
, pE(δδx)(f) does not converge.

So while p is well defined on exp, it is not on the composition of exp with itself. In fact, in general,
the power series which interpret non-linear proofs have uncontrolled growth. This explains why
(too) general quantitative models such as Köthe [36] or quantitative convenient spaces do not admit
a codigging. This begs the question of whether codigging can properly exists in a smooth setting
where infinite sums do not always converge. To solve this issue, we consider a case where ! is graded.

5.2 Making Nuclear spaces go higher-order, quantitatively

Convolutional calculus has been developed for higher order functions in infinite dimensional anal-
ysis. It features a nice duality theory [39] and allows for the generalization of power series on
distributions by using convolutional powers [38]. We now sketch how these allow for a higher-order
extension of a previously known first order model of DiLL based on Fréchet Nuclear spaces [41].
It does not constitute a monadic differential category per say, but rather a graded and polarized
version of it, whose proper categorical statement will be explored in future work. Polarization [42]
separates LL formulas in two classes, which are interpreted in two categories made equivalent by
the interpretation of the negation [43].

The indexation is similar to what can be found in models of graded LL [44]. The indexed
exponential rules for ! are interpreted as exponential actions of partially ordered semirings over
monoidal closed categories [45]. This includes an indexed comonad (Prop 5.8) interpreting the
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usual rules of LL, and a new indexed monad (Prop 5.6) interpreted by the coexponential rules of
DiLL, as well as a strong monoidality of the exponential functor which allows for the interpretation
of c,w, c, and w (Prop 5.3). Here, indices are Young functions, and bound the exponential growth of
functions. We do not yet explore in this paper the full categorical consequences of mixing indexed
exponential connectives and coexponential rules, but this is work in progress.

This higher-order development solves the limitations encountered by Kerjean and Lemay in [41].
A first paper by Kerjean [46] interprets formulas of DiLL in specific lcs, that is, Nuclear Fréchet
spaces (Nf) for negative formulas of LL, and Nuclear DF-spaces (Ndf) for positive formulas. By
extension, Nf and Ndf also denotes the category of Nf (resp. Ndf) lcs and continuous linear
maps. In what follows N and M denotes Nf complex lcs while P and Q denote Ndf complex lcs.
N ′ denotes the strong dual of N , that is the tvs L(N ′,C) endowed with the topology of uniform
convergence on bounded subsets of N ′.

Fréchet spaces DF-spaces

Nuclear spaces

Rn P = N ′N

C∞(Rn,R) !Rn = C∞(Rn,R)′

( )′

( )′

This setting provides a denotational model for DiLL up to promotion, meaning that ! is only
interpreted when acting on Kn, and not for any higher-order lcs. A partial solution is provided
in [41] by using the completeness of the category of Nf to construct a higher-order interpretation
for !, which alas does not interpret promotion for technical reasons. The notions of convolutional
exponential and functions whose growth allows exponentiation solves these limitations. This was
mainly done in a work by Ouerdiane and al. [39] where they defined a space Fθ(P ) of holomorphic
functions with exponential growth. In this definition, θ : R+ → R+ may vary but always stands for

a Young function [47][48], i.e. it is convex, increasing, null at 0 and lim
x→∞

θ(x)
x = ∞.

Proposition 5.1. [49] The topology on any Nf space N can be defined through a denumerable
family of hilbertian norms | |p, p ∈ N, and if one denote Np the Hilbert space resulting of the
completion of N with respect to | |p, we have that:

\

p

Np = N
[

p

(Np)
′ = N ′.

Definition 5.2. [39] For a Young function θ and for a Banach space B, let Exp(B, θ,m) denote
the Banach space of holomorphic functions from B to C such that:

|f(z)| ≤ Keθ(m||z||). (23)

The space Exp(θ,m, p) is Banach when endowed with the norm f 7→ sup{|f(z)|e−θ(m||z||)|z ∈ B}.
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One can define two types of functions with exponential growth on an Nf lcs N or its dual:3

Fθ(N)=
\

m,p

Exp(Np, θ,m) Gθ(N
′)=

[

m,p

Exp(N−p, θ,m).

Through an isomorphism with spaces of formal power series, one can show that Fθ(N) is a Nf space
[39, Prop 2]. As such, its dual F ′

θ(N), i.e. the space of distributions acting on Fθ(N), is a Ndf
space. As linear morphisms are bounded, Gθ : Ndf → Ndf and Fθ : Nf → Nf are indeed functors.

Fréchet spaces DF-spaces

Nuclear spaces

N ′N

G ′
θ(N

′) F ′
θ(N)

( )′

( )′

Proposition 5.3. The functor Fθ satisfies monoidal laws, depending on θ: F ′
θP
(N)⊗̂F ′

θQ
(M) ≃

F ′
θN+θM

(N ×M).

F and G enjoy an important duality theorem, which is strongly related to the fact that N and
P are reflexive. What the following theorem implies is that distributions on one type of functions
F or G are functions of the other type G or F respectively.

Theorem 5.4. [39, Thm 1] For the conjugate Young function θ∗ := supt≥0(tx − θ(t)), we have
that the Laplace transformations results in an isomorphisms:

L :

�
F ′

θ(N) ≃ Gθ∗(N
′)

ϕ 7→

ℓ ∈ N ′ 7→ ϕ(x ∈ N ′ 7→ eℓ(x) ∈ C)

�

Proof. We show the result for Fθ. The strong monoidality of the distribution functor is classically
interpreted as a variant of Schwart’z Kernel Theorem. We refer to [50] for a detailed proof which
we briefly adapt here. The injection Fθ(P )⊗̂Fθ(Q) → Fθ(P × Q) corresponds to f ⊗ g 7→ f · g
where f ·g denotes the scalar multiplication between two functions with scalar values. The topology
on P ×Q is generated by the maximums of semi-norms from P and Q. Consider p, q and m′ > 0.
Then for any m′ there is Kf and Kg such that:

|f(z) · g(z′)| ≤ KfKge
θP (m′|z|−p)+θQ(m′|z′|−q)

≤ KfKge
(θP+θQ)(m′(max(|z|−p,|z′|−q))

≤ KfKge
(θP+θQ)(m′(|(z,z′)|p,q)

The surjectivity is done by approximating a function h ∈ Fθ(P×Q) by polynomials on compact
support. It is an adaptation of the proof by Meise (which applies for dual of Fréchet Montel spaces,
while our spaces are Fréchet Nuclear so in particular Montel).

3We define F ′
θ on Nf spaces to stay in the chirality [43] (a polarized version of a ∗-autonomous category) used in

[46]. Indeed, only spaces L(F ′
θ(N),M) stay in Nf, and not L(F ′

θ(P ),M) [46, 3.23].
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The conjugate of θ, also called the convex conjugate, is related to inverses: if θ =
R
µ(t)dt,

then θ∗ =
R
µ−1dt. The Laplace transformation turn the convolution products of distribution into

the (pointwise) product of functions. Therefore, it also transforms convolutional power series of
distributions into usual power series of functions, where the monoidal law is the scalar pointwise
multiplication.

In a following work [38], Ouerdiane and different authors characterize the spaces F ′
θ on which

convolutional generalizations to power series can act. This leads in particular to a convolutional
exponential, which interprets codigging, the operation being again recorded in the index θ. The
following propositions are shown thanks to the use the isomorphism L introduced in Theorem 5.4.

Proposition 5.5. [38, Cor 1] For any ϕ ∈ Fθ(N)′, its convolutional exponential (as defined in
(13)) is an element of F(eθ∗)

∗(N)′.

Proposition 5.6. For any Young functions θ1, θ2 we have a natural transformation in the category
Ndf:

pP : F ′
θ1


F ′

θ2(N)
�
→ F ′�

θ∗1e
θ∗2

�∗(N)

Proof. This could by shown by a direct adaptation of [38, Thm 1]. We offer another explanation,
thanks to the following intermediate proposition, which corresponds to the composition in the
co-Kleisli of a comonad Gθ1 .

Proposition 5.7. Given linear continuous maps f : G ′
θ1
(P1) → N2 and g : G ′

θ2
(P2) → P3, then we

have a linear continuous map g ◦ f : G ′
(θ2eθ1)

(P1) → P3

This creates an adjunction resulting in G ′
θ as an indexed comonad, with comultiplication: p⊥ :

G ′
θ2eθ1

→ G ′
θ2

G ′
θ1
. To obtain Prop 5.6, one takes the dual of p⊥ and runs it through the Laplace

isomorphism (Thm5.4). As linear functions are bounded, thanks to the reflexivity of Nf and Ndf
spaces, we also obtain natural transformations dN : F ′

Id(N) → P and dN : N → F ′
Id(N).

Note that the functions of Fθ(N) are only defined to be entire (everywhere holomorphic) and
not power series (equal to their Taylor Series at 0). However, they are in direct correspondences
with a space of formal power series on N ′ [39, Prop 1], confirming the intuition that the codigging
indeed recaptures some quantitative models. Now the indexed monad structure on F ′

θ( ) gives us
the type to look for the usual indexed comonad structure on it. The indices in the interpretation
of the digging rule is an indication of how functions with exponential growth compose.

Proposition 5.8. Given linear continuous maps f : F ′
θ1
(N1) → N2 and g : F ′

θ2
(N2) → N3, we

obtain a linear continuous map g ◦ f : F ′
(θ2eθ1)

(N1) → N3. This result in a comonad comultiplica-

tion:
p : F ′

(θ2eθ1)
(N) →


F ′

θ2(F
′
θ1(N))

�
.

Note that the above is hinting at a possible semiring structure on the set of Young functions,
with θ1 · θ2 = (θ∗1e

θ∗2 )∗ as a non-commutative multiplication law, while the additive law being the
sum of Young functions. The ∗ is optional, and depends on whether you are considering digging or
codigging. In particular, when indexing DiLL with graded operators, it might be worth to consider
an analogue to ∗ operating on the set of indices. This brings us to our final statement which can
be easily checked:
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Proposition 5.9. In any vector spaces over R or C, the Laplace transformation L transforms
the interpretation of the structural rules w, d, c, p of LL into the costructural rules of DiLL w, d, c, p,
when the latter are defined.

We conjecture that when a Laplace transform is available and invertible on every coKleisli map,
a model of LL turns into a model of DiLL.

6 Conclusion

In this paper we constructed and studied the notion of monadic differential categories, which give
the ! connective of LL a monad structure on top of its well-known comonad structure. This gives
the interpretation of ! a perfectly symmetrical structure. We showed that codigging was naturally
interpreted by exponential functions ex, and we also explained how the monad axioms imply that
every non-linear map was equal to its Taylor series. We also related the interpretation of the
codigging with the notion of convolutional exponential, allowing us to construct a new graded and
polarized model of DiLL with codigging.

Future work This paper only provides the beginning to the story of codigging, and we believe
there is still much more to explore on the subject.

A first step would be to find even more examples of monadic differential categories. In particular,
it would be quite desirable to understand whether Finiteness spaces [51] or Kothe spaces [36] can
somehow be restricted to functions with exponential growth to provide new vectorial models of DiLL
with codigging. More generally, we would like to study how codigging is related to ∗-autonomous
structure on differential categories.

To develop the theory of differential proof-nets with codigging, one would need to look at
Gimenez’ work [14], but the presentation could possibly differ. We hope that the categorical struc-
ture presented in this paper has been made precise enough to make the cut-elimination procedure
in DiLL with codigging unambiguous. In particular, one would need to add a codigging rule p as
written in the introduction. In proof nets, this may consist of adding sort of coexponential box.
Keeping in mind our description of codigging, one may require some sort of mixed distributive law
[52] to express the compatibility between the monad and comonad structures on !. In our case, the
mixed distributive law would be a natural transformation of type λA : !!A → !!A. If one assumes
this extra structure, it may be possible to use λA to somehow express a compatibility between
digging p and codigging p. We conjecture that an “illicit formula” for the mixed distributive law

would be λ =
P

n
1
n! ·

�
dn;µ; !d

n
�
.

We would also be curious to understand if the monad structure ! adds anything for λ-terms
and if it could offer an interesting reformulation of resource calculi. In fact, even in a language
whose model does not admit a codigging p as a morphism of the category, one can have morphisms
return : v 7→ D0( )(v) and bind : δx → f → exp∗(f(x)).

Lastly, in relation with Section 5, designing a proper syntax and categorical semantics for
graded DiLL is currently a work in progress, and related to the indexation of DiLL with differential
operators [46]. As Young duality applies to functions θ which are defined on infinite dimensional
tvs, we conjecture that this model can be generalized to reflexive tvs without involving semi-norms.
Convolutional calculus is also linked with the study of differential equations, and might offer some
interesting questions and answers.
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