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Abstract

We introduce a new algorithm promoting sparsity called Support Ex-
ploration Algorithm (SEA) and analyze it in the context of support recov-
ery/model selection problems.

The algorithm can be interpreted as an instance of the straight-through
estimator (STE) applied to the resolution of a sparse linear inverse problem.
SEA uses a non-sparse exploratory vector and makes it evolve in the input
space to select the sparse support. We put to evidence an oracle update
rule for the exploratory vector and consider the STE update.

The theoretical analysis establishes general sufficient conditions of
support recovery. The general conditions are specialized to the case where
the matrix A performing the linear measurements satisfies the Restricted
Isometry Property (RIP).

Experiments show that SEA can efficiently improve the results of
any algorithm. Because of its exploratory nature, SEA also performs
remarkably well when the columns of A are strongly coherent.

1 Introduction

Sparse representations and sparsity-inducing algorithms are widely used in statis-
tics and machine learning [20], as well as in signal processing [18]. For instance,
in machine learning, sparse representations are used to select relevant variables.
They are also sought to interpret trained models. In signal processing, linear
inverse problems have a wide array of applications. The sparsity assumption
is ubiquitous since most real signals can be represented as sparse signals in
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some domains. For instance, communication signals have a sparse representation
in Fourier space, like natural images in wavelet space. While sparse models
are appealing, they are hard to estimate due to the underlying combinatorial
difficulty of identifying a sparse support.

Support recovery. Throughout the article, we consider the sparsity k ∈ N.
We assume x∗ ∈ Rn is a sparse unknown vector satisfying ‖x∗‖0 ≤ k, A ∈ Rm×n
is a known matrix, and y ∈ Rm is a linear observation of x∗ contaminated with
an arbitrary additive error/noise e ∈ Rm,

y = Ax∗ + e. (1)

We denote S∗ = supp(x∗) the support of x∗.
We present the new algorithm in a support recovery context. The support

recovery objective1, also coined variable or model selection, searches for a support
S with cardinality at most k such that S∗ ⊂ S. We say that the algorithm
recovers S∗ if it finds such an S.

When e 6= 0, support recovery is a stronger guarantee than the one in the
most standard compressed sensing setting, initiated in [8] and [15], when the
goal is to upper-bound ‖x − x∗‖2, for a well-chosen x. The first particularity
of support recovery is to assume x∗ is truly k-sparse – not just compressible.
Also, in short, support recovery guarantees involve a hypothesis on mini∈S∗ |x∗i |,
in addition of the incoherence hypothesis on A [32, 26, 34, 7, 33]. We cannot
indeed expect to recover an element i ∈ S∗ if |x∗i | is negligible when compared
to all the other quantities involved in the problem [32].

Support recovery models and algorithms. A famous model for support
recovery is

Minimize
x∈Rn, ‖x‖0≤k

F (x) := ‖Ax− y‖22 . (2)

However, the sparsity constraint induces a combinatorial, non-differentiable
and non-convex aspect in the problem, which is NP-Hard [13]. To avoid going
through the

(
n
k

)
possible supports, each leading to a differentiable and convex

sub-problem, various algorithms were created. There are three main families of
algorithms: relaxation, combinatorial approaches and greedy algorithms.

The most famous relaxed model uses the `1 norm and is known as the LASSO
[31] or Basis Pursuit Algorithm [10]. Combinatorial approaches like Branch
and Bound algorithms [3], find the global minimum of (2) but lack scalability.
Greedy algorithms can be divided into two categories. Greedy Pursuits like
Matching Pursuit (MP) [25] and Orthogonal Matching Pursuit (OMP) [28] are
algorithms that build up an estimate of x∗ iteratively by alternating adding com-
ponents to the current support with an optimization step to approximate these
components. While thresholding algorithms like Iterative Hard Thresholding
(IHT) [6], Hard Thresholding Algorithm [19], Compressive Sampling Matching

1The adaptation of the article to “signed support recovery” is possible and is straightforward.
We chose to simplify the presentation and not discuss sign recovery.
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Pursuit (CoSaMP) [27], OMP with Replacement (OMPR) [23], Exhaustive Lo-
cal Search (ELS) [1] (a.k.a. Fully Corrective Forward Greedy Selection with
Replacement [30]), the Hard Thresholding-pursuit (HTP) [19] and Subspace
Pursuit (SP) [12] add a replacement step in the iterative process. It allows them
to explore various supports before stopping at a local optimum.

The new algorithm introduced in this article belongs to this last family.
However, a clear difference with the existing algorithms is the introduction of
a non-sparse vector X t ∈ Rn, which evolves during the iterative process and
indicates at each iteration which support should be tested. We call X t the Support
Exploration Variable. It is derived from the straight-through estimators (STE)
[21, 4], designed to deal with non-differentiable functions. As an illustrative
example, the support exploration variable is the analog of the full-precision
weights, used by BinaryConnect – which also uses STE – to optimize binary
weights of neural networks [11, 22].

Contributions. The main contribution of the article is the introduction of
a new sparsity-inducing algorithm that we call Support Exploration Algorithm
(SEA). It is based on the STE and uses the full gradient history over iterations
as a heuristic in order to select the next support to optimize over. An important
feature of SEA is that it can be used as a post-processing to improve the
results of all existing algorithms. SEA is supported by four support recovery
statements. In Theorem 3.1, we establish a general statement. It provides the
main intuition on the reason why SEA can recover the correct support. As an
illustration, this statement is instantiated in the simple orthogonal and noiseless
case in Corollary 3.2. It is then instantiated, under a condition on x∗, in the
case where A satisfies a Restricted Isometry Property (RIP) condition. We
compare the performances of SEA to those of state-of-the-art algorithms on: 1/
synthetic experiments for Gaussian matrices; 2/ spike deconvolution problems;
3/ classification and regression problems for real datasets. The experiments show
that SEA improves the results of state-of-the-art algorithms and, because it
explores many supports, performs remarkably well when the matrix A is coherent.
The code is available in the git repository of the project. 2

SEA is described in Section 2. The theoretical analysis of the algorithm
is provided in Section 3. The experiments are in Section 4. Conclusions and
perspectives are in Section 5. The proofs of the theoretical statements are in
Appendices A, B, C. Complementary experimental results are in Appendices D,
E and F.

2 Method

We define the main notations in Section 2.1 and SEA in Section 2.2 We detail
its link with STE in Section 2.3.

2For the double-blind review, the anonymized code is in a zipped file in the supplementary
materials. This will be replaced by the repository link in the final version of the paper.
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2.1 Notations

For any a, b ∈ R (a and b can be real numbers), the set of integers between a
and b is denoted by Ja, bK and bac denotes the floor of a.

For any set S ⊆ J1, nK, we denote the cardinality of S by |S|. The complement
of S in J1, nK is denoted by S.

The vectors 0Rn and 0Rm are respectively the null vectors of Rn and Rm.
The vector 1Rm is the all-ones vector of Rm. Given x ∈ Rn and i ∈ J1, nK, the ith

entry of x is denoted by xi. The ith entry of |x| is denoted by |x|i and is defined
by |x|i = |xi|. The support of x is denoted by supp(x) = {i : xi 6= 0}. The `0
quasi-norm of x is defined by ‖x‖0 = |supp(x)|. The indices of the k largest
absolute entries of x is denoted by largestk (x). When ties lead to multiple
possible choices for largestk (x), we assume largestk (x) arbitrarily chooses one
of the possible solutions.

For any S ⊆ J1, nK, A ∈ Rm×n, and x ∈ Rn, we define x|S ∈ R|S|, the

restriction of the vector x to the indices in S. We also define AS ∈ Rm×|S|,
the restriction of the matrix A to the set S as the matrix composed of the
columns of A whose indexes are in S. The transpose of the matrix A is denoted
by AT ∈ Rn×m. The pseudoinverse of A is denoted by A† ∈ Rn×m. The
pseudoinverse of AS is denoted by A†S = (AS)† ∈ R|S|×m. For any d ∈ N, the
identity matrix of size d is denoted by Id. The symbol � denotes the Hadamard
product.

2.2 The Support Exploration Algorithm

We propose a new iterative algorithm called Support Exploration Algorithm
(SEA), given by Algorithm 1, dedicated to support recovery by (approximately)
solving problem (2). The solution returned by SEA is obtained by computing the
sparse iterate xt through a least-square projection given a support St at iteration
t (line 7). The key idea is that support St is designated at line 6 by a non-sparse
variable X t called the support exploration variable. As described below, the use
of a support exploration variable offers an original mechanism to explore supports
in a more diverse way than classical greedy algorithms. The support exploration
variable is updated at line 8 using an STE update explained in Section 2.3. As
the algorithm explores supports in a way that allows the functional to sometimes
increase, the retained solution is the best one encountered along the iterations
(line 11).

The role of X t may be intuited by first considering an oracle case where the
true solution x∗and its support S∗ are known by the algorithm. In that case,
at iteration t, we can use the oracle update rule X t+1 ← X t − ut, using the
direction ut defined for any index i by

uti =

{
−ηx∗i i ∈ S∗ ∩ St

0 i ∈ S∗ ∪ St,
(3)

where St = largestk (X t) is the indices of the k largest absolute entries in X t
and η > 0 is an arbitrary step size. We show the important supports in Figure 1.
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Algorithm 1 Support Exploration Algorithm

1: Input: noisy observation y, sampling matrix A, sparsity k, step size η
2: Output: x such that S∗ ⊂ supp(x) and |supp(x)| ≤ k
3: Initialize X 0

4: t = 0
5: repeat
6: St = largestk (X t)
7: xt = argmin

x∈Rn
supp(x)⊂St

‖Ax− y‖22

8: X t+1 = X t − ηAT (Axt − y)
9: t = t+ 1

10: until halting criterion is true
11: tBEST = argmin

t′∈J0,tK
‖Axt′ − y‖22

12: return xtBEST

Figure 1: Visual representation of the main sets of indices encountered in the
article.

Notice uti is non-zero for indices i from the true support S∗ but for which |X ti | is
too small for i to be in St. Whatever the initial content of X 0, the oracle update
rule always makes the same increment on |X ti |, for i ∈ S∗ ∩ St. This guarantees
that, at some subsequent iteration t′ ≥ t, the true support S∗ is recovered among
the k largest absolute entries in X t′ , i.e., S∗ ⊂ St′ .

Since x∗ and S∗ are not available in practice, we replace the oracle update
ut by the surrogate ηAT (Axt − y) (see line 8). The choice of this surrogate is a
natural one. For instance, one can show that ut = ηAT (Axt − y) in the simple
case where A is orthogonal and the observation is noiseless (see Corollary 3.2
and its proof in Appendix B). We will see in Theorem 3.3 and in its proof in
Appendix C that ut − ηAT (Axt − y) is small, under suitable hypotheses on x∗

and the RIP constants of A.
An important feature of SEA is that it can be used as a post-processing of

the solution x̂ of another algorithm. This is simply done by initializing X 0 = x̂.
In this case S0 = supp(x̂) (line 6) and x0 improves or is equal to x̂ (line 7). Since
SEA returns the result obtained for the best time-step tBEST (line 11), it can
only improve x̂. In the experiments, we have investigated the initialization with
the result of ELS [1, 30] and the initialization X 0 = 0.
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Eventually, the solution returned by SEA is selected at line 11 as the best
iterate encountered along the iterations (see line 11). Of course, we do not
compute tBEST after the ’repeat’ loop. We present it that way in Algorithm 1
for clarity only. In practice, we compute tBEST on the fly, after line 7. This way,
computing tBEST and memorizing xtBEST is done at no extra cost.

Finally, as often, there are many possible strategies to design the halting
criterion of the ’repeat’ loop of Algorithm 1. It can for instance be based on
the value of ‖Axt − y‖2 or on the values of Tmax established in the theorems
of Section 3. We preferred to focus our experiments on the illustration of the
potential benefits of SEA and, as a consequence, we have not investigated this
aspect in the experiments and leave this study for the future. We always used a
large fixed number of passes in the ’repeat’ loop of Algorithm 1.

Similarly, it is clear that η (line 8) has no impact on xtBEST when the
algorithm is initialized with X 0 = 0. In this case, indeed the whole trajectory
(X t)t∈N is dilated by η > 0 and the dilation has no effect on the selected supports
St. When X 0 6= 0, the initial support exploration variable is forgotten more
or less rapidly depending on the value of η. This should have an effect on the
output of the algorithm. As for the (related) halting criterion of the ’repeat’
loop of Algorithm 1, we have not studied the tuning of the step size η and leave
this study for future research.

2.3 Link with the straight-through estimator

The update of the support exploration variable X t in SEA can be interpreted
as a straight-through estimator [21, 4] (STE). An STE is used when optimizing
a function F that depends on a variable x obtained in a non-differentiable
way from another variable X as x = H (X ). X is updated as X ← X − η ∂F∂x
by using, since H is non-differentiable, the approximation at the core of STE:
∂F
∂X = ∂F

∂x
∂x
∂X ≈

∂F
∂x .

The STE has been successfully used in many applications where H is a
quantization. The STE had a very significant impact, for instance, on the
optimization of neural networks over binary, ternary or more generally quantized
weights [11, 22, 35].

The SEA algorithm is the STE applied to the resolution of (2) using the
function H : Rn −→ Rn defined3 by

H (X ) ∈ argmin
x∈Rn

supp(x)⊂largestk(X )

‖Ax− y‖22.

Using this definition, the solution of (2) are indeed of the form H(X ∗), for

X ∗ ∈ argminX F (H(X )).

To the best of our knowledge, this is the first time the STE is used to solve a
sparse linear inverse problem.

3The choice made below, when the argmin is not reduced to a single element, has no impact
on the value of F and is therefore not significant.
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3 Theoretical analysis

We provide, in Section 3.1, the most general support recovery theorem stating
that SEA recovers S∗ when ut and ηAT (Axt − y) are close. We then specialize
the theorem: 1/ to the noiseless case when A is orthogonal; 2/ to the case of a
matrix A satisfying a RIP constraint in Section 3.2. In the latter statement, we
obtain separate conditions on A and x∗ that we compare with existing support
recovery conditions, for the LASSO, OMP and HTP.

3.1 General recovery theorem

We remind that in Algorithm 1, replacing line 8 by the oracle update X t+1 =
X t−ut, where ut is defined in (3), leads to an algorithm that recovers S∗. Since
ut cannot be computed, we update X t with a regular gradient step, see line 8 of
Algorithm 1. For t ∈ N, we define the gradient noise: bt ∈ Rn, the error between
this computable dynamic and ut as

bt = ut − ηAT (Axt − y). (4)

We define the maximal gradient noise norm

ε = sup
t∈N
‖bt‖∞ ∈ R. (5)

Finally, we define the Recovery Condition (RC) as

ε <
1

2
∑
i∈S∗

1
η|x∗i |

. (RC)

Theorem 3.1 (Recovery - General case). If (RC) holds, then for all initialisation
X 0 and all η, there exists ts ≤ Tmax such that S∗ ⊂ Sts , where St is defined in
Algorithm 1 line 6 and

Tmax =

∑
i∈S∗

maxj /∈S∗ |X 0
j |+|X

0
i |

η|x∗i |
+ k + 1

1− 2ε
∑
i∈S∗

1
η|x∗i |

. (6)

The proof is in Appendix A.
The main interest of Theorem 3.1 is to express clearly that, when ut −

ηAT (Axt − y) is sufficiently small, SEA recovers the correct support. However,
the condition (RC) is difficult to use and interpret since it involves both A, x∗

and all the sparse iterates xt. This is why we particularize it in Corollary 3.2,
Theorem 3.3 and Corollary 3.4.

The conclusion of Theorem 3.1 is that the iterative process of SEA recovers
the correct support at some iteration t. We have in general no guarantee
that this time-step t is equal to tBEST . We are however guaranteed that SEA
returns a sparse solution such that ‖AxtBEST − y‖2 ≤ ‖Ax∗ − y‖2, which can be
considered as a criterion of success. We will see in Corollary 3.2, Theorem 3.3 and
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Corollary 3.4 that, when A is sufficiently incoherent and ‖e‖2 is small enough,
we actually have S∗ ⊂ supp(xtBEST ).

Concerning the value of Tmax, a quick analysis of the function u 7→ 1
1−au , for

a = 2
∑
i∈S∗

1
η|x∗i |

> 0 and for u < 1/a shows that Tmax increases with ε, when

(RC) holds. In other words, the number of iterations required by the algorithm
to provide the correct solution increases with the discrepancy between ut and
ηAT (Axt − y). This confirms the intuition behind the construction of SEA.
The initializations X 0 6= 0 have an apparent negative impact on the number
of iterations required in the worst case. This is because in the worst-case X 0

would be poorly chosen and SEA needs iterations to correct this poor choice.
However, we can expect a well-chosen initialization of X 0 to reduce the number
of iterations required by SEA to recover the correct support.

Concerning η, notice that, since ut is proportional to η > 0, ε is proportional
to η > 0 and therefore (RC) is independent of η. When possible, any η permits
to recover S∗. The only influence of η is on Tmax. In this regard, since ε is
proportional to η > 0, η has no influence on the denominator of (6). It only
influences the numerator of (6). In this numerator, we see that the larger η is,
the faster SEA will override the initialization X 0. This is very much related to
the question of the quality of the initialization discussed above.

The following corollary particularizes Theorem 3.1 to the noiseless and
orthogonal case. In practice, a complicated algorithm like SEA is of course
useless in such a case. We give this corollary mostly to illustrate the diversity of
links between the properties of the triplet (A, x∗, e) and ε and the behavior of
SEA.

Corollary 3.2 (Recovery - Orthogonal case). If A is an orthogonal matrix
(A−1 = AT ) and ‖e‖2 = 0, then

ε = 0.

As a consequence, for all x∗, for initialisation X 0 = 0Rn and all η, if SEA
performs more than k + 1 iterations, we have

S∗ ⊂ StBEST and xtBEST = x∗.

The proof is in Appendix B.

3.2 Recovery theorem in the RIP case

In this section, we assume that for any i ∈ J1, nK, ‖Ai‖2 = 1. As is standard
since it has been proposed by Candès and Tao in [9], we define for all l ∈ J1, nK
the lth Restricted Isometry Constant of A as the smallest non-negative number
δl such that for any x ∈ Rn, ‖x‖0 ≤ l,

(1− δl)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δl)‖x‖22. (7)

If δl < 1, A is said to satisfy the Restricted Isometry Property of order l or the
l-RIP.

8



In this section, we assume that A satisfies the (2k + 1)-RIP. In the scenarios
of interest, δ2k+1 is small. We define,

αRIPk = δ2k+1

(
δ2k

1− δk
+ 1

)
∈ R∗+ (8)

and

γRIPk = δ2k+1

√
1 + δk

1− δk
+ 1 ∈ R∗+. (9)

As soon as δk is far from 1, which will be the case in the scenarios of interest,
αRIPk has the order of magnitude δ2k+1 and γRIPk has the order of magnitude of
1 + δ2k+1.

As is common for support recovery statements, the next theorem involves a
condition on x∗. It is indeed impossible to recover an element i of S∗ if x∗i is
negligible compared to the other quantities of (1). We call this condition the
Recovery Condition for the RIP case (RCRIP ). It is defined by

γRIPk ‖e‖2 <
1

2
∑
i∈S∗

1
|x∗i |
− αRIPk ‖x∗‖2. (RCRIP )

If (RCRIP ) holds, x∗ is said to satisfy the (RCRIP ) condition.

Theorem 3.3 (Recovery - RIP case). Assume A satisfies the (2k + 1)-RIP and
for all i ∈ J1, nK, ‖Ai‖2 = 1. Then

ε ≤ η(αRIPk ‖x∗‖2 + γRIPk ‖e‖2).

If moreover x∗ satisfies (RCRIP ), then for all initialisation X 0 and all η, there
exists ts ≤ TRIP such that S∗ ⊂ Sts , where

TRIP =

∑
i∈S∗

maxj /∈S∗ |X 0
j |+|X

0
i |

η|x∗i |
+ k + 1

1− 2(αRIPk ‖x∗‖2 + γRIPk ‖e‖2)
∑
i∈S∗

1
|x∗i |

. (10)

If moreover, x∗ is such that

min
i∈S∗
|x∗i | >

2√
1− δ2k

‖e‖2 (11)

and SEA performs more than TRIP iterations, then

S∗ ⊂ StBEST and ‖xtBEST − x∗‖2 ≤
2√

1− δk
‖e‖2.

The proof is in Appendix C.
The hypotheses of the theorem are on the RIP of A and there are two

hypotheses on x∗: (RCRIP ) and (11). The condition (RCRIP ) is difficult to
interpret. Below, we give an example to illustrate it.
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The first example is when for all i ∈ S∗, x∗i = c for some constant c ∈ R.
Condition (RCRIP ) becomes in this case

γRIPk ‖e‖2 ≤ |c|

(
1− 2αRIPk |S∗| 32

2|S∗|

)
.

This can only hold under the condition that αRIPk ≤ 1

2|S∗|
3
2

, where we remind

that αRIPk has the order of magnitude of δ2k+1 and |S∗| ≤ k. If this condition
on the RIP of A holds, any value of c satisfying

|c| ≥

(
2γRIPk |S∗|

1− αRIPk |S∗| 32

)
‖e‖2

leads to an x∗ that satisfies (RCRIP ). Notice, that in this particular example, a
rapid analysis shows that (RCRIP ) is a stronger requirement than (11).

To illustrate (RCRIP ), we provide below a simplified condition which is shown
in Corollary 3.4 to be stronger than (RCRIP ) in the noiseless scenario. We say
x∗ satisfies the Simplified Recovery Condition in the RIP case if there exist
Λ ∈ (0, 1) such that

2kαRIPk

‖x∗‖2
mini∈S∗ |x∗i |

≤ Λ. (SRCRIP )

Corollary 3.4 (Noiseless recovery - simplified RIP case). Assume ‖e‖2 = 0, A
satisfies the (2k + 1)-RIP and for all i ∈ J1, nK, ‖Ai‖2 = 1.

If moreover x∗ satisfies (SRCRIP ), then x∗ satisfies (RCRIP ). As a conse-
quence, for all x∗, for initialisation X 0 = 0Rn and all η, if SEA performs more
than

T ′RIP =
k + 1

1− Λ
(12)

iterations, we have

S∗ ⊂ StBEST and xtBEST = x∗.

The proof is in Appendix C.4.
Notice that if αRIPk is too large, there does not exist any x∗ satisfying

(SRCRIP ). It is for instance the case if αRIPk ≥ 0.5. On the contrary, a sufficient
condition of existence of vectors x∗ satisfying (SRCRIP ) is that the constant

αRIPk satisfies 2k
3
2αRIPk ≤ Λ < 1. In this case, when all the entries of x∗ are

equal, we have ‖x∗‖2 =
√
|S∗|mini∈S∗ |x∗i | and

2kαRIPk

‖x∗‖2
mini∈S∗ |x∗i |

= 2kαRIPk

√
|S∗|

≤ 2k
3
2αRIPk ≤ Λ < 1.

When this holds, the set of x∗ satisfying (SRCRIP ) is a convex cone whose interior
is not empty. The set grows as αRIPk decreases.
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Compared to the support recovery guarantees in the noisy case for the LASSO
[32, 26, 34], the OMP [7], the HTP [19, 33] and the ARHT [1] the recovery
conditions provided in Theorem 3.3 and Corollary 3.4 for SEA seem stronger. All
conditions involve a condition on the incoherence of A and a condition similar to
(11). In the case of the LASSO algorithm, the latter is not very explicit. However,
none of the support recovery conditions involve a condition like (RCRIP ) and
(SRCRIP ). A clear drawback of these conditions is that the support of an x∗

such that maxi∈S∗ |x∗i | � mini∈S∗ |x∗i | is not guaranteed to be recovered. This
is because, if i 6∈ St and |x∗i | � mini∈S∗ |x∗i |, bt can be large. However, it is
possible to get around this problem since SEA inherits the support recovery
properties of any well-chosen initialization. Also, we have not observed this
phenomenon in the experiments of Section 4. Similarly, SEA performs well even
when A is coherent, see Section 4.2. This is not explained by Theorem 3.3 and
Corollary 3.4 which consider the classical RIP assumption.

Improving the theoretical analysis in these directions is left for the future.
The current statements permit to see that SEA is a sound algorithm. To the
best of our knowledge, this is the first time such guarantees are given for an
algorithm based on the STE.

4 Experimental analysis

We compare SEA to state-of-the-art algorithms on three tasks: Extensive signal
recovery through phase transition diagram in Section 4.1, spike deconvolution
problems for signal processing in Section 4.2 and linear regression and logistic
regression tasks in supervised learning settings in Section 4.3.

The tested algorithms are IHT [6], OMP [25, 28], OMPR [23] and ELS [1]
(a.k.a. Fully Corrective Forward Greedy Selection with Replacement [30]).
OMPR and ELS are initialized with the solution of OMP. Two versions of SEA
are studied: the cold-start version SEA0, where SEA is initialized with the null
vector and the warm-start version SEAELS, where SEA is initialized with the
solution of ELS.

For all algorithms, each least-square projection for a fixed support, as in Line
7 of Algorithm 1, is solved using the conjugate gradient descent of scikit-learn [29].
The maximal number of iterations is 256k. Matrix A is normalized before solving
the problem. For each experiment, appropriate metrics, defined in the relevant
subsection, are used for performance evaluation. The code is implemented in
Python 3 and is available in the git repository of the project 4.

4.1 Phase transition diagram experiment

Phase transition diagram experiment is an extensive experiment commonly
used for algorithm performance comparison over synthetic data. Introduced by
Donoho and Tanner in [14], phase transition diagrams show the recovery limits of

4For the double-blind review, the anonymized code is in a zipped file in the supplementary
materials. This will be replaced by the repository link in the final version of the paper.
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Figure 2: Empirical support recovery phase transition curves. Problems below
each curve are solved by the related algorithm with a success rate larger than
95%.

an algorithm depending on the undersampling/indeterminacy ζ = m
n of A, and

the sparsity/density ρ = k
m of x∗. We consider the noiseless setup (i.e., e = 0Rm

in (1)). We fix n = 64, m takes all values in J9, nK and k all values in J9,mK.
For each triplet (m,n, k) and each algorithm, we run r = 1000 experiments
(described below) to assess the success rate

sζ,ρ
r of the algorithm, where sζ,ρ is

the number of problems successfully solved. A problem is considered successfully
solved if the support of the output of the algorithm contains S∗.

For a triplet (m,n, k) and an algorithm, the matrix A ∈ Rm×n is a Gaussian
matrix. Its entries are drawn independently from the normal distribution N (0, 1).
The restricted isometry constants are poor when ζ = m

n is small and improve
when m grows [2].

The sparse vector x∗ ∈ Rn is random. Indexes of the support are ran-
domly picked, uniformly without replacement. The non-zero entries of x∗ are
independently drawn from the standard normal distribution.

Figure 2 shows results from this experiment. Each colored curve indicates
the threshold below which the algorithm has a success rate larger than 95%.
We see that IHT achieves poor recovery successes, which are only located at
small values of sparsity k. SEA0 is on par with OMP. OMPR and ELS improve
OMP performances, in particular, when m

n ≥ 0.5, i.e. when matrices A are
less coherent. SEAELS improves further ELS performances and outperforms the
other algorithms for all m

n . The largest improvement is for m
n = 0.65, which

corresponds to the most coherent matrices A. Thus, SEA refines a good support
candidate into a better one by exploring new supports and achieves recovery for
higher values of sparsity k than competitors. The actual superiority of SEAELS

for coherent matrices (ζ < 0.65) is particularly remarkable and illustrates its
ability to successfully explore supports in difficult problems where competitors

12



fail. We study the noisy setup (i.e., e 6= 0Rm in (1)) in Appendix D.

4.2 Deconvolution experiment

Deconvolution purposes arise in many signal processing areas among which are
microscopy or remote sensing. Of particular interest here is the deconvolution of
sparse signals, also known as point source deconvolution [5] or spike deconvolution
[17, 16], assuming the linear operator is known (contrary to blind approaches
[24]). The objective is thus here to recover spike positions and amplitudes.

We consider the noiseless setup (i.e., e = 0Rm in (1)). We choose n = 64,
a convolution matrix A corresponding to a Gaussian filter with a standard
deviation equal to 3. The coherence of the matrix A is maxi6=j |ATi Aj | = 0.97.
The problem is therefore very difficult and the support recovery theorems do
not apply.

For each sparsity level k ∈ J1, 16K, every algorithm is tested on r = 1000
different noiseless problems corresponding to different k-sparse x∗. The maximal
number of iterations is 1000, for all algorithms. The k-sparse vector x∗ is random.
Its support is drawn uniformly without replacement and its non-zero entries are
drawn uniformly in [−2,−1] ∪ [1, 2] as in [18].

Figure 3 illustrates the results for a 6-sparse vector x∗. Isolated spikes are
located by all algorithms. However, the closer the spikes, the harder to locate
them for algorithms. Both SEA0 and SEAELS are able to recover the original
signal, while other algorithms fail. In Appendix E.1, we give for the experiment
of Figure 3 the evolution of ‖Axt − y‖2 when t varies, for SEA0 and SEAELS.

On Figure 4, the performance of each algorithm is reported, for all k ∈ J1, 16K,
by the average over r runs of the support distance metric [18] defined by

suppdist(x) =
k − |S∗ ∩ supp(x)|

k
. (13)

For sparsity k < 14, SEA0 and SEAELS outperform the other algorithms. By
exploring various supports, SEA finds better supports than its competitors. As
k increases, due to the increasing difficulty of the problem, no algorithm is able
to recover S∗. We provide additional experiments in Appendix E, leading to the
same conclusions.

4.3 Supervised learning experiment

In a supervised learning setting, matrix A ∈ Rm×n (often denoted by X)
contains m n-dimensional feature vectors associated with the training examples
and arranged in rows, while the related labels are in vector y ∈ Rm. In the
training phase, a sparse vector x (often denoted β or w) is optimized to fit
y ≈ Ax using an appropriate loss function: in this context, support recovery is
called model selection.

Based on the experimental setup of [1], we compare all the algorithms on
linear regression and logistic regression tasks in terms of loss over the training

13



Figure 3: Representation of an instance of x∗ and y with the solutions provided
by the algorithms when k = 6. Results are reported in two axes for clarity.

Figure 4: Mean of support distance suppdist between S∗ and the support of the
solutions provided by several algorithms as a function of the sparsity level k.
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Figure 5: Performance on the regression dataset cal housing (m = 20639
examples, n = 8 features).

set for different levels of sparsity. We use the preprocessed public datasets5

provided by [1], following the same preprocessing pipeline: we augment A with
an extra column equal to 1Rm to allow a bias and normalize the columns of A.

For regression problems we use the `2 regression loss defined by `2 loss(x) =
1
2‖Ax− y‖

2
2 for x ∈ Rn.

As shown in Figure 5, SEA0 and SEAELS outperform the other algorithms on
a regression dataset with n small. For a regression dataset in a higher dimension,
as shown in Figure 6, SEA0 performs poorly as k increases. In both cases,
SEAELS is able to increase further ELS performances and outperforms the other
algorithms.

As confirmed in Appendix F by the experiments on other regression and
binary classification datasets, SEA0 performs well in small dimensions, while a
good initialization is mandatory in higher dimensions.

These experiments give some evidence that SEA can perform very well when
some error/noise is present in the observation and when no perfect sparse vector
exists.

5 Conclusion and perspectives

In this article, we proposed SEA: a new principled algorithm for sparse support
recovery, based on STE. We established guarantees when the matrix A satisfies
the RIP. Experiments show that SEA supplements state-of-the-art algorithms
and outperforms them in particular when A is coherent.

The theoretical guarantees involve conditions on x∗ that are not present for

5https://drive.google.com/file/d/
1RDu2d46qGLI77AzliBQleSsB5WwF83TF/view
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Figure 6: Performance on the regression dataset year (m = 463715 examples,
n = 90 features).

similar statements for other algorithms and that might restrict its applicability.
Also, the algorithm seems to perform well when A is coherent and this is not
explained by the current theoretical analysis which only applies to matrices
satisfying the RIP. Improving the theoretical analysis in these directions are
promising perspective.

There are many perspectives of applications of SEA and the STE to sparse
inverse problems such as sparse matrix factorization, tensor problems, as well as
real-world applications for instance in biology and astronomy.

Finally, it would be interesting to investigate the adaptation of the methods
developed in this article to other applications of STE, such as BinaryConnect.
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A Proof of Theorem 3.1

To prove Theorem 3.1, we need to find a closed formula for the exploratory
variable X t. Then, we will study the properties of this closed formula through
the counting vector ct to find a sufficient condition of support recovery.

A.1 Preliminary 1: Closed formulation of X t

Before the proof, we remind Figure 1 in Figure 7.

Figure 7: Visual representation of the main sets of indices encountered in the
article.

For each iteration t ∈ N and i ∈ J1, nK, we also remind the oracle update
already defined in (3)

uti =

{
−ηx∗i i ∈ S∗ ∩ St

0 i ∈ S∗ ∪ St.

We also remind the gradient noise, already defined in (4), bt = ut−ηAT (Axt−y).
We remark that, for any i ∈ St, bti = 0. Indeed, we have, for all i ∈ St, uti = 0
and (AT (Axt − y))i = 0, the latter being a consequence of the definition of xt in
Algorithm 1, line 7.

As a consequence of the definition of bt and SEA, line 8, for any t ∈ N,

X t+1 = X t + bt − ut. (14)

The gradient noise bt is the error preventing the gradient from being in the
direction of the oracle update ut. At each iteration, this error is accumulating
in X t. With β0 = 0Rn , for any t ∈ N∗, we define this accumulated error by

βt =

t−1∑
t′=0

bt
′
∈ Rn. (15)

With c0 = 0Rn , for any t ∈ N∗ and i ∈ J1, nK, we also define the counting vector
by

cti = |{t′ ∈ J0, t− 1K : i ∈ S∗ ∩ St′}|. (16)

We will use the recursive formula for ct: For any t ∈ N, i ∈ J1, nK

ct+1
i =

{
cti + 1 if i ∈ S∗ ∩ St

cti if i ∈ S∗ ∪ St.
(17)

For any i ∈ J1, nK, the sequence (cti)t∈N is non-decreasing.
We write a closed formula for the exploratory variable X t.
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Proposition A.1 (Counting). For any t ∈ N, X t = X 0 + ηct � x∗ + βt, where
� denotes the Hadamard product.

We omit the details but, using (14), (15) and (16), the proposition is proved
by induction on t.

A.2 Preliminary 2: Counting vector behavior

As can be seen from Proposition A.1, the error accumulation βt is responsible
for the exploration in wrong directions. While ct � x∗ encourages exploration in
the direction of the missed components of x∗. Here, we describe the behavior of
(ct)t∈N.

At each iteration of SEA, using (17) when S∗ * St, at least one coordinate
of the counting vector is increased by one. Since, for all i ∈ J1, nK, (cti)t∈N is
non-decreasing, we obtain the following Lemma.

Lemma A.2 (Increase). For any t ∈ N such that S∗ * St,
∑
i∈S∗ c

t+1
i ≥(∑

i∈S∗ c
t
i

)
+ 1.

We define the first recovery iterate by

ts = min {t, S∗ ⊆ St} ∈ N. (18)

By convention, if S∗ is never recovered, ts = +∞.
By induction on t, using Lemma A.2, we obtain a lower bound on

∑
i∈S∗ c

t
i.

Corollary A.3 (Lower bound). For any t ≤ ts,
∑
i∈S∗ c

t
i ≥ t.

Let us now upper bound
∑
i∈S∗ c

t
i. We first remind the definition of ε in (5),

the Recovery Condition (RC) and the value of Tmax in (6) in Theorem 3.1. If
(RC) holds, we define for any i ∈ S∗, the ith counting threshold by

Ci =
maxj /∈S∗ |X 0

j |+ |X 0
i |+ 2Tmaxε

η|x∗i |
. (19)

Proposition A.4 (Upper bound). If (RC) holds, for any i ∈ S∗ and any
t ≤ Tmax, we have cti ≤ Ci + 1.

Proof. Assume (RC) holds. We have Tmax > 0. Let i ∈ S∗, we distinguish two
cases:

1st case: If for all t ≤ Tmax, cti ≤ Ci: Then, obviously, for any t ≤ Tmax,
cti ≤ Ci + 1.

2nd case: If there exists t ≤ Tmax, such that cti > Ci:
We define ti = min {t ∈ N : cti > Ci}. We have ti ≤ Tmax. The proof follows

two steps:

1. We will prove that for all t ∈ Jti, TmaxK, cti = ctii . (20)

2. We will prove that for all t ≤ Tmax, cti ≤ Ci + 1. (21)
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1. Let t ∈ Jti, TmaxK, we have, using Proposition A.1, the triangle inequality
and the fact that cti ≥ c

ti
i > Ci

|X ti | = |X 0
i + ηctix

∗
i + βti |

≥ ηcti|x∗i | − |X 0
i | − |βti |

> ηCi|x∗i | − |X 0
i | − |βti |.

Using the definition of Ci, in (19), we obtain

|X ti | > η
maxj /∈S∗ |X 0

j |+ |X 0
i |+ 2Tmaxε

η|x∗i |
|x∗i | − |X 0

i | − |βti |

= max
j /∈S∗
|X 0
j |+ 2Tmaxε− |βti |.

Since for any j ∈ J1, nK, |βtj | ≤
∑t−1
t′=0|bt

′

j | ≤ tε ≤ Tmaxε, we have

|X ti | > max
j /∈S∗
|X 0
j |+ max

j /∈S∗
|βtj |+ |βti | − |βti |

≥ max
j /∈S∗
|X 0
j + βtj |

= max
j /∈S∗
|X tj |, (22)

where the last equality holds because of Proposition A.1 and for all j /∈ S∗,
all t ∈ N, ctj = 0.

Since |S∗| ≤ k and given the definition of St, line 6 of Algorithm 1, (22)
implies that i ∈ St. As a conclusion, for all t ∈ Jti, TmaxK, i ∈ St and using
(17) , ct+1

i = cti. Finally, for all t ∈ Jti, Tmax + 1K, cti = ctii . This concludes
the proof of the first step.

2. Since ti = min {t ∈ N : cti > Ci} and since c0i = 0, ti ≥ 1. Since by
definition of ti, c

ti−1
i ≤ Ci and ctii 6= cti−1i ; we find that ctii = cti−1i + 1 ≤

Ci + 1.

Using (20) , for all t ∈ Jti, TmaxK, cti = ctii ≤ Ci + 1. Finally, since (cti)t∈N∗

is non-decreasing, it follows that for any t ≤ ti − 1, cti ≤ c
ti−1
i ≤ Ci. This

concludes the proof of (21).

A.3 Proof of Theorem 3.1

We assume (RC) holds and prove Theorem 3.1 using the results of Appendix A.1
and Appendix A.2.

In order to do this, we first show that Tmax =
∑
i∈S∗ Ci + k + 1, then we

demonstrate that ts ≤ Tmax.
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Since (RC) holds, using (6), we calculate

Tmax =
1

1− 2ε
∑
i∈S∗

1
η|x∗i |

(∑
i∈S∗

maxj /∈S∗ |X 0
j |+ |X 0

i |
η|x∗i |

+ k + 1

)
(

1− 2ε
∑
i∈S∗

1

η|x∗i |

)
Tmax =

∑
i∈S∗

maxj /∈S∗ |X 0
j |+ |X 0

i |
η|x∗i |

+ k + 1

Tmax =
∑
i∈S∗

maxj /∈S∗ |X 0
j |+ |X 0

i |
η|x∗i |

+ k + 1 + 2Tmaxε
∑
i∈S∗

1

η|x∗i |

Tmax =
∑
i∈S∗

maxj /∈S∗ |X 0
j |+ |X 0

i |+ 2Tmaxε

η|x∗i |
+ k + 1.

Using (19), we obtain Tmax =
∑
i∈S∗ Ci + k + 1.

We finally prove Theorem 3.1 by contradiction. Assume by contradiction that
ts > Tmax, where ts is defined in (18). Using Corollary A.3 with t = bTmaxc < ts,
we have ∑

i∈S∗
c
bTmaxc
i ≥ bTmaxc = b

∑
i∈S∗

Ci + k + 1c >
∑
i∈S∗

Ci + k. (23)

However, using |S∗| ≤ k and Proposition A.4 for t = bTmaxc , we find∑
i∈S∗

Ci + k ≥
∑
i∈S∗

(Ci + 1) ≥
∑
i∈S∗

c
bTmaxc
i

This contradict (23) and we can conclude that ts ≤ Tmax. This proves Theo-
rem 3.1.

B Proof of Corollary 3.2

To prove Corollary 3.2, we first show in Lemma B.1 that the gradient noise bt is
null for all t ∈ N. Then, we apply Theorem 3.1 and prove that S∗ ⊂ StBEST and
xtBEST = x∗.

Lemma B.1. If the matrix A is orthogonal and ‖e‖2 = 0, then for any t ∈ N
and any η > 0,

ηAT
(
Axt − y

)
= ut,

i.e. bt = 0.

Proof. Let t ∈ N. Notice first that since ‖e‖2 = 0 and A is orthogonal

AT
(
Axt − y

)
= ATA

(
xt − x∗

)
= xt − x∗. (24)

To prove the Lemma, we distinguish three cases: i ∈ St, i ∈ S∗ ∩ St and
i ∈ S∗ ∩ St.
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1st case: If i ∈ St, η
(
AT (Axt − y)

)
i

= 0 = uti. The first equality is a
consequence of the definition of xt in Algorithm 1, line 7. The second is due to
the definition of ut, in (3).

2nd case: If i ∈ S∗ ∩ St, taking the ith entree of (24) and using the support
constraints of xt and x∗, we find

η
(
AT
(
Axt − y

))
i

= 0 = uti,

where the second equality is due to the definition of ut, in (3).
3rd case: If i ∈ S∗ ∩ St, the ith entree of (24) becomes

η
(
AT
(
Axt − y

))
i

= −ηx∗i = uti,

where again the second equality is due to the definition of ut, in (3).

We now resume the proof of Corollary 3.2 and assume that A is orthogonal,
‖e‖2 = 0 and X 0 = 0Rn . We remind the definition of Tmax in (6).

Using Lemma B.1, (5) and (4), we find that ε = 0. Therefore (RC) holds for
all x∗ and Theorem 3.1 implies that there exists ts ≤ Tmax such that S∗ ⊂ Sts .
Since X 0 = 0Rn and ε = 0, we find Tmax = k + 1.

Since ‖e‖2 = 0, we know from Theorem 3.1 and the definitions of tBEST and
xt in Algorithm 1 that

‖AxtBEST − y‖2 ≤ ‖Axts − y‖2 ≤ ‖Ax∗ − y‖2 = 0.

Using that A is orthogonal and ‖e‖2 = 0, this leads to

0 =AxtBEST − y
=ATA(xtBEST − x∗)
=xtBEST − x∗.

Therefore, S∗ = supp(x∗) = supp(xtBEST ) ⊂ StBEST .
This concludes the proof of Corollary 3.2.

C Proof of Theorem 3.3

To prove Theorem 3.3, we first remind in Appendix C.1 known properties of the
Restricted Isometry Constant. Then, in order to bound bt and apply Theorem 3.1
in Appendix C.3, we bound in Appendix C.2 the error made when approximating
x∗ on a specific support S. We finally apply Theorem 3.3 in Appendix C.4 to
prove Corollary 3.4.

C.1 Reminders on properties of RIP matrices

We first remind the definition of Restricted Isometry Constant in (7) and a few
properties of RIP matrices.
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Fact 1: For any k, k′ ∈ J1, nK, such that k ≤ k′, we have

δk ≤ δk′ . (25)

Fact 2: For any R,S ⊂ J1, nK, such that R ∩ S = Ø. If A satisfies the RIP of
order |R|+ |S|, using Lemma 1 of [12] we have for any x ∈ R|S|

‖ATRASx‖2 ≤ δ|R|+|S| ‖x‖2. (26)

Fact 3: Let us assume that A satisfies the |S|-RIP. By taking inspiration of
Proposition 3.1 of [27], for any singular value λ ∈ R of AS , and the
corresponding right singular vector xλ ∈ R|S|, we have ‖ASxλ‖2 = λ.
Using (7), 1− δ|S| ≤ λ2 ≤ 1 + δ|S|. All singular values of AS and ATS lie

between
√

1− δ|S| and
√

1 + δ|S|. As a consequence, for any u ∈ Rm, we
have

‖ATSu‖2 ≤
√

1 + δ|S| ‖u‖2. (27)

Fact 4: Let us assume that A satisfies the |S|-RIP. Using the same reasoning,
we find that the eigenvalues of ATSAS lie between 1− δ|S| and 1 + δ|S|. This
implies that ATSAS is non-singular and that the eigenvalues of (ATSAS)−1

lie between 1
1+δ|S|

and 1
1−δ|S|

. Then AS is full column rank and for any

x ∈ R|S|

‖(ATSAS)−1x‖2 ≤
1

1− δ|S|
‖x‖2. (28)

Fact 5: Let us assume that A satisfies the |S|-RIP. By using one last time the
same reasoning, we find that the eigenvalues of ATSAS − I|S| lie between

−δ|S| and δ|S|. Finally, for any x ∈ R|S|,

‖(ATSAS − I|S|)x‖2 ≤ δ|S|‖x‖2. (29)

C.2 Lemmas

In this section, the facts from Appendix C.1 are used to bound from above the
error ‖xt − x∗‖2 on the support St. This bound will lead to an upper bound on
‖bt‖2. Throughout the section, we assume A satisfies the (2k + 1)-RIP. Figure 1
might help visualize the different sets of indices considered in the proof.

Lemma C.1. If A satisfies the (2k + 1)-RIP, for any t ∈ N,

‖(xt − x∗)|St‖2 ≤
δ2k

1− δk
‖ut‖2
η

+

√
1 + δk

1− δk
‖e‖2.

Proof. For any t ∈ N, using the definition of xt in Algorithm 1 and (3), we find

xt|St = A†Sty

= A†St(AS∗x
∗
|S∗ + e)

= A†StAS∗∩Stx
∗
|S∗∩St −

1

η
A†StAS∗∩Stu

t
|S∗∩St +A†Ste. (30)
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We also have

A†StAS∗∩Stx
∗
|S∗∩St = A†St

[
AS∗∩St ASt\S∗

] [x∗|S∗∩St
0

]
= A†StAStx

∗
|St . (31)

Since δ2k+1 < 1, (25) implies that δk ≤ δ2k+1 < 1 and the singular values of
ASt lie between

√
1− δk and

√
1 + δk. Therefore ASt is full column rank and

A†St = (ATStASt)
−1ATSt . (32)

Combining (30), (31) and (32), we obtain

xt|St = x∗|St −
1

η
A†StAS∗∩Stu

t
|S∗∩St +A†Ste.

Using (32), we find

‖(xt − x∗)|St‖2 = ‖1

η
A†StAS∗∩Stu

t
|S∗∩St −A

†
Ste‖2

≤ 1

η
‖(ATStASt)−1ATStAS∗∩Stu

t
|S∗∩St‖2 + ‖(ATStASt)−1ATSte‖2.

Finally, using (28), then (26), (25), (27) and (3), we finish the proof

‖(xt − x∗)|St‖2 ≤
1

1− δk

(
1

η
‖ATStAS∗∩Stu

t
|S∗∩St‖2 + ‖ATSte‖2

)
≤ 1

1− δk

(
δ2k
η
‖ut|S∗∩St‖2 +

√
1 + δk‖e‖2

)
=

δ2k
1− δk

‖ut‖2
η

+

√
1 + δk

1− δk
‖e‖2.

We have the following upper bound on ‖bt‖2. This bound is given in Theo-
rem 3.3.

Lemma C.2 (Bound of bt - RIP case). If A satisfies the (2k + 1)-RIP, for any
t ∈ N,

‖bt‖∞ ≤ η (αRIPk ‖x∗‖2 + γRIPk ‖e‖2) ,

where αRIPk and γRIPk are defined in (8) and (9).

Proof. Let t ∈ N and i ∈ J1, nK, reminding the definition of bt in (4), we have

|bti| = |uti − η(Ai)
T (Axt − y)|

= |uti − η(Ai)
TA(xt − x∗) + η(Ai)

T e| (33)

= |uti − η(Ai)
TAS∗∪St(x

t − x∗)|S∗∪St + η(Ai)
T e|.
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We distinguish three cases: i ∈ St, i ∈ S∗ ∩ St and i ∈ S∗ ∩ St. We prove
that in the three cases

|bti| ≤ η
(
δ2k+1‖xt − x∗‖2 + ‖e‖2

)
. (34)

1st case: If i ∈ St, because of the definitions of ut and xt, bti = 0 and (34)
holds.

2nd case: If i ∈ S∗ ∩ St, using the definition of ut in (3), (26), (25) and the
fact that ‖Ai‖2 = 1 we obtain

|bti| = |−η(Ai)
TAS∗∪St(x

t − x∗)|S∗∪St + η(Ai)
T e|

≤ η
(
‖−(Ai)

TAS∗∪St(x
t − x∗)|S∗∪St‖2 + ‖(Ai)T e‖2

)
≤ η

(
δ2k+1‖(xt − x∗)|S∗∪St‖2 + ‖e‖2

)
= η

(
δ2k+1‖xt − x∗‖2 + ‖e‖2

)
3rd case: If i ∈ S∗ ∩St, reminding that {i} is the complement of {i} ⊂ J1, nK,

(33) becomes

|bti| = |−ηx∗i − η(Ai)
TA(xt − x∗) + η(Ai)

T e|
= η|−(Ai)

TA{i}(x
t − x∗)|{i} + (Ai)

T e|

≤ η
(
|(Ai)TA{i}(x

t − x∗)|{i}|+ |(Ai)
T e|
)
.

Using (26), (25) and ‖Ai‖2 = 1, we obtain

|bti| ≤ η
(
δ2k‖xt − x∗‖2 + ‖e‖2

)
≤ η

(
δ2k+1‖xt − x∗‖2 + ‖e‖2

)
.

Regrouping the three cases, we conclude that for all i ∈ J1, nK, (34) holds. We
now finish the proof.

Using (3) followed by Lemma C.1, we find

|bti| ≤ η
(
δ2k+1

(
‖(xt − x∗)|St‖2 +

‖ut‖2
η

)
+ ‖e‖2

)
≤ η

(
δ2k+1

(
δ2k

1− δk
+ 1

)
‖ut‖2
η

+

(
δ2k+1

√
1 + δk

1− δk
+ 1

)
‖e‖2

)
≤ η (αRIPk ‖x∗‖2 + γRIPk ‖e‖2) ,

where the last inequality holds because ‖u
t‖2
η ≤ ‖x∗‖2.

C.3 End of the proof of Theorem 3.3

We now resume to the proof of Theorem 3.3 and assume A satisfies the (2k + 1)-
RIP and x∗ satisfies (RCRIP ). We remind the definitions of Tmax in (6) and
TRIP in (10).
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Using (5) and Lemma C.2, we have

ε = sup
t∈N
‖bt‖∞ ≤ η (αRIPk ‖x∗‖2 + γRIPk ‖e‖2) . (35)

Combined with (RCRIP ), this implies that

ε <
η

2
∑
i∈S∗

1
|x∗i |

=
1

2
∑
i∈S∗

1
η|x∗i |

.

Therefore (RC) holds and Theorem 3.1 implies that there exists ts ≤ Tmax
such that S∗ ⊂ Sts , with

Tmax =

∑
i∈S∗

maxj /∈S∗ |X 0
j |+|X

0
i |

η|x∗i |
+ k + 1

1− 2ε
∑
i∈S∗

1
η|x∗i |

.

For a = 2
∑
i∈S∗

1
η|x∗i |

> 0 and b =
∑
i∈S∗

maxj /∈S∗ |X 0
j |+|X

0
i |

η|x∗i |
+ k + 1 > 0, the

function u 7→ fa,b(u) , b
1−au is non-decreasing on [0, 1a ). Moreover, (35) and

(RCRIP ) imply that

0 ≤ ε ≤ η (αRIPk ‖x∗‖2 + γRIPk ‖e‖2) < η
1

a
.

and therefore Tmax = fa,b(
ε
η ) ≤ fa,b(αRIPk ‖x∗‖2 + γRIPk ‖e‖2) = TRIP . Therefore,

since ts ≤ Tmax, ts ≤ TRIP . As a conclusion, there exists ts ≤ TRIP such that
S∗ ⊂ Sts .

We still need to prove that, when mini∈S∗ |x∗i | > 2√
1−δ2k

‖e‖2, tBEST satisfies

S∗ ⊂ StBEST , as well as the last upper-bound of Theorem 3.3 .
Assume by contradiction that

min
i∈S∗
|x∗i | >

2√
1− δ2k

‖e‖2 (36)

holds but S∗ 6⊂ StBEST . The construction of tBEST , in line 11 of Algorithm 1,
and the existence ts such that S∗ ⊂ Sts guarantee that

‖AxtBEST − y‖ ≤ ‖Axts − y‖ ≤ ‖Ax∗ − y‖ = ‖e‖2.

Therefore, using the left inequality in (7), we obtain√
1− δ2k‖xtBEST − x∗‖2 ≤ ‖A(xtBEST − x∗)‖2

≤ ‖AxtBEST − y‖2 + ‖Ax∗ − y‖2
≤ 2‖e‖2.

On the other hand, since we assumed S∗ 6⊂ StBEST we have

‖xtBEST − x∗‖2 ≥ min
i∈S∗
|x∗i |.
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We conclude that mini∈S∗ |x∗i | ≤ 2√
1−δ2k

‖e‖2 which contradicts (36).

As a conclusion, when mini∈S∗ |x∗i | > 2√
1−δ2k

‖e‖2, we have S∗ ⊂ StBEST .

In this case, since the support of xtBEST − x∗ is of size smaller than k, we
can redo the above calculation and obtain√

1− δk‖xtBEST − x∗‖2 ≤ ‖A(xtBEST − x∗)‖2 ≤ 2‖e‖2.

This leads to the last inequality of Theorem 3.3 and concludes the proof.

C.4 Proof of Corollary 3.4

We assume that x∗ satisfies (SRCRIP ) and that ‖e‖2 = 0. Let us first prove that
x∗ satisfies (RCRIP ). Using (SRCRIP ) we have

0 < 1− Λ ≤ 1− 2kαRIPk

‖x∗‖2
mini∈S∗ |x∗i |

=
2k

mini∈S∗ |x∗i |

(
mini∈S∗ |x∗i |

2k
− αRIPk ‖x∗‖2

)
.

As a consequence, since 2k > 0 and mini∈S∗ |x∗i | > 0,

0 <
mini∈S∗ |x∗i |

2k
− αRIPk ‖x∗‖2. (37)

Using |S∗| ≤ k, we obtain

min
i∈S∗
|x∗i |

(∑
i∈S∗

1

|x∗i |

)
≤ k,

and deduce from (37)

γRIPk ‖e‖2 = 0 <
1

2
∑
i∈S∗

1
|x∗i |
− αRIPk ‖x∗‖2.

We conclude that x∗ satisfies the (RCRIP ) for A.
Applying Theorem 3.3 and since ‖e‖ = 0 and X 0 = 0Rn , we know that there

exists t ≤ TRIP = k+1
1−2αRIPk ‖x∗‖2

∑
i∈S∗

1
|x∗
i
|

such that S∗ ⊂ St. Since u 7→ k+1
1−u is

increasing on [0, 1) and

0 ≤ 2αRIPk ‖x∗‖2
∑
i∈S∗

1

|x∗i |
≤ 2kαRIPk

‖x∗‖2
mini∈S∗ |x∗i |

≤ Λ < 1,

we obtain

TRIP =
k + 1

1− 2αRIPk ‖x∗‖2
∑
i∈S∗

1
|x∗i |
≤ k + 1

1− Λ
= T ′RIP .

Therefore t ≤ T ′RIP and we conclude that there exists t ≤ T ′RIP such that S∗ ⊂ St.
The last statement of Corollary 3.4 is a direct consequence of Theorem 3.3

and the fact x∗ satisfies (RCRIP ) for A and (11).
This concludes the proof of Corollary 3.4.
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D Additional results for phase transition dia-
gram experiment

We consider the same experiment as in Section 4.1 but in a noisy setting. The
entries of e, in (1), are independently drawn from a Gaussian distribution with
mean 0 and standard deviation 0.01. The analog of the curves of Figure 2 is
in Figure 8. The conclusions drawn from Figure 8, in the noisy setting, are
identical to the ones in Section 4.1, in the noiseless setting.

Figure 8: Empirical support recovery phase transition curves in the noisy setup.
Problems below each curve are solved by the related algorithm with a success
rate larger than 95%.

E Additional results in deconvolution

To supplement Section 4.2, we provide additional results for the initial experi-
mental setup. We provide in Appendix E.1 the loss along the iterative process
for the experiment on Figure 3 in Section 4.2. We also depict in Appendix E.2
the average of the loss, over the r = 1000 problems solved to construct Figure 4,
when k varies. Finally, we provide results when e 6= 0Rm in Appendix E.3.

E.1 Deconvolution: The loss along the iterative process

Figure 9 and Figure 10 illustrate the behavior of SEA0 and SEAELS, for the
same 6-sparse x∗ as Figure 3 in Section 4.2, throughout the iterative process.

More precisely, Figure 9 depicts the results for SEA0. The blue curve
represents `2,rel loss(x

t) when t varies in J0, 1000K, where `2,rel loss is defined by

`2,rel loss(x) =
‖Ax− y‖2
‖y‖2

. (38)

The dashed red line represents `2,rel loss(x
tBEST (t)) where tBEST (t) = argmin

t′∈J0,tK
‖Axt′−
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y‖22 and t varies in J0, 1000K. Figure 10 illustrates the same results for SEAELS.
One can observe that, due to the exploratory nature of SEA, `2,rel loss(x

t) os-
cillates for both versions of SEA. This does not prevent SEA0 from finding a
good first approximation of S∗ in the first 80 iterations and finally recovering
S∗ despite the high coherence of A. Once S∗ is recovered, since the experiment
is in a noiseless setting, we have for t sufficiently large xt = x∗ and therefore
Axt − y = 0. Using the update rule of X t, line 8 of Algorithm 1, we see that X t
should no longer evolve. This is what we observe on Figure 9.

We observe the same behavior for SEAELS, on Figure 10. The exploration
recovers S∗ again. The good initialization permits starting from a better support
and recovering S∗ in fewer iterations though.

E.2 Deconvolution: The average loss when k varies

In this section, we consider the experiment described in Section 4.2, whose results
are already depicted in Figure 4.

On Figure 11, we show the average – over the r = 1000 problems – of
the relative `2 loss, defined in (38), for the outputs of all algorithms and for
k ∈ J1, 16K. We observe that both versions of SEA reach the same lowest error.
The largest gap between SEA and its competitors is reached for k between 2
and 8.

E.3 Deconvolution: Results in the noisy setup

We consider the same experiment as in Section 4.2 but in a noisy setting. The
entries of e, in (1), are independently drawn from a Gaussian distribution with
mean 0 and standard deviation 0.1. This leads to an averaged – over r = 1000

experiments for each k – Signal to Noise Ratio, defined by SNR = 10 log10(
‖x∗‖22
‖e‖22

),

ranging from 10 dB when k = 1 to 22 dB when k = 16.

E.3.1 The loss along the iterative process

The analogues of the curves of Figure 9 and Figure 10 from Appendix E.1 are
respectively in Figure 12 and Figure 13. The conclusions drawn from Figure 12
and Figure 13, in the noisy setting, are similar to the one in Appendix E.1.
Again, initializing SEA with ELS permits SEAELS to find a good approximation
of S∗ in less iterations than SEA0. However, X t continues to evolve during all
iterations because of the noise that prevents SEA from reaching a zero error.

E.3.2 Observing the losses along with k

The analogues of the curves of Figure 4 and Figure 11 are respectively in
Figure 14 and Figure 15. Results in the noisy setting are very similar to the ones
in Section 4.2 and Appendix E.2, in the noiseless setting. Figure 14 shows that
for sparsity level k < 12, SEA0 and SEAELS outperform the other algorithms.
Figure 15 shows that because of the noise, optimizing `2,rel loss is harder than
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Figure 9: Representation of `2,rel loss(x
t) (blue) and `2,rel loss(x

tBEST (t)) (dashed
red) for each iteration of SEA0, for the experiment of Figure 3.

Figure 10: Representation of `2,rel loss(x
t) (blue) and `2,rel loss(x

tBEST (t)) (dashed
red) for each iteration of SEAELS, for the experiment of Figure 3.
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Figure 11: Mean of `2,rel loss(x) for the outputs of the algorithms on the 1000
problems of Section 4.2, for each sparsity level k.

Figure 12: Representation of `2,rel loss(x
t) (blue) and `2,rel loss(x

tBEST (t)) (dashed
red) for each iteration of SEA0, for the noisy experiment.

in the noiseless setting for all algorithms. However, both versions of SEA still
reach the lowest error.
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Figure 13: Representation of `2,rel loss(x
t) (blue) and `2,rel loss(x

tBEST (t)) (dashed
red) for each iteration of SEAELS, for the noisy experiment.

Figure 14: Mean of support distance suppdist between S∗ and the support of the
solutions provided by several algorithms as a function of the sparsity level k in
the noisy setup.

Figure 15: Comparison of the mean of relative `2 Regression loss `2,rel loss
computed for the solutions provided by the algorithms for each sparsity level k
in the noisy setup.
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F Additional Machine Learning experiments

To supplement Section 4.3, we provide more experiments on linear and logistic
regression. We use the datasets considered in [1]. We present regression problems
in Appendix F.1 and classification problems in Appendix F.2.

F.1 Regression datasets

The error `2 loss(x) = 1
2‖Ax−y‖

2
2 is depicted in Figure 16 for the comp-activ-harder

dataset (m = 8191 examples, n = 12 features), for all k ∈ J1, 12K and for all
algorithms. This is a low-dimensional problem (n is small). We see from this
figure that both versions of SEA achieve similar performance to ELS.

The same experiment is reported on Figure 17, but for the dataset slice

(m = 53500 examples, n = 384 features). This is an intermediate-dimensional
problem. Figure 17 shows that SEA0 obtains slightly worse results than SEAELS

and ELS.

Figure 16: Performance on the regression dataset comp-activ-harder (m = 8191
examples, n = 12 features).
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Figure 17: Performance on the regression dataset slice (m = 53500 examples,
n = 384 features).

F.2 Classification datasets

In these experiments, we consider the logistic regression loss defined by

log loss(x) =

m∑
i=1

(−yi log(σ((Ax)i))− (1− yi) log(1− σ((Ax)i))) ,

where σ(t) = 1
1+e−t is the sigmoid function.

We need to adapt SEA to this new loss. In Algorithm 1, line 7 is replaced by
xt = argmin

x∈Rn
supp(x)⊂St

log loss(x) and line 8 is replaced by X t+1 = X t − η∇log loss(xt).

Similar adaptations are performed on the other algorithms.
The loss log loss(x), for the letter dataset (m = 20000 examples, n = 16

features), for all k ∈ J1, 12K and for all algorithms is depicted in Figure 18. We
depict the same curves obtained for the ijcnn1 dataset (m = 24995 examples,
n = 22 features) in Figure 19.

These two last figures show that both SEA0 and SEAELS achieve similar
performances to ELS.
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Figure 18: Performance on the classification dataset letter (m = 20000 exam-
ples, n = 16 features).

Figure 19: Performance on the classification dataset ijcnn1 (m = 24995 exam-
ples, n = 22 features).
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