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ABSTRACT
We explore the problem of providing explanations for pairwise 
comparisons based on an underlying additive model. We follow 
a step-wise approach and provide explanations that take the form 
of a sequence of preference statements. Each statement should be 
as meaningful, relevant and cognitively simple as possible for the 
explanation to be accepted by an explainee. More specifically, we 
describe several schemes allowing to derive new knowledge, in the 
form of comparative statements, from previously accepted 
ones. These schemes exploit a number of well-understood 
properties of the additive model, and we ensure the correctness of 
the overall ex-planatory sequences. While these different schemes 
may correspond to alternative explanation strategies, we specifically 
advocate the use of the covering scheme because it meets some 
desirable properties for explanations. Imposing cognitively simple 
steps comes at the price of completeness. However, experimental 
results show that we are able to provide insightful explanations in 
many cases.
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1 INTRODUCTION
In this paper we address the problem of providing step-wise ex-
planations for pairwise comparisons of alternatives based on well-
established decision models. Alternatives are characterized by a
number of criteria. The main idea is to break down the recommenda-
tion into simple statements presented to the explainee. The whole
sequence of statements should formally support the recommendation.
The explanations we aim for are thus contrastive, in the sense that
the decision to be explained compares two alternatives, and exact (as
opposed to heuristic) in the sense that we provide guarantees that the
explanation produced is correct with respect to the underlying model.
It is also common to distinguish between local explanations (when
they focus on a specific recommendation) and global explanations
(when they deal with the model in general): our approach is globally
faithful to the model, and locally relevant to the pairwise comparison
to be explained. Finally, even though this aspect is not detailed in
this work, the perspective is to give the explainee the opportunity to
accept or contradict these statements. To make things concrete we
start with an illustrative example.

We consider seven abstract criteria (a,b,c,d,e,f,g), each one
described on bi-levels scales, which facilitate the symbolic represen-
tation of alternatives (e.g hotels). Each alternative can be represented
as its evaluation vector (𝑠1 = (✗, ✗,✓,✓,✓,✓,✓)) or more suc-
cinctly by the subset of criteria on which it is evaluated positively
(𝑠1 = {cdefg}). Moreover, for each criterion, the value symbolized
by ✓ is more desirable than the value symbolized by ✗ (e.g breakfast
included is better than not).

a b c d e f g

𝑠1 ✗ ✗ ✓ ✓ ✓ ✓ ✓

𝑠2 ✓ ✗ ✗ ✓ ✗ ✗ ✗

The aggregation of criteria is done using an additive score func-
tion, assigning weights to the different criteria as follows:

𝜔 = ⟨128, 126, 77, 59, 52, 41, 37⟩

For example, the score of 𝑠1 is thus equal to𝑤𝑠1 = 77+ 59+ 52+ 41+
37 = 276 while that of 𝑠2 is:𝑤𝑠2 = 128+ 59 = 187. It is also useful to
encode the comparison of two alternatives as a vector {−1, 0, +1}𝑛 of
arguments in favour (PRO) or against (CON) the option 𝑠1, or neutral



(NEU). In our example, PRO𝑠1 = {c,e,f,g}, CON𝑠1 = {a}, while
NEU = {b,d}

Explanations can take many different forms. We list different
possible explanations to the fact that 𝑠1 is preferred to 𝑠2:

(i) the first approach (model disclosure) could be to provide the
full score calculation for both options, as illustrated above.
But noticing that d is a neutral argument satisfied both by 𝑠1
and 𝑠2, we could omit it and simply provide the summation
of PRO arguments vs. CON arguments.

(ii) the counter-factual approach seeks for minimal modification
in the input that would change the outcome. For instance, we
could state that, if 𝑠2 had satisfied b, 𝑠2 would instead have
been recommended over 𝑠1. Or (affecting the other alternative
this time), if 𝑠1 had not satisfied cd.

(iii) following a prime implicant approach, we could produce
those arguments sufficient to explain the decision. In our case,
two possible explanations could be given: (1) given that bd
are neutral arguments, the PRO arguments cef are sufficient
to overcome any set of CON arguments. In particular, this
shows that the decision would remain the same even if g was
a CON argument. And (2) given that b is a neutral argument,
the PRO arguments cefg are sufficient to overcome any set
of CON arguments. In particular, this shows that the decision
would remain the same even if d was a CON argument.

(iv) following a step-wise approach, we could exhibit a collection
of statements aiming at proving the decision. For instance,
we could state that cdefg is preferred over ac, and that
ac is preferred over ad, so that our conclusion should hold,
following a transitive reasoning. Or, using a different logic,
we could state that cd is preferred over a, while efg is
preferred over d, which altogether justifies our decision.

This example allows us to illustrate some key principles of expla-
nation (see e.g. [6, 17]) :

• language intelligibility—we want explanations to be con-
veyed in a language which is meaningful to the explainee.
In our example, the weights used in calculations may not be
easily interpreted by the explainee1.

• relevance—we want explanations to focus on relevant in-
formation. In our example, as noticed, mentioning neutral
arguments should be avoided if possible.

• cognitive simplicity—we want explanations to be “easy to
process” by the explainee. This can be instantiated in dif-
ferent ways: prime implicant explanations are after (subset,
or sometimes cardinality) minimal sufficient reasons, while
step-wise explanations make use of intermediary comparisons
involving a limited number of criteria.

Our ambition in this paper is to develop a principle-based and
cognitively bounded model of step-wise explanations. As our exam-
ple illustrates, there can be different ‘logic’ at play when combining
statements. To account for that we describe a number of schemes
for such explanations in the context of a comparison based on a
weighted sum model (Section 3). By principle-based approach we
mean that each scheme is attached to number of well-understood
properties of the underlying decision model, that we make explicit

1Another aspect, not investigated here, is that it may not be adequate to fully disclose
the model for privacy or manipulation issues.

and discuss in this paper. The resulting calculus is provably correct
(Section 4). By cognitively-bounded we mean that our statements
will be constrained so as to remain easy to grasp by the explainee.
The resulting calculus is not complete, but we explore this issue in
detail and provide several elements showing that our approach is
satisfactory in terms of empirical completeness (Section 5).

2 OUR MODEL
We consider a set of items [𝑚], and we abstractly refer to states, as
subsets of items, i.e. elements of 2[𝑚] . A comparative statement is
a pair of states (𝐴, 𝐵) ∈ 2[𝑚] × 2[𝑚] , interpreted as a preference
statement–‘𝐴 is preferred to 𝐵’.

Schemes. Our aim is to provide a formal language and reasoning
machinery allowing to support (explain) such comparative state-
ments. We build on the notion of argument scheme, that is, an oper-
ator tying a sequence of statements, called the premise, satisfying
some conditions, into another statement called the conclusion [20].
As we deal with preferences, argument schemes are ways of deriving
new preferences from previously established ones. Noticeably, all
our schemes operate on the same set of premises – finite sequences
of comparative statements, represented as bracketed lists – and the
same set of conclusions – comparative statements in 2[𝑚] × 2[𝑚] .
We shall denote an arbitrary scheme 𝑠 as:

[(𝐴1, 𝐵1), . . . , (𝐴𝑘 , 𝐵𝑘 )]
𝑠−→ (𝐴, 𝐵)

Correctness. The fact that our argument schemes allow us to only
derive conclusions coherent with the preference relation is captured
by the notion of correctness:

Definition 1. An argument scheme is correct w.r.t. a preference
relation ≿ if, when all premises belong to ≿, then the conclusion also
belong to ≿.

At this stage we leave the preference relation unspecified, but in
Section 3 we shall delve into this connection between the properties
of preference relations and the schemes.

We further formalize the requirement of relevance (the absence
of neural arguments) and simplification with respect to the relative
difficulty of a statement.

Definition 2. A pair composed of a premise [(𝐴1, 𝐵1), . . . , (𝐴𝑘 , 𝐵𝑘 )]
and a conclusion (𝐴, 𝐵) is independent of irrelevant alternative (III)
when

(⋃𝑘
𝑖=1𝐴𝑖 ∪ ⋃𝑘

𝑖=1 𝐵𝑖
)
⊆ (𝐴 ∪ 𝐵) \ (𝐴 ∩ 𝐵).

Definition 3. A pair composed of a premise [(𝐴1, 𝐵1), . . . (𝐴𝑘 , 𝐵𝑘 )]
and a conclusion (𝐴, 𝐵) is simplifying when the premise is less
difficult than the conclusion.

We believe this definition to be very general, as it captures one of
the goals of explanation. To be actionable, though, it requires to spec-
ify the relative difficulty of a premise and a conclusion. We introduce
a specific model allowing to derive the relative difficulty of state-
ments, where this difficulty is purely syntactic and directly results
from the number of items involved in the comparative statement.

Definition 4 (Difficulty of statements). The difficulty of a compar-
ative statement (𝐴, 𝐵) ∈ 2[𝑚] × 2[𝑚] is the ordered pair of inte-
gers ( |𝐴|, |𝐵 |). Consequently, we say that a comparative statement
(𝐴, 𝐵) is less difficult than another comparative statement (𝐴′, 𝐵′)



−

when |𝐴| ≤ |𝐴′ | , |𝐵 | ≤ |𝐵′ | and at least one comparison is strict. 
A sequence of comparative statements [(𝐴1, 𝐵1), . . . (𝐴𝑘 , 𝐵𝑘 )] is 
less difficult than a comparative statement (𝐴, 𝐵 ) when all compar-
ative statements (𝐴𝑖 , 𝐵𝑖 ) are less difficult than (𝐴, 𝐵 ). Finally, we 
define difficulty classes of  comparative statements by  putting up-
per bounds on the difficulty: for all integers 𝑝, 𝑞  from 0  to 𝑚 , let 
Δ(𝑝, 𝑞) = {(𝐴, 𝐵) ∈ 2[𝑚] × 2[𝑚] : |𝐴| ≤ 𝑝, |𝐵 | ≤ 𝑞}.

We denote A the syntactically atomic elements, those that are 
considered self-evident and legit to be used as steps of an expla-
nation for the considered explainee. We shall use difficulty classes 
Δ(𝑝, 𝑞) to specify this set. In the context of explaining preferences 
between subset of desirable items, some values of the pair (𝑝, 𝑞) are 
of specific interest: Δ(𝑚, 𝑚 ) are unrestricted statements; compara-
tive statements in Δ(𝑚, 0) represent Pareto dominance statements; 
comparative statements in Δ(1, 1) can be interpreted as swaps [11], 
representing the exchange of one criterion against another; those 
in Δ(1, 𝑚) or in Δ(𝑚, 1) represent a single item stronger or weaker 
than a subset of others, respectively considered as a pro or a con 
argument.

For instance, in the context of hotel comparisons, an argument 
in Δ(1, 1) could be “we prefer to have free breakfast than free wifi 
access”. An argument in Δ(1, 2) could be “We prefer to have a swim-
ming pool than free breakfast and wifi”. To appreciate how difficult 
it can be to interpret higher order arguments, consider arguments 
in Δ(2, 2), for instance “free breakfast and wifi access is preferable 
to having a swimming pool and being close to the city center”. In 
Section 5 we shall investigate how restraining explanation to such 
simple statements affects the ability to produce explanations.

Explanation based on schemes. Self-evident atomic statements 
put a bound on the difficulty of each s tep of an explanation. As 
an explanation is a sequence of such statements, we also seek to 
produce correct explanations of minimal length:

Definition 5 (The explanation p roblem). Given a comparative state-
ment (𝐴, 𝐵) ∈ 2[𝑚] × 2[𝑚] , a preference relation ≿, a set of state-
ments A belonging to ≿, a set of schemes S, and a positive integer 
𝑘: is there a positive integer 𝑘′ ≤ 𝑘 , a list of length 𝑘′ of statements 
[(𝐴1, 𝐵1), . . . , (𝐴𝑘 ′ , 𝐵𝑘 ′ )] all belonging to A , and a scheme 𝑠 ∈ S

such that [(𝐴1, 𝐵1), . . . , (𝐴𝑘 ′ , 𝐵𝑘 ′ )] 𝑠→ (𝐴, 𝐵)?
Note that this definition remains agnostic regarding the way the 

preference relation is represented in the input.
We shall now in the next section present the different argument 

schemes found in S and considered for reasoning with preferences.

3 SCHEMES FOR REASONING WITH
PREFERENCES

This section is devoted to the construction of derivation rules ad-
equate to reason about preferences. We formalize these rules as
operators tying a list of premises to a conclusion, where premises
and conclusions are comparative statements. We exploit key prop-
erties of the additive model–transitivity and cancellation–and for-
malize derivation rules taking advantage of each, from the ground
up: the transitive and ceteris paribus schemes. We then introduce
the reduced transitive scheme, that allows to directly derive any
conclusion that can be proven using the two previous schemes. We

conclude by introducing the covering scheme, which satisfies the
independence of irrelevant items property (see Definition 2).

3.1 Properties of preference
We are interested in the preference relation ≿ that might exist be-
tween states 𝐴, 𝐵 ∈ 2[𝑚] , with 𝐴 ≿ 𝐵 meaning that 𝐴 is considered
at least as good as 𝐵. We recall some useful features that preference
relations may possess.

Definition 6 (Properties of preference). Let ≿ ⊂ 2[𝑚] × 2[𝑚] a
binary relation between states. We say:

• ≿ is transitive when, for any states 𝐴, 𝐵,𝐶 ∈ 2[𝑚] , if 𝐴 ≿ 𝐵
and 𝐵 ≿ 𝐶 then 𝐴 ≿ 𝐶;

• ≿ satisfies (first order) cancellation if preference between
states does not depend on common items, i.e.∀𝐴, 𝐵 ∈ 2[𝑚] 𝐴 ≿
𝐵 ⇐⇒ (𝐴 \ 𝐵) ≿ (𝐵 \𝐴);

• ≿ is additive when there is a𝑚-tuple of real numbers ⟨𝜔𝑖 ⟩𝑖∈[𝑚] ∈
R[𝑚] such that 𝐴 ≿ 𝐵 ⇐⇒ ∑

𝑖∈𝐴 𝜔𝑖 ≥
∑
𝑖∈𝐵 𝜔𝑖 .

• ≿ is an additive linear order when it is additive and there is
no indifference, i.e. if 𝐴 ≠ 𝐵 then either 𝐴 � 𝐵 or 𝐵 � 𝐴 [9].

Obviously, an additive preference satisfies both the transitive and
cancellation properties.

3.2 The transitive scheme
As we strive to explain recommendations deriving from a weighted
sum model, we can mechanize the transitive and cancellation prop-
erties under the form of derivation rules. For instance, we define
the binary transitive scheme (2 − 𝑡𝑟 ), allowing to chain preference
statements:

[(𝐴, 𝐵), (𝐵,𝐶)] 2−𝑡𝑟−−−−→ (𝐴,𝐶)

Following the approach we describe in Section 2, given an ex-
planandum in the form of a preference statement (𝐴, 𝐵) belonging
to ≿, an explanans is a proof consisting of recursive applications
of a derivation rule – for instance, 2-tr – allowing to derive the
conclusion (𝐴, 𝐵) from acceptable premises. Nevertheless, proofs
are recursive objects that can be cumbersome to compute or present
to an explainee, and we propose to alleviate this issue by introduc-
ing more powerful reasoning devices. Indeed, consider the case of
purely transitive reasoning: chaining transitive lemmas amounts to
consider chains of transitive premises. For instance, if we know that
𝐴 ≿ 𝐵, 𝐵 ≿ 𝐶, 𝐶 ≿ 𝐷 and 𝐷 ≿ 𝐸, we can infer that 𝐴 ≿ 𝐸, which
we denote (𝐴, 𝐵), (𝐵,𝐶), (𝐶, 𝐷), (𝐷, 𝐸) ⊢2−𝑡𝑟 (𝐴, 𝐸). We believe this
abundance of syntactic proofs not to be relevant to the question of
computing explanations, and we therefore propose to consider the
following transitive scheme (𝑡𝑟 ).

Definition 7 (transitive scheme (𝑡𝑟 )). The premise [(𝐴1, 𝐵1), . . .
(𝐴𝑘 , 𝐵𝑘 )] and conclusion (𝐴, 𝐵) satisfy the transitive scheme when,
for all 2 ≤ 𝑗 ≤ 𝑘 , 𝐴 𝑗 = 𝐵 𝑗−1, 𝐴1 = 𝐴 and 𝐵𝑘 = 𝐵.

Formally, ⊢2−𝑡𝑟 =
𝑡𝑟−−→ – what can be proven using the 2−𝑡𝑟 scheme

is exactly what can be derived in a single application of the 𝑡𝑟
scheme. We have traded the recursive nature of the proof using a
binary scheme for a one-shot derivation using a scheme operating
on a list of premises of unbounded length.



EXAMPLE 1. The premise [(acg,bef), (bef,bfg)] syntacti-
cally satisfies the transitive scheme for the conclusion (acg,bfg):

[(acg,bef), (bef,bfg)] 𝑡𝑟−−→ (acg,bfg)

which can be expressed as: “as soon as acg ≻ bef and bef ≻
bfg, acg should be preferred to bfg”. Note however that the first
comparative statement is complex as it involves six different criteria.

Note that the comparative statements composing the premise
of a transitive scheme are ordered, so the sequence of alternatives
𝐴 ≡ 𝐴0 ≿ 𝐵0 ≡ 𝐴1 ≿ · · · ≿ 𝐵𝑘−1 ≡ 𝐴𝑘 ≿ 𝐵𝑘 ≡ 𝐵 is non-increasing
w.r.t. preference.

OBSERVATION 1. If the preference ≿ is transitive, then the tran-
sitive scheme is correct w.r.t. ≿

EXAMPLE 2. In Example 1, the premise belongs to ≿, as for
(acg,bef) we have : 242 = 𝜔𝑎 + 𝜔𝑐 + 𝜔𝑔 > 𝜔𝑏 + 𝜔𝑒 + 𝜔 𝑓 = 219,
and for (bef,bfg): 219 = 𝜔𝑏 + 𝜔𝑒 + 𝜔 𝑓 > 𝜔𝑏 + 𝜔 𝑓 + 𝜔𝑔 = 204.
However if we use the premise [(acg,abc), (abc,bfg)], this latter
satisfies the transitive scheme but does not belong to ≿, since for
(acg,abc), we have: 242 = 𝜔𝑎 + 𝜔𝑐 + 𝜔𝑔 < 𝜔𝑎 + 𝜔𝑏 + 𝜔𝑐 = 331
(see the score function𝑤 in Sect.2).

3.3 The ceteris paribus scheme
The cancellation property allows to reason ceteris paribus – ev-
erything else being equal – independently from the context, and
represents a great opportunity in terms of explanation, as preference
can be deduced from comparative statements where common items
are not mentioned. It motivates the following definition of the ceteris
paribus argument scheme.

Definition 8 (ceteris paribus scheme (𝑐𝑝)). The premise
[(𝐴1, 𝐵1), . . . (𝐴𝑘 , 𝐵𝑘 )] and conclusion (𝐴, 𝐵) satisfy the ceteris
paribus scheme when 𝑘 = 1, 𝐴1 \ 𝐵1 = 𝐴 \ 𝐵 and 𝐵1 \ 𝐴1 = 𝐵 \ 𝐴.
In this case, the comparative statements (𝐴1, 𝐵1) and (𝐴, 𝐵) are said
to be congruent.

Obviously, congruence is an equivalence relation between compar-
ative statements. In the congruence class of a given compartive state-
ment (𝐴, 𝐵) ∈ 2[𝑚] ×2[𝑚] , the comparative statement (𝐴\𝐵, 𝐵 \𝐴),
where the states are pairwise disjoint and obtained from (𝐴, 𝐵) by
subtracting the common items 𝐴 ∩ 𝐵 respectively from 𝐴 and 𝐵,
is of special interest. When (𝐴, 𝐵) and (𝐴1, 𝐵1) are congruent, the
preference of𝐴 over 𝐵 translates to the preference of𝐴\𝐵 over 𝐵 \𝐴
by reasoning ‘everything else’ – in this case, items in 𝐴 ∩ 𝐵 – ‘being
equal’ (ceteris paribus), and then to the preference of 𝐴1 over 𝐵1 by
considering 𝐴1 ∩ 𝐵1 irrelevant.

EXAMPLE 3. When comparing acg to bfg, it might be war-
ranted to consider that, as they both achieve g, this criterion can
be omitted: ‘the first option is better than the second one because,
everything else being equal, ac is preferred to bf’.

Formally, we write [(ac, bf)]
𝑐𝑝
−−→ (acg,bfg)

OBSERVATION 2. If the preference ≿ satisfies cancellation then
the ceteris paribus scheme is correct w.r.t. ≿.

We shall often be presented with instances of the inverse problem:
given an initial state, is there a final state such that the compara-
tive statement from the initial to final state is congruent to a given
comparative statement?

LEMMA 1 (FOURTH CONGRUENT PROBLEM). Given a state
𝐴 ∈ 2[𝑚] and a comparative statement (𝐴′, 𝐵′) ∈ 2[𝑚] × 2[𝑚] , if
𝐴 ⊇ (𝐴′ \ 𝐵′) and 𝐴 ∩ (𝐵′ \𝐴′) = ∅ then there is exactly one state
𝐵 ∈ 2[𝑚] such that (𝐴, 𝐵) and (𝐴′, 𝐵′) are congruent, given by
𝐵 = 𝐴 \ (𝐴′ \ 𝐵′) ∪ (𝐵′ \𝐴′), else there is none.

EXAMPLE 4. Consider the comparative statement (ade,bce).
The set of comparative statements congruent to it is: {(ad, bc),
(adf, bcf), (adg, bcg), (adef, bcef), (adeg, bceg), (adfg,
bcfg), (adefg, bcefg)}. The initial states {ad, ade, adf, adg,
adef, adeg, adfg, adefg} are exactly the supersets of ad that
do not contain bc, and for each one of them, there is only one match-
ing final state. This makes sense when the comparative statement
(ade,bce) is understood as ‘give ade, take bce’, from which e
can be omitted. Then, ad can only be effectively taken from a state
already containing it, and bc can only be effectively added to a state
not yet containing it.

3.4 The reduced transitive scheme
When preference satisfies both the transitive and cancellation prop-
erties, it is correct to use both the 𝑡𝑟 and 𝑐𝑝 schemes to derive new
comparative statements. Figure 1 illustrates such a proof.

(a,b)
𝑐𝑝
−−→ (acg,bcg)

(c,f)
𝑐𝑝
−−→ (bcg,bfg)

}
𝑡𝑟−→ (acg, bfg) 𝑐𝑝

−−→ (aceg, befg)

Figure 1: A proof of [(a,b), (c,f)] ⊢𝑐𝑝,𝑡𝑟 (aceg,befg)

For practical reasons, we want to streamline and mechanize this
reasoning pattern, by formalizing a scheme–called reduced transi-
tive (rt)–directly tying the premise [(a,b), (c,f)] to the conclusion
(aceg,befg) and leaving the intermediate steps unspecified2.

Definition 9 (reduced transitive scheme (𝑟𝑡)). The premise
[(𝐴1, 𝐵1), . . . , (𝐴𝑘 , 𝐵𝑘 )] and conclusion (𝐴, 𝐵) satisfy the reduced
transitive scheme when there exists (𝐴′

1, 𝐵
′
1), . . . , (𝐴

′
𝑘
, 𝐵′

𝑘
) and

(𝐴′, 𝐵′) such that:
∀𝑖 ∈ [𝑘] [(𝐴′

𝑖
, 𝐵′

𝑖
)]

𝑐𝑝
−−→ (𝐴𝑖 , 𝐵𝑖 );

[(𝐴′
1, 𝐵

′
1), . . . , (𝐴

′
𝑘
, 𝐵′

𝑘
)] 𝑡𝑟−−→ (𝐴′, 𝐵′); and

[(𝐴′, 𝐵′)]
𝑐𝑝
−−→ (𝐴, 𝐵) .

EXAMPLE 5. The proof depicted by Fig.1 can be read as follows:
“acg should be preferred to bcg, since everything else being

equal, a is preferred to b. Then bcg should be preferred to bfg,
since everything else being equal, c is preferred to f. Therefore acg
should be preferred to bfg.”

We denote:

[(a,b), (c,f)] 𝑟𝑡−−→ (aceg,befg)
2This amounts to allowing the 𝑡𝑟 scheme to operate on the quotient set of congruent
classes of comparative statements, instead of representative of those classes.



We can note that Definition 9 is inefficient, as the search space 
of sequences of comparisons of length 𝑘 is finite, but intractably 
large. The lack of specification can be overcome by reconstructing 
the missing intermediate steps, solving iteratively 𝑘 fourth congruent 
problems (see Lemma 1), which can be done in 𝑂 (𝑘𝑚2) time.

Moreover, the 𝑟𝑡 scheme fulfills i ts role by a llowing one-step 
derivation of proofs combining 𝑡𝑟 and 𝑐𝑝 derivations.

PROPOSITION 1. If the premises P =
⋃𝑛

𝑗=1 (𝐴 𝑗 , 𝐵 𝑗 ) allow to
prove the conclusion (𝐴, 𝐵) via the 𝑐𝑝 and 𝑡𝑟 schemes, then there
is a list [𝑃 ′1, . . . , 𝑃

′
𝑘
] of comparative statements of P such that

[𝑃 ′1, . . . , 𝑃
′
𝑘
] 𝑟𝑡−−→ (𝐴, 𝐵).

PROOF. By construction, the 𝑟𝑡 schemes subsumes the 𝑡𝑟 and 𝑐𝑝
schemes (so ⊢𝑡𝑟,𝑐𝑝⊂⊢𝑟𝑡 ), and particularizes a proof combining 𝑡𝑟 and
𝑐𝑝 derivations (so ⊢𝑡𝑟,𝑐𝑝⊃⊢𝑟𝑡 ). Moreover, chaining 𝑟𝑡 derivations is

useless, because if 𝐿1
𝑟𝑡−−→ (𝐴, 𝐵) and 𝐿2

𝑟𝑡−−→ (𝐵,𝐶), then 𝐿1&𝐿2
𝑟𝑡−−→

(𝐴,𝐶), where & is list concatenation. Therefore, ⊢𝑟𝑡=
𝑟𝑡−−→. □

3.5 The decomposition scheme
Introduced in [2] and implementing cancellation properties of higher
order, the decomposition scheme aims at leveraging the assumed
additive property of the preference relation3. When preference is
additive, preference statements translate into linear comparisons,
that can be summed up. Then, the scores of items appearing on both
sides cancel out, sometimes allowing to derive new comparisons.

Definition 10 (decomposition scheme (𝑑𝑒𝑐)). A premise [(𝐴1, 𝐵1),
. . . , (𝐴𝑘 , 𝐵𝑘 )] and a conclusion (𝐴, 𝐵) satisfy the decomposition
scheme when each comparative statement (𝐴𝑖 , 𝐵𝑖 ) is disjoint and,
for all items 𝑗 ∈ 𝐴 \ 𝐵, there are as many occurrences of 𝑗 in the sets
𝐴1, . . . , 𝐴𝑘 as there are in the sets 𝐵1, . . . , 𝐵𝑘 plus one; for all items
𝑗 ∈ 𝐵 \𝐴, there are as many occurrences of 𝑗 in the sets 𝐵1, . . . , 𝐵𝑘 as
there are in the sets 𝐴1, . . . , 𝐴𝑘 plus one; and for any item 𝑗 neither
in 𝐴 nor 𝐵, or both in 𝐴 and 𝐵, there are as many occurrences of 𝑗 in
the sets 𝐴1, . . . , 𝐴𝑘 as there are in the sets 𝐵1, . . . , 𝐵𝑘 , i.e. ∀ 𝑗 ∈ [𝑚]

𝑘∑︁
𝑖=1

|𝐴𝑖 ∩ { 𝑗}| + |𝐵 ∩ { 𝑗}| =
𝑘∑︁
𝑖=1

|𝐵𝑖 ∩ { 𝑗}| + |𝐴 ∩ { 𝑗}|

PROPOSITION 2. If the preference ≿ is additive, then the decom-
position scheme is correct w.r.t. ≿.

EXAMPLE 6. Consider the following decomposition scheme:

[(bc,de), (efg,ac)] 𝑑𝑒𝑐−−−→ (bfg,ad)
Assuming that the preference ≿ is additive, and that both bc ≿

de and efg ≿ ac. From the first comparison, we deduce that
𝜔b +𝜔c ≥ 𝜔d +𝜔e; from the second that 𝜔e +𝜔f +𝜔g ≥ 𝜔a +𝜔c.
By summation, we derive𝜔e+𝜔f+𝜔g+𝜔b+𝜔c ≥ 𝜔d+𝜔e+𝜔a+𝜔c.

Then, as it is illustrated by Fig. 2 by cancelling 𝜔e and 𝜔c on
both sides (this is actually an instance of second order cancellation,

3This decomposition scheme is less general than the so-called syntactic cancellative
scheme described in [2], as it does not allow for repetition of the conclusion. This has
been shown to reduce expressiveness.

because it is performed across two comparative statements), we
obtain 𝜔f + 𝜔g + 𝜔b ≥ 𝜔d + 𝜔a, hence bfg ≻𝜔 ad.

b �c ≻ d �e

�e f g ≻ a �c

b f g ≻ a d

Figure 2: Decomposition scheme: graphical representation

The decomposition scheme strictly generalizes the schemes intro-
duced previously.

PROPOSITION 3. If a premise [(𝐴1, 𝐵1), . . . , (𝐴𝑘 , 𝐵𝑘 )] and a con-
clusion (𝐴, 𝐵) satisfy the transitive or reduced transitive scheme,
then they satisfy the decomposition scheme.

We note that the decomposition scheme is commutative by con-
struction. Nevertheless, it does not seem very satisfying as an expla-
nation device, as the cancellation properties of higher order it enacts
are complex and of low normative appeal–actually, even though they
are syntactically transductive, their justification derives from the
additive form we strive to circumvent.

In general, instances of the decomposition scheme do not sat-
isfy the reduced transitive scheme. The sequence of comparative
statements of the premise can not be interpreted as ceteris paribus
justifications of comparative statements between states, because at
some point, they either require to add an item to a state where it is
already present, or to remove an item from a state where it is absent.

EXAMPLE 7. The premise [(bc,de), (efg,ac)] and the con-
clusion (bfg,ad) satisfy the decomposition scheme, but they cannot
be interpreted as a sequence of comparative statements because e.g.
the initial state of the conclusion bfg does not contain c.

This situation can be avoided when the states mentioned in the
premise are all pairwise disjoint.

PROPOSITION 4. Let [(𝐴1, 𝐵1), . . . , (𝐴𝑘 , 𝐵𝑘 )] a premise and
(𝐴, 𝐵) a conclusion satisfying the decomposition scheme. Ev-
ery permutation 𝜎 of the indices [𝑘] makes the premise
[(𝐴𝜎 (1) , 𝐵𝜎 (1) ), . . . , (𝐴𝜎 (𝑘 ) , 𝐵𝜎 (𝑘 ) )] and conclusion (𝐴, 𝐵) sat-
isfy the reduced transitive scheme if, and only if, the states
𝐴1, . . . , 𝐴𝑘 , 𝐵1, . . . , 𝐵𝑘 are pairwise disjoint.

PROOF. (Sketch) (⇐) When all the states 𝐴1, . . . , 𝐴𝑘 , 𝐵1, . . . , 𝐵𝑘
are pairwise disjoint, each item of 𝐴 \ 𝐵 appears exactly once in the
𝐵𝑖 and never in the 𝐴𝑖 , each item of 𝐵 \ 𝐴 appears exactly once in
the 𝐴𝑖 and never in the 𝐵𝑖 , and items in both sets or neither never
appear (incidentally making the transaction III (see Definition 2)).
Consequently, items of the set

⋃𝑘
𝑖=1𝐴𝑖 can be removed in any order

from 𝐴 and those in the set
⋃𝑘

𝑖=1 𝐵𝑖 can be added in any order, so as
to accrue to 𝐵. □

This motivates the definition of the covering scheme.



3.6 The covering scheme
In this scheme a list of comparative statements [(𝐴1, 𝐵1), . . . , (𝐴𝑘 , 𝐵𝑘 )]
supports a conclusion (𝐴, 𝐵) if, and only if, the pros 𝐴1, . . . , 𝐴𝑘 par-
tition 𝐴 \ 𝐵 and the cons 𝐵1, . . . , 𝐵𝑘 partition 𝐵 \𝐴.

Definition 11 (covering scheme (𝑐𝑜𝑣)). An instance of the covering
scheme is an instance of the decomposing scheme where all the
states 𝐴1, . . . , 𝐴𝑘 , 𝐵1, . . . , 𝐵𝑘 are pairwise disjoint.

The covering scheme is commutative and independent of irrele-
vant items by construction. It particularizes the reduced transitive
schemes – while circumventing the tedious scheduling of compara-
tive statements – and, as a corollary, it is correct under much milder
conditions than the decomposition scheme.

PROPOSITION 5. If the preference ≿ is transitive and satisfies
cancellation, then the covering scheme is correct w.r.t. ≿.

The covering scheme describes exactly the moral algebra intro-
duced by Benjamin Franklin (see [21]) to infer preferences.

EXAMPLE 8. Consider the conclusion: (bfg,cde). The premise
[(fg,c), (b,de)] constitute a covering scheme:

[(fg,c), (b,de)] 𝑐𝑜𝑣−−−→ (bfg,cde)

The covering scheme particularizes both the reduced transitive
scheme, and the decomposition scheme. As such, it gives us the
best of both world, in a sense. On the one hand, it formalizes a
proof, articulating transitive and ceteris paribus derivations, that can
be presented to the explainee as a diagram, such as in Fig. 3a, or
narratively such as in Fig. 3c (for hotel comparisons for instance).
On the other hand, the premises can be understood as grouping some
cons with some stronger pros, so as to “cover" the cons, and can be
presented visually to the explainee such as in Fig. 3b.

(a) Covering Scheme: proof diagram of Ex. 8

fg ≻ c
𝑐𝑝
−−→ bfg ≻ bc

b ≻ de
𝑐𝑝
−−→ bc ≻ cde

}
𝑡𝑟−→ bfg ≻ cde

(b) Covering Scheme: a visual representation of Ex.8

b
d

e

f

g
c

≿

≿

(c) Covering Scheme: a narrative representation of Ex.8
“As, all other things being equal, having free breakfast and wifi access
is preferred to having a swimming pool (fg,c), and being close to the
city is preferred than having a sports hall and a low tourist tax (b,de),
we get that (bfg,cde)”

Figure 3: Three representations of the Covering Scheme

Note also that a single covering scheme of length 𝑘 can be in-
terpreted as 𝑘! transitive schemes, as the validity of its premises

does not depend on their order. Hence, for instance for our Ex. 8,
two transitive schemes would correspond to this covering scheme:
[(bfg,cdfg), (cdfg,cde)] or [(bfg,be), (be,cde)]

We presented in this section different types of schemes represent-
ing different way of reasoning over preferences. We believe that
these schemes may correspond to alternative explanation strategies.

One can note that it exist a logical dependency between the
premises and conclusions satisfying the various schemes. Indeed,
all instances satisfying the 𝑐𝑜𝑣 scheme satisfy the 𝑟𝑡 scheme, and
the ones satisfying the latter satisfy the 𝑑𝑒𝑐 scheme (the converse
is not true). This has an obvious consequence on the explainabilty
relations: more general implies more explicative. Moreover, the con-
clusions of the 𝑡𝑟 scheme can all be obtained via the 𝑟𝑡 scheme, and
those of the 𝑐𝑝 via the 𝑑𝑒𝑐, 𝑟𝑡 or 𝑐𝑜𝑣 schemes.

4 EXPLAINING WITH SCHEMES
Section 3 was about engineering a deductive tool allowing to derive
complex preferences from simpler one, in a correct manner with
respect to the latent preference model. Given an explanans–a com-
parative statement that needs to be explained–it allows us to cast the
explanation problem as an abduction problem of finding premises
that satisfy some minimality requirement given a conclusion and
a set of rules. We now investigate the relative expressiveness and
computational complexity of explaining with the 𝑟𝑡–see Def. 9–and
𝑐𝑜𝑣–see Def. 11–schemes, together with the influence of the choice
of the atomically simple statements.

From now on, we denote as E(𝑠,A≿, 𝑘) the set of pairs (𝐴, 𝐵) that
can be derived using the scheme 𝑠 from statements respecting the
syntactic constraints of A, the semantic constraint of being coherent
with ≿, and involving at most 𝑘 premises. For a given pair (𝐴, 𝐵) the
explanation existence problem asks whether (𝐴, 𝐵) ∈ E(𝑠,A≿, 𝑘).
By convention, this pair (𝐴, 𝐵) is considered not self-evident.

4.1 Solving Explanation Problems with Schemes
As we have seen in the previous section, when preference is ad-
ditive, all our reasoning schemes in {transitive, ceteris paribus,
reduced transitive, decomposition, covering} are correct. However,
we cannot expect them to be complete, even without any syntactic
restriction on A: when states 𝐴 ≻ 𝐵 are adjacent in the preference
relation ≿, i.e. when there is no other state 𝑋 s.t. 𝐴 ≻ 𝑋 ≻ 𝐵, (𝐴, 𝐵)
are said to be a critical pair, see [9]. But this means in turn that the
conclusion (𝐴, 𝐵) cannot be obtained with the 𝑟𝑡 scheme–even less
so by the 𝑐𝑜𝑣 and the 𝑡𝑟 schemes. These critical pairs are thus not
explainable with these schemes (see Ex.9).

EXAMPLE 9. The conclusion (bcd,aefg) is a critical pair. In-
deed, 𝜔b + 𝜔c + 𝜔d = 262, 𝜔a + 𝜔e + 𝜔f + 𝜔g = 258, and it is not
possible to exhibit another state from 2[𝑚] with a score ∈]258, 262[.

On the other hand, as soon as a pair is not critical, and provided
that A does not put any syntactic constraint on the statements used,
there must exist at least one explanation with schemes 𝑡𝑟 and 𝑟𝑡 .
This means that the complexity of deciding the existence of an
explanation for these schemes is directly related to that of deciding
whether a pair is critical. We show that this problem is difficult.
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THEOREM 1. Given 𝜔 ∈ N , and 𝐴, 𝐵 ∈ 2[𝑚] such that 𝐴 ≿ 𝐵 
where ≿ the additive preference relation induced from 𝜔 . Deciding 
whether (𝐴, 𝐵) is a critical pair is Co-NP-complete.

PROOF. Reduction from SUBSET-SUM [10]. In SUBSET-SUM we 
are given a set 𝐴 of size 𝑚 a positive size 𝑤 (𝑎), for each 𝑎 ∈ 𝐴, and a 
positive integer 𝐾 . We ask whether there is a subset 𝐴′ ⊆ 𝐴 such that 
the sum of the weights is exactly 𝐾 . This problem is known to be 
NP-complete. We construct an instance of the critical pair problem 
as follows. We take a set 𝐶 of 𝑚 + 2 criteria: for each element 𝑎𝑖 ∈ 𝐴, 
we take a criteria 𝑐𝑖 , of weight 2𝑠 (𝑎𝑖 ). We add two other criteria: 𝑎𝑛+1 
of weight 2𝐾 −1, and 𝑎𝑛+2, of weight 2𝐾 +1. We ask whether the pair 
(𝑋, 𝑌 ) is critical, where 𝑋 = ⟨0, . . . , 1, 0⟩ and 𝑌 = ⟨0, . . . 1⟩. Note 
that 𝑋 and 𝑌 have respective weights of 2𝐾 − 1 and 2𝐾 + 1, hence we 
are looking for an intermediate alternative of weight exactly 2𝐾 , an 
even number. We claim that the answer to this question is no iff the 
original SUBSET-SUM problem is a yes-instance. To see this, observe 
that all the weights in our critical pair instance are even, except that
of 𝑐𝑛+1 and 𝑐𝑛+2 which are odd. As 𝑠 (𝑐𝑛+2) > 2𝐾 , it certainly cannot 
be part of the solution. Furthermore, the solution cannot include 𝑐𝑛+1, 
as in that case it would be the only odd weight, and then the sum 
would be odd. We are left with criteria 𝑐1, . . . 𝑐𝑛 , whose weights are 
precisely twice the weight in the original SUBSET-SUM problem. □

As a corollary, it is difficult to decide whether an explanation 
exists with these schemes.

COROLLARY 1. Given 𝜔 ∈ N 𝐴, 𝐵 ∈ 2[𝑚] such that 𝐴 ≿ 𝐵, 
where ≿ is the additive preference relation induced from 𝜔 , and 
A the set of statements Δ(𝑚, 𝑚). Deciding whether (𝐴, 𝐵) ∈ 
E(𝑠, A≿, +∞) is NP-complete for 𝑠 ∈ {𝑟𝑡, 𝑡𝑟 }.

For our scheme of choice 𝑐𝑜𝑣 , we can prove intractability through 
an independent proof.

THEOREM 2. Given 𝜔 ∈ N , 𝐴, 𝐵 ∈ 2[𝑚] such that 𝐴 ≿ 𝐵 where 
≿ is the additive preference relation induced from 𝜔 and A the set 
of statements Δ(𝑚, 𝑚). Deciding whether (𝐴, 𝐵) ∈ E(𝑐𝑜𝑣, A≿, +∞) 
is NP-complete.

4.2 Explaining with Atomic Statements
We now turn our attention towards explanations which put 
syntactic restrictions on the sets of atomic elements used, namely 
Δ(1, 1), Δ(1, 𝑚), and Δ(𝑚, 1) (see Sect.2).

THEOREM 3. When ≿ is additive, E(𝑐𝑜𝑣, A≿, ∞) is transitive 
when A≿ ∈ {Δ(1, 1), Δ(1, 𝑚), Δ(𝑚, 1)}.

PROOF. Suppose [(𝐴1, 𝐵1), . . . , (𝐴𝑘 , 𝐵𝑘 )]
𝑐𝑜𝑣−−−→ (𝐴, 𝐵)

and [(𝐴′
1, 𝐵

′
1), . . . , (𝐴

′
𝑘
, 𝐵′

𝑘
)] 𝑐𝑜𝑣−−−→ (𝐵,𝐶). We show the

conclusion (𝐴,𝐶) is yielded by applying the cover-
ing scheme to some premise. It is easy to check that

[(𝐴1, 𝐵1), . . . , (𝐴𝑘 , 𝐵𝑘 ), (𝐴′
1, 𝐵

′
1), . . . , (𝐴

′
𝑘
, 𝐵′

𝑘
)] 𝑑𝑒𝑐−−−→ (𝐴,𝐶),

and we only need to prove the sets 𝐴1,. . . , 𝐴𝑘 , 𝐴′
1, . . . , 𝐴′

𝑘 ′ , 𝐵1,. . . ,
𝐵𝑘 , 𝐵′1, . . . , 𝐵′

𝑘 ′ are pairwise disjoint. We already know that the
⟨𝐴𝑖 , 𝐵𝑖 ⟩ and the ⟨𝐴𝑖′ , 𝐵𝑖′ ⟩ are pairwise disjoint. Moreover, the𝐴𝑖 are
contained in 𝐴 \ 𝐵 while the 𝐴′

𝑖′ are in 𝐵 \𝐶, so they do not intersect
(same for the 𝐵𝑖 and 𝐵′

𝑖′ ). The only intersections left to consider are

𝐴𝑖 ∩ 𝐵′𝑖′ and 𝐵𝑖 ∩𝐴′
𝑖′ . Suppose w.l.o.g. 𝐴𝑖 ∩ 𝐵′𝑖′ ≠ ∅. Because of the

syntactic constraints A we consider, this intersection is a singleton
{ 𝑗}. We delete the comparative statements (𝐴𝑖 , 𝐵𝑖 ) and (𝐴′

𝑖′ , 𝐵
′
𝑖′ )

from the premise, and replace them with the comparative statement
(𝐴𝑖 ∪𝐴′

𝑖′ \ { 𝑗}, 𝐵𝑖 ∪ 𝐵
′
𝑖′ \ { 𝑗}). This comparative statement belongs

to A, and also to ≿ because it is additive (by summation of the
inequalities characterizing 𝐴𝑖 ≿ 𝐵𝑖 and 𝐴′

𝑖′ ≿ 𝐵
′
𝑖′ and cancellation

of the terms 𝜔 𝑗 appearing on both sides). By iterating this operation,
we obtain a covering scheme supporting (𝐴,𝐶) of size no greater
than 𝑘 + 𝑘′. □

As a corollary, when restricting the atoms to mention solely one
pro vs any number of cons (resp. any number of pros vs one con),
the 𝑟𝑡 scheme is not more expressive than the 𝑐𝑜𝑣 one. This is not
the case when we allow to mix these atoms (as illustrated by Ex. 10).

EXAMPLE 10. The premise [(b,ge), (fg,c)] and the conclu-
sion (bf,ce) satisfy the 𝑟𝑡 scheme (as it is illustrated in the fig-
ure below). However, this is not the case for the cov scheme as
𝜔 𝑓 < 𝜔𝑐 + 𝜔𝑒 and 𝜔𝑏 < 𝜔𝑐 + 𝜔𝑒

(b,eg)
𝑐𝑝
−−→ (bf,efg)

(fg,c)
𝑐𝑝
−−→ (efg,ce)

}
𝑡𝑟−→ (bf, ce)

PROPOSITION 6. For any positive integer 𝑘 , when A ∈ {Δ(1, 1),
Δ(1,𝑚), Δ(𝑚, 1)} and ≿ is additive, E(𝑟𝑡,A≿, 𝑘) = E(𝑐𝑜𝑣,A≿, 𝑘) .

One may wonder whether these atomic statements make the prob-
lem computationally simpler to handle. While the answer is known
to be positive for A = Δ(1, 1) [1], we show that from 𝑘 ≥ 2 the
problem is difficult.

THEOREM 4. Given 𝜔 ∈ N𝑚0 𝐴, 𝐵 ∈ 2[𝑚] such that 𝐴 ≿ 𝐵

where ≿ is the additive preference relation induced from 𝜔 , and A =

Δ(1, 𝑘). When 𝑘 ≥ 2, deciding whether (𝐴, 𝐵) ∈ E(𝑐𝑜𝑣,A≿, +∞) is
NP-complete.

When using the 𝑐𝑜𝑣 scheme, the length of explanations is bounded
by the number𝑚 of items. There are thus a range of values of𝑚 for
which finding an explanation might prove too difficult for a human,
but can be easily achieved by a machine, either with a solver or even
by brute force. This is a plea for the use of artificial explainers.

5 EMPIRICAL COMPLETENESS OF THE
COVERING SCHEME

The results of Section 4 establish that the sets of atomic statements
Δ(1,𝑚) or Δ(𝑚, 1) using the cov scheme discharge us from the task
of sequencing the explanations. Of course, this comes at a price, as
some pairs which may be explained otherwise may not be explained
with these statements. This section provides insights regarding the
“empirical completeness” of the 𝑐𝑜𝑣 scheme with such statements.

In general, given an additive preference relation, noted R, the
set AR of comparative statements that can be used as a premise
for explaining the conclusion (𝐴, 𝐵) such that (𝐴, 𝐵) ∈ R and
(𝐴, 𝐵) ∉ AR is the following:

AR = [Δ(1,𝑚) ∪ Δ(𝑚, 1)] ∩ R



In our context, we consider preference relations over states that
are representable by additive linear order on the algebra of subsets
of a finite set (see [9]). We assume the following ordering over the
singleton states: a ≻ b ≻ c ≻ d ≻ e ≻ f ≻ . . .. Thus, we denote by
𝑇𝑚≻ = {(𝐴, 𝐵) ∈ 2[𝑚] × 2[𝑚] : 𝐴 ≻ 𝐵 and𝐴 ∩ 𝐵 = ∅}, and we have
A≻ ⊆ 𝑇𝑚≻ .

The number of additive linear orders on 2[𝑚] grows very quickly
[9, 15]. It corresponds to 14 for 𝑚 = 4, but for 𝑚 = 7 we already
have more than 200 million orders. Technically, we have been able
to generate all additive linear orders for𝑚 ∈ [[4; 6]]. Thus, to decide
whether (𝐴, 𝐵) ∈ E(𝑐𝑜𝑣,A≻ ,∞), we used a Mixed Integer Linear
Program solver. Finally, to evaluate the proportions of pairs𝑇𝑚≻ \A≻
which are explainable, we compute for each additive linear order ≻
given𝑚, the following value

𝔐𝑚, ≻ =
|E(𝑐𝑜𝑣,A≻ ,∞) ∩ 𝑇𝑚≻ \A≻ |

|𝑇𝑚≻ \A≻ |

𝑚 Minimum Median Maximum |𝑇𝑚≻ \A≻ |
4 66.7% 66.7% 100% 3
5 72.0% 80.0% 100% 25
6 78.46% 84.62% 100% 130

Table 1: 𝔐𝑚, ≻ for𝑚 ∈ [[4; 6]] ∀ ≻

Table 1 summarizes the minimum, median and maximum values
obtained over the, respectively, 14, 516, and 124187 additive linear
orders (for𝑚 = 4, 5, 6). We notice that both the minimum and the
median values of 𝔐𝑚, ≻ increases with𝑚. Regarding the maximum
values, we note that there are all equal to 100% which means that for
all𝑚 ∈ [[4; 6]], there exists at least one additive linear order ≻ for
which all pairs of states are explainable.

Looking more globally at the set of values in the Table 1, we can
say that a significant majority of the pairs of𝑇𝑚≻ \A≻ are explainable.
For example, for𝑚 = 6, more than 3 pairs out of 4 are explainable
regardless of the additive linear order considered.

Of course, the explainability of an arbitrary couple (𝐴, 𝐵) depends
of its characteristics w.r.t the ranking of the criteria which compose
them in the ordering over the singleton states. For example, couples
as (ac, bd) will always be explainable since a ≻ b and c ≻ d.
However, it will be more difficult to decide for pairs like (ad, bc)
or (ae, bcd) or (bde, acf).

6 RELATED WORK AND CONCLUSION
Recently, [16] have explored explanations in the context of decision
of linear classifiers. They focus on PI-explanations (or sufficient
reasons), that is, explanations providing reasons sufficient to explain
a given decision, regardless of the value of other criteria [7, 8], a
strategy of explanation different from ours as mentioned in the intro-
duction. Our view of explanations as cognitively bounded deductive
proofs is reminiscent of the bounded proof systems proposed in the
context of description logic [12]. Also, a similar step-wise approach
has been studied in the context of constraint satisfaction problems
[3]. Finally, explanations based on axioms has been advocated in
computational social choice [5, 19]. In particular, the recent work

of [4] also exploits axioms studied in voting theory to produce ex-
planations for collective decisions, but applied to a different setting
(voting), and using different proof techniques (tableau methods).

We propose a framework to explain comparisons stemming from
an additive model. The framework comes with different schemes
for reasoning with preferences, and we focus on a specific one: the
covering scheme. Moreover, for cognitive purposes, we propose to
restrict explanations to sets of atomic elements which prefer a pro
over a group of cons, or a group of pros over a single con. The
covering-based explanation engine with restricted sets of atomic
elements is not complete, but empirical investigations show that
explanations can be computed in a large proportion of cases.

Moreover, providing an argument scheme along with the result of
a comparative statement opens the possibility to discuss or challenge
this result. This is made possible through what is called critical
questions [20], a tool associated with argument schemes representing
attacks or criticisms that, if not answered adequately, falsify the
argument fitting the scheme. This naturally leads to the long-term
perspective of the interactive nature of the explanation process: these
schemes should be integrated into a dialectical process, whereby
the end-user should be able to contest [18], while on the other hand
the system should gain knowledge about the preferences of the user
through an indirect elicitation process [14]. Smoothly interleaving
explanation and recommendation calls for designing mixed initiative
systems [13] where the user may be active in challenging the system,
and the system adaptive in its responses.
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