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In this paper, exact controllability problem for a Rayleigh beam with piezoelectric actuator is considered. Controllability results show that the space of controllable initial data depends on the regularity of the control function and the location of the actuator. Two different spaces of control function, L 2 (0, T ) and (H 1 (0, T )) ′ , correspond to two different controllability properties, L 2 -controllability and (H 1 ) ′ -controllability, respectively. The approach to prove controllability results is based on the Hilbert Uniqueness Method. Some non-controllability results are also obtained. In particular, non-controllability in short control time is studied by using Riesz basis property of exponential family in L 2 (0, T ). Finally, minimal control time for the exact controllability is obtained.

Introduction and main results

History and problem statement

In recent decades, there have been a large number of papers concerning the study of flexible structures. Three main directions of research can be considered: the modelling problem, the controllability problem and the stabilization problem. Modelling a flexible structure as a beam equation or a plate equation is an essential research field. In [START_REF] Han | Dynamics of transversely vibrating beams using four engineering theories[END_REF], four types of models for the transversely vibrating uniform beam, i.e., the Euler-Bernoulli beam, Rayleigh beam, shear beam and Timoshenko beam, were summarized and analysed. In the past few decades, the study of elastic structures with a piezoelectric actuator or sensor has gained a lot of attention. See [START_REF] Crawley | Detailed models of piezoceramic actuation of beams[END_REF][START_REF] Ph | Theoretical, numerical and experimental discussion on the use of piezoelectric devices for control-structure interaction[END_REF] for a PDE modelling elastic structures with a piezoelectric actuator or sensor.

Concerning controllability for PDEs, boundary controllability for wave equation and plate equation was studied in [START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF] using the Hilbert Uniqueness Method (HUM). There were plenty of works on controllability for beam and plate based on HUM. In [START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF][START_REF] Lagnese | Modelling analysis and control of thin plates[END_REF], boundary controllability for Kirchhoff plate equation was fully investigated. Exact controllability was obtained in sufficient large control time with a single boundary control (active on a sufficiently large portion of the boundary) in the case of clamped boundary conditions. As for beam equation, exact controllability for Euler-Bernoulli beam hinged at both ends with piezoelectric actuator was firstly considered in [START_REF] Tucsnak | Regularity and exact controllability for a beam with piezoelectric actuator[END_REF]. Since the space dimension is one, Fourier series was used in [START_REF] Tucsnak | Regularity and exact controllability for a beam with piezoelectric actuator[END_REF]. Then [START_REF] Crépeau | Control of a clamped-free beam by a piezoelectric actuator[END_REF] studied the exact controllability for the same beam equation with piezoelectric actuator in a different physical configuration: the clamped-free boundary conditions, i.e. a beam clamped at one end and free at the other end. In [START_REF] Özkan Özer | Exact controllability of a Rayleigh beam with a single boundary control[END_REF], Ingham inequality (see [START_REF] Baiocchi | Ingham type theorems and applications to control theory[END_REF][START_REF] Ingham | Some trigonometrical inequalities with applications to the theory of series[END_REF]) was used to obtain the exact controllability for Rayleigh beam equation with a single boundary control among four different boundary conditions.

In this paper, we consider the control problem modelling the transverse deflection of a Rayleigh beam which is subject to the action of an attached piezoelectric actuator. Assuming that the beam is hinged at both ends, the equation of Rayleigh beam can be written as (see, for instance, [START_REF] Crawley | Detailed models of piezoceramic actuation of beams[END_REF][START_REF] Ph | Theoretical, numerical and experimental discussion on the use of piezoelectric devices for control-structure interaction[END_REF]), for (x, t) in (0, π) × (0, +∞),

w tt (x, t) -αw xxtt (x, t) + w xxxx (x, t) = u(t) d dx [δ η (x) -δ ξ (x)], (1.1a) 
w(0, t) = w(π, t) = w xx (0, t) = w xx (π, t) = 0, (1.1b) w(x, 0) = w 0 (x), w t (x, 0) = w 1 (x).

(1.1c)

In the equations above w represents the transverse deflection of the beam, α > 0 is a physical constant, ξ and η stand for the ends of the actuator (0 < ξ < η < π), and δ y is the Dirac mass at the point y. The control is given by the function u : [0, T ] → R standing for the time variation of the voltage applied to the actuator. Our main purpose is to find the initial data that can be steered to rest by means of the control function u. To give the precise definitions of exact controllability, let us introduce for any ω in R the functional space Y ω as follows. Let Y 0 = L 2 (0, π). For ω > 0, let Y ω be the closure in H ω (0, π) of the set of y in C ∞ ([0, π]) satisfying the conditions y (2n) (0) = y (2n) (π) = 0 ∀n ≥ 0.

(1.2)

For ω < 0, let Y ω be the dual space of Y -ω with respect to the space Y 0 . Then we give the precise definitions.

Definition 1.1. The initial data (w 0 , w 1 ) in Y 2 × Y 1 is exactly L 2 -controllable in (ξ, η) at time T if there exists u in L 2 (0, T ) such that the solution w of (1.1) satisfies the condition w(•, T ) = w t (•, T ) = 0.

Definition 1.2. The initial data (w 0 , w 1 ) in Y 1 × Y 0 is exactly (H 1 ) ′ -controllable in (ξ, η) at time T if there exists u in (H 1 (0, T )) ′ such that the solution w of (1.1) satisfies the condition w(•, T ) = w t (•, T ) = 0.

Note that in Definitions 1.1 and 1.2, the spaces where the initial data (w 0 , w 1 ) can be taken depend on the wellposedness of (1.1) (see Section 3). In Definition 1.2, the space (H 1 (0, T )) ′ is the dual space of H 1 (0, T ) with respect to the space L 2 (0, T ). The study of controllability with less regular control function is inspired by [START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF] which studied the controllability of changing the norm for wave equation and plate equation. Note that the system (1.1) is a time-reversible linear system, so the exact controllability is equivalent to the null controllability (see Theorem 2.41 of [11, p. 55]).

The paper is organized as follows. In the remaining part of this section, we present the main results of the paper, i.e. controllability, non-controllability and minimal time for the exact controllability. In Section 2, we provide some preliminaries on the theory of Diophantine approximation and the Riesz basis property of exponential family. The well-posedness results for the control problem (1.1) are given in Section 3. The main results are proved in Section 4, respectively. Appendix A provides the proof of a technical lemma which is used in the proof of noncontrollability in short control time.

Controllability results

In order to state the exact controllability results, let ε > 0 and let the sets A ⊂ (0, 1) and B ε ⊂ (0, 1) be the sets defined in Section 2. From Section 2, the set A is uncountable and has zero Lebesgue measure and the Lebesgue measure of set B ε is 1.

Our exact controllability results are the following. 1. Suppose that η+ξ 2π and η-ξ 2π belong to the set A. Then all initial data in Y 3 × Y 2 are exactly (H 1 ) ′ -controllable in (ξ, η) at time T . 2. Suppose that η+ξ 2π and η-ξ 2π belong to the set B ε . Then all initial data in Y 3+2ε × Y 2+2ε are exactly (H 1 ) ′controllable in (ξ, η) at time T .

In Theorem 1.4, (H 1 (0, T )) ′ control function brings new difficulties to the problem. The well-posedness of (1.1) with (H 1 (0, T )) ′ control function need to be proven while the well-posedness of (1.1) with L 2 (0, T ) control function is a known result (see Section 3).

Theorems 1.3 and 1.4 give some sufficient conditions for exact controllability. All the results show the dependence of the space of exactly controllable initial data on the location of the actuator. The differences between Theorem 1.4 and Theorem 1.3 are the different spaces of the control function and the different spaces of the controllable initial data. In Theorem 1.4, the control function belongs to (H 1 (0, T )) ′ rather than L 2 (0, T ) and the space of the controllable initial data is larger than the space in Theorem 1.3 with the same choice of ξ and η. Roughly speaking, the larger (less regular) the space of control function is, the larger (less regular) the space of controllable initial data is. To the best knowledge of the authors, such a result has not been developed yet for beam equation with piezoelectric actuator or interior control.

Non-controllability results

After the controllability results, we show some noncontrollability results. In Section 4, from Propositions 4.1 and 4.4 and the solution (3.5) of the adjoint problem, we can see that condition

η -ξ 2π , η + ξ 2π ∈ R \ Q (1.3)
is necessary to have any exact controllability result. The first non-controllability result concerns the insufficiency of condition (1.3). Under condition (1.3), there exist ξ and η and initial condition of problem (1.1) such that no control can steer this initial condition to the equilibrium.

Theorem 1.5. 1. For any β ≥ -1, there exist ξ and η satisfying (1.3) such that for any T > 0, the space Y β+3 × Y β+2 contains some initial data that are not exactly L 2 -controllable in (ξ, η) at time T .

2.

For any β ≥ -2, there exist ξ and η satisfying (1.3) such that for any T > 0, the space Y β+3 × Y β+2 contains some initial data that are not exactly (H 1 ) ′controllable in (ξ, η) at time T .

Theorem 1.3 (resp. Theorem 1.4) gives no information on the exact L 2 -controllability (resp. exact (H 1 ) ′controllability) of initial data in Y β+3 × Y β+2 for β < 1 (resp. for β < 0). A partial answer is given by the following result.

Theorem 1.6. Let ε > 0, T > 0 and ξ, η in (0, π) be arbitrary.

1. The set Y 3-ε × Y 2-ε contains some initial data that are not exactly L 2 -controllable in (ξ, η) at time T . 2. The set Y 2-ε × Y 1-ε contains some initial data that are not exactly (H 1 ) ′ -controllable in (ξ, η) at time T .
Notice that all the exact controllability results in Theorems 1.3 and 1.4 require T > 2π √ α, however, in [START_REF] Tucsnak | Regularity and exact controllability for a beam with piezoelectric actuator[END_REF], the exact controllability results for Euler-Bernoulli beam have no requirement of control time. Consequently, a huge difference between Rayleigh beam and Euler-Bernoulli beam is revealed and the reason lies in various distributions of their eigenvalues. More precisely, under the same boundary condition (1.1b), the eigenvalues of Rayleigh beam equation are k 4 1+αk 2 for k in N * (see Section 3.1) while the eigenvalues of Euler-Bernoulli beam equation are k 4 for k in N * (see [START_REF] Tucsnak | Regularity and exact controllability for a beam with piezoelectric actuator[END_REF]). Roughly speaking, this fact implies that Rayleigh beam equation possesses finite propagation speed and that Euler-Bernoulli beam equation possesses infinite propagation speed. For this reason, all the exact controllability results for Rayleigh beam require T > 2π √ α while the exact controllability results for Euler-Bernoulli beam hold for all T > 0 (see [START_REF] Tucsnak | Regularity and exact controllability for a beam with piezoelectric actuator[END_REF]). Based on this fact, we give the non-controllability results for 0 < T < 2π √ α.

Theorem 1.7. Let 0 < T < 2π √ α and ξ, η in (0, π) be arbitrary. Notice that in Theorem 1.5, the lack of controllability holds for some special ξ and η which are related to the space of initial data. However, in Theorems 1.6 and 1.7, non-controllability holds for any ξ and η. From Theorem 1.7, we can see that T ≥ 2π √ α is necessary for exact controllability for Rayleigh beam equation. Therefore, minimal control time for the exact controllability is obtained. As far as we know, this is the first result stating a lack of controllability for Rayleigh beam in short control time.

Preliminaries

In this section, we provide some known results on the theory of Diophantine approximation (see [START_REF] Cassels | An introduction to Diophantine approximation[END_REF][START_REF] Lang | Introduction to Diophantine approximations, 2nd Edition[END_REF]) and the Riesz basis property of exponential family (see [START_REF] Avdonin | Families of exponentials[END_REF]).

For a real number ρ, we denote by ∥ρ∥ Z the difference, taken positively, between ρ and the nearest integer, i.e., ∥ρ∥ Z = min n∈Z |ρ -n|. Let us denote by A the set of all irrationals ρ in (0, 1) such that if [0, a 1 , . . . , a n . . . ] is the expansion of ρ as a continued fraction, then (a n ) is bounded. The set A is uncountable and its Lebesgue measure is equal to zero (see Theorem I of [13, p. 120]). The following property proven in Theorem 6 of [14, p. 23] is essential for this paper.

Proposition 2.1. A number ρ is in A if and only if there exists a constant C > 0 such that ∥qρ∥ Z ≥ C q (2.1)
for any strictly positive integer q.

The next proposition, which is proved in [13, p. 120], shows that an inequality slightly weaker than (2.1) holds for almost all points in (0, 1). Proposition 2.2. For any ε > 0, there exist a set B ε ⊂ (0, 1) having Lebesgue measure equal to 1 and a constant C > 0 such that for any ρ in B ε ,

∥qρ∥ Z ≥ C q 1+ε (2.2)
for any strictly positive integer q.

The following proposition on simultaneous approximation proven in Theorem VII of [13, p. 14] is useful to prove Theorem 1.6.

Proposition 2.3. Let ρ 1 , . . . , ρ k be k irrationals in (0, 1). Then there exists a strictly increasing sequence of natural numbers q n such that for all n ≥ 1,

q 1 k n max i=1,...,k (∥q n ρ 1 ∥ Z , . . . , ∥q n ρ i ∥ Z , . . . , ∥q n ρ k ∥ Z ) ≤ k k + 1 .
The next proposition proven in Theorem II.4.18 of [15, p. 109] on the Riesz basis property of exponential family in L 2 (0, T ) is essential to prove Theorem 1.7.

Proposition 2.4. Let {λ n } n∈Z be a sequence of complex numbers such that sup n∈Z |Imλ n | < ∞ and inf n̸ =m |λ m - λ n | > 0. Let N (x, r) := ♯{λ n |x ≤ Reλ n < x + r} for x in R and r > 0,
where ♯A is the number of elements in the set A. Assume that for some T > 0,

lim r→∞ N (x, r) r = T 2π
holds uniformly relative to all x in R. Then for any T ′ in (0, T ), {e iλnt } n∈Z contains a subfamily {e iλq n t } n∈Z that forms a Riesz basis in L 2 (0, T ′ ). Moreover, if {λ n } n∈Z is a sequence of real numbers such that λ n = -λ -n , the subsequence {λ qn } n∈Z satisfies λ qn = -λ q-n .

Well-posedness of (1.1)

In Section 3.1, we show the well-posedness result of system (1.1) with L 2 (0, T ) control function which has been proved in [START_REF] Weiss | Well-posed linear systems-a survey with emphasis on conservative systems[END_REF]. In Section 3.2, we prove the well-posedness and regularity results of system (1.1) with (H 1 (0, T )) ′ control function. The approach is inspired by [START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF].

3.1. Well-posedness of (1.1) with L 2 (0, T ) control function

We state the well-posedness result and show the proof here, because the process of the proof is also used in other sections.

Theorem 3.1. Suppose that (w 0 , w 1 ) belongs to Y 2 × Y 1 .
For any u in L 2 (0, T ) and for any ξ and η in (0, π), the initial and boundary value problem (1.1) admits a unique solution w having the regularity

w ∈ C([0, T ]; Y 2 ) ∩ C 1 ([0, T ]; Y 1 ). (3.1)
In order to prove Theorem 3.1, let us first consider the adjoint problem of (1.1) in (0, π) × (0, +∞),

ϕ tt (x, t) -αϕ xxtt (x, t) + ϕ xxxx (x, t) = 0, (3.2a) ϕ(0, t) = ϕ(π, t) = ϕ xx (0, t) = ϕ xx (π, t) = 0, (3.2b) ϕ(x, 0) = ϕ 0 (x), ϕ t (x, 0) = ϕ 1 (x). (3.2c) 
The next lemma proved in [START_REF] Weiss | Well-posed linear systems-a survey with emphasis on conservative systems[END_REF] provides the well-posedness of the adjoint problem (3.2) and some trace regularities needed in the proof of main results.

Lemma 3.2. For any initial data (ϕ 0 , ϕ 1 ) in Y 2 × Y 1 , there exists a unique weak solution ϕ of (3.2) in the class C([0, T ]; Y 2 )∩C 1 ([0, T ]; Y 1 ). Moreover, for any χ in (0, π), ϕ x (χ, •) belongs to H 1 (0, T ) and there exist C, C ′ > 0 such that

∥ϕ x (χ, •)∥ 2 H 1 (0,T ) ≤ C(∥ϕ 0 ∥ 2 H 2 (0,π) + ∥ϕ 1 ∥ 2 H 1 (0,π) ), (3.3) ∥ϕ x (χ, •)∥ 2 L 2 (0,T ) ≤ C ′ (∥ϕ 0 ∥ 2 H 1 (0,π) + ∥ϕ 1 ∥ 2 L 2 (0,π) ). (3.4)
Proof. It is easy to see, by the semigroup method, that the problem (3.2) is well-posed in the space Y 2 × Y 1 (see [17, p. 104]). Next we prove (3.3) and (3.4). Since the family of functions {x → sin(kx)} k∈N * is the orthogonal basis of Y 1 and Y 2 respectively, let ϕ 0 (x) = k≥1 a k sin(kx) and ϕ 1 (x) = k≥1 b k sin(kx) with (k 2 a k ) and (kb k ) in l 2 (R). By standard computation, we have

ϕ(x, t) = k≥1 a k cos k 2 √ 1 + αk 2 t + b k √ 1 + αk 2 k 2 sin k 2 √ 1 + αk 2 t sin(kx). (3.5)
Then for all T > 0, ϕ x (χ, •) belongs to H 1 (0, T ) and

T 0 |ϕ xt (χ, t)| 2 dx ≤ C k≥1 k 2 (a 2 k k 2 + b 2 k ),
which yields (3.3). And simultaneously we have

T 0 |ϕ x (χ, t)| 2 dx ≤ C ′ k≥1 (a 2 k k 2 + b 2 k ),
which clearly yields (3.4).

Proof of Theorem 3.1. Thanks to Lemma 3.2, the following backward adjoint problem in (0, π)×(0, τ

) is well-posed in Y 2 × Y 1 for every τ > 0 and g in Y 1 . v tt (x, t) -αv xxtt (x, t) + v xxxx (x, t) = 0, (3.6a) v(0, t) = v(π, t) = v xx (0, t) = v xx (π, t) = 0, (3.6b) v(x, τ ) = 0, v t (x, τ ) = g(x). (3.6c)
Moreover, for any χ in (0, π),

∥v x (χ, •)∥ L 2 (0,τ ) ≤ C∥g∥ Y0 . (3.7)
Since (1.1a) is linear and Lemma 3.2 holds, it is enough to consider the case w 0 = w 1 = 0. Suppose that g belongs to C ∞ 0 (0, π), and let v be the solution of (3.6). Define a linear operator L := I -α∂ xx . It is well-known that the operator L is an isomorphism from Y 2 to Y 0 and an isomorphism from Y 1 to Y -1 by Lax-Milgram Theorem. If we multiply (1.1a) by v and integrate by parts, we obtain

π 0 Lw(x, τ )g(x)dx = τ 0 u(t)(v x (η, t)-v x (ξ, t))dt. (3.8) Inequality (3.7) implies that τ 0 u(t)(v x (η, t) -v x (ξ, t))dt ≤ 2C∥u∥ L 2 (0,T ) ∥g∥ Y0 ,
so by (3.8), we obtain Lw(•, τ ) belongs to Y 0 , and hence w(•, τ ) belongs to Y 2 for all τ in [0, T ]. By replacing τ by τ + h in (3.8) we easily get that

w ∈ C([0, T ]; Y 2 ). (3.9) Denote R := (I -α∂ xx ) -1 . It follows from Lax-Milgram Theorem that the operator R is an isomorphism from Y -2
to Y 0 and an isomorphism from Y -1 to Y 1 . Applying R to both sides of (1.1a) yields

w tt (x, t)+Rw xxxx (x, t) = u(t)R d dx [δ η (x)-δ ξ (x)]. (3.10)
Regularity (3.9) implies that

Rw xxxx ∈ C([0, T ]; Y 0 ). (3.11)
As w satisfies (3.10) and dδ b dx belongs to Y -2 for all b in (0, π), we obtain from (3.11) that The conclusion (3.1) is now a consequence of (3.9) and (3.13) and of the general lifting result from [START_REF] Lasiecka | A lifting theorem for the time regularity of solutions to abstract equations with unbounded operators and applications to hyperbolic equations[END_REF].

w tt ∈ L 2 (0, T ; Y 0 ). ( 3 
3.2. Well-posedness of (1.1) with (H 1 (0, T )) ′ control function As the control function u belongs to (H 1 (0, T )) ′ , the dual space of H 1 (0, T ), we need to define the solution of (1.1) in the weak form. The next proposition gives a characterization of (H 1 (0, T )) ′ (see [20, p. 62]). Proposition 3.3. For every u in (H 1 (0, T )) ′ , there exist functions u 0 and u 1 in L 2 (0, T ) such that for all ϕ in H 1 (0, T ),

⟨u, ϕ⟩ (H 1 (0,T )) ′ ×H 1 (0,T ) = T 0 (u 0 ϕ + u 1 ϕ t )dt. (3.14) Moreover ∥u∥ (H 1 (0,T )) ′ = inf ∥(u 0 , u 1 )∥ (L 2 (0,T )) 2 = min ∥(u 0 , u 1 )∥ (L 2 (0,T )) 2 , (3.15) 
the infimum being taken over, and attained on the set of all (u 0 , u 1 ) in (L 2 (0, T )) 2 for which (3.14) holds for every ϕ in H 1 (0, T ). And the element (u 0 , u 1 ) in (L 2 (0, T )) 2 satisfying (3.14) and (3.15) is unique.

Note that u 0 and u 1 also define a distribution u in D ′ (0, T ) as u = u 0 -u 1,t . We know from [20, p. 63] that the element u of (H 1 (0, T )) ′ is an extension to H 1 (0, T ) of the distribution u.

Inspired by [START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF], we define the weak solution of (1.1) by transposition and prove the well-posedness. We explain the results in three steps.

1. We prove the well-posedness and the trace regularity of a non-homogeneous problem (3.16). 2. We define the weak solution of (1.1) by transposition using the solution of non-homogeneous problem (3.16). 3. We prove the well-posedness of (1.1) with the control function u in (H 1 (0, T )) ′ .

Step

1. Let {f, θ 0 , θ 1 } belong to L 1 (0, T ; Y -1 ) × Y 2 × Y 1 .
Let us consider the following backward non-homogeneous problem in (0, π) × (0, T ),

θ tt (x, t) -αθ xxtt (x, t) + θ xxxx (x, t) = f (x, t), (3.16a) θ(0, t) = θ(π, t) = θ xx (0, t) = θ xx (π, t) = 0, (3.16b) θ(x, T ) = θ 0 , θ t (x, T ) = θ 1 . (3.16c)
The following proposition provides the well-posedness and the trace regularity of (3.16). Our approach to prove this proposition is inspired by ideas and methods used in [START_REF] Weiss | Well-posed linear systems-a survey with emphasis on conservative systems[END_REF][START_REF] Ammari | Decay rates for a beam with pointwise force and moment feedback[END_REF].

Proposition 3.4. For any initial data (θ 0 , θ 1 ) in Y 2 × Y 1 and f in L 1 (0, T ; Y -1 ), there exists a unique weak solution θ of (3.16) in the class C([0, T ]; Y 2 )∩C 1 ([0, T ]; Y 1 ). Moreover, for any χ in (0, π), θ x (χ, •) belongs to H 1 (0, T ) and there exists C > 0 such that

∥θ x (χ, •)∥ H 1 (0,T ) ≤ C(∥θ 0 ∥ H 2 (0,π) + ∥θ 1 ∥ H 1 (0,π) + ∥f ∥ L 1 (0,T ;Y-1)
). (3.17)

Proof. Applying R to both sides of (3.16a), we obtain 

θ tt (x, t) + Rθ xxxx (x, t) = Rf (x, t). ( 3 
+ ∥θ 1 ∥ H 1 (0,π) + ∥f ∥ L 1 (0,T ;Y-1) ). (3.19)
Then we need to prove inequality (3.17). The following lemma proved in [START_REF] Weiss | Well-posed linear systems-a survey with emphasis on conservative systems[END_REF][START_REF] Ammari | Decay rates for a beam with pointwise force and moment feedback[END_REF] shows that the operator R∂ xxxx is "similar" to the elliptic operator

-1 α ∂ xx . Lemma 3.5. The linear operator L = -1 α ∂ xx -R∂ xxxx is bounded from Y 2 to Y 2 .
Using this lemma, we can reduce the proof of (3.17) to a regularity property for a string equation. We consider the initial value problem in (0, π) × (0, T ),

θ 1,tt (x, t) - 1 α θ 1,xx (x, t) = Rf (x, t), θ 1 (0, t) = θ 1 (π, t) = 0, θ 1 (x, T ) = θ 0 , θ 1,t (x, T ) = θ 1 .
The relations above imply that in (0, π)×(0, T ),

θ 2 = θ-θ 1 satisfies θ 2,tt (x, t) - 1 α θ 2,xx (x, t) = Lθ, θ 2 (0, t) = θ 2 (π, t) = 0, θ 2 (x, T ) = 0, θ 2,t (x, T ) = 0. Since θ belongs to C([0, T ]; Y 2 ) and L is bounded from Y 2 to Y 2 , Lθ belongs to C([0, T ]; Y 2 ).
Then by the classical theory for evolution equations of hyperbolic type (see [START_REF] Lasiecka | Nonhomogeneous boundary value problems for second order hyperbolic operators[END_REF]),

θ 2 belongs to C([0, T ]; H 3 (0, π)) ∩ C 1 ([0, T ]; H 2 (0, π)) and there exists a constant C 1 T > 0 such that ∥(θ 2 , θ 2,t )∥ C([0,T ];H 3 (0,π)×H 2 (0,π)) ≤ C 1 T ∥θ∥ C([0,T ];Y2
) . This inequality, combined with (3.19) and the standard trace theorem of hyperbolic equation, implies that there exists a constant C 2 T > 0 such that for any χ in (0, π),

∥θ 2,x (χ, •)∥ H 1 (0,T ) ≤ C 2 T (∥θ 0 ∥ H 2 (0,π) + ∥θ 1 ∥ H 1 (0,π) + ∥f ∥ L 1 (0,T ;Y-1) ). (3.20)
As for θ 1 , it is already proved by using multiplier methods in [START_REF] Fabre | Pointwise controllability as limit of internal controllability for the wave equation in one space dimension[END_REF] that there exists a constant C 3 T > 0 such that for any χ in (0, π),

∥θ 1,x (χ, •)∥ H 1 (0,T ) ≤ C 3 T (∥θ 0 ∥ H 2 (0,π) + ∥θ 1 ∥ H 1 (0,π) + ∥f ∥ L 1 (0,T ;Y-1) ). (3.21)
Then inequality (3.17) follows from (3.20) and (3.21).

Step 2. Now we give the definition of the weak solution of (1.1). Denote by X a Banach space consisting of θ, the solution of (3.16). And give X a natural Banach structure such that {f, θ 0 , θ 1 } → θ is an isomorphism from

L 1 (0, T ; Y -1 ) × Y 2 × Y 1 to X . From Proposition 3.4, X is contained in C([0, T ]; Y 2 ) ∩ C 1 ([0, T ]; Y 1
) and (3.17) holds for all θ in X and χ in (0, π).

Assume that {f, θ 0 , θ 1 } belongs to L 1 (0, T ;

Y -1 ) × Y 2 × Y 1 and that {u, w 0 , w 1 } belongs to L 2 (0, T ) × Y 2 × Y 1 .
Denote by θ the solution of (3.16) and by w the solution of (1.1) given by Theorem 3.1. Multiplying (1.1a) by θ and integrating by parts, we obtain

T 0 π 0 wf dxdt + π 0 [Lw t (T )θ 0 -Lw(T )θ 1 ]dx = - T 0 u(t)(θ x (η, t) -θ x (ξ, t))dt + π 0 [Lw 1 θ(0) -Lw 0 θ t (0)]dx.
Now relaxing the assumption of {u, w 0 , w 1 } belonging to L 2 (0, T )×Y 2 ×Y 1 to {u, w 0 , w 1 } belonging to (H 1 (0, T )) ′ × Y 1 × Y 0 and considering the integral T 0 u(t)(θ x (η, t)θ x (ξ, t))dt as the linear form between u and θ x (η, •)θ x (ξ, •), we obtain from (3.14) that there exist functions u 0 and u 1 in L 2 (0, T ) such that

T 0 π 0 wf dxdt + π 0 [Lw t (T )θ 0 -Lw(T )θ 1 ]dx = - T 0 [u 0 (t)(θ x (η, t) -θ x (ξ, t)) + u 1 (t)(θ xt (η, t) -θ xt (ξ, t))]dt + π 0 [Lw 1 θ(0) -Lw 0 θ t (0)]dx. (3.22)
Let (3.22) be the definition of weak solution. Definition 3.6. Let T > 0, u in (H 1 (0, T )) ′ and (w 0 , w 1 ) in Y 1 × Y 0 be given. A solution of the problem (1.1) is a function w in C([0, T ]; Y 1 ) such that for every {f, θ 0 , θ 1 

} in L 1 (0, T ; Y -1 ) × Y 2 × Y 1 , (3.22) holds and (w(T ), w t (T )) belongs to Y 1 × Y 0 .
Step 3. Then we are able to prove the well-posedness of (1.1) when u belongs to (H 1 (0, T )) ′ . Theorem 3.7. Suppose (w 0 , w 1 ) belongs to Y 1 × Y 0 . For any u in (H 1 (0, T )) ′ and for any ξ and η in (0, π), the initial and boundary value problem (1.1) admits a unique weak solution w in sense of Definition 3.6. And the map {w 0 , w 1 , u} → {w, w(T ), w t (T )} is continuous and linear with respect to the corresponding norm.

Proof. Since u belongs to (H 1 (0, T )) ′ , there exist u 0 and u 1 in L 2 (0, T ) such that (3.14) holds . Moreover, the map {f, θ 0 , θ 1 } → θ is an isomorphism from L 1 (0, T ; Y -1 ) × Y 2 × Y 1 to X . Therefore, we define a linear form Γ on X such that

Γ(θ) = - T 0 [u 0 (t)(θ x (η, t) -θ x (ξ, t)) + u 1 (t)(θ xt (η, t) -θ xt (ξ, t))]dt + π 0 [Lw 1 θ(0) -Lw 0 θ t (0)]dx. (3.23)
Since (w 0 , w 1 ) belongs to Y 1 × Y 0 , (Lw 0 , Lw 1 ) belongs to Y -1 × Y -2 . It follows from Proposition 3.4 that Γ is a continuous linear form on X . Denote by (f 1 , f 2 ) the linear form between Y -γ and Y γ for any γ ≥ 0 and denote by ⟨g 1 , g 2 ⟩ * the linear form between L ∞ (0, T ; Y 1 ) and L 1 (0, T ; Y -1 ). Therefore, for the linear form Γ in X ′ , there exists a unique element {w,

ζ * , ζ} in L ∞ (0, T ; Y 1 ) × Y -2 × Y -1 such that ⟨w, f ⟩ * + (ζ * , θ 0 ) + (-ζ, θ 1 ) = Γ(θ) ∀θ ∈ X . (3.24) 
Next we claim that w above is actually the weak solution of (1.1). It is sufficient to prove that w satisfies (1.1) in weak sense, Lw(T ) = ζ and Lw t (T ) = ζ * . Notice that {x → sin(kx)} k∈N * is the family of eigenfunctions of R∂ xxxx . Let m(x) = sin(kx) for some k in N * and let h belong to L 1 (0, T ). Firstly we set Rf (t) = h(t)m, θ 0 = 0 and θ 1 = 0, then f (t) = h(t)Lm. Denote by λ 2 = k 4 /(1 + αk 2 ) the corresponding eigenvalue and take λ positively. Then we obtain from Proposition 3.4 that for t in (0, T ), θ(t) = q(t)m, where q satisfies q tt +λ 2 q = h and q(T ) = q t (T ) = 0. Clearly we have q(t) = -1 λ T t sin(λ(tσ))h(σ)dσ. Then we obtain from (3.23) and (3.24) that Now we have proved that there exists a unique element {w, w(T ), (3.22) holds and the map {w 0 , w 1 , u} → {w, w(T ), w t (T )} is continuous and linear with respect to the corresponding norm. In fact we have the property of w belonging to C([0, T ]; Y 1 ). Since when the known data {w 0 , w 1 , u} belongs to Y 2 × Y 1 × L 2 (0, T ), we have (3.1). Using a density argument, we conclude the proof of Theorem 3.7.

T 0 (w, Lm)(q tt + λ 2 q)dt = ⟨w, f ⟩ * = Γ(θ) = -(m x (η) -m x (ξ)) T 0 [u 0 (t)q(t) + u 1 (t)q t (t)]dt + q(0)(Lw 1 , m) -q t (0)(Lw 0 , m). (3.25) Notice that (w, Lm) = (Lw, m). Then (3.25) implies that (Lw, m) tt + λ 2 (Lw, m) = -(m x (η) -m x (ξ))u, (Lw, m)(0) =(Lw 0 , m), (Lw, m) t (0) =(Lw 1 , m).
(ζ, m) = Γ(θ) = (Lw 1 , m) sin(λT ) λ + (Lw 0 , m) cos(λT ) -(m x (η) -m x (ξ)) • T 0 u 0 (t) sin(λ(T -t)) λ -u 1 (t) cos(λ(T -t)) dt. (3.27) Moreover, it follows from (3.26) that (Lw, m)(T ) = (Lw 0 , m) cos(λT ) + (Lw 1 , m) sin(λT ) λ - m x (η) -m x (ξ) λ ⟨u, sin(λ(T -•))⟩ (H 1 (0,T )) ′ ×H 1 (0,T ) .
(ζ * , m) = Γ(θ) = (Lw 1 , m) cos(λT ) -(Lw 0 , m)λ sin(λT ) -(m x (η) -m x (ξ)) • T 0 [u 0 (t) cos(λ(T -t)) + u 1 (t)λ sin(λ(T -t))]dt.
w t (T )} in L ∞ (0, T ; Y 1 ) × Y 1 × Y 0 such that

Proofs of the main results

In this section, we prove the main results. On the one hand, for controllability results, namely Theorems 1.3 and 1.4, we first use the HUM to rewrite the control problem into observability inequalities of the adjoint equation.

Then we derive these observability inequalities by applying the Ingham inequality. The methods for proving Theorems 1.3 and 1.4 are inspired by the ideas and methods used in [START_REF] Tucsnak | Regularity and exact controllability for a beam with piezoelectric actuator[END_REF] for Euler-Bernoulli beam with piezoelectric actuator. On the other hand, for non-controllability results, namely Theorems 1.5 to 1.7, we exhibit initial conditions so that the observability inequalities are false. The approaches in proofs of Theorems 1.5 and 1.6 are inspired by [START_REF] Tucsnak | Regularity and exact controllability for a beam with piezoelectric actuator[END_REF]. And the proof of the lack of the controllability in short control time, namely Theorem 1.7, is inspired by the methods used in [START_REF] Avdonin | Simultaneous controllability in sharp time for two elastic strings[END_REF]. 2 satisfying the compatibility conditions (1.2) and denote by ϕ(x, t) the solution of (3.2) with initial value (ϕ 0 , ϕ 1 ).

4.1. Exact L 2 -controllability (Proof of Theorem 1.3) Let (ϕ 0 , ϕ 1 ) in (C ∞ [0, π])
Consider a backward adjoint system in (0, π) × (0, T )

ψ tt (x, t) -αψ xxtt (x, t) + ψ xxxx (x, t) = u(t) d dx [δ η (x) -δ ξ (x)], (4.1a) ψ(0, t) = ψ(π, t) = ψ xx (0, t) = ψ xx (π, t) = 0, (4.1b) ψ(x, T ) = ψ t (x, T ) = 0, (4.1c) 
where u in L 2 (0, T ) will be chosen later. Problem (4.1) is well-posed according to Theorem 3.1. Then, multiplying (4.1a) by ϕ and integrating by parts, we get

π 0 ϕ 0 (x)Lψ t (x, 0) -ϕ 1 (x)Lψ(x, 0)dx = T 0 u(t)(ϕ x (η, t) -ϕ x (ξ, t))dt. (4.2)
Let u(t) = ϕ x (η, t) -ϕ x (ξ, t). Since (3.4), u belongs to L 2 (0, T ). Define a linear operator Λ satisfying Λ(ϕ 0 , ϕ 1 ) = (Lψ t (•, 0), -Lψ(•, 0)).

Since (Lψ t (•, 0), -Lψ(•, 0)) belongs to Y -1 × Y 0 by Theorem 3.1, the operator Λ is well defined. In particular, we obtain from (4.2) that

⟨Λ(ϕ 0 , ϕ 1 ), (ϕ 0 , ϕ 1 )⟩ = T 0 |ϕ x (η, t) -ϕ x (ξ, t)| 2 dt.
Therefore, we can define a seminorm

∥(ϕ 0 , ϕ 1 )∥ F := T 0 |ϕ x (η, t) -ϕ x (ξ, t)| 2 dt 1 2
, for all (ϕ 0 , ϕ 1 ) in (C ∞ [0, π]) 2 satisfying the compatibility conditions (1.2).

A classical argument in HUM implies the following proposition.

Proposition 4.1. All initial data in Y β+3 × Y β+2 are exactly L 2 -controllable in (ξ, η) at time T if and only if there exists a constant c > 0 such that

T 0 |ϕ x (η, t) -ϕ x (ξ, t)| 2 dt ≥ c(∥ϕ 0 ∥ 2 H -β + ∥ϕ 1 ∥ 2 H -β-1 ) (4.
3) for all (ϕ 0 , ϕ 1 ) in (C ∞ [0, π]) 2 satisfying the compatibility conditions (1.2). Equation (4.3) is called observability inequality. As in the proof of Lemma 3.2, the solution ϕ of the adjoint problem (3.2) has the form of (3.5), which implies that

T 0 |ϕ x (η, t) -ϕ x (ξ, t)| 2 dt = 4 T 0 k≥1 k sin k(η + ξ) 2 • sin k(η -ξ) 2 a k cos k 2 t √ 1 + αk 2 + b k √ 1 + αk 2 k 2 sin k 2 t √ 1 + αk 2 2 dt. (4.4) 
Remark 4.2. From (4.4), we can see that (1.3) is necessary for controllability.

To prove the observability inequality (4.3) for some β, we apply the following Ingham inequality (see [START_REF] Baiocchi | Ingham type theorems and applications to control theory[END_REF][START_REF] Ingham | Some trigonometrical inequalities with applications to the theory of series[END_REF]) to our problem. Lemma 4.3. Let (ν k ) k∈Z be a strictly increasing sequence of real numbers and let γ ∞ be defined by γ ∞ = lim inf |k|→∞ |ν k+1 -ν k |. Assume that γ ∞ > 0. For any real T > 2π/γ ∞ , there exist two constants C 1 , C 2 > 0 such that for any sequence

(x k ) k∈Z in l 2 (C), C 1 k∈Z |x k | 2 ≤ T 0 k∈Z x k e iν k t 2 dt ≤ C 2 k∈Z |x k | 2 .
We apply Lemma 4.3 with

ν k = -ν -k = k 2 √ 1 + αk 2 , k ∈ N, 2x k = 2x -k = a k -i b k √ 1 + αk 2 k 2 • k sin k(η + ξ) 2 sin k(η -ξ) 2 , k ∈ N * , x 0 = 0. As lim |k|→∞ |ν k+1 -ν k | = 1/ √ α, then for any real T > 2π √ α, there exists a constant C 1 > 0 such that T 0 |ϕ x (η, t) -ϕ x (ξ, t)| 2 dt ≥ C 1 k≥1 k 2 a 2 k + b 2 k (1 + αk 2 ) k 4 • sin k(η + ξ) 2 sin k(η -ξ) 2 2 . (4.5) 
When η+ξ 2π and η-ξ 2π belong to A, it follows from (2.1) that there exists a constant C > 0 such that for all k ≥ 1,

sin k(η ± ξ) 2 = sin π k(η ± ξ) 2π -p ≥ sin πC k ≥ C k . (4.6) 
Inequalities (4.5) and (4.6) imply that

T 0 |ϕ x (η, t) -ϕ x (ξ, t)| 2 dt ≥ c k≥1 (a 2 k k -2 + b 2 k k -4 ),
which is exactly (4.3) for β = 1. This fact completes the proof of the first part of Theorem 1.3.

When η+ξ 2π and η-ξ 2π belong to B ε , it follows from (2.2) that there exists a constant C > 0 such that for all k ≥ 1,

sin k(η ± ξ) 2 ≥ C k 1+ε . (4.7) 
Inequalities (4.5) and (4.7) imply that

T 0 |ϕ x (η, t) -ϕ x (ξ, t)| 2 dt ≥ c k≥1 (a 2 k k -2-4ε + b 2 k k -4-4ε ),
which is exactly (4.3) for β = 1 + 2ε. This fact completes the proof of the second part of Theorem 1.3.

4.2.

Exact (H 1 ) ′ -controllability (Proof of Theorem 1.4) Similar to in Section 4.1, we use the HUM to rewrite the controllability problem. Let (ϕ 0 , ϕ 1 ) in (C ∞ [0, π]) 2 satisfy the compatibility conditions (1.2). Denote by ϕ the solution of (3.2) with initial value (ϕ 0 , ϕ 1 ).

Then consider the backward adjoint system (4.1) where u in (H 1 (0, T )) ′ will be chosen later. Problem (4.1) is wellposed due to Theorem 3.7. Then taking the linear form between (4.1a) and ϕ and integrating by parts, we obtain

π 0 ϕ 0 (x)Lψ t (x, 0) -ϕ 1 (x)Lψ(x, 0)dx = ⟨u, ϕ x (η, •) -ϕ x (ξ, •)⟩ (H 1 (0,T )) ′ ×H 1 (0,T ) . (4.8) Recalling (3.14), this equation is equivalent to π 0 ϕ 0 (x)Lψ t (x, 0) -ϕ 1 (x)Lψ(x, 0)dx = T 0 [u 0 (t)(ϕ x (η, t) -ϕ x (ξ, t)) + u 1 (t)(ϕ xt (η, t) -ϕ xt (ξ, t))]dt, (4.9)
for some u 0 and u 1 in L 2 (0, T ).

Let u 0 (t) = 0 and u 1 (t) = ϕ xt (η, t)-ϕ xt (ξ, t). Function u 1 belongs to L 2 (0, T ) due to (3.3), and therefore, u is well defined. Define a linear operator Λ * satisfying Λ * (ϕ 0 , ϕ 1 ) = (Lψ t (•, 0), -Lψ(•, 0)).

Since (Lψ t (•, 0), -Lψ(•, 0)) belongs to Y -2 × Y -1 because of Theorem 3.7, operator Λ * is well defined. In particular, we have

⟨Λ * (ϕ 0 , ϕ 1 ), (ϕ 0 , ϕ 1 )⟩ = T 0 |ϕ xt (η, t) -ϕ xt (ξ, t)| 2 dt.
Therefore, we can define a seminorm

∥(ϕ 0 , ϕ 1 )∥ F * := T 0 |ϕ xt (η, t) -ϕ xt (ξ, t)| 2 dt 1 2
, for all (ϕ 0 , ϕ 1 ) in (C ∞ [0, π]) 2 satisfying the compatibility conditions (1.2).

A classical argument in HUM implies the following proposition.

Proposition 4.4. All initial data in Y β+3 × Y β+2 are exactly (H 1 ) ′ -controllable in (ξ, η) at time T if and only if there exists a constant c > 0 such that 

T 0 |ϕ xt (η, t) -ϕ xt (ξ, t)| 2 dt ≥ c(∥ϕ 0 ∥ 2 H -β + ∥ϕ 1 ∥ 2 H -β-1 ) (4.
T 0 |ϕ xt (η, t) -ϕ xt (ξ, t)| 2 dt ≥ c k≥1 (a 2 k + b 2 k k -2 ),
which is exactly (4.10) when β = 0. This completes the proof of the first part of Theorem 1.4.

When η+ξ 2π and η-ξ 2π belong to B ε , there exists a constant c > 0 such that

T 0 |ϕ xt (η, t) -ϕ xt (ξ, t)| 2 dt ≥ c k≥1 (a 2 k k -4ε + b 2 k k -2-4ε ),
which is exactly (4.10) when β = 2ε. This completes the proof of the second part of Theorem 1.4. As mentioned in Remark 4.2, the condition (1.3) is necessary for controllability. We aim to prove the condition (1.3) is not sufficient in this section.

From Proposition 4.1, it is sufficient to show that for any β ≥ -1, there exist ξ and η satisfying (1.3) such that (4.3) is false for any c > 0. For any β ≥ -1, let

ν > max 3 2 β + 1, 2 . (4.11) We choose η + ξ 2π = ∞ n=1 a n 10 n! , (4.12) 
where a n belongs to {0, 1, . . . , 9} for all n ≥ 1, and a n is not identically zero for great n. According to [START_REF] Valiron | Théorie des Fonctions[END_REF] the right-hand side of (4.12) is a Liouville number, i.e., it is transcendental and there exists a strictly increasing sequence of integers q n such that

sin q n η + ξ 2 ≤ π q ν n ∀n ≥ 1. (4.13)
Now we consider the sequence of initial data ϕ 0 n (x) = q µ n sin(q n x), ϕ 1 n (x) = 0 ∀x ∈ (0, π), (4.14) 2 and satisfies compatibility conditions (1.2) and

where µ = 3 2 β if β > 0 and µ = 1 if -1 ≤ β ≤ 0. Ob- viously, (ϕ 0 n , ϕ 1 n ) belongs to (C ∞ [0, π])
∥ϕ 0 n ∥ 2 H -β + ∥ϕ 1 n ∥ 2 H -β-1 → ∞. (4.15) 
Moreover, we obtain from (4.4), (4.11), and (4.13) that Similarly, because of Proposition 4.4, it is sufficient to show that for any β ≥ -2, there exist ξ and η satisfying (1.3) such that (4.10) is false for any c > 0. The proof is quite similar to the proof above in this section. For any fixed β ≥ -2, we only need to change ν as

T 0 |ϕ n,x (η, t) -ϕ n,x (ξ, t)| 2 dt = 4 T 0 q n sin q n η + ξ 2 sin q n η -ξ 2 •q µ n cos q 2 n 1 + αq 2 n t 2 dt ≤ 4T q 2(µ+1) n sin q n η + ξ 2 2 ≤ 4πT q 2(µ+1-ν) n → 0, as n → ∞.
ν > max 3 2 β + 2, 3 , (4.17) 
and to set µ = 3 2 β if β > 0 and µ = 1 if -2 ≤ β ≤ 0. By similar calculation, we obtain that (4.10) is false for any c > 0.

4.4. Non-controllability for initial data in less regular set (Proof of Theorem 1.6) Similarly to the previous section, we aim to prove (4.3) (resp. (4.10)) is false. According to Proposition 2.3, for any ξ and η in (0, π), there exists a strictly increasing sequence of positive integers {q n } n≥1 such that for all n ≥ 1,

sin q n η + ξ 2 ≤ π √ q n , sin q n η -ξ 2 ≤ π √ q n .
(4.18) First we consider the sequence of initial data

ϕ 0 n (x) = sin(q n x), ϕ 1 n (x) = 0 ∀x ∈ (0, π). (4.19) 
We note that for any ε > 0,

∥ϕ 0 n ∥ 2 H ε + ∥ϕ 1 n ∥ 2 H ε-1 = Cq 2ε n → ∞, n → ∞, (4.20) 
where C is a positive constant. By (4.4) and (4.18) we have that for all n ≥ 1,

T 0 |ϕ n,x (η, t) -ϕ n,x (ξ, t)| 2 dt = 4 T 0 q n sin q n η + ξ 2 sin q n η -ξ 2 • cos q 2 n 1 + αq 2 n t 2 dt ≤ K, (4.21) 
where K is a positive constant. So (4.20) and (4.21) show that (4.3) is false for β = -ε and arbitrary c > 0.

Then we choose the sequence of initial data ϕ 0 n (x) = q -1 n sin(q n x), ϕ 1 n (x) = 0 ∀x ∈ (0, π). (4.22)

We note that for any ε > 0,

∥ϕ 0 n ∥ 2 H + ∥ϕ 1 n ∥ 2 H ε = Cq 2ε n → ∞, n → ∞, (4.23) 
where C is a positive constant. By (3.5) and (4.18) we have that for all n ≥ 1,

T 0 |ϕ n,xt (η, t) -ϕ n,xt (ξ, t)| 2 dt = 4 T 0 sin q n η + ξ 2 sin q n η -ξ 2 • q 2 n 1 + αq 2 n sin q 2 n 1 + αq 2 n t 2 dt ≤ K, (4.24)
where K is a positive constant. So (4.23) and (4.24) show that (4.10) is false for β = -ε -1 and arbitrary c > 0.

4.5. The lack of controllability in short control time (Proof of Theorem 1.7)

We prove the lack of L 2 -controllability (resp. (H 1 ) ′controllability) when 0 < T < 2π √ α in this section. Let 0 < T < 2π √ α and ξ, η in (0, π) be arbitrary.

We first concern the lack of L 2 -controllability. For any β ≥ -1, we aim to find {(ϕ 0

m , ϕ 1 m )} m∈N * such that T 0 |ϕ m,x (η, t) -ϕ m,x (ξ, t)| 2 dt → 0, as m → ∞ and ∥ϕ 0 m ∥ 2 H -β + ∥ϕ 1 m ∥ 2 H -β-1 ≥ c > 0 for any m ≥ 1.
As in Section 4.1, we denote holds uniformly relative to x in R.

λ n = -λ -n = n 2 √ 1 + αn 2 , n ∈ N * . ( 4 
We will prove this lemma in Appendix A. As 0

< T < 2π √ α, we can choose T ′ such that 0 < T < T ′ < 2π √ α. Let f in L 2 (0, 2π √ 
α) be a real valued function such that f (t) = 0 if 0 ≤ t ≤ T and ∥f ∥ L 2 (0,T ′ ) ̸ = 0. According to Lemma 4.5 and Proposition 2.4, the family {e iλnt } n∈Z * contains a subfamily {e iλq n t } n∈Z * which forms a Riesz basis in L 2 (0, T ′ ). Moreover, the subsequence {λ qn } n∈Z satisfies λ qn = -λ q-n . Then for the function f in L 2 (0, T ′ ) defined above, there exists a sequence {l n } n∈Z * in l 2 (C) such that f (t) = n∈Z * l n e iλq n t holds in L 2 (0, T ′ ) and 0 < n∈Z * |l n | 2 < ∞. Since f (t) is a real valued function, we have l n = l -n . Now we can define the sequence {(ϕ 0 m , ϕ 1 m )} m∈N * of initial data as the following,

ϕ 0 m (x) = 2 m n=1 Re(l n ) q n sin q n η + ξ 2 • sin q n η -ξ 2 -1 sin(q n x), ϕ 1 m (x) = -2 m n=1 Im(l n ) q n sin q n η + ξ 2 • sin q n η -ξ 2 -1 q 2 n 1 + αq 2 n sin(q n x). (4.27)
As mentioned in Remark 4.2, we assume (1.3) holds. Consequently, the sequence {(ϕ 0 m , ϕ 1 m )} m∈N * of initial data is well-defined.

Since 0 < n∈Z * |l n | 2 < ∞ and l n = l -n , there exists m 0 ≥ 1 such that l m0 ̸ = 0. So for m ≥ m 0 and for any As for the lack of exact (H 1 ) ′ -controllability for any β ≥ -2, we only need to change the initial data in (4.27) to

β ≥ -1, ∥ϕ 0 m ∥ 2 H -β + ∥ϕ 1 m ∥ 2 H -β-1 ≥ ∥ϕ 0 m0 ∥ 2 H -β + ∥ϕ 1 m0 ∥ 2 H -β-1 = c > 0. ( 4 
ϕ 0 m (x) = 2 m n=1
Re(l n ) q n sin q n η + ξ 2

• sin q n η -ξ 2 Im(l n ) q n sin q n η + ξ 2

• sin q n η -ξ 2 -1 sin(q n x). Relations (4.28) and (4.32) finish the proof of the lack of exact (H 1 ) ′ -controllability for any β ≥ -2.

Conclusion

The exact controllability problem for Rayleigh beam equation with piezoelectric actuator has been fully considered. Two different types of controllability problem, namely L 2 -controllability and (H 1 ) ′ -controllability, are investigated. Moreover, several non-controllability results are proved. Especially, minimal control time for the exact controllability is deduced from the non-controllability result in short control time. As said in Remark 1. . Thus we define a real function g : (0, +∞) → (0, +∞) as g(r) = [(αr 2 + r √ α 2 r 2 + 4)/2] 1 2 and define {x} = q(x) -1, where q(x) = min q∈Z {q ≥ x}. Obviously, x -1 ≤ {x} < x. Then we have N (0, r) = {g(r)}. Notice that for x ≥ 0, N (x, r) = N (0, x + r) -N (0, x) = {g(x+r)}-{g(x)}. Therefore, we have g(x+r)-g(x)-1 ≤ N (x, r) ≤ g(x + r) -g(x) + 1. Now we need to estimate g(x + r) -g(x) for x, r > 0.

Let f (x) = x 2 √ 1+αx 2 for x > 0. Then simple calculation shows that 0 < x < 2/α implies f ′′ (x) > 0. Therefore, there exists N 0 in N satisfying N 0 > 2/α + 1 such that for all n ≥ N 0 , λ n+1 -λ n decreases and converges to 1/ √ α. Then for x ≥ N 0 , N (N 0 , r) ≤ N (x, r) ≤ lim x→+∞ N (x, r). Simple calculation shows that lim x→+∞ [g(x + r) -g(x)] = √ αr. Therefore, we obtain that g(N 0 + r)g(N 0 ) -1 ≤ N (x, r) ≤ √ αr + 1 holds for x ≥ N 0 . For 0 ≤ x ≤ N 0 , N (x, r) ≤ N (0, N 0 ) + N (N 0 , r) ≤ √ αr + 1 + g(N 0 ). Assuming that r > N 0 , we have Let θ belong to [0, 1] and |x| = θr. Note that N (0, |x|) + N (0, r -|x|) = {g(θr)} + {g((1 -θ)r)}. We obtain from the expression of g that lim r→∞ g(θr)/r = √ αθ. Consequently, (A.1) holds uniformly relative to -r ≤ x < 0.

N (x,
For x < -r, N (|x| -r, r) ≤ N (x, r) ≤ N (|x| -r, r) + 1. Let t = |x|-r ≥ 0. Then as same as in the situation x ≥ 0, we have that (A.1) holds uniformly relative to t ≥ 0, which means that (A.1) holds uniformly relative to x < -r.

Combining all the situations, we have that (A.1) holds uniformly relative to x in R. Lemma 4.5 is thus proved.

Theorem 1 . 3 . 1 .

 131 Let T > 2π √ α and ε > 0. Suppose that η+ξ 2π and η-ξ 2π belong to the set A. Then all initial data in Y 4 × Y 3 are exactly L 2 -controllable in (ξ, η) at time T . 2. Suppose that η+ξ 2π and η-ξ 2π belong to the set B ε . Then all initial data in Y 4+2ε × Y 3+2ε are exactly L 2 -controllable in (ξ, η) at time T . Theorem 1.3 gives us two exact L 2 -controllability results. The first result of Theorem 1.3 shows that, for the end of the piezoelectric actuator in an uncountable zero measure set, we have the exact L 2 -controllability in Y 4 ×Y 3 . The second result of Theorem 1.3 shows that, for almost all choices of the end of the piezoelectric actuator, we have the exact L 2 -controllability in more regular Sobolev spaces than Y 4 × Y 3 . The next theorem concerns the exact controllability in less regular spaces. Theorem 1.4. Let T > 2π √ α and ε > 0.

( 3 .

 3 26)Note that the first equation of (3.26) holds in (H 1 (0, T )) ′ . Since m(x) = sin(kx) and k ≥ 1 is an arbitrary natural number, then w satisfies (1.1) in weak sense. Now we set f = 0, θ 0 = 0 and θ 1 = -m. Then for t in (0, T ), θ(t) = 1 λ sin(λ(T -t))m. Therefore, (3.23) and (3.24) imply that

( 3 .

 3 28) Comparing (3.28) to (3.27), we obtain that (Lw, m)(T ) = (ζ, m), which proves Lw(T ) = ζ. Next we set f = 0, θ 0 = m and θ 1 = 0. Then for t in (0, T ), θ(t) = cos(λ(T -t))m. Thus (3.23) and (3.24) imply that

  3.26) implies that (Lw, m) t (T ) = (Lw 1 , m) cos(λT )-(Lw 0 , m)λ sin(λT ) -(m x (η) -m x (ξ)) • ⟨u, cos(λ(T -•))⟩ (H 1 (0,T )) ′ ×H 1 (0,T ) .(3.30) Comparing (3.30) to (3.29), we obtain that (Lw, m) t (T ) = (ζ * , m), which implies Lw t (T ) = ζ * .

  [START_REF] Ingham | Some trigonometrical inequalities with applications to the theory of series[END_REF] for all (ϕ 0 , ϕ 1 ) in (C ∞ [0, π]) 2 satisfying the compatibility conditions (1.2).Assume T > 2π √ α. Using similar arguments as in Section 4.1, we have the following results. When η+ξ 2π and η-ξ 2π belong to A, there exists a constant c > 0 such that

4. 3 .

 3 The condition (1.3) is not sufficient (Proof of Theorem 1.5)

(4. 16 )

 16 Relations (4.15) and(4.16) show that (4.3) is false for any c > 0.

l n e λq n t 2 dt

 2 .28) Moreover, thanks to (4.4), we haveT 0 |ϕ m,x (η, t) -ϕ m,x (ξ, t)| f (t) = n∈Z * l n e λq n t in L 2 (0, T ), we obtain that T 0 |ϕ m,x (η, t) -ϕ m,x (ξ, t)| 2 dt → 0, as m → ∞. (4.30)Relations (4.28) and (4.30) finish the proof of the lack of exact L 2 -controllability for any β ≥ -1.

( 4 .l n e λq n t 2 dt

 42 31)Similarly, (4.28) holds for m ≥ m 0 and for any β ≥ -2. Moreover, we haveT 0 |ϕ m,xt (η, t) -ϕ m,xt (ξ, t)| → 0, as m → ∞.

5 k 2 √α 2 r 2 + 4 )

 5224 8, exact controllability in critical time is an open problem. Controllability problem for other types of beam equation with piezoelectric actuator, such as shear beam equation, also remains open. Appendix A. Proof of Lemma 4.Solving 1+αk 2 < r, we obtain that k < [(αr 2 + r √

  r) ≥ N (N 0 , r -N 0 + x) = N (0, x + r) -N (0, N 0 ) ≥ g(x + r) -g(N 0 ) -1 ≥ min x∈[0,N0] g(x + r) -g(N 0 ) -1.Then for all x ≥ 0 and r > N 0 , min x∈[0,N0] g(x + r)g(N 0 ) -1 ≤ N (x, r) ≤ √ αr + 1 + g(N 0 ) and hence, to x ≥ 0. For -r ≤ x < 0,N (0, |x|) + N (0, r -|x|) ≤ N (x, r) ≤ N (0, |x|) + N (0, r -|x|) + 1.

  .18) Notice that Rf belongs to L 1 (0, T ; Y 1 ). Then the problem (3.18) is well-posed in the state space Y 2 × Y 1 by the classical semigroup method (see [17, p. 106]), and then the problem (3.16) admits a unique solution θ in C([0, T ]; Y 2 ) ∩ C 1 ([0, T ]; Y 1 ). Moreover, there exists a constant C

T > 0 such that ∥θ∥ C([0,T ];Y2) ≤ C T (∥θ 0 ∥ H 2 (0,π)

  .25) Obviously, {λ n } n∈Z * is a strictly increasing sequence and lim |n|→∞ |λ n+1 -λ n | = 1/ √ α > 0. Adding or subtracting finite numbers in the sequence does not affect the result of Proposition 2.4, so we can apply Proposition 2.4 to the sequence {λ n } n∈Z * . Define N (x, r) as in Proposition 2.4 corresponding to {λ n } n∈Z * . We have the following lemma. Lemma 4.5. Let {λ n } n∈Z * and N (x, r) be defined above.

	We have that				
	N (x, r) r	→	√	α, as r → ∞	(4.26)