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Abstract

In this paper, exact controllability problem for a Rayleigh beam with piezoelectric actuator is considered. Controllability
results show that the space of controllable initial data depends on the regularity of the control function and the location of
the actuator. Two different spaces of control function, L2(0, T ) and (H1(0, T ))′, correspond to two different controllability
properties, L2-controllability and (H1)′-controllability, respectively. The approach to prove controllability results is based
on the Hilbert Uniqueness Method. Some non-controllability results are also obtained. In particular, non-controllability
in short control time is studied by using Riesz basis property of exponential family in L2(0, T ). Finally, minimal control
time for the exact controllability is obtained.
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1. Introduction and main results

1.1. History and problem statement

In recent decades, there have been a large number of
papers concerning the study of flexible structures. Three
main directions of research can be considered: the mod-
elling problem, the controllability problem and the stabi-
lization problem. Modelling a flexible structure as a beam
equation or a plate equation is an essential research field.
In [1], four types of models for the transversely vibrating
uniform beam, i.e., the Euler-Bernoulli beam, Rayleigh
beam, shear beam and Timoshenko beam, were summa-
rized and analysed. In the past few decades, the study
of elastic structures with a piezoelectric actuator or sen-
sor has gained a lot of attention. See [2, 3] for a PDE
modelling elastic structures with a piezoelectric actuator
or sensor.

Concerning controllability for PDEs, boundary control-
lability for wave equation and plate equation was stud-
ied in [4] using the Hilbert Uniqueness Method (HUM).
There were plenty of works on controllability for beam and
plate based on HUM. In [4, 5], boundary controllability
for Kirchhoff plate equation was fully investigated. Exact
controllability was obtained in sufficient large control time
with a single boundary control (active on a sufficiently
large portion of the boundary) in the case of clamped
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boundary conditions. As for beam equation, exact con-
trollability for Euler-Bernoulli beam hinged at both ends
with piezoelectric actuator was firstly considered in [6].
Since the space dimension is one, Fourier series was used
in [6]. Then [7] studied the exact controllability for the
same beam equation with piezoelectric actuator in a dif-
ferent physical configuration: the clamped-free boundary
conditions, i.e. a beam clamped at one end and free at the
other end. In [8], Ingham inequality (see [9, 10]) was used
to obtain the exact controllability for Rayleigh beam equa-
tion with a single boundary control among four different
boundary conditions.

In this paper, we consider the control problem mod-
elling the transverse deflection of a Rayleigh beam which
is subject to the action of an attached piezoelectric ac-
tuator. Assuming that the beam is hinged at both ends,
the equation of Rayleigh beam can be written as (see, for
instance, [2, 3]), for (x, t) in (0, π)× (0,+∞),

wtt(x, t)− αwxxtt(x, t) + wxxxx(x, t)

= u(t)
d

dx
[δη(x)− δξ(x)], (1.1a)

w(0, t) = w(π, t) = wxx(0, t) = wxx(π, t) = 0, (1.1b)

w(x, 0) = w0(x), wt(x, 0) = w1(x). (1.1c)

In the equations above w represents the transverse deflec-
tion of the beam, α > 0 is a physical constant, ξ and η
stand for the ends of the actuator (0 < ξ < η < π), and δy
is the Dirac mass at the point y. The control is given by
the function u : [0, T ] → R standing for the time variation
of the voltage applied to the actuator.

Our main purpose is to find the initial data that can be
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steered to rest by means of the control function u. To give
the precise definitions of exact controllability, let us intro-
duce for any ω in R the functional space Yω as follows. Let
Y0 = L2(0, π). For ω > 0, let Yω be the closure in Hω(0, π)
of the set of y in C∞([0, π]) satisfying the conditions

y(2n)(0) = y(2n)(π) = 0 ∀n ≥ 0. (1.2)

For ω < 0, let Yω be the dual space of Y−ω with respect
to the space Y0. Then we give the precise definitions.

Definition 1.1. The initial data (w0, w1) in Y2 × Y1 is
exactly L2-controllable in (ξ, η) at time T if there exists u
in L2(0, T ) such that the solution w of (1.1) satisfies the
condition w(·, T ) = wt(·, T ) = 0.

Definition 1.2. The initial data (w0, w1) in Y1 × Y0 is
exactly (H1)′-controllable in (ξ, η) at time T if there exists
u in (H1(0, T ))′ such that the solution w of (1.1) satisfies
the condition w(·, T ) = wt(·, T ) = 0.

Note that in Definitions 1.1 and 1.2, the spaces where
the initial data (w0, w1) can be taken depend on the well-
posedness of (1.1) (see Section 3). In Definition 1.2, the
space (H1(0, T ))′ is the dual space of H1(0, T ) with re-
spect to the space L2(0, T ). The study of controllability
with less regular control function is inspired by [4] which
studied the controllability of changing the norm for wave
equation and plate equation. Note that the system (1.1) is
a time-reversible linear system, so the exact controllability
is equivalent to the null controllability (see Theorem 2.41
of [11, p. 55]).

The paper is organized as follows. In the remaining
part of this section, we present the main results of the
paper, i.e. controllability, non-controllability and mini-
mal time for the exact controllability. In Section 2, we
provide some preliminaries on the theory of Diophantine
approximation and the Riesz basis property of exponential
family. The well-posedness results for the control problem
(1.1) are given in Section 3. The main results are proved
in Section 4, respectively. Appendix A provides the proof
of a technical lemma which is used in the proof of non-
controllability in short control time.

1.2. Controllability results

In order to state the exact controllability results, let
ε > 0 and let the sets A ⊂ (0, 1) and Bε ⊂ (0, 1) be
the sets defined in Section 2. From Section 2, the set A
is uncountable and has zero Lebesgue measure and the
Lebesgue measure of set Bε is 1.

Our exact controllability results are the following.

Theorem 1.3. Let T > 2π
√
α and ε > 0.

1. Suppose that η+ξ
2π and η−ξ

2π belong to the set A. Then
all initial data in Y4 × Y3 are exactly L2-controllable
in (ξ, η) at time T .

2. Suppose that η+ξ
2π and η−ξ

2π belong to the set Bε. Then
all initial data in Y4+2ε × Y3+2ε are exactly L2-con-
trollable in (ξ, η) at time T .

Theorem 1.3 gives us two exact L2-controllability re-
sults. The first result of Theorem 1.3 shows that, for the
end of the piezoelectric actuator in an uncountable zero
measure set, we have the exact L2-controllability in Y4×Y3.
The second result of Theorem 1.3 shows that, for almost
all choices of the end of the piezoelectric actuator, we have
the exact L2-controllability in more regular Sobolev spaces
than Y4 × Y3.

The next theorem concerns the exact controllability in
less regular spaces.

Theorem 1.4. Let T > 2π
√
α and ε > 0.

1. Suppose that η+ξ
2π and η−ξ

2π belong to the set A. Then
all initial data in Y3 × Y2 are exactly (H1)′-control-
lable in (ξ, η) at time T .

2. Suppose that η+ξ
2π and η−ξ

2π belong to the set Bε. Then
all initial data in Y3+2ε × Y2+2ε are exactly (H1)′-
controllable in (ξ, η) at time T .

In Theorem 1.4, (H1(0, T ))′ control function brings
new difficulties to the problem. The well-posedness of
(1.1) with (H1(0, T ))′ control function need to be proven
while the well-posedness of (1.1) with L2(0, T ) control
function is a known result (see Section 3).

Theorems 1.3 and 1.4 give some sufficient conditions
for exact controllability. All the results show the depen-
dence of the space of exactly controllable initial data on
the location of the actuator. The differences between The-
orem 1.4 and Theorem 1.3 are the different spaces of the
control function and the different spaces of the controllable
initial data. In Theorem 1.4, the control function belongs
to (H1(0, T ))′ rather than L2(0, T ) and the space of the
controllable initial data is larger than the space in Theo-
rem 1.3 with the same choice of ξ and η. Roughly speak-
ing, the larger (less regular) the space of control function
is, the larger (less regular) the space of controllable initial
data is. To the best knowledge of the authors, such a re-
sult has not been developed yet for beam equation with
piezoelectric actuator or interior control.

1.3. Non-controllability results

After the controllability results, we show some non-
controllability results. In Section 4, from Propositions 4.1
and 4.4 and the solution (3.5) of the adjoint problem, we
can see that condition

η − ξ

2π
,
η + ξ

2π
∈ R \Q (1.3)

is necessary to have any exact controllability result. The
first non-controllability result concerns the insufficiency of
condition (1.3). Under condition (1.3), there exist ξ and η
and initial condition of problem (1.1) such that no control
can steer this initial condition to the equilibrium.

Theorem 1.5. 1. For any β ≥ −1, there exist ξ and
η satisfying (1.3) such that for any T > 0, the space
Yβ+3 × Yβ+2 contains some initial data that are not
exactly L2-controllable in (ξ, η) at time T .
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2. For any β ≥ −2, there exist ξ and η satisfying (1.3)
such that for any T > 0, the space Yβ+3 × Yβ+2

contains some initial data that are not exactly (H1)′-
controllable in (ξ, η) at time T .

Theorem 1.3 (resp. Theorem 1.4) gives no informa-
tion on the exact L2-controllability (resp. exact (H1)′-
controllability) of initial data in Yβ+3 × Yβ+2 for β < 1
(resp. for β < 0). A partial answer is given by the follow-
ing result.

Theorem 1.6. Let ε > 0, T > 0 and ξ, η in (0, π) be
arbitrary.

1. The set Y3−ε × Y2−ε contains some initial data that
are not exactly L2-controllable in (ξ, η) at time T .

2. The set Y2−ε × Y1−ε contains some initial data that
are not exactly (H1)′-controllable in (ξ, η) at time T .

Notice that all the exact controllability results in The-
orems 1.3 and 1.4 require T > 2π

√
α, however, in [6], the

exact controllability results for Euler-Bernoulli beam have
no requirement of control time. Consequently, a huge dif-
ference between Rayleigh beam and Euler-Bernoulli beam
is revealed and the reason lies in various distributions of
their eigenvalues. More precisely, under the same bound-
ary condition (1.1b), the eigenvalues of Rayleigh beam

equation are k4

1+αk2 for k in N∗ (see Section 3.1) while the

eigenvalues of Euler-Bernoulli beam equation are k4 for k
in N∗ (see [6]). Roughly speaking, this fact implies that
Rayleigh beam equation possesses finite propagation speed
and that Euler-Bernoulli beam equation possesses infinite
propagation speed. For this reason, all the exact control-
lability results for Rayleigh beam require T > 2π

√
α while

the exact controllability results for Euler-Bernoulli beam
hold for all T > 0 (see [6]). Based on this fact, we give the
non-controllability results for 0 < T < 2π

√
α.

Theorem 1.7. Let 0 < T < 2π
√
α and ξ, η in (0, π) be

arbitrary.

1. For any β ≥ −1, the space Yβ+3 × Yβ+2 contains
initial data that are not exactly L2-controllable in
(ξ, η) at time T .

2. For any β ≥ −2, the space Yβ+3 × Yβ+2 contains
initial data that are not exactly (H1)′-controllable in
(ξ, η) at time T .

Remark 1.8. For the case T = 2π
√
α, whether the exact

controllability still holds remains open.

Notice that in Theorem 1.5, the lack of controllability
holds for some special ξ and η which are related to the
space of initial data. However, in Theorems 1.6 and 1.7,
non-controllability holds for any ξ and η. From Theo-
rem 1.7, we can see that T ≥ 2π

√
α is necessary for ex-

act controllability for Rayleigh beam equation. Therefore,
minimal control time for the exact controllability is ob-
tained. As far as we know, this is the first result stating a
lack of controllability for Rayleigh beam in short control
time.

2. Preliminaries

In this section, we provide some known results on the
theory of Diophantine approximation (see [13, 14]) and the
Riesz basis property of exponential family (see [15]).

For a real number ρ, we denote by ∥ρ∥Z the difference,
taken positively, between ρ and the nearest integer, i.e.,
∥ρ∥Z = minn∈Z |ρ − n|. Let us denote by A the set of
all irrationals ρ in (0, 1) such that if [0, a1, . . . , an . . . ] is
the expansion of ρ as a continued fraction, then (an) is
bounded. The set A is uncountable and its Lebesgue mea-
sure is equal to zero (see Theorem I of [13, p. 120]). The
following property proven in Theorem 6 of [14, p. 23] is
essential for this paper.

Proposition 2.1. A number ρ is in A if and only if there
exists a constant C > 0 such that

∥qρ∥Z ≥ C

q
(2.1)

for any strictly positive integer q.

The next proposition, which is proved in [13, p. 120],
shows that an inequality slightly weaker than (2.1) holds
for almost all points in (0, 1).

Proposition 2.2. For any ε > 0, there exist a set Bε ⊂
(0, 1) having Lebesgue measure equal to 1 and a constant
C > 0 such that for any ρ in Bε,

∥qρ∥Z ≥ C

q1+ε
(2.2)

for any strictly positive integer q.

The following proposition on simultaneous approxima-
tion proven in Theorem VII of [13, p. 14] is useful to prove
Theorem 1.6.

Proposition 2.3. Let ρ1, . . . , ρk be k irrationals in (0, 1).
Then there exists a strictly increasing sequence of natural
numbers qn such that for all n ≥ 1,

q
1
k
n max

i=1,...,k
(∥qnρ1∥Z, . . . , ∥qnρi∥Z, . . . , ∥qnρk∥Z) ≤

k

k + 1
.

The next proposition proven in Theorem II.4.18 of [15,
p. 109] on the Riesz basis property of exponential family
in L2(0, T ) is essential to prove Theorem 1.7.

Proposition 2.4. Let {λn}n∈Z be a sequence of complex
numbers such that supn∈Z |Imλn| < ∞ and infn ̸=m |λm −
λn| > 0. Let N(x, r) := ♯{λn|x ≤ Reλn < x+ r} for x in
R and r > 0, where ♯A is the number of elements in the
set A. Assume that for some T > 0,

lim
r→∞

N(x, r)

r
=

T

2π

holds uniformly relative to all x in R. Then for any T ′ in
(0, T ), {eiλnt}n∈Z contains a subfamily {eiλqn t}n∈Z that
forms a Riesz basis in L2(0, T ′). Moreover, if {λn}n∈Z
is a sequence of real numbers such that λn = −λ−n, the
subsequence {λqn}n∈Z satisfies λqn = −λq−n

.
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3. Well-posedness of (1.1)

In Section 3.1, we show the well-posedness result of
system (1.1) with L2(0, T ) control function which has been
proved in [16]. In Section 3.2, we prove the well-posedness
and regularity results of system (1.1) with (H1(0, T ))′ con-
trol function. The approach is inspired by [4].

3.1. Well-posedness of (1.1) with L2(0, T ) control func-
tion

We state the well-posedness result and show the proof
here, because the process of the proof is also used in other
sections.

Theorem 3.1. Suppose that (w0, w1) belongs to Y2 × Y1.
For any u in L2(0, T ) and for any ξ and η in (0, π), the
initial and boundary value problem (1.1) admits a unique
solution w having the regularity

w ∈ C([0, T ];Y2) ∩ C1([0, T ];Y1). (3.1)

In order to prove Theorem 3.1, let us first consider the
adjoint problem of (1.1) in (0, π)× (0,+∞),

ϕtt(x, t)− αϕxxtt(x, t) + ϕxxxx(x, t) = 0, (3.2a)

ϕ(0, t) = ϕ(π, t) = ϕxx(0, t) = ϕxx(π, t) = 0, (3.2b)

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x). (3.2c)

The next lemma proved in [16] provides the well-posedness
of the adjoint problem (3.2) and some trace regularities
needed in the proof of main results.

Lemma 3.2. For any initial data (ϕ0, ϕ1) in Y2 × Y1,
there exists a unique weak solution ϕ of (3.2) in the class
C([0, T ];Y2)∩C1([0, T ];Y1). Moreover, for any χ in (0, π),
ϕx(χ, ·) belongs to H1(0, T ) and there exist C,C ′ > 0 such
that

∥ϕx(χ, ·)∥2H1(0,T ) ≤ C(∥ϕ0∥2H2(0,π) + ∥ϕ1∥2H1(0,π)), (3.3)

∥ϕx(χ, ·)∥2L2(0,T ) ≤ C ′(∥ϕ0∥2H1(0,π) + ∥ϕ1∥2L2(0,π)). (3.4)

Proof. It is easy to see, by the semigroup method, that
the problem (3.2) is well-posed in the space Y2 × Y1 (see
[17, p. 104]).

Next we prove (3.3) and (3.4). Since the family of
functions {x 7→ sin(kx)}k∈N∗ is the orthogonal basis of
Y1 and Y2 respectively, let ϕ0(x) =

∑
k≥1 ak sin(kx) and

ϕ1(x) =
∑

k≥1 bk sin(kx) with (k2ak) and (kbk) in l2(R).
By standard computation, we have

ϕ(x, t) =
∑
k≥1

[
ak cos

(
k2√

1 + αk2
t

)

+
bk
√
1 + αk2

k2
sin

(
k2√

1 + αk2
t

)]
sin(kx). (3.5)

Then for all T > 0, ϕx(χ, ·) belongs to H1(0, T ) and∫ T

0

|ϕxt(χ, t)|2dx ≤ C
∑
k≥1

k2(a2kk
2 + b2k),

which yields (3.3). And simultaneously we have∫ T

0

|ϕx(χ, t)|2dx ≤ C ′
∑
k≥1

(a2kk
2 + b2k),

which clearly yields (3.4).

Proof of Theorem 3.1. Thanks to Lemma 3.2, the follow-
ing backward adjoint problem in (0, π)×(0, τ) is well-posed
in Y2 × Y1 for every τ > 0 and g in Y1.

vtt(x, t)− αvxxtt(x, t) + vxxxx(x, t) = 0, (3.6a)

v(0, t) = v(π, t) = vxx(0, t) = vxx(π, t) = 0, (3.6b)

v(x, τ) = 0, vt(x, τ) = g(x). (3.6c)

Moreover, for any χ in (0, π),

∥vx(χ, ·)∥L2(0,τ) ≤ C∥g∥Y0
. (3.7)

Since (1.1a) is linear and Lemma 3.2 holds, it is enough
to consider the case w0 = w1 = 0. Suppose that g belongs
to C∞

0 (0, π), and let v be the solution of (3.6). Define
a linear operator L := I − α∂xx. It is well-known that
the operator L is an isomorphism from Y2 to Y0 and an
isomorphism from Y1 to Y−1 by Lax-Milgram Theorem. If
we multiply (1.1a) by v and integrate by parts, we obtain∫ π

0

Lw(x, τ)g(x)dx =

∫ τ

0

u(t)(vx(η, t)−vx(ξ, t))dt. (3.8)

Inequality (3.7) implies that∣∣∣∣∫ τ

0

u(t)(vx(η, t)− vx(ξ, t))dt

∣∣∣∣ ≤ 2C∥u∥L2(0,T )∥g∥Y0 ,

so by (3.8), we obtain Lw(·, τ) belongs to Y0, and hence
w(·, τ) belongs to Y2 for all τ in [0, T ]. By replacing τ by
τ + h in (3.8) we easily get that

w ∈ C([0, T ];Y2). (3.9)

Denote R := (I − α∂xx)
−1. It follows from Lax-Milgram

Theorem that the operator R is an isomorphism from Y−2

to Y0 and an isomorphism from Y−1 to Y1. Applying R to
both sides of (1.1a) yields

wtt(x, t)+Rwxxxx(x, t) = u(t)R d

dx
[δη(x)−δξ(x)]. (3.10)

Regularity (3.9) implies that

Rwxxxx ∈ C([0, T ];Y0). (3.11)

As w satisfies (3.10) and dδb
dx belongs to Y−2 for all b in

(0, π), we obtain from (3.11) that

wtt ∈ L2(0, T ;Y0). (3.12)
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Applying the intermediate derivative theorem (see Theo-
rem 2.3 of [18, p. 15]) with (3.9) and (3.12), it follows
that

wt ∈ L2(0, T ;Y1). (3.13)

The conclusion (3.1) is now a consequence of (3.9) and
(3.13) and of the general lifting result from [19].

3.2. Well-posedness of (1.1) with (H1(0, T ))′ control func-
tion

As the control function u belongs to (H1(0, T ))′, the
dual space of H1(0, T ), we need to define the solution of
(1.1) in the weak form. The next proposition gives a char-
acterization of (H1(0, T ))′ (see [20, p. 62]).

Proposition 3.3. For every u in (H1(0, T ))′, there ex-
ist functions u0 and u1 in L2(0, T ) such that for all ϕ in
H1(0, T ),

⟨u, ϕ⟩(H1(0,T ))′×H1(0,T ) =

∫ T

0

(u0ϕ+ u1ϕt)dt. (3.14)

Moreover

∥u∥(H1(0,T ))′ = inf ∥(u0, u1)∥(L2(0,T ))2

= min ∥(u0, u1)∥(L2(0,T ))2 , (3.15)

the infimum being taken over, and attained on the set of
all (u0, u1) in (L2(0, T ))2 for which (3.14) holds for every
ϕ in H1(0, T ). And the element (u0, u1) in (L2(0, T ))2

satisfying (3.14) and (3.15) is unique.

Note that u0 and u1 also define a distribution ũ in
D′(0, T ) as ũ = u0 − u1,t. We know from [20, p. 63] that
the element u of (H1(0, T ))′ is an extension to H1(0, T ) of
the distribution ũ.

Inspired by [4], we define the weak solution of (1.1) by
transposition and prove the well-posedness. We explain
the results in three steps.

1. We prove the well-posedness and the trace regularity
of a non-homogeneous problem (3.16).

2. We define the weak solution of (1.1) by transposi-
tion using the solution of non-homogeneous problem
(3.16).

3. We prove the well-posedness of (1.1) with the control
function u in (H1(0, T ))′.

Step 1. Let {f, θ0, θ1} belong to L1(0, T ;Y−1) × Y2 × Y1.
Let us consider the following backward non-homogeneous
problem in (0, π)× (0, T ),

θtt(x, t)− αθxxtt(x, t) + θxxxx(x, t) = f(x, t), (3.16a)

θ(0, t) = θ(π, t) = θxx(0, t) = θxx(π, t) = 0, (3.16b)

θ(x, T ) = θ0, θt(x, T ) = θ1. (3.16c)

The following proposition provides the well-posedness and
the trace regularity of (3.16). Our approach to prove this
proposition is inspired by ideas and methods used in [16,
21].

Proposition 3.4. For any initial data (θ0, θ1) in Y2 × Y1
and f in L1(0, T ;Y−1), there exists a unique weak solution
θ of (3.16) in the class C([0, T ];Y2)∩C1([0, T ];Y1). More-
over, for any χ in (0, π), θx(χ, ·) belongs to H1(0, T ) and
there exists C > 0 such that

∥θx(χ, ·)∥H1(0,T ) ≤ C(∥θ0∥H2(0,π)

+ ∥θ1∥H1(0,π) + ∥f∥L1(0,T ;Y−1)). (3.17)

Proof. Applying R to both sides of (3.16a), we obtain

θtt(x, t) +Rθxxxx(x, t) = Rf(x, t). (3.18)

Notice that Rf belongs to L1(0, T ;Y1). Then the prob-
lem (3.18) is well-posed in the state space Y2 × Y1 by
the classical semigroup method (see [17, p. 106]), and
then the problem (3.16) admits a unique solution θ in
C([0, T ];Y2)∩C1([0, T ];Y1). Moreover, there exists a con-
stant CT > 0 such that

∥θ∥C([0,T ];Y2) ≤ CT (∥θ0∥H2(0,π)

+ ∥θ1∥H1(0,π) + ∥f∥L1(0,T ;Y−1)). (3.19)

Then we need to prove inequality (3.17). The following
lemma proved in [16, 21] shows that the operator R∂xxxx
is “similar” to the elliptic operator − 1

α∂xx.

Lemma 3.5. The linear operator L = − 1
α∂xx − R∂xxxx

is bounded from Y2 to Y2.

Using this lemma, we can reduce the proof of (3.17) to
a regularity property for a string equation. We consider
the initial value problem in (0, π)× (0, T ),

θ1,tt(x, t)−
1

α
θ1,xx(x, t) = Rf(x, t),

θ1(0, t) = θ1(π, t) = 0,

θ1(x, T ) = θ0, θ1,t(x, T ) = θ1.

The relations above imply that in (0, π)×(0, T ), θ2 = θ−θ1
satisfies

θ2,tt(x, t)−
1

α
θ2,xx(x, t) = Lθ,

θ2(0, t) = θ2(π, t) = 0,

θ2(x, T ) = 0, θ2,t(x, T ) = 0.

Since θ belongs to C([0, T ];Y2) and L is bounded from Y2
to Y2, Lθ belongs to C([0, T ];Y2). Then by the classical
theory for evolution equations of hyperbolic type (see [22]),
θ2 belongs to C([0, T ];H3(0, π))∩C1([0, T ];H2(0, π)) and
there exists a constant C1

T > 0 such that

∥(θ2, θ2,t)∥C([0,T ];H3(0,π)×H2(0,π)) ≤ C1
T ∥θ∥C([0,T ];Y2).

This inequality, combined with (3.19) and the standard
trace theorem of hyperbolic equation, implies that there
exists a constant C2

T > 0 such that for any χ in (0, π),

∥θ2,x(χ, ·)∥H1(0,T ) ≤ C2
T (∥θ0∥H2(0,π)

+ ∥θ1∥H1(0,π) + ∥f∥L1(0,T ;Y−1)). (3.20)
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As for θ1, it is already proved by using multiplier methods
in [23] that there exists a constant C3

T > 0 such that for
any χ in (0, π),

∥θ1,x(χ, ·)∥H1(0,T ) ≤ C3
T (∥θ0∥H2(0,π)

+ ∥θ1∥H1(0,π) + ∥f∥L1(0,T ;Y−1)). (3.21)

Then inequality (3.17) follows from (3.20) and (3.21).

Step 2. Now we give the definition of the weak solution
of (1.1). Denote by X a Banach space consisting of θ, the
solution of (3.16). And give X a natural Banach struc-
ture such that {f, θ0, θ1} 7→ θ is an isomorphism from
L1(0, T ;Y−1)× Y2 × Y1 to X . From Proposition 3.4, X is
contained in C([0, T ];Y2) ∩ C1([0, T ];Y1) and (3.17) holds
for all θ in X and χ in (0, π).

Assume that {f, θ0, θ1} belongs to L1(0, T ;Y−1)×Y2×
Y1 and that {u,w0, w1} belongs to L2(0, T ) × Y2 × Y1.
Denote by θ the solution of (3.16) and by w the solution
of (1.1) given by Theorem 3.1. Multiplying (1.1a) by θ
and integrating by parts, we obtain∫ T

0

∫ π

0

wfdxdt+

∫ π

0

[Lwt(T )θ
0 − Lw(T )θ1]dx

= −
∫ T

0

u(t)(θx(η, t)− θx(ξ, t))dt

+

∫ π

0

[Lw1θ(0)− Lw0θt(0)]dx.

Now relaxing the assumption of {u,w0, w1} belonging to
L2(0, T )×Y2×Y1 to {u,w0, w1} belonging to (H1(0, T ))′×
Y1 × Y0 and considering the integral

∫ T

0
u(t)(θx(η, t) −

θx(ξ, t))dt as the linear form between u and θx(η, ·) −
θx(ξ, ·), we obtain from (3.14) that there exist functions
u0 and u1 in L2(0, T ) such that

∫ T

0

∫ π

0

wfdxdt+

∫ π

0

[Lwt(T )θ
0 − Lw(T )θ1]dx

= −
∫ T

0

[u0(t)(θx(η, t)− θx(ξ, t))

+ u1(t)(θxt(η, t)− θxt(ξ, t))]dt

+

∫ π

0

[Lw1θ(0)− Lw0θt(0)]dx. (3.22)

Let (3.22) be the definition of weak solution.

Definition 3.6. Let T > 0, u in (H1(0, T ))′ and (w0, w1)
in Y1 × Y0 be given. A solution of the problem (1.1) is a
function w in C([0, T ];Y1) such that for every {f, θ0, θ1}
in L1(0, T ;Y−1)×Y2 ×Y1, (3.22) holds and (w(T ), wt(T ))
belongs to Y1 × Y0.

Step 3. Then we are able to prove the well-posedness of
(1.1) when u belongs to (H1(0, T ))′.

Theorem 3.7. Suppose (w0, w1) belongs to Y1 × Y0. For
any u in (H1(0, T ))′ and for any ξ and η in (0, π), the
initial and boundary value problem (1.1) admits a unique
weak solution w in sense of Definition 3.6. And the map
{w0, w1, u} 7→ {w,w(T ), wt(T )} is continuous and linear
with respect to the corresponding norm.

Proof. Since u belongs to (H1(0, T ))′, there exist u0 and
u1 in L2(0, T ) such that (3.14) holds . Moreover, the map
{f, θ0, θ1} 7→ θ is an isomorphism from L1(0, T ;Y−1) ×
Y2 × Y1 to X . Therefore, we define a linear form Γ on X
such that

Γ(θ) = −
∫ T

0

[u0(t)(θx(η, t)− θx(ξ, t))

+ u1(t)(θxt(η, t)− θxt(ξ, t))]dt

+

∫ π

0

[Lw1θ(0)− Lw0θt(0)]dx. (3.23)

Since (w0, w1) belongs to Y1 × Y0, (Lw0,Lw1) belongs
to Y−1 × Y−2. It follows from Proposition 3.4 that Γ is
a continuous linear form on X . Denote by (f1, f2) the
linear form between Y−γ and Yγ for any γ ≥ 0 and de-
note by ⟨g1, g2⟩∗ the linear form between L∞(0, T ;Y1) and
L1(0, T ;Y−1). Therefore, for the linear form Γ in X ′, there
exists a unique element {w, ζ∗, ζ} in L∞(0, T ;Y1)× Y−2 ×
Y−1 such that

⟨w, f⟩∗ + (ζ∗, θ
0) + (−ζ, θ1) = Γ(θ) ∀θ ∈ X . (3.24)

Next we claim that w above is actually the weak solution
of (1.1). It is sufficient to prove that w satisfies (1.1) in
weak sense, Lw(T ) = ζ and Lwt(T ) = ζ∗.

Notice that {x 7→ sin(kx)}k∈N∗ is the family of eigen-
functions of R∂xxxx. Let m(x) = sin(kx) for some k in N∗

and let h belong to L1(0, T ). Firstly we setRf(t) = h(t)m,
θ0 = 0 and θ1 = 0, then f(t) = h(t)Lm. Denote by
λ2 = k4/(1 + αk2) the corresponding eigenvalue and take
λ positively. Then we obtain from Proposition 3.4 that for
t in (0, T ), θ(t) = q(t)m, where q satisfies qtt+λ

2q = h and

q(T ) = qt(T ) = 0. Clearly we have q(t) = − 1
λ

∫ T

t
sin(λ(t−

σ))h(σ)dσ. Then we obtain from (3.23) and (3.24) that∫ T

0

(w,Lm)(qtt + λ2q)dt = ⟨w, f⟩∗ = Γ(θ)

= −(mx(η)−mx(ξ))

∫ T

0

[u0(t)q(t) + u1(t)qt(t)]dt

+ q(0)(Lw1,m)− qt(0)(Lw0,m). (3.25)

Notice that (w,Lm) = (Lw,m). Then (3.25) implies that

(Lw,m)tt + λ2(Lw,m) =− (mx(η)−mx(ξ))u,

(Lw,m)(0) =(Lw0,m),

(Lw,m)t(0) =(Lw1,m).

(3.26)

Note that the first equation of (3.26) holds in (H1(0, T ))′.
Since m(x) = sin(kx) and k ≥ 1 is an arbitrary natural
number, then w satisfies (1.1) in weak sense.
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Now we set f = 0, θ0 = 0 and θ1 = −m. Then for t
in (0, T ), θ(t) = 1

λ sin(λ(T − t))m. Therefore, (3.23) and
(3.24) imply that

(ζ,m) = Γ(θ) = (Lw1,m)
sin(λT )

λ

+ (Lw0,m) cos(λT )− (mx(η)−mx(ξ))

·
∫ T

0

[
u0(t)

sin(λ(T − t))

λ
− u1(t) cos(λ(T − t))

]
dt.

(3.27)

Moreover, it follows from (3.26) that

(Lw,m)(T ) = (Lw0,m) cos(λT ) + (Lw1,m)
sin(λT )

λ

− mx(η)−mx(ξ)

λ
⟨u, sin(λ(T − ·))⟩(H1(0,T ))′×H1(0,T ).

(3.28)

Comparing (3.28) to (3.27), we obtain that (Lw,m)(T ) =
(ζ,m), which proves Lw(T ) = ζ.

Next we set f = 0, θ0 = m and θ1 = 0. Then for t
in (0, T ), θ(t) = cos(λ(T − t))m. Thus (3.23) and (3.24)
imply that

(ζ∗,m) = Γ(θ) = (Lw1,m) cos(λT )

− (Lw0,m)λ sin(λT )− (mx(η)−mx(ξ))

·
∫ T

0

[u0(t) cos(λ(T − t)) + u1(t)λ sin(λ(T − t))]dt.

(3.29)

Moreover, (3.26) implies that

(Lw,m)t(T ) = (Lw1,m) cos(λT )

− (Lw0,m)λ sin(λT )− (mx(η)−mx(ξ))

· ⟨u, cos(λ(T − ·))⟩(H1(0,T ))′×H1(0,T ). (3.30)

Comparing (3.30) to (3.29), we obtain that (Lw,m)t(T ) =
(ζ∗,m), which implies Lwt(T ) = ζ∗.

Now we have proved that there exists a unique ele-
ment {w,w(T ), wt(T )} in L∞(0, T ;Y1)×Y1×Y0 such that
(3.22) holds and the map {w0, w1, u} 7→ {w,w(T ), wt(T )}
is continuous and linear with respect to the correspond-
ing norm. In fact we have the property of w belonging to
C([0, T ];Y1). Since when the known data {w0, w1, u} be-
longs to Y2×Y1×L2(0, T ), we have (3.1). Using a density
argument, we conclude the proof of Theorem 3.7.

4. Proofs of the main results

In this section, we prove the main results. On the
one hand, for controllability results, namely Theorems 1.3
and 1.4, we first use the HUM to rewrite the control prob-
lem into observability inequalities of the adjoint equation.

Then we derive these observability inequalities by apply-
ing the Ingham inequality. The methods for proving The-
orems 1.3 and 1.4 are inspired by the ideas and methods
used in [6] for Euler-Bernoulli beam with piezoelectric ac-
tuator. On the other hand, for non-controllability results,
namely Theorems 1.5 to 1.7, we exhibit initial conditions
so that the observability inequalities are false. The ap-
proaches in proofs of Theorems 1.5 and 1.6 are inspired
by [6]. And the proof of the lack of the controllability in
short control time, namely Theorem 1.7, is inspired by the
methods used in [12].

4.1. Exact L2-controllability (Proof of Theorem 1.3)

Let (ϕ0, ϕ1) in (C∞[0, π])2 satisfying the compatibility
conditions (1.2) and denote by ϕ(x, t) the solution of (3.2)
with initial value (ϕ0, ϕ1).

Consider a backward adjoint system in (0, π)× (0, T )

ψtt(x, t)− αψxxtt(x, t) + ψxxxx(x, t)

= u(t)
d

dx
[δη(x)− δξ(x)], (4.1a)

ψ(0, t) = ψ(π, t) = ψxx(0, t) = ψxx(π, t) = 0, (4.1b)

ψ(x, T ) = ψt(x, T ) = 0, (4.1c)

where u in L2(0, T ) will be chosen later. Problem (4.1) is
well-posed according to Theorem 3.1. Then, multiplying
(4.1a) by ϕ and integrating by parts, we get∫ π

0

ϕ0(x)Lψt(x, 0)− ϕ1(x)Lψ(x, 0)dx

=

∫ T

0

u(t)(ϕx(η, t)− ϕx(ξ, t))dt. (4.2)

Let u(t) = ϕx(η, t)− ϕx(ξ, t). Since (3.4), u belongs to
L2(0, T ). Define a linear operator Λ satisfying

Λ(ϕ0, ϕ1) = (Lψt(·, 0),−Lψ(·, 0)).

Since (Lψt(·, 0),−Lψ(·, 0)) belongs to Y−1 × Y0 by Theo-
rem 3.1, the operator Λ is well defined. In particular, we
obtain from (4.2) that

⟨Λ(ϕ0, ϕ1), (ϕ0, ϕ1)⟩ =
∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt.

Therefore, we can define a seminorm

∥(ϕ0, ϕ1)∥F :=

(∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt

) 1
2

,

for all (ϕ0, ϕ1) in (C∞[0, π])2 satisfying the compatibility
conditions (1.2).

A classical argument in HUM implies the following
proposition.
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Proposition 4.1. All initial data in Yβ+3 × Yβ+2 are ex-
actly L2-controllable in (ξ, η) at time T if and only if there
exists a constant c > 0 such that∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt ≥ c(∥ϕ0∥2H−β + ∥ϕ1∥2H−β−1)

(4.3)
for all (ϕ0, ϕ1) in (C∞[0, π])2 satisfying the compatibility
conditions (1.2).

Equation (4.3) is called observability inequality. As
in the proof of Lemma 3.2, the solution ϕ of the adjoint
problem (3.2) has the form of (3.5), which implies that

∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt

= 4

∫ T

0

∣∣∣∣∣∣
∑
k≥1

k sin

(
k(η + ξ)

2

)

· sin
(
k(η − ξ)

2

){
ak cos

(
k2t√

1 + αk2

)

+
bk
√
1 + αk2

k2
sin

(
k2t√

1 + αk2

)}∣∣∣∣∣
2

dt. (4.4)

Remark 4.2. From (4.4), we can see that (1.3) is neces-
sary for controllability.

To prove the observability inequality (4.3) for some β,
we apply the following Ingham inequality (see [9, 10]) to
our problem.

Lemma 4.3. Let (νk)k∈Z be a strictly increasing sequence
of real numbers and let γ∞ be defined by γ∞ = lim inf |k|→∞
|νk+1 − νk|. Assume that γ∞ > 0. For any real T >
2π/γ∞, there exist two constants C1, C2 > 0 such that for
any sequence (xk)k∈Z in l2(C),

C1

∑
k∈Z

|xk|2 ≤
∫ T

0

∣∣∣∣∣∑
k∈Z

xke
iνkt

∣∣∣∣∣
2

dt ≤ C2

∑
k∈Z

|xk|2.

We apply Lemma 4.3 with

νk = −ν−k =
k2√

1 + αk2
, k ∈ N,

2xk = 2x−k =

(
ak − i

bk
√
1 + αk2

k2

)

· k sin
(
k(η + ξ)

2

)
sin

(
k(η − ξ)

2

)
, k ∈ N∗,

x0 = 0.

As lim|k|→∞ |νk+1 − νk| = 1/
√
α, then for any real T >

2π
√
α, there exists a constant C1 > 0 such that∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt

≥ C1

∑
k≥1

k2
(
a2k +

b2k(1 + αk2)

k4

)

·
[
sin

(
k(η + ξ)

2

)
sin

(
k(η − ξ)

2

)]2
. (4.5)

When η+ξ
2π and η−ξ

2π belong to A, it follows from (2.1)
that there exists a constant C > 0 such that for all k ≥ 1,∣∣∣∣sin(k(η ± ξ)

2

)∣∣∣∣ = ∣∣∣∣sin{π [k(η ± ξ)

2π
− p

]}∣∣∣∣
≥
∣∣∣∣sin(πCk

)∣∣∣∣ ≥ C

k
. (4.6)

Inequalities (4.5) and (4.6) imply that∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt ≥ c
∑
k≥1

(a2kk
−2 + b2kk

−4),

which is exactly (4.3) for β = 1. This fact completes the
proof of the first part of Theorem 1.3.

When η+ξ
2π and η−ξ

2π belong to Bε, it follows from (2.2)
that there exists a constant C > 0 such that for all k ≥ 1,∣∣∣∣sin(k(η ± ξ)

2

)∣∣∣∣ ≥ C

k1+ε
. (4.7)

Inequalities (4.5) and (4.7) imply that∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt ≥ c
∑
k≥1

(a2kk
−2−4ε + b2kk

−4−4ε),

which is exactly (4.3) for β = 1 + 2ε. This fact completes
the proof of the second part of Theorem 1.3.

4.2. Exact (H1)′-controllability (Proof of Theorem 1.4)
Similar to in Section 4.1, we use the HUM to rewrite

the controllability problem. Let (ϕ0, ϕ1) in (C∞[0, π])2

satisfy the compatibility conditions (1.2). Denote by ϕ
the solution of (3.2) with initial value (ϕ0, ϕ1).

Then consider the backward adjoint system (4.1) where
u in (H1(0, T ))′ will be chosen later. Problem (4.1) is well-
posed due to Theorem 3.7. Then taking the linear form
between (4.1a) and ϕ and integrating by parts, we obtain∫ π

0

ϕ0(x)Lψt(x, 0)− ϕ1(x)Lψ(x, 0)dx

= ⟨u, ϕx(η, ·)− ϕx(ξ, ·)⟩(H1(0,T ))′×H1(0,T ). (4.8)

Recalling (3.14), this equation is equivalent to∫ π

0

ϕ0(x)Lψt(x, 0)− ϕ1(x)Lψ(x, 0)dx

=

∫ T

0

[u0(t)(ϕx(η, t)− ϕx(ξ, t))

+ u1(t)(ϕxt(η, t)− ϕxt(ξ, t))]dt, (4.9)
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for some u0 and u1 in L2(0, T ).
Let u0(t) = 0 and u1(t) = ϕxt(η, t)−ϕxt(ξ, t). Function

u1 belongs to L2(0, T ) due to (3.3), and therefore, u is well
defined. Define a linear operator Λ∗ satisfying

Λ∗(ϕ
0, ϕ1) = (Lψt(·, 0),−Lψ(·, 0)).

Since (Lψt(·, 0),−Lψ(·, 0)) belongs to Y−2 × Y−1 because
of Theorem 3.7, operator Λ∗ is well defined. In particular,
we have

⟨Λ∗(ϕ
0, ϕ1), (ϕ0, ϕ1)⟩ =

∫ T

0

|ϕxt(η, t)− ϕxt(ξ, t)|2dt.

Therefore, we can define a seminorm

∥(ϕ0, ϕ1)∥F∗ :=

(∫ T

0

|ϕxt(η, t)− ϕxt(ξ, t)|2dt

) 1
2

,

for all (ϕ0, ϕ1) in (C∞[0, π])2 satisfying the compatibility
conditions (1.2).

A classical argument in HUM implies the following
proposition.

Proposition 4.4. All initial data in Yβ+3 × Yβ+2 are ex-
actly (H1)′-controllable in (ξ, η) at time T if and only if
there exists a constant c > 0 such that∫ T

0

|ϕxt(η, t)− ϕxt(ξ, t)|2dt ≥ c(∥ϕ0∥2H−β + ∥ϕ1∥2H−β−1)

(4.10)
for all (ϕ0, ϕ1) in (C∞[0, π])2 satisfying the compatibility
conditions (1.2).

Assume T > 2π
√
α. Using similar arguments as in

Section 4.1, we have the following results. When η+ξ
2π and

η−ξ
2π belong to A, there exists a constant c > 0 such that∫ T

0

|ϕxt(η, t)− ϕxt(ξ, t)|2dt ≥ c
∑
k≥1

(a2k + b2kk
−2),

which is exactly (4.10) when β = 0. This completes the
proof of the first part of Theorem 1.4.

When η+ξ
2π and η−ξ

2π belong to Bε, there exists a con-
stant c > 0 such that∫ T

0

|ϕxt(η, t)− ϕxt(ξ, t)|2dt ≥ c
∑
k≥1

(a2kk
−4ε + b2kk

−2−4ε),

which is exactly (4.10) when β = 2ε. This completes the
proof of the second part of Theorem 1.4.

4.3. The condition (1.3) is not sufficient (Proof of Theo-
rem 1.5)

As mentioned in Remark 4.2, the condition (1.3) is nec-
essary for controllability. We aim to prove the condition
(1.3) is not sufficient in this section.

From Proposition 4.1, it is sufficient to show that for
any β ≥ −1, there exist ξ and η satisfying (1.3) such that
(4.3) is false for any c > 0. For any β ≥ −1, let

ν > max

(
3

2
β + 1, 2

)
. (4.11)

We choose
η + ξ

2π
=

∞∑
n=1

an
10n!

, (4.12)

where an belongs to {0, 1, . . . , 9} for all n ≥ 1, and an
is not identically zero for great n. According to [24] the
right-hand side of (4.12) is a Liouville number, i.e., it is
transcendental and there exists a strictly increasing se-
quence of integers qn such that∣∣∣∣sin(qn η + ξ

2

)∣∣∣∣ ≤ π

qνn
∀n ≥ 1. (4.13)

Now we consider the sequence of initial data

ϕ0n(x) = qµn sin(qnx), ϕ1n(x) = 0 ∀x ∈ (0, π), (4.14)

where µ = 3
2β if β > 0 and µ = 1 if −1 ≤ β ≤ 0. Ob-

viously, (ϕ0n, ϕ
1
n) belongs to (C∞[0, π])2 and satisfies com-

patibility conditions (1.2) and

∥ϕ0n∥2H−β + ∥ϕ1n∥2H−β−1 → ∞. (4.15)

Moreover, we obtain from (4.4), (4.11), and (4.13) that

∫ T

0

|ϕn,x(η, t)− ϕn,x(ξ, t)|2dt

= 4

∫ T

0

∣∣∣∣qn sin(qn η + ξ

2

)
sin

(
qn
η − ξ

2

)

·qµn cos

(
q2n√

1 + αq2n
t

)∣∣∣∣∣
2

dt

≤ 4Tq2(µ+1)
n

∣∣∣∣sin(qn η + ξ

2

)∣∣∣∣2
≤ 4πTq2(µ+1−ν)

n → 0, as n→ ∞. (4.16)

Relations (4.15) and (4.16) show that (4.3) is false for any
c > 0.

Similarly, because of Proposition 4.4, it is sufficient to
show that for any β ≥ −2, there exist ξ and η satisfying
(1.3) such that (4.10) is false for any c > 0. The proof is
quite similar to the proof above in this section. For any
fixed β ≥ −2, we only need to change ν as

ν > max

(
3

2
β + 2, 3

)
, (4.17)

and to set µ = 3
2β if β > 0 and µ = 1 if −2 ≤ β ≤ 0. By

similar calculation, we obtain that (4.10) is false for any
c > 0.
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4.4. Non-controllability for initial data in less regular set
(Proof of Theorem 1.6)

Similarly to the previous section, we aim to prove (4.3)
(resp. (4.10)) is false. According to Proposition 2.3, for
any ξ and η in (0, π), there exists a strictly increasing
sequence of positive integers {qn}n≥1 such that for all n ≥
1, ∣∣∣∣sin(qn η + ξ

2

)∣∣∣∣ ≤ π
√
qn
,

∣∣∣∣sin(qn η − ξ

2

)∣∣∣∣ ≤ π
√
qn
.

(4.18)
First we consider the sequence of initial data

ϕ0n(x) = sin(qnx), ϕ1n(x) = 0 ∀x ∈ (0, π). (4.19)

We note that for any ε > 0,

∥ϕ0n∥2Hε + ∥ϕ1n∥2Hε−1 = Cq2εn → ∞, n→ ∞, (4.20)

where C is a positive constant. By (4.4) and (4.18) we
have that for all n ≥ 1,∫ T

0

|ϕn,x(η, t)− ϕn,x(ξ, t)|2dt

= 4

∫ T

0

∣∣∣∣qn sin(qn η + ξ

2

)
sin

(
qn
η − ξ

2

)

· cos

(
q2n√

1 + αq2n
t

)∣∣∣∣∣
2

dt ≤ K, (4.21)

where K is a positive constant. So (4.20) and (4.21) show
that (4.3) is false for β = −ε and arbitrary c > 0.

Then we choose the sequence of initial data

ϕ0n(x) = q−1
n sin(qnx), ϕ1n(x) = 0 ∀x ∈ (0, π). (4.22)

We note that for any ε > 0,

∥ϕ0n∥2Hε+1 + ∥ϕ1n∥2Hε = Cq2εn → ∞, n→ ∞, (4.23)

where C is a positive constant. By (3.5) and (4.18) we
have that for all n ≥ 1,∫ T

0

|ϕn,xt(η, t)− ϕn,xt(ξ, t)|2dt

= 4

∫ T

0

∣∣∣∣sin(qn η + ξ

2

)
sin

(
qn
η − ξ

2

)

· q2n√
1 + αq2n

sin

(
q2n√

1 + αq2n
t

)∣∣∣∣∣
2

dt ≤ K, (4.24)

where K is a positive constant. So (4.23) and (4.24) show
that (4.10) is false for β = −ε− 1 and arbitrary c > 0.

4.5. The lack of controllability in short control time (Proof
of Theorem 1.7)

We prove the lack of L2-controllability (resp. (H1)′-
controllability) when 0 < T < 2π

√
α in this section. Let

0 < T < 2π
√
α and ξ, η in (0, π) be arbitrary.

We first concern the lack of L2-controllability. For any
β ≥ −1, we aim to find {(ϕ0m, ϕ1m)}m∈N∗ such that∫ T

0

|ϕm,x(η, t)− ϕm,x(ξ, t)|2dt→ 0, as m→ ∞

and
∥ϕ0m∥2H−β + ∥ϕ1m∥2H−β−1 ≥ c > 0

for any m ≥ 1. As in Section 4.1, we denote

λn = −λ−n =
n2√

1 + αn2
, n ∈ N∗. (4.25)

Obviously, {λn}n∈Z∗ is a strictly increasing sequence and
lim|n|→∞ |λn+1 − λn| = 1/

√
α > 0. Adding or subtracting

finite numbers in the sequence does not affect the result
of Proposition 2.4, so we can apply Proposition 2.4 to the
sequence {λn}n∈Z∗ . Define N(x, r) as in Proposition 2.4
corresponding to {λn}n∈Z∗ . We have the following lemma.

Lemma 4.5. Let {λn}n∈Z∗ and N(x, r) be defined above.
We have that

N(x, r)

r
→

√
α, as r → ∞ (4.26)

holds uniformly relative to x in R.

We will prove this lemma in Appendix A. As 0 < T <
2π

√
α, we can choose T ′ such that 0 < T < T ′ < 2π

√
α.

Let f in L2(0, 2π
√
α) be a real valued function such that

f(t) = 0 if 0 ≤ t ≤ T and ∥f∥L2(0,T ′) ̸= 0. According

to Lemma 4.5 and Proposition 2.4, the family {eiλnt}n∈Z∗

contains a subfamily {eiλqn t}n∈Z∗ which forms a Riesz ba-
sis in L2(0, T ′). Moreover, the subsequence {λqn}n∈Z sat-
isfies λqn = −λq−n . Then for the function f in L2(0, T ′)
defined above, there exists a sequence {ln}n∈Z∗ in l2(C)
such that f(t) =

∑
n∈Z∗ lne

iλqn t holds in L2(0, T ′) and
0 <

∑
n∈Z∗ |ln|2 < ∞. Since f(t) is a real valued func-

tion, we have ln = l−n. Now we can define the sequence
{(ϕ0m, ϕ1m)}m∈N∗ of initial data as the following,

ϕ0m(x) = 2

m∑
n=1

Re(ln)

[
qn sin

(
qn
η + ξ

2

)

· sin
(
qn
η − ξ

2

)]−1

sin(qnx),

ϕ1m(x) = −2

m∑
n=1

Im(ln)

[
qn sin

(
qn
η + ξ

2

)

· sin
(
qn
η − ξ

2

)]−1
q2n√

1 + αq2n
sin(qnx). (4.27)

As mentioned in Remark 4.2, we assume (1.3) holds. Con-
sequently, the sequence {(ϕ0m, ϕ1m)}m∈N∗ of initial data is
well-defined.

Since 0 <
∑

n∈Z∗ |ln|2 < ∞ and ln = l−n, there exists
m0 ≥ 1 such that lm0 ̸= 0. So for m ≥ m0 and for any
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β ≥ −1,

∥ϕ0m∥2H−β + ∥ϕ1m∥2H−β−1

≥ ∥ϕ0m0
∥2H−β + ∥ϕ1m0

∥2H−β−1 = c > 0. (4.28)

Moreover, thanks to (4.4), we have

∫ T

0

|ϕm,x(η, t)− ϕm,x(ξ, t)|2dt

= 4

∫ T

0

∣∣∣∣∣∣
m∑

n=−m,n ̸=0

lne
λqn t

∣∣∣∣∣∣
2

dt. (4.29)

Since 0 = f(t) =
∑

n∈Z∗ lne
λqn t in L2(0, T ), we obtain

that∫ T

0

|ϕm,x(η, t)− ϕm,x(ξ, t)|2dt→ 0, as m→ ∞. (4.30)

Relations (4.28) and (4.30) finish the proof of the lack of
exact L2-controllability for any β ≥ −1.

As for the lack of exact (H1)′-controllability for any
β ≥ −2, we only need to change the initial data in (4.27)
to

ϕ0m(x) = 2

m∑
n=1

Re(ln)

[
qn sin

(
qn
η + ξ

2

)

· sin
(
qn
η − ξ

2

)]−1 √
1 + αq2n
q2n

sin(qnx),

ϕ1m(x) = −2

m∑
n=1

Im(ln)

[
qn sin

(
qn
η + ξ

2

)

· sin
(
qn
η − ξ

2

)]−1

sin(qnx).

(4.31)

Similarly, (4.28) holds for m ≥ m0 and for any β ≥ −2.
Moreover, we have∫ T

0

|ϕm,xt(η, t)− ϕm,xt(ξ, t)|2dt

= 4

∫ T

0

∣∣∣∣∣∣
m∑

n=−m,n ̸=0

lne
λqn t

∣∣∣∣∣∣
2

dt→ 0, as m→ ∞.

(4.32)

Relations (4.28) and (4.32) finish the proof of the lack of
exact (H1)′-controllability for any β ≥ −2.

5. Conclusion

The exact controllability problem for Rayleigh beam
equation with piezoelectric actuator has been fully con-
sidered. Two different types of controllability problem,

namely L2-controllability and (H1)′-controllability, are in-
vestigated. Moreover, several non-controllability results
are proved. Especially, minimal control time for the exact
controllability is deduced from the non-controllability re-
sult in short control time. As said in Remark 1.8, exact
controllability in critical time is an open problem. Con-
trollability problem for other types of beam equation with
piezoelectric actuator, such as shear beam equation, also
remains open.

Appendix A. Proof of Lemma 4.5

Solving k2
√
1+αk2

< r, we obtain that k < [(αr2 +

r
√
α2r2 + 4)/2]

1
2 . Thus we define a real function g : (0,

+∞) → (0,+∞) as g(r) = [(αr2 + r
√
α2r2 + 4)/2]

1
2 and

define {x} = q(x) − 1, where q(x) = minq∈Z{q ≥ x}. Ob-
viously, x− 1 ≤ {x} < x. Then we have N(0, r) = {g(r)}.
Notice that for x ≥ 0, N(x, r) = N(0, x + r) − N(0, x) =
{g(x+r)}−{g(x)}. Therefore, we have g(x+r)−g(x)−1 ≤
N(x, r) ≤ g(x + r) − g(x) + 1. Now we need to estimate
g(x+ r)− g(x) for x, r > 0.

Let f(x) = x2
√
1+αx2

for x > 0. Then simple calculation

shows that 0 < x <
√

2/α implies f ′′(x) > 0. Therefore,

there exists N0 in N satisfying N0 >
√
2/α + 1 such that

for all n ≥ N0, λn+1−λn decreases and converges to 1/
√
α.

Then for x ≥ N0, N(N0, r) ≤ N(x, r) ≤ limx→+∞
N(x, r). Simple calculation shows that limx→+∞[g(x +
r)− g(x)] =

√
αr. Therefore, we obtain that g(N0 + r)−

g(N0)− 1 ≤ N(x, r) ≤
√
αr + 1 holds for x ≥ N0.

For 0 ≤ x ≤ N0, N(x, r) ≤ N(0, N0) + N(N0, r) ≤√
αr + 1 + g(N0). Assuming that r > N0, we have

N(x, r) ≥ N(N0, r −N0 + x) = N(0, x+ r)−N(0, N0)

≥ g(x+ r)− g(N0)− 1 ≥ min
x∈[0,N0]

g(x+ r)− g(N0)− 1.

Then for all x ≥ 0 and r > N0, minx∈[0,N0] g(x + r) −
g(N0)− 1 ≤ N(x, r) ≤

√
αr + 1 + g(N0) and hence,

lim
r→∞

N(x, r)

r
=

√
α (A.1)

holds uniformly relative to x ≥ 0.
For −r ≤ x < 0,

N(0, |x|) +N(0, r − |x|) ≤ N(x, r)

≤ N(0, |x|) +N(0, r − |x|) + 1.

Let θ belong to [0, 1] and |x| = θr. Note that N(0, |x|) +
N(0, r − |x|) = {g(θr)} + {g((1 − θ)r)}. We obtain from
the expression of g that limr→∞ g(θr)/r =

√
αθ. Conse-

quently, (A.1) holds uniformly relative to −r ≤ x < 0.
For x < −r, N(|x|− r, r) ≤ N(x, r) ≤ N(|x|− r, r)+1.

Let t = |x|−r ≥ 0. Then as same as in the situation x ≥ 0,
we have that (A.1) holds uniformly relative to t ≥ 0, which
means that (A.1) holds uniformly relative to x < −r.

Combining all the situations, we have that (A.1) holds
uniformly relative to x in R. Lemma 4.5 is thus proved.
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[8] A. Özkan Özer, S. W. Hansen, Exact controllability of a
Rayleigh beam with a single boundary control, Math. Control
Signals Systems 23 (1-3) (2011) 199–222.
URL https://doi.org/10.1007/s00498-011-0069-4

[9] C. Baiocchi, V. Komornik, P. Loreti, Ingham type theorems
and applications to control theory, Boll. Unione Mat. Ital. Sez.
B Artic. Ric. Mat. (8) 2 (1) (1999) 33–63.

[10] A. E. Ingham, Some trigonometrical inequalities with applica-
tions to the theory of series, Math. Z. 41 (1) (1936) 367–379.
URL https://doi.org/10.1007/BF01180426

[11] J.-M. Coron, Control and nonlinearity, Vol. 136 of Mathemati-
cal Surveys and Monographs, American Mathematical Society,
Providence, RI, 2007.
URL https://doi.org/10.1090/surv/136

[12] S. A. Avdonin, M. Tucsnak, Simultaneous controllability in
sharp time for two elastic strings, ESAIM Control Optim. Calc.
Var. 6 (2001) 259–273.
URL https://doi.org/10.1051/cocv:2001110

[13] J. W. S. Cassels, An introduction to Diophantine approxi-
mation, Cambridge Tracts in Mathematics and Mathematical
Physics, No. 45, Cambridge University Press, New York, 1957.

[14] S. Lang, Introduction to Diophantine approximations, 2nd Edi-
tion, Springer-Verlag, New York, 1995.
URL https://doi.org/10.1007/978-1-4612-4220-8

[15] S. A. Avdonin, S. A. Ivanov, Families of exponentials, Cam-
bridge University Press, Cambridge, 1995, the method of mo-
ments in controllability problems for distributed parameter sys-
tems.

[16] G. Weiss, O. J. Staffans, M. Tucsnak, Well-posed linear
systems—a survey with emphasis on conservative systems, Int.
J. Appl. Math. Comput. Sci. 11 (1) (2001) 7–33.

[17] A. Pazy, Semigroups of linear operators and applications to par-
tial differential equations, Vol. 44 of Applied Mathematical Sci-
ences, Springer-Verlag, New York, 1983.
URL https://doi.org/10.1007/978-1-4612-5561-1

[18] J.-L. Lions, E. Magenes, Non-homogeneous boundary value
problems and applications. Vol. I, Die Grundlehren der math-
ematischen Wissenschaften, Band 181, Springer-Verlag, New
York-Heidelberg, 1972.
URL https://doi.org/10.1007/978-3-642-65161-8

[19] I. Lasiecka, R. Triggiani, A lifting theorem for the time regular-
ity of solutions to abstract equations with unbounded operators
and applications to hyperbolic equations, Proc. Amer. Math.

Soc. 104 (3) (1988) 745–755.
URL https://doi.org/10.2307/2046785

[20] R. A. Adams, J. J. F. Fournier, Sobolev spaces, 2nd Edition,
Vol. 140 of Pure and Applied Mathematics (Amsterdam), Else-
vier/Academic Press, Amsterdam, 2003.

[21] K. Ammari, Z. Liu, M. Tucsnak, Decay rates for a beam with
pointwise force and moment feedback, Math. Control Signals
Systems 15 (3) (2002) 229–255.
URL https://doi.org/10.1007/s004980200009

[22] I. Lasiecka, J.-L. Lions, R. Triggiani, Nonhomogeneous bound-
ary value problems for second order hyperbolic operators, J.
Math. Pures Appl. (9) 65 (2) (1986) 149–192.

[23] C. Fabre, J.-P. Puel, Pointwise controllability as limit of internal
controllability for the wave equation in one space dimension,
Portugal. Math. 51 (3) (1994) 335–350.
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