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EXACT CONTROLLABILITY FOR A RAYLEIGH BEAM WITH1

PIEZOELECTRIC ACTUATOR∗2

YUBO BAI† , CHRISTOPHE PRIEUR‡ , AND ZHIQIANG WANG§3

Abstract. In this paper, exact controllability for a Rayleigh beam with piezoelectric actuator4
is considered. Controllability results show that the space of controllable initial data depends on the5
regularity of the control function and the location of the actuator. Two different spaces of control6
function, L2(0, T ) and (H1(0, T ))′, correspond to two different controllability, L2-controllability and7
(H1)′-controllability. The approach to prove controllability results is based on Hilbert Uniqueness8
Method. Some non-controllability results are also obtained. In particular, non-controllability in9
short control time is studied by using Riesz basis property of exponential family in L2(0, T ). Due to10
this non-controllability result, minimal time for the exact controllability is obtained.11

Key words. exact controllability, Rayleigh beam, piezoelectric actuator12

MSC codes. 93C20, 93B05, 35B6513

1. Introduction and main results.14

1.1. History and problem statement. In recent decades, there have been a15

large number of papers concerning the study of flexible structures. Three main di-16

rections of research can be considered, i.e., the modelling problem, the controllability17

problem and the stabilization problem. Modelling a flexible structure as a beam equa-18

tion or a plate equation is an essential research field. In [11], the author summarized19

and analysed four types of model for the transversely vibrating uniform beam, i.e.,20

the Euler-Bernoulli beam, Rayleigh beam, shear beam and Timoshenko beam. In21

the past few decades, the study of elastic structures with a piezoelectric actuator or22

sensor has gained a lot of attention. The paper on modelling elastic structures with23

a piezoelectric actuator or sensor as a PDE can refer to [7, 9].24

Concerning controllability for PDEs, [17] proposed an important method, Hilbert25

Uniqueness Method (HUM), to study controllability for infinite-dimensional systems.26

Using HUM, boundary controllability for wave equation and plate equation was stud-27

ied in [17]. There were plenty of works on controllability for beam and plate based28

on HUM. In [13, 17], boundary controllability for Kirchhoff plate equation was fully29

investigated. Exact controllability was obtained in sufficiently large control time with30

a single boundary control (active on a sufficiently large portion of the boundary) in31

the case of clamped boundary conditions. As for Euler-Bernoulli beam equation, in32

1996, [21] firstly considered the exact controllability for Euler-Bernoulli beam hinged33

at both ends with piezoelectric actuator. Since the space dimension is one, Fourier34

series was used in [21]. Then [8] studied the exact controllability for the same beam35

equation with piezoelectric actuator in a different physical configuration: the clamped-36

free boundary conditions, i.e. a beam clamped at one end and free at the other end.37

In [19], Ingham inequality (see [4, 12]) was used to obtain the exact controllability for38

Rayleigh beam equation with a single boundary control among four different boundary39
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2 Y. BAI, C. PRIEUR AND Z. WANG

conditions.40

In this paper, we consider the control problem modelling the transverse deflection41

of a Rayleigh beam which is subject to the action of an attached piezoelectric actuator.42

If we suppose that the beam is hinged at both ends, the equation of Rayleigh beam43

can be written as (see, for instance, [7, 9])44

wtt(x, t)− αwxxtt(x, t) + wxxxx(x, t) = u(t)
d

dx
[δη(x)− δξ(x)], 0 < x < π, t > 0,

(1.1a)

45

w(0, t) = w(π, t) = wxx(0, t) = wxx(π, t) = 0, t > 0,(1.1b)46

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < π.(1.1c)4748

In the equations above w represents the transverse deflection of the beam, α > 0 is a49

physical constant, ξ and η stands for the ends of the actuator (0 < ξ < η < π), and δy50

is the Dirac mass at the point y. The control is given by the function u : [0, T ] → R51

standing for the time variation of the voltage applied to the actuator.52

Our main purpose is to find the initial data that can be steered to rest by means53

of the control function u. Here we give some precise definitions.54

Definition 1.1. The initial data (w0, w1) is exactly L2-controllable in (ξ, η) at55

time T if there exists u in L2(0, T ) such that the solution w of (1.1) satisfies the56

condition57

w(x, T ) = wt(x, T ) = 0, 0 < x < π.58

Definition 1.2. The initial data (w0, w1) is exactly (H1)′-controllable in (ξ, η)59

at time T if there exists u in (H1(0, T ))′ such that the solution w of (1.1) satisfies60

the condition61

w(x, T ) = wt(x, T ) = 0, 0 < x < π.62

In Definition 1.2, (H1(0, T ))′ is the dual space of H1(0, T ) with respect to the63

space L2(0, T ). This definition is inspired by [17] which studied the controllability64

of changing the norm for wave equation and plate equation. Note that the system65

(1.1) is a time-reversible linear system, so the exact controllability is equivalent to66

null controllability (see [6]).67

The paper is organized as follows. In the remaining part of this section, we present68

the main results of the paper, i.e. controllability, non-controllability and minimal time69

for the exact controllability. In Section 2 we give some preliminaries on the theory70

of diophantine approximation and Riesz basis property of exponential family. The71

well-posedness results for the control problem (1.1) are showed in Section 3. The72

main results are proved in Section 4, respectively. Appendix A provides the proof of73

a technical lemma which is used in the proof of non-controllability in short control74

time.75

1.2. Controllability results. To state the exact controllability results, let us76

introduce for any ω in R the functional space Yω as follows. Let Y0 = L2(0, π). For77

ω > 0, let Yω be the closure in Hω(0, π) of the y in C∞([0, π]) satisfying the conditions78

(1.2) y(2n)(0) = y(2n)(π) = 0 ∀n ≥ 0.79

For ω < 0, let Yω be the dual space of Y−ω with respect to the space Y0.80

Our exact controllability results are the following.81
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CONTROLLABILITY FOR RAYLEIGH BEAM 3

Theorem 1.3. 1. There exists a set A contained in (0, 1) (uncountable but82

with Lebesgue measure zero, defined in Section 2) such that for every ξ and83

η with η+ξ
2π and η−ξ

2π belonging to the set A and for any T > 2π
√
α, all initial84

data in Y4 × Y3 are exactly L2-controllable in (ξ, η) at time T .85

2. Let ε > 0, there exists a set Bε contained in (0, 1) (with Lebesgue measure86

equal to 1, defined in Section 2) such that for every ξ and η with η+ξ
2π and η−ξ

2π87

belonging to the set Bε and for any T > 2π
√
α, all initial data in Y4+ε×Y3+ε88

are exactly L2-controllable in (ξ, η) at time T .89

The method for proving Theorem 1.3 is inspired by the ideas and methods used90

in [21] for Euler-Bernoulli beam with piezoelectric actuator. Theorem 1.3 gives us91

two exact L2-controllability results. The first result of Theorem 1.3 shows that, for92

the end of the piezoelectric actuator in an uncountable zero measure set, we have the93

exact L2-controllability in space Y4 × Y3. The second result of Theorem 1.3 shows94

that, for almost all choices of the end of the piezoelectric actuator, we have the exact95

L2-controllability in Sobolev spaces more regular than Y4 × Y3.96

In order to obtain the exact controllability in less regular space, we propose the97

following Theorem.98

Theorem 1.4. 1. Let the set A is same as the set in Theorem 1.3. Then for99

every ξ and η with η+ξ
2π and η−ξ

2π belonging to the set A and for any T > 2π
√
α,100

all initial data in Y3 × Y2 are exactly (H1)′-controllable in (ξ, η) at time T .101

2. Let ε > 0 and the set Bε is same as the set in Theorem 1.3. Then for every ξ102

and η with η+ξ
2π and η−ξ

2π belonging to the set Bε and for any T > 2π
√
α, all103

initial data in Y3+ε × Y2+ε are exactly (H1)′-controllable in (ξ, η) at time T .104

As we have already mentioned, the definition of exact (H1)′-controllability is105

inspired by [17]. Similar to Theorem 1.3, the method for proving Theorem 1.4 is106

inspired by [21]. The differences between Theorem 1.4 and Theorem 1.3 are the space107

of the control function and the space of the controllable initial data. In Theorem 1.4,108

the control function belongs to (H1(0, T ))′ rather than L2(0, T ) and the space of109

the controllable initial data is larger than the space in Theorem 1.3 with the same110

choice of ξ and η. Roughly speaking, the larger (less regular) the space of control111

function is, the larger (less regular) the space of controllable initial data is. To the112

best knowledge of the authors, such a result has not been developed yet for beam113

equation with piezoelectric actuator or interior control.114

Theorems 1.3 and 1.4 give some sufficient conditions for exact controllability. All115

the results show the dependence of the space of exactly controllable initial data on116

the location of the actuator. The proofs of these two Theorems are quite similar.117

First we use the HUM to claim the controllability is equivalent to the observability118

of its adjoint problem (see Propositions 4.1 and 4.4). Then we use the preliminaries119

introduced in Section 2 to prove the observability inequalities. The main difference120

between the proofs of Theorem 1.3 and Theorem 1.4 is that the measurements in121

Theorem 1.3 and Theorem 1.4 are different (see Propositions 4.1 and 4.4).122

1.3. Non-controllability results. After the controllability results, we show123

some non-controllability results. In Section 4, from Propositions 4.1 and 4.4 and the124

solution (3.5) of the adjoint problem, we can see that condition125

(1.3)
η − ξ

2π
,
η + ξ

2π
∈ R \Q126

is necessary to have any exact controllability result. Inspired by the study of [21]127

for Euler-Bernoulli beam with piezoelectric actuator, we prove the following non-128
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4 Y. BAI, C. PRIEUR AND Z. WANG

controllability results. They show that the condition (1.3) is not sufficient in the129

sense that there are ξ and η satisfying (1.3) that do not allow the control of arbitrary130

regular initial data in any time T .131

Theorem 1.5. 1. For any β ≥ −1, there exist ξ and η satisfying (1.3) such132

that for any T > 0, the space Yβ+3 × Yβ+2 contains initial data that are not133

exactly L2-controllable in (ξ, η) at time T .134

2. For any β ≥ −2, there exist ξ and η satisfying (1.3) such that for any T >135

0, the space Yβ+3 × Yβ+2 contains initial data that are not exactly (H1)′-136

controllable in (ξ, η) at time T .137

Remark 1.6. In Theorem 1.5, the initial data space is different between exact138

L2-controllability and exact (H1)′-controllability because the well-posedness result is139

in space Y2 × Y1 as u belongs to L2(0, T ) while the well-posedness result is in space140

Y1 × Y0 as u belongs to (H1(0, T ))′ (see subsections 3.1 and 3.2).141

Theorem 1.3 gives no information on the exact L2-controllability of initial data142

in Yβ+3 × Yβ+2 for β < 1 and Theorem 1.4 gives no information on the exact (H1)′-143

controllability of initial data in Yβ+3 × Yβ+2 for β < 0. A partial answer is given by144

the following results.145

Theorem 1.7. Suppose that ε > 0, T > 0 and ξ, η in (0, π) are arbitrary.146

1. The set Y3−ε × Y2−ε contains some initial data that are not exactly L2-147

controllable in (ξ, η) at time T .148

2. The set Y2−ε × Y1−ε contains some initial data that are not exactly (H1)′-149

controllable in (ξ, η) at time T .150

Notice that Theorems 1.3 and 1.4 require T > 2π
√
α, however, in [21] the exact151

controllability results for Euler-Bernoulli beam have no requirement for control time.152

Consequently, a huge difference between Rayleigh beam and Euler-Bernoulli beam153

is revealed and the reason lies in various distributions of their eigenvalues. More154

precisely, under same boundary condition (1.1b), the eigenvalues of Rayleigh beam155

equation are k4

1+αk2 for k in N∗ (see subsection 3.1) while the eigenvalues of Euler-156

Bernoulli beam equation are k4 for k in N∗ (see [21]). Roughly speaking, this fact157

makes that Rayleigh beam equation possesses finite propagation speed and that Euler-158

Bernoulli beam equation possesses infinite propagation speed. For this reason, the159

exact controllability results of Rayleigh beam all require T > 2π
√
α while the exact160

controllability results of Euler-Bernoulli beam hold for all T > 0 (see [21]). Based on161

this fact, we give the non-controllability results for 0 < T < 2π
√
α. Inspired by [2],162

we propose and prove Theorem 1.8. In [2], the simultaneous controllability for two163

elastic strings was studied and the lack of approximate controllability was obtained164

when the control time is smaller than the critical time.165

Theorem 1.8. Assume 0 < T < 2π
√
α and ξ, η in (0, π) are arbitrary.166

1. For any β ≥ −1, the space Yβ+3 × Yβ+2 contains initial data that are not167

exactly L2-controllable in (ξ, η) at time T .168

2. For any β ≥ −2, the space Yβ+3 × Yβ+2 contains initial data that are not169

exactly (H1)′-controllable in (ξ, η) at time T .170

Remark 1.9. For the question T = 2π
√
α, whether the exact controllability still171

holds remains open.172

Notice that in Theorem 1.5, the lack of controllability holds for some special173

ξ and η which are related to the space of initial data. However, in Theorems 1.7174

and 1.8, non-controllability holds for any ξ and η. From Theorem 1.8, we can see that175
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T ≥ 2π
√
α is necessary for exact controllability for Rayleigh beam equation and that176

minimal time for the exact controllability is obtained. As far as we know, this is the177

first result stating a lack of controllability for Rayleigh beam in short control time.178

So far, the exact controllability for Rayleigh beam equation with piezoelectric179

actuator has been fully considered. As said in Remark 1.9, exact controllability in180

critical time is an open problem. Controllability for other type of beam equation with181

piezoelectric actuator, such as shear beam equation, also remains open.182

2. Preliminaries. In this section, we provide some known results on the theory183

of diophantine approximation (see [5, 14]) and Riesz basis property of exponential184

family (see [3]).185

For a real number ρ, we denote by ∥ρ∥Z the difference, taken positively, between186

ρ and the nearest integer, i.e.,187

∥ρ∥Z = min
n∈Z

|ρ− n|.188

Let us denote by A the set of all irrationals ρ in (0, 1) such that if [0, a1, . . . , an . . . ]189

is the expansion of ρ as a continued fraction, then (an) is bounded. Its Lebesgue190

measure is equal to zero (see [5]). The following property of this set is essentially191

useful in our work (see [14]).192

Proposition 2.1. A number ρ is in A if and only if there exists a constant C > 0193

such that194

(2.1) ∥qρ∥Z ≥ C

q
195

for all strictly positive integer q.196

The next proposition, which is proved in [5], shows that an inequality slightly197

weaker than (2.1) holds for almost all points in (0, 1). This proposition is the definition198

of set Bε.199

Proposition 2.2. For any ε > 0 there exists a set Bε ⊆ (0, 1) having Lebesgue200

measure equal to 1 and a constant C > 0, such that for any ρ in Bε,201

(2.2) ∥qρ∥Z ≥ C

q1+ε
202

for all strictly positive integer q.203

The following proposition on simultaneous approximation (see [5]) used in [21] is204

quite important to prove Theorem 1.7.205

Proposition 2.3. Let ρ1, . . . , ρk be k irrationals in (0, 1). Then there exists a206

strictly increasing sequence of natural numbers qn such that207

q
1
k
n max

i=1,...,k
(∥qnρ1∥Z, . . . , ∥qnρi∥Z, . . . , ∥qnρk∥Z) ≤

k

k + 1
∀n ≥ 1.208

The next proposition (see Theorem II.4.18 of [3]) on Riesz basis property of ex-209

ponential family in L2(0, T ) is essential for us to prove Theorem 1.8.210

Proposition 2.4. Let {λn}n∈Z be a sequence of complex numbers such that211

sup
n∈Z

|Imλn| <∞, inf
n ̸=m

|λm − λn| > 0.212
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6 Y. BAI, C. PRIEUR AND Z. WANG

Set213

N(x, r) := ♯{λn|x ≤ Reλn < x+ r}, x ∈ R, r > 0,214

where ♯A is the number of elements in the set A. Assume that for some T > 0,215

N(x, r)

r
→ T

2π
, as r → ∞216

uniformly relative to x ∈ R. Then for any T ′ in (0, T ), family {eiλnt}n∈Z contains a217

subfamily GT ′ that forms a Riesz basis in L2(0, T ′).218

3. Well-posedness of (1.1). In subsection 3.1, we show the well-posedness219

result of system (1.1) with L2(0, T ) control function which has been proved in [23].220

In subsection 3.2, we prove the well-posedness and regularity results of system (1.1)221

with (H1(0, T ))′ control function.222

3.1. Well-posedness of (1.1) with L2(0, T ) control function. We state the223

well-posedness result and show the proof here, because the process of the proof is also224

used in other sections.225

Theorem 3.1. Suppose that (w0, w1) belongs to Y2 × Y1. For any u in L2(0, T )226

and for any ξ and η in (0, π), the initial and boundary value problem (1.1) admits a227

unique solution having the regularity228

(3.1) w ∈ C([0, T ];Y2) ∩ C1([0, T ];Y1).229

In order to prove Theorem 3.1, let us first consider the adjoint problem of (1.1)230

ϕtt(x, t)− αϕxxtt(x, t) + ϕxxxx(x, t) = 0, 0 < x < π, t > 0,(3.2a)231

ϕ(0, t) = ϕ(π, t) = ϕxx(0, t) = ϕxx(π, t) = 0, t > 0,(3.2b)232

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), 0 < x < π.(3.2c)233234

The following lemma proved in [23] shows the well-posedness of the adjoint problem235

(3.2) and some trace regularities needed in the proof of Theorem 3.1.236

Lemma 3.2. For any initial data (ϕ0, ϕ1) in Y2 × Y1, there exists a unique weak237

solution ϕ of (3.2) in the class C([0, T ];Y2) ∩ C1([0, T ];Y1). Moreover, for all b in238

(0, π) we have ϕx(b, ·) belongs to H1(0, T ) and there exist C,C ′ > 0 such that239

∥ϕx(b, ·)∥2H1(0,T ) ≤C(∥ϕ
0∥2H2(0,π) + ∥ϕ1∥2H1(0,π)),(3.3)240

∥ϕx(b, ·)∥2L2(0,T ) ≤C
′(∥ϕ0∥2H1(0,π) + ∥ϕ1∥2L2(0,π)).(3.4)241

242

Proof. It is easy to see, by the semigroup method, that the problem (3.2) is243

well-posed in the space Y2 × Y1 (see [20]).244

Next we prove (3.3) and (3.4). Since {x 7→ sin(kx)}k∈N∗ are eigenfunctions of245

(3.2a) and (3.2b), we put246

ϕ0(x) =
∑
k≥1

ak sin(kx), ϕ1(x) =
∑
k≥1

bk sin(kx),247

with (k2ak) and (kbk) in l
2(R). Obviously, we have248

(3.5) ϕ(x, t) =
∑
k≥1

[
ak cos

(
k2√

1 + αk2
t

)
+
bk
√
1 + αk2

k2
sin

(
k2√

1 + αk2
t

)]
sin(kx).249
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Then for all T > 0, ϕx(b, ·) belongs to H1(0, T ) and250 ∫ T

0

|ϕxt(b, t)|2dx ≤ C
∑
k≥1

k2
(
a2k

k4

1 + αk2
+ b2k

)
≤ C

∑
k≥1

k2(a2kk
2 + b2k),251

which yields (3.3). And simultaneously we have252 ∫ T

0

|ϕx(b, t)|2dx ≤ C ′
∑
k≥1

k2
(
a2k + b2k

1 + αk2

k4

)
≤ C ′

∑
k≥1

(a2kk
2 + b2k),253

which clearly yields (3.4).254

Proof of Theorem 3.1. Thanks to Lemma 3.2, the following backward adjoint255

problem is well-posed in Y2 × Y1 for every τ > 0 and g in Y1.256

vtt(x, t)− αvxxtt(x, t) + vxxxx(x, t) = 0, 0 < x < π, t ∈ (0, τ),(3.6a)257

v(0, t) = v(π, t) = vxx(0, t) = vxx(π, t) = 0, t ∈ (0, τ),(3.6b)258

v(x, τ) = 0, vt(x, τ) = g(x), 0 < x < π.(3.6c)259260

Moreover, for any b in (0, π) we have261

(3.7) ∥vx(b, ·)∥L2(0,τ) ≤ C∥g∥Y0 .262

Since (1.1a) is linear, it is enough to consider the case w0 = w1 = 0. Suppose263

again g belongs to C∞
0 (0, π), and let v be the solution of (3.6). Define a linear operator264

L := I −α∂xx. It is well-known that operator L is an isomorphism from Y2 to Y0 and265

an isomorphism from Y1 to Y−1 by Lax-Milgram Theorem. If we multiply (1.1a) by266

v and integrate by parts we obtain267

(3.8)

∫ π

0

Lw(x, τ)g(x)dx =

∫ τ

0

u(t)(vx(η, t)− vx(ξ, t))dt.268

Trace regularity (3.7) implies that269 ∣∣∣∣∫ τ

0

u(t)(vx(η, t)− vx(ξ, t))dt

∣∣∣∣ ≤ C∥u∥L2(0,T )∥g∥Y0
,270

so by (3.8), we obtain Lw(·, τ) belongs to Y0, and hence w(·, τ) belongs to Y2, for all271

τ in [0, T ]. By replacing τ by τ + h in (3.8) we easily get that272

(3.9) w ∈ C([0, T ];Y2).273

Denote R := (I −α∂xx)
−1. It follows from Lax-Milgram Theorem that operator R is274

an isomorphism from Y−2 to Y0 and an isomorphism from Y−1 to Y1. Applying R to275

both sides of (1.1a) yields276

(3.10) wtt(x, t) +Rwxxxx(x, t) = u(t)R d

dx
[δη(x)− δξ(x)].277

Regularity (3.9) implies that278

(3.11) Rwxxxx ∈ C([0, T ];Y0).279
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8 Y. BAI, C. PRIEUR AND Z. WANG

As w satisfies (3.10) and dδb
dx belongs to Y−2 for all b in (0, π), we obtain from (3.11)280

that281

(3.12) wtt ∈ L2(0, T ;Y0).282

From (3.9) and (3.12), by applying the intermediate derivative theorem (see [18]) it283

follows that284

(3.13) wt ∈ L2(0, T ;Y1).285

The conclusion (3.1) is now a consequence of (3.9) and (3.13) and of the general lifting286

result from [16].287

3.2. Well-posedness of (1.1) with (H1(0, T ))′ control function. As con-288

trol function u belongs to (H1(0, T ))′, we need to define the solution of (1.1) in the289

weak form. First notice that u is not a distribution. The definition of a function u in290

(H1(0, T ))′ is given by following.291

Definition 3.3. A function u is said to belong to (H1(0, T ))′ if there exist some292

functions u0 and u1 in L2(0, T ) such that for all ϕ in H1(0, T ), we have293

(3.14) ⟨u, ϕ⟩ =
∫ T

0

(u0ϕ+ u1ϕt)dt.294

We denote295

(3.15) u = u0 −
∂u1
∂t

.296

Note that in (3.15), ∂u1

∂t is not taken in the sense of distribution, but taken in the297

sense between H1(0, T ) and its dual space.298

Inspired by [17], we define the weak solution of (1.1) by transposition and prove299

the well-posedness. We explain the results in three steps.300

1. We prove the well-posedness and trace regularity of a non-homogeneous prob-301

lem (3.16).302

2. Using the solution of non-homogeneous problem (3.16), we define the weak303

solution of (1.1) by transposition.304

3. We prove the well-posedness of (1.1) with control function u in (H1(0, T ))′.305

Step 1. In order to define the weak solution of (1.1) by transposition, we need the306

following well-posedness and trace regularity of a non-homogeneous problem. Assume307

f belongs to L1(0, T ;Y−1) and (θ0, θ1) belongs to Y2×Y1, let us consider the following308

backward non-homogeneous problem309

θtt(x, t)− αθxxtt(x, t) + θxxxx(x, t) = f(x, t), 0 < x < π, t ∈ (0, T ),(3.16a)310

θ(0, t) = θ(π, t) = θxx(0, t) = θxx(π, t) = 0, t ∈ (0, T ),(3.16b)311

θ(x, T ) = θ0, θt(x, T ) = θ1, 0 < x < π.(3.16c)312313

The following proposition proves the well-posedness and trace regularity of (3.16)314

which is needed in the definition of weak solution of (1.1). Our approach to prove315

this proposition is inspired by ideas and methods used in [1, 23].316

Proposition 3.4. For any initial data (θ0, θ1) in Y2×Y1 and f in L1(0, T ;Y−1),317

there exists a unique weak solution θ of (3.16) in the class C([0, T ];Y2)∩C1([0, T ];Y1).318

Moreover, for all b in (0, π) we have θx(b, ·) belongs to H1(0, T ) and there exists C > 0319

such that320

(3.17) ∥θx(b, ·)∥H1(0,T ) ≤ C(∥θ0∥H2(0,π) + ∥θ1∥H1(0,π) + ∥f∥L1(0,T ;Y−1)).321
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Proof. Applying R to both sides of (3.16a) to obtain322

θtt(x, t) +Rθxxxx(x, t) = Rf(x, t).323

Notice that Rf belongs to L1(0, T ;Y1), then the problem (3.16) admits a unique324

solution θ in C([0, T ];Y2)∩C1([0, T ];Y1) by the classical semigroup method (see [20]).325

And there exists a constant CT > 0 such that326

(3.18) ∥θ∥C([0,T ];Y2) ≤ CT (∥θ0∥H2(0,π) + ∥θ1∥H1(0,π) + ∥f∥L1(0,T ;Y−1)).327

Then we need to prove trace regularity (3.17). The following lemma proved in [1]328

and [23] shows that operator R∂xxxx is “similar” to a elliptic operator − 1
α∂xx.329

Lemma 3.5. The linear operator L = − 1
α∂xx−R∂xxxx is bounded from Y2 to Y2.330

Using this lemma, we can reduce the proof of (3.17) to a regularity property for a331

string equation. We consider the initial value problem332

θ1,tt(x, t)−
1

α
θ1,xx(x, t) = Rf(x, t), 0 < x < π, t ∈ (0, T ),333

θ1(0, t) = θ1(π, t) = 0, t ∈ (0, T ),334

θ1(x, T ) = θ0, θ1,t(x, T ) = θ1, 0 < x < π.335336

The relations above imply that θ2 = θ − θ1 satisfies337

θ2,tt(x, t)−
1

α
θ2,xx(x, t) = Lθ, 0 < x < π, t ∈ (0, T ),338

θ2(0, t) = θ2(π, t) = 0, t ∈ (0, T ),339

θ2(x, T ) = 0, θ2,t(x, T ) = 0, 0 < x < π.340341

Since θ belongs to C([0, T ];Y2) and L is bounded from Y2 to Y2, Lθ belongs to342

C([0, T ];Y2). Then by the classical theory for evolution equations of hyperbolic type343

(see [15]), we obtain that θ2 belongs to C([0, T ];H3(0, π)) ∩ C1([0, T ];H2(0, π)) and344

there exists a constant CT > 0 such that345

∥(θ2, θ2,t)∥C([0,T ];H3(0,π)×H2(0,π)) ≤ CT ∥θ∥C([0,T ];Y2).346

This inequality, combined with (3.18) and the standard trace theorem, implies that347

for any b in (0, π),348

(3.21) ∥θ2,x(b, ·)∥H1(0,T ) ≤ CT (∥θ0∥H2(0,π) + ∥θ1∥H1(0,π) + ∥f∥L1(0,T ;Y−1)).349

As for θ1, it is already proved by using multiplier methods in [10] that there exists a350

constant CT > 0 such that351

(3.22)
∥θ1,x(b, ·)∥H1(0,T ) ≤CT (∥θ0∥H2(0,π) + ∥θ1∥H1(0,π) + ∥Rf∥L1(0,T ;Y1))

≤CT (∥θ0∥H2(0,π) + ∥θ1∥H1(0,π) + ∥f∥L1(0,T ;Y−1)).
352

Then trace regularity (3.17) follows from (3.21) and (3.22).353

Step 2. Now we give the definition of the weak solution of (1.1). Denote by X354

a Hilbert space consisting of θ, the solution of (3.16). And give X a natural Hilbert355
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structure such that {f, θ0, θ1} → θ is an isomorphism from L1(0, T ;Y−1)× Y2 × Y1 to356

X . From Proposition 3.4 we have357

(3.23)
X ⊆ C([0, T ];Y2) ∩ C1([0, T ];Y1),

θ ∈ X ⇒ θx(b, ·) ∈ H1(0, T ) ∀b ∈ (0, π).
358

Assume that {f, θ0, θ1} belongs to L1(0, T ;Y−1) × Y2 × Y1 and that {u,w0, w1}359

belongs to L2(0, T )×Y2×Y1. Denote by θ the solution of (3.16) and by w the solution360

of (1.1) given by Theorem 3.1. Multiplying (1.1a) by θ, we obtain361 ∫ T

0

∫ π

0

(wtt − αwxxtt + wxxxx)θdxdt =

∫ T

0

∫ π

0

u(t)
d

dx
[δη(x)− δξ(x)]θdxdt.362

Integrating by parts we get363 ∫ T

0

∫ π

0

wfdxdt+

∫ π

0

[Lwt(T )θ
0 − Lw(T )θ1]dx

=−
∫ T

0

u(t)(θx(η, t)− θx(ξ, t))dt+

∫ π

0

[Lw1θ(0)− Lw0θt(0)]dx.

364

Now relaxing the assumption of u belonging to L2(0, T ) to u belonging to (H1(0, T ))′,365

we obtain from (3.15) that366

(3.24)

∫ T

0

∫ π

0

wfdxdt+

∫ π

0

[Lwt(T )θ
0 − Lw(T )θ1]dx

=−
∫ T

0

[u0(t)(θx(η, t)− θx(ξ, t)) + u1(t)(θxt(η, t)− θxt(ξ, t))]dt

+

∫ π

0

[Lw1θ(0)− Lw0θt(0)]dx.

367

Now we set (3.24) as the definition of weak solution.368

Definition 3.6. Let T > 0, u in (H1(0, T ))′ and (w0, w1) in Y1 × Y0 be given.369

A solution of the (1.1) is a function w in C([0, T ];Y1) such that, for every {f, θ0, θ1}370

in L1(0, T ;Y−1)× Y2 × Y1, (3.24) holds and (w(T ), wt(T )) belongs to Y1 × Y0.371

Step 3. Then we are able to prove the well-posedness of (1.1) when u belongs to372

(H1(0, T ))′.373

Theorem 3.7. Suppose (w0, w1) belongs to Y1×Y0. For any u in (H1(0, T ))′ and374

for any ξ and η in (0, π), the initial and boundary value problem (1.1) admits a unique375

weak solution in sense of Definition 3.6. And the map {w0, w1, u} 7→ {w,w(T ), wt(T )}376

is linear and continuous with respect to the corresponding norm.377

Proof. Since u belongs to (H1(0, T ))′, there exist u0, u1 in L2(0, T ) such that378

u = u0− ∂u1

∂t , where
∂
∂t is in sense of (H1(0, T ))′ derivative. Moreover, {f, θ0, θ1} → θ379

is an isomorphism from L1(0, T ;Y−1) × Y2 × Y1 to X . Therefore, we define a linear380

form Γ on X such that381

(3.25)

Γ(θ) =−
∫ T

0

[u0(t)(θx(η, t)− θx(ξ, t)) + u1(t)(θxt(η, t)− θxt(ξ, t))]dt

+

∫ π

0

[Lw1θ(0)− Lw0θt(0)]dx.

382
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Since (w0, w1) belongs to Y1 × Y0, then (Lw0,Lw1) belongs to Y−1 × Y−2. From383

Proposition 3.4 we have Γ is a continuous linear form on X . Denote by (f1, f2) the384

linear form between Yγ and Y−γ for any γ ≥ 0 and denote by ⟨g1, g2⟩ the linear form385

between L∞(0, T ;Y1) and L
1(0, T ;Y−1). Therefore, for the linear form Γ in X ′, there386

exists unique {w, ζ∗, ζ} in L∞(0, T ;Y1)× Y−2 × Y−1 such that387

(3.26) ⟨w, f⟩+ (ζ∗, θ
0) + (−ζ, θ) = Γ(θ) ∀θ ∈ X .388

Next we claim that w above is actually the weak solution of (1.1). It is sufficient to389

prove that w satisfies (1.1) in weak sense, Lw(T ) = ζ and Lwt(T ) = ζ∗.390

Notice that {x 7→ sin(kx)}k∈N∗ are eigenfunctions of R∂xxxx. Let m(x) = sin(kx)391

for some k in N∗. Firstly we set Rf(t) = h(t)m, θ0 = 0 and θ1 = 0, then f(t) =392

h(t)Lm. Denote by λ = k4/(1 + αk2) the corresponding eigenvalue. Then we obtain393

from Proposition 3.4 for t in (0, T )394

θ(t) = q(t)m,395

where q satisfies396

qtt + λq = h, q(T ) = qt(T ) = 0,397

namely398

q(t) = − 1√
λ

∫ T

t

sin((t− σ)
√
λ)h(σ)dσ.399

Then400

Γ(θ) =− (mx(η)−mx(ξ))

∫ T

0

[u0(t)q(t) + u1(t)qt(t)]dt

+ q(0)(Lw1,m)− qt(0)(Lw0,m),

401

and we have402

(3.27)

⟨w, f⟩ =
∫ T

0

(w,Lm)(qtt + λq)dt = −(mx(η)−mx(ξ))

∫ T

0

[u0(t)q(t) + u1(t)qt(t)]dt

+ q(0)(Lw1,m)− qt(0)(Lw0,m).

403

Notice that (w,Lm) = (Lw,m), then (3.27) implies that404

(3.28)

(Lw,m)tt + λ(Lw,m) =− (mx(η)−mx(ξ))

(
u0 −

∂u1
∂t

)
,

(Lw,m)(0) =(Lw0,m),

(Lw,m)t(0) =(Lw1,m),

405

where ∂u1

∂t is taken in the sense of (H1(0, T ))′. Since m(x) = sin(kx) and k ≥ 1 is an406

arbitrary natural number, then w satisfies (1.1) in weak sense.407

Now if we set f = 0, θ0 = 0 and θ1 = −m, then for t in (0, T )408

θ(t) =
1√
λ
sin((T − t)

√
λ)m.409

Then (3.26) implies that410

(3.29)

(ζ,m) = Γ(θ) =− (mx(η)−mx(ξ))

∫ T

0

[
u0(t)

1√
λ
sin((T − t)

√
λ)

− u1(t) cos((T − t)
√
λ)]dt

+ (Lw1,m)
1√
λ
sin(T

√
λ) + (Lw0,m) cos(T

√
λ).

411
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Moreover, (3.28) implies that412

(3.30)

(Lw,m)(T ) =(Lw0,m) cos(T
√
λ) + (Lw1,m)

sin(T
√
λ)√

λ

− (mx(η)−mx(ξ))

∫ T

0

1√
λ
sin((T − σ)

√
λ)

(
u0 −

∂u1
∂σ

)
dσ.

413

Note the definition of ∂u1

∂t and compare to (3.29), we obtain (Lw,m)(T ) = (ζ,m),414

which proves Lw(T ) = ζ.415

Next we set f = 0, θ0 = m and θ1 = 0, then for t in (0, T )416

θ(t) = cos((T − t)
√
λ)m.417

Then (3.26) implies that418

(3.31)

(ζ∗,m) = Γ(θ) =− (mx(η)−mx(ξ))

∫ T

0

[u0(t) cos((T − t)
√
λ)

+ u1(t)
√
λ sin((T − t)

√
λ)]dt

+ (Lw1,m) cos(T
√
λ)− (Lw0,m)

√
λ sin(T

√
λ).

419

Moreover, (3.28) implies that420

(3.32)

(Lw,m)t(T ) =− (Lw0,m)
√
λ sin(T

√
λ) + (Lw1,m) cos(T

√
λ)

− (mx(η)−mx(ξ))

∫ T

0

cos((T − σ)
√
λ)

(
u0 −

∂u1
∂σ

)
dσ.

421

Note the definition of ∂u1

∂t and compare to (3.31), we obtain (Lw,m)t(T ) = (ζ∗,m),422

which implies Lwt(T ) = ζ∗.423

Now we have proved there exists unique {w,w(T ), wt(T )} in L∞(0, T ;Y1)×Y1×Y0424

such that (3.24) holds and the map {w0, w1, u} → {w,w(T ), wt(T )} is linear and425

continuous with respect to the corresponding norm. In fact we have property w426

belongs to C([0, T ];Y1). Since when the known data {w0, w1, u} belongs to Y2 ×Y1 ×427

L2(0, T ), we have (3.1), then according to the results we obtained above, this property428

is preserved in the density argument. It concludes the proof of Theorem 3.7.429

4. Proofs of the main results. In this section, we prove the main results. For430

exact controllability results, Theorems 1.3 and 1.4, we use the HUM, introduced in431

[17], to illustrate the controllability problem is equivalent to the observability problem432

of the adjoint system. Then we prove the observability inequality in each case. For433

non-controllability results, Theorems 1.5, 1.7, and 1.8, we show the observability434

inequalities are false. Essentially, we obtained some sufficient conditions and some435

necessary conditions for the observability inequality.436

4.1. Exact L2-controllability (Proof of Theorem 1.3). Choose (ϕ0, ϕ1) in437

(C∞[0, π])2 satisfying the compatible conditions (1.2) and denote by ϕ(x, t) the solu-438

tion of (3.2) with initial value (ϕ0, ϕ1).439

Consider a backward adjoint system440

ψtt(x, t)− αψxxtt(x, t) + ψxxxx(x, t) = u(t)
d

dx
[δη(x)− δξ(x)], 0 < x < π, t > 0,

(4.1a)

441

ψ(0, t) = ψ(π, t) = ψxx(0, t) = ψxx(π, t) = 0, t > 0,(4.1b)442

ψ(x, T ) = ψt(x, T ) = 0, 0 < x < π,(4.1c)443444
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where u in L2(0, T ) will be chosen later. Problem (4.1) is well-posed according to445

Theorem 3.1. Then, multiplying (4.1a) by ϕ and integrating by parts, we get446

(4.2)

∫ π

0

ϕ0(x)Lψt(x, 0)− ϕ1(x)Lψ(x, 0)dx =

∫ T

0

u(t)(ϕx(η, t)− ϕx(ξ, t))dt.447

Let u(t) = ϕx(η, t) − ϕx(ξ, t). Since (3.4), u belongs to L2(0, T ). Define a linear448

operator Λ satisfying449

(4.3) Λ(ϕ0, ϕ1) = (Lψt(·, 0),−Lψ(·, 0)).450

Since (Lψt(·, 0),−Lψ(·, 0)) belongs to Y−1 × Y0 by Theorem 3.1, operator Λ is well451

defined. In particularly,452

(4.4) ⟨Λ(ϕ0, ϕ1), (ϕ0, ϕ1)⟩ =
∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt.453

Therefore, we can define a seminorm454

(4.5) ∥(ϕ0, ϕ1)∥F :=

(∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt

) 1
2

,455

for all (ϕ0, ϕ1) in (C∞[0, π])2 satisfying the compatible conditions (1.2).456

A classical argument in HUM implies the following proposition.457

Proposition 4.1. All initial data in Yβ+3 × Yβ+2 are exactly L2-controllable in458

(ξ, η) at time T if and only if there exists a constant c > 0 such that459

(4.6)

∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt ≥ c(∥ϕ0∥2H−β + ∥ϕ1∥2H−β−1)460

for all (ϕ0, ϕ1) in (C∞[0, π])2 satisfying the compatible conditions (1.2).461

Equation (4.6) is called observability inequality. As in the proof of Lemma 3.2,462

the solution ϕ of the adjoint problem (3.2) has the form of (3.5), which implies that463 ∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt

=4

∫ T

0

∣∣∣∣∣∣
∑
k≥1

k sin

(
k(η + ξ)

2

)
sin

(
k(η − ξ)

2

){
ak cos

(
k2√

1 + αk2
t

)

+
bk
√
1 + αk2

k2
sin

(
k2√

1 + αk2
t

)}∣∣∣∣∣
2

dt.

(4.7)464

Remark 4.2. From (4.7), we can see that (1.3) is necessary for controllability.465

To prove observability inequality (4.6) for some β, we use the following Ingham466

inequality (see [12, 4]) to our problem.467

Lemma 4.3. Let (νk)k∈Z be a strictly increasing sequence of real numbers and let468

γ∞ > 0 be defined by469

γ∞ = lim
|k|→∞

|νk+1 − νk|.470
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For any real T > 2π/γ∞, there exist two constants C1, C2 > 0 such that, for any471

sequence (xk)k∈Z in l2(C),472

C1

∑
k∈Z

|xk|2 ≤
∫ T

0

∣∣∣∣∣∑
k∈Z

xke
iνkt

∣∣∣∣∣
2

dt ≤ C2

∑
k∈Z

|xk|2.473

We apply Lemma 4.3 with474

νk = −ν−k =
k2√

1 + αk2
,

2xk = 2x−k =

(
ak − i

bk
√
1 + αk2

k2

)
k sin

(
k(η + ξ)

2

)
sin

(
k(η − ξ)

2

)
.

475

As lim|k|→∞ |νk+1 − νk| = 1/
√
α, then for any real T > 2π

√
α, there exist two476

constants C1, C2 > 0 such that,477

C1

∑
k≥1

k2
(
a2k +

b2k(1 + αk2)

k4

)[
sin

(
k(η + ξ)

2

)
sin

(
k(η − ξ)

2

)]2
≤
∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt

≤C2

∑
k≥1

k2
(
a2k +

b2k(1 + αk2)

k4

)[
sin

(
k(η + ξ)

2

)
sin

(
k(η − ξ)

2

)]2
.

(4.8)478

When η+ξ
2π and η−ξ

2π belong to A, from (2.1) we see that there exists a constant479

C > 0 such that for all k ≥ 1 we have480

(4.9)

∣∣∣∣sin(k(η ± ξ)

2

)∣∣∣∣ = ∣∣∣∣sin{π [k(η ± ξ)

2π
− p

]}∣∣∣∣ ≥ ∣∣∣∣sin(πCk
)∣∣∣∣ ≥ C

k
.481

Inequalities (4.8) and (4.9) imply that482 ∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt ≥ c
∑
k≥1

(
a2k
k2

+
b2k(1 + αk2)

k6

)
,483

which is exactly (4.6) when β = 1. This fact completes the proof of the first part of484

Theorem 1.3.485

When η+ξ
2π and η−ξ

2π belong to Bε, from (2.2) we see that there exists a constant486

C > 0 such that for all k ≥ 1 we have487

(4.10)

∣∣∣∣sin(k(η ± ξ)

2

)∣∣∣∣ ≥ C

k1+ε
.488

Inequalities (4.8) and (4.10) imply that489 ∫ T

0

|ϕx(η, t)− ϕx(ξ, t)|2dt ≥ c
∑
k≥1

(
a2k
k2+ε

+
b2k(1 + αk2)

k6+ε

)
,490

which is exactly (4.6) when β = 1+ ε. This completes the proof of the second part of491

Theorem 1.3.492
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4.2. Exact (H1)′-controllability (Proof of Theorem 1.4). Similarly to sub-493

section 4.1, we use the HUM to study the controllability problem. Let (ϕ0, ϕ1) in494

(C∞[0, π])2 satisfy the compatible conditions (1.2). Denote by ϕ the solution of (3.2)495

with initial value (ϕ0, ϕ1).496

Consider a backward system (4.1) where u in (H1(0, T ))′ will be chosen later.497

Problem (4.1) is well-posed according to Theorem 3.7. Then multiplying (4.1a) by ϕ498

and integrating by parts, we obtain499

(4.11)

∫ π

0

ϕ0(x)Lψt(x, 0)− ϕ1(x)Lψ(x, 0)dx =

∫ T

0

u(t)(ϕx(η, t)− ϕx(ξ, t))dt.500

Recall the definition (3.15) of u, this equation is equivalent to501

(4.12)

∫ π

0

ϕ0(x)Lψt(x, 0)− ϕ1(x)Lψ(x, 0)dx

=

∫ T

0

[u0(t)(ϕx(η, t)− ϕx(ξ, t)) + u1(t)(ϕxt(η, t)− ϕxt(ξ, t))]dt.

502

Let u0(t) = 0 and u1(t) = ϕxt(η, t)−ϕxt(ξ, t). Since (3.3), u1 belongs to L2(0, T ),503

and therefore, u = −∂u1

∂t belongs to (H1(0, T ))′, where the derivative ∂
∂t is taken in504

sense of (H1(0, T ))′. Define a linear operator Λ∗ satisfying505

(4.13) Λ∗(ϕ
0, ϕ1) = (Lψt(·, 0),−Lψ(·, 0)).506

Since (Lψt(·, 0),−Lψ(·, 0)) belongs to Y−2 × Y−1 because of Theorem 3.7, operator507

Λ∗ is well defined. In particularly,508

(4.14) ⟨Λ∗(ϕ
0, ϕ1), (ϕ0, ϕ1)⟩ =

∫ T

0

|ϕxt(η, t)− ϕxt(ξ, t)|2dt.509

Therefore, we can define a seminorm510

(4.15) ∥(ϕ0, ϕ1)∥F∗ :=

(∫ T

0

|ϕxt(η, t)− ϕxt(ξ, t)|2dt

) 1
2

,511

for all (ϕ0, ϕ1) in (C∞[0, π])2 satisfying the compatible conditions (1.2).512

A classical argument in HUM shows the following proposition.513

Proposition 4.4. All initial data in Yβ+3 × Yβ+2 are exactly (H1)′-controllable514

in (ξ, η) at time T if and only if there exists a constant c > 0 such that515

(4.16)

∫ T

0

|ϕxt(η, t)− ϕxt(ξ, t)|2dt ≥ c
(
∥ϕ0∥2H−β + ∥ϕ1∥2H−β−1

)
516

for all (ϕ0, ϕ1) in (C∞[0, π])2 satisfying the compatible conditions (1.2).517

After a similar argument in subsection 4.1. We have the following result. Assume518

T > 2π
√
α. When η+ξ

2π and η−ξ
2π belong to A, there exists a constant c > 0 such that519

(4.17)

∫ T

0

|ϕxt(η, t)− ϕxt(ξ, t)|2dt ≥ c
∑
k≥1

(
a2kk

2

1 + αk2
+
b2k
k2

)
,520
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16 Y. BAI, C. PRIEUR AND Z. WANG

which is exactly (4.16) when β = 0. This completes the proof of the first part of521

Theorem 1.4.522

When η+ξ
2π and η−ξ

2π belong to Bε, there exists a constant c > 0 such that523

(4.18)

∫ T

0

|ϕxt(η, t)− ϕxt(ξ, t)|2dt ≥ c
∑
k≥1

(
a2kk

2

(1 + αk2)kε
+

b2k
k2+ε

)
,524

which is exactly (4.16) when β = ε. This completes the proof of the second part of525

Theorem 1.4.526

4.3. Condition (1.3) is not sufficient (Proof of Theorem 1.5). As men-527

tioned in Remark 4.2, condition (1.3) is necessary for controllability. Thanks to Propo-528

sitions 4.1 and 4.4, to show condition (1.3) is not sufficient for L2-controllability, it529

is sufficient to show there exist ξ and η satisfying (1.3) such that (4.6) is false for530

any β ≥ −1 and c > 0. Similarly, to show condition (1.3) is not sufficient for (H1)′-531

controllability, it is sufficient to show there exist ξ and η satisfying (1.3) such that532

(4.16) is false for any β ≥ −2 and c > 0.533

For any fixed β ≥ −1 and534

(4.19) ν > max

(
3

2
β + 1, 2

)
,535

we choose536

(4.20)
η + ξ

2π
=

∞∑
n=1

an
10n!

,537

where an belongs to {0, 1, . . . , 9} for all n ≥ 1, and an is not identically zero for great538

n. According to [22] the right-hand side of (4.20) is a Liouville number, i.e., it is539

transcendental and there exists a strictly increasing sequence of integers qn such that540

(4.21)

∣∣∣∣sin(qn η + ξ

2π

)∣∣∣∣ ≤ π

qνn
∀n ≥ 1.541

Now consider the sequence of initial data542

(4.22) ϕ0n(x) = qµn sin(qnx), ϕ1n(x) = 0 ∀x ∈ (0, π),543

where µ = 3
2β if β > 0 and µ = 1 if −1 ≤ β ≤ 0. Obviously (ϕ0n, ϕ

1
n) belongs to544

(C∞[0, π])2 and satisfies compatible conditions (1.2) and545

(4.23) ∥ϕ0n∥2H−β + ∥ϕ1n∥2H−β−1 → ∞ ∀β ≥ −1.546

So by (4.7), (4.19), and (4.21), we have547

(4.24)

∫ T

0

|ϕn,x(η, t)− ϕn,x(ξ, t)|2dt

=4

∫ T

0

∣∣∣∣∣qn sin
(
qn
η + ξ

2π

)
sin

(
qn
η − ξ

2π

)
qµn cos

(
q2n√

1 + αq2n
t

)∣∣∣∣∣
2

dt

≤4Tq2(µ+1)
n

∣∣∣∣sin(qn η + ξ

2π

)∣∣∣∣2
≤4πTq2(µ+1−ν)

n → 0, as n→ ∞.

548
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Relations (4.23) and (4.24) show that (4.6) is false for any β ≥ −1 and c > 0.549

Then we show that there exist ξ and η in (0, π) satisfying (1.3) such that (4.16)550

is false for any β ≥ −2 and c > 0. The proof is quite similar to the proof above in551

this subsection. For any fixed β ≥ −2, we only need to change ν as552

(4.25) ν > max

(
3

2
β + 2, 3

)
,553

and to set µ = 3
2β if β > 0 and µ = 1 if −2 ≤ β ≤ 0. By similar calculation, we554

obtain that (4.16) is false for any β ≥ −2 and c > 0.555

4.4. Non-controllability for less regular initial data set (Proof of The-556

orem 1.7). Similar to last subsection, we focus on (4.6) and (4.16). By applying557

Proposition 2.3, for any ξ and η in (0, π) we obtain the existence of a strictly increas-558

ing sequence of positive integers {qn}n≥1 such that559

(4.26)

∣∣∣∣sin(qn η + ξ

2

)∣∣∣∣ ≤ π
√
qn
,

∣∣∣∣sin(qn η − ξ

2

)∣∣∣∣ ≤ π
√
qn

∀n ≥ 1.560

First consider the sequence of initial data561

(4.27) ϕ0n(x) = sin(qnx), ϕ1n(x) = 0 ∀x ∈ (0, π).562

We note that563

(4.28) ∥ϕ0n∥2Hε + ∥ϕ1n∥2Hε+1 = Cq2εn → ∞, n→ ∞,564

where C is a positive constant. By (4.7) and (4.26) we have565

(4.29)∫ T

0

|ϕn,x(η, t)− ϕn,x(ξ, t)|2dt

=4

∫ T

0

∣∣∣∣∣qn sin
(
qn
η + ξ

2π

)
sin

(
qn
η − ξ

2π

)
cos

(
q2n√

1 + αq2n
t

)∣∣∣∣∣
2

dt ≤ K ∀n ≥ 1,

566

where K is a positive constant. So (4.28) and (4.29) show that (4.6) is false for β = −ε567

and arbitrary c > 0.568

If we choose the sequence of initial data569

(4.30) ϕ0n(x) = q−1
n sin(qnx), ϕ1n(x) = 0 ∀x ∈ (0, π).570

We note that571

(4.31) ∥ϕ0n∥2Hε+1 + ∥ϕ1n∥2Hε+2 = Cq2εn → ∞, n→ ∞,572

where C is a positive constant. By (4.26) we have573

(4.32)

∫ T

0

|ϕn,xt(η, t)− ϕn,xt(ξ, t)|2dt

=4

∫ T

0

∣∣∣∣∣qn sin
(
qn
η + ξ

2π

)
sin

(
qn
η − ξ

2π

)
q2n√

1 + αq2n
cos

(
qn√

1 + αq2n
t

)∣∣∣∣∣
2

dt

≤K ∀n ≥ 1,

574

where K is a positive constant. So (4.31) and (4.32) show that (4.16) is false for575

β = −ε− 1 and arbitrary c > 0.576
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4.5. Non-controllability in short control time (Proof of Theorem 1.8).577

We study the lack of controllability when 0 < T < 2π
√
α in this subsection. For any578

β ≥ −1, we need to find {(ϕ0m, ϕ1m)}m∈N∗ such that579 ∫ T

0

|ϕm,x(η, t)− ϕm,x(ξ, t)|2dt→ 0, as m→ ∞580

and581

∥ϕ0m∥2H−β + ∥ϕ1m∥2H−β−1 ≥ c > 0582

for any m ≥ 1 and β ≥ −1.583

As in subsection 4.1, denote584

(4.33) νk = −ν−k =
k2√

1 + αk2
.585

Obviously, {νk}k∈Z∗ is a strictly increasing sequence and lim|k|→∞ |νk+1 − νk| =586

1/
√
α > 0. Define N(x, r) as in Proposition 2.4 corresponding to {νk}k∈Z∗ , we have587

the following lemma.588

Lemma 4.5. Let {νk}k∈Z∗ and N(x, r) be defined above. We have589

(4.34)
N(x, r)

r
→

√
α, as r → ∞590

uniformly relative to x in R.591

We will prove this lemma in Appendix A. For any 0 < T < 2π
√
α, we can choose a592

T ′ such that 0 < T < T ′ < 2π
√
α. Let f in L2(0, 2π

√
α) be a real valued function593

such that f(t) = 0 if 0 ≤ t ≤ T and ∥f∥L2(0,T ′) ̸= 0. According to Lemma 4.5594

and Proposition 2.4, the family {eiνkt}k∈Z∗ contains a subfamily GT ′ which forms a595

Riesz basis in L2(0, T ′).596

Remark 4.6. The algorithm proposed in the proof of Proposition 2.4 (see Theorem597

II.4.18 of [3]) allows us to construct a subfamily GT ′ with symmetric spectrum, i.e.,598

eiλt ∈ GT ′ ⇒ e−iλt ∈ GT ′ .599

This fact is used in our proof.600

According to the remark above, there exists a strictly increasing sequence of integer601

{qn}n∈Z∗ satisfying qn = −q−n, such that GT ′ = {eiλqn t}n∈Z∗ . Then for f in L2(0, T ′)602

defined above, there exists a sequence {ln}n∈Z∗ in l2(C) such that603

f(t) =
∑
n∈Z∗

lne
iλqn t in L2(0, T ′)604

and605

0 <
∑
n∈Z∗

|ln|2 <∞.606

Since f(t) is a real valued function, ln = l−n. Now we can defined a sequence607

{(ϕ0m, ϕ1m)}m∈N∗ of initial data such that608

(4.35)

ϕ0m(x) =2

m∑
n=1

Re(ln)

[
qn sin

(
qn
η + ξ

2

)
sin

(
qn
η − ξ

2

)]−1

sin(qnx),

ϕ1m(x) =− 2

m∑
n=1

Im(ln)

[
qn sin

(
qn
η + ξ

2

)
sin

(
qn
η − ξ

2

)]−1
q2n√

1 + αq2n
sin(qnx).

609
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As mentioned in Remark 4.2, we assume (1.3) holds. This fact implies the sequence610

{(ϕ0m, ϕ1m)}m∈N∗ of initial data is well-defined.611

Since 0 <
∑

n∈Z∗ |ln|2 < ∞ and ln = l−n, then there exists a m0 ≥ 1 such that612

lm0 ̸= 0. So for any β ≥ −1 and m ≥ m0, we have613

(4.36) ∥ϕ0m∥2H−β + ∥ϕ1m∥2H−β−1 ≥ ∥ϕ0m0
∥2H−β + ∥ϕ1m0

∥2H−β−1 = c > 0.614

Moreover, thanks to (4.7), we have615

(4.37)

∫ T

0

|ϕm,x(η, t)− ϕm,x(ξ, t)|2dt = 4

∫ T

0

∣∣∣∣∣∣
m∑

n=−m,n̸=0

lne
λqn t

∣∣∣∣∣∣
2

dt.616

Since 0 = f(t) =
∑

n∈Z∗ lne
λqn t in L2(0, T ), we obtain that617

(4.38)

∫ T

0

|ϕm,x(η, t)− ϕm,x(ξ, t)|2dt→ 0, as m→ ∞.618

Relations (4.36) and (4.38) finish the proof of the lack of exact L2-controllability for619

any β ≥ −1, 0 < T < 2π
√
α and ξ, η in (0, π).620

As for the lack of exact (H1)′-controllability for any β ≥ −2, 0 < T < 2π
√
α and621

ξ, η in (0, π), we only need to change the initial data in (4.35) to622

(4.39)

ϕ0m(x) =2

m∑
n=1

Re(ln)

[
qn sin

(
qn
η + ξ

2

)
sin

(
qn
η − ξ

2

)]−1 √
1 + αq2n
q2n

sin(qnx),

ϕ1m(x) =− 2

m∑
n=1

Im(ln)

[
qn sin

(
qn
η + ξ

2

)
sin

(
qn
η − ξ

2

)]−1

sin(qnx).

623

Similarly, (4.38) still holds for any β ≥ −2 and m ≥ m0. Moreover, we have624

(4.40)∫ T

0

|ϕm,xt(η, t)− ϕm,xt(ξ, t)|2dt = 4

∫ T

0

∣∣∣∣∣∣
m∑

n=−m,n ̸=0

lne
λqn t

∣∣∣∣∣∣
2

dt→ 0, as m→ ∞.625

Relations (4.36) and (4.40) finish the proof of the lack of exact (H1)′-controllability626

for any β ≥ −2, 0 < T < 2π
√
α and ξ, η in (0, π).627

Appendix A. Proof of Lemma 4.5. Solve k2
√
1+αk2

< r, we have k <628

[(αr2 + r
√
α2r2 + 4)/2]

1
2 . Thus we define a real function g : (0,+∞) → (0,+∞) as629

g(r) = [(αr2 + r
√
α2r2 + 4)/2]

1
2 and define {x} = q(x)− 1, where q(x) = minq∈Z{q ≥630

x}. Obviously, x − 1 ≤ {x} < x. Then we have N(0, r) = {g(r)}. Notice that for631

x ≥ 0, we have N(x, r) = N(0, x+ r)−N(0, x) = {g(x+ r)} − {g(x)}. Therefore,632

g(x+ r)− g(x)− 1 ≤ N(x, r) ≤ g(x+ r)− g(x) + 1.633

Now we need to estimate g(x+ r)− g(x) for x, r > 0. Let f(x) = x2
√
1+αx2

for x > 0.634

Then635

f ′(x) = 2x(1 + αx2)−
1
2 − αx3(1 + αx2)−

3
2 ,636

637

f ′′(x) = 2(1 + αx2)−
1
2 − 5αx2(1 + αx2)−

3
2 + 3α2x4(1 + αx2)−

5
2 .638
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Solve f ′′(x) > 0, we obtain 0 < x <
√
2/α. Therefore, there exists aN0 in N satisfying639

N0 >
√

2/α+ 1 such that for all n ≥ N0, λn+1 − λn is decreasing to 1/
√
α. Then for640

all r > 0, N(x, r) is increasing in x ≥ N0. Then for x ≥ N0, N(N0, r) ≤ N(x, r) ≤641

limx→+∞N(x, r). Simple calculation shows that limx→+∞[g(x + r) − g(x)] =
√
αr.642

Therefore, we obtain that for x ≥ N0,643

g(N0 + r)− g(N0)− 1 ≤ N(x, r) ≤
√
αr + 1.644

For 0 ≤ x ≤ N0, we have645

N(x, r) ≤N(x,N0 − x) +N(N0, r) = N(0, N0)−N(0, x) +N(N0, r)

≤N(0, N0) +N(N0, r) ≤
√
αr + 1 + g(N0).

646

Assume that r > N0, then we have647

N(x, r) ≥N(N0, r −N0 + x) = N(0, x+ r)−N(0, N0)

≥g(x+ r)− g(N0)− 1 ≥ min
x∈[0,N0]

g(x+ r)− g(N0)− 1.648

Then for all x ≥ 0 and r > N0, we have649

min
x∈[0,N0]

g(x+ r)− g(N0)− 1 ≤ N(x, r) ≤
√
αr + 1 + g(N0),650

and hence,651

(A.1) lim
r→∞

N(x, r)

r
=

√
α652

is uniformly relative to x ≥ 0.653

For x < 0, if |x| ≤ r, then654

N(0, |x|) +N(0, r − |x|) ≤ N(x, r) ≤ N(0, |x|) +N(0, r − |x|) + 1.655

Let θ belong to [0, 1], and we consider g(θr) + g((1− θ)r). Notice that656

g(θr) =

(
αθ2r2 + θr

√
α2θ2r2 + 4

2

) 1
2

=
r√
2

(
αθ2 + θ

√
α2θ2 + 4/r2

) 1
2

.657

Therefore, we obtain limr→∞ g(θr)/r =
√
αθ. Consequently, (A.1) holds uniformly658

relative to −r ≤ x < 0.659

If |x| > r, then660

N(|x| − r, r) ≤ N(x, r) ≤ N(|x| − r, r) + 1.661

Set t = |x| − r ≥ 0, then as same as in the situation x ≥ 0, we have (A.1) holds662

uniformly relative to t ≥ 0, which means that (A.1) holds uniformly relative to |x| > r.663

Combining all the situations, we obtain that (A.1) holds uniformly relative to x664

in R. Lemma 4.5 is thus proved.665
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