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EXACT CONTROLLABILITY FOR A RAYLEIGH BEAM WITH
PIEZOELECTRIC ACTUATOR*

YUBO BAIf, CHRISTOPHE PRIEUR}, AND ZHIQIANG WANGS#

Abstract. In this paper, exact controllability for a Rayleigh beam with piezoelectric actuator
is considered. Controllability results show that the space of controllable initial data depends on the
regularity of the control function and the location of the actuator. Two different spaces of control
function, L2(0,T) and (H'(0,T))’, correspond to two different controllability, L2?-controllability and
(H') -controllability. The approach to prove controllability results is based on Hilbert Uniqueness
Method. Some non-controllability results are also obtained. In particular, non-controllability in
short control time is studied by using Riesz basis property of exponential family in L2(0,T). Due to
this non-controllability result, minimal time for the exact controllability is obtained.

Key words. exact controllability, Rayleigh beam, piezoelectric actuator

MSC codes. 93C20, 93B05, 35B65

1. Introduction and main results.

1.1. History and problem statement. In recent decades, there have been a
large number of papers concerning the study of flexible structures. Three main di-
rections of research can be considered, i.e., the modelling problem, the controllability
problem and the stabilization problem. Modelling a flexible structure as a beam equa-
tion or a plate equation is an essential research field. In [11], the author summarized
and analysed four types of model for the transversely vibrating uniform beam, i.e.,
the Euler-Bernoulli beam, Rayleigh beam, shear beam and Timoshenko beam. In
the past few decades, the study of elastic structures with a piezoelectric actuator or
sensor has gained a lot of attention. The paper on modelling elastic structures with
a piezoelectric actuator or sensor as a PDE can refer to [7, 9].

Concerning controllability for PDEs, [17] proposed an important method, Hilbert
Uniqueness Method (HUM), to study controllability for infinite-dimensional systems.
Using HUM, boundary controllability for wave equation and plate equation was stud-
ied in [17]. There were plenty of works on controllability for beam and plate based
on HUM. In [13, 17], boundary controllability for Kirchhoff plate equation was fully
investigated. Exact controllability was obtained in sufficiently large control time with
a single boundary control (active on a sufficiently large portion of the boundary) in
the case of clamped boundary conditions. As for Euler-Bernoulli beam equation, in
1996, [21] firstly considered the exact controllability for Euler-Bernoulli beam hinged
at both ends with piezoelectric actuator. Since the space dimension is one, Fourier
series was used in [21]. Then [8] studied the exact controllability for the same beam
equation with piezoelectric actuator in a different physical configuration: the clamped-
free boundary conditions, i.e. a beam clamped at one end and free at the other end.
In [19], Ingham inequality (see [4, 12]) was used to obtain the exact controllability for
Rayleigh beam equation with a single boundary control among four different boundary
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2 Y. BAI, C. PRIEUR AND Z. WANG

conditions.

In this paper, we consider the control problem modelling the transverse deflection
of a Rayleigh beam which is subject to the action of an attached piezoelectric actuator.
If we suppose that the beam is hinged at both ends, the equation of Rayleigh beam
can be written as (see, for instance, [7, 9])

(1.1a)

Wit (T, 1) — QW (T, 1) + Wapae (T, 1) = u(t ) d [ n(z) —de(x)], O<z<m t>0,
(1.1b) w(0,t) = w(m, t) = Wy (0, ) = Wy (m,t) =0, t>0,
(1.1c) w(z, w’ (), wi(z,0) = w'(z), 0<z<m.

In the equations above w represents the transverse deflection of the beam, a > 0 is a
physical constant, £ and 7 stands for the ends of the actuator (0 < £ < n < 7), and d,
is the Dirac mass at the point y. The control is given by the function « : [0,7] — R
standing for the time variation of the voltage applied to the actuator.

Our main purpose is to find the initial data that can be steered to rest by means
of the control function u. Here we give some precise definitions.

DEFINITION 1.1. The initial data (w°,w') is exactly L*-controllable in (£,7) at
time T if there exists u in L*(0,T) such that the solution w of (1.1) satisfies the
condition

w(z,T) =w(z,T) =0, 0<z<m.

DEFINITION 1.2. The initial data (w®,w') is evactly (H') -controllable in (&,n)
at time T if there exists u in (H(0,T))" such that the solution w of (1.1) satisfies
the condition

w(z,T) =w(x,T)=0, 0<z<m.

In Definition 1.2, (H(0,7))" is the dual space of H'(0,T) with respect to the
space L2(0,T). This definition is inspired by [17] which studied the controllability
of changing the norm for wave equation and plate equation. Note that the system
(1.1) is a time-reversible linear system, so the exact controllability is equivalent to
null controllability (see [6]).

The paper is organized as follows. In the remaining part of this section, we present
the main results of the paper, i.e. controllability, non-controllability and minimal time
for the exact controllability. In Section 2 we give some preliminaries on the theory
of diophantine approximation and Riesz basis property of exponential family. The
well-posedness results for the control problem (1.1) are showed in Section 3. The
main results are proved in Section 4, respectively. Appendix A provides the proof of
a technical lemma which is used in the proof of non-controllability in short control
time.

1.2. Controllability results. To state the exact controllability results, let us
introduce for any w in R the functional space Y, as follows. Let Yy = L?(0, ). For
w > 0, let Y,, be the closure in H“ (0, 7) of the y in C*°([0, 7]) satisfying the conditions
(1.2) Yy (0) =y (1) =0 Vn>0.

For w < 0, let Y, be the dual space of Y_,, with respect to the space Yj.
Our exact controllability results are the following.

This manuscript is for review purposes only.
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THEOREM 1.3. 1. There exists a set A contained in (0,1) (uncountable but

with Lebesgue measure zero, defined in Section 2) such that for every & and

n with % and "2—;5 belonging to the set A and for any T > 2m\/a, all initial
data in Yy x Y3 are exactly L?-controllable in (€,m) at time T.

2. Let € > 0, there exists a set Be contained in (0,1) (with Lebesgue measure

equal to 1, defined in Section 2) such that for every & and n with %rf and 7’2—;5

belonging to the set Be and for any T > 2m\/«, all initial data in Yyye X Y31

are exactly L?-controllable in (£,7) at time T.

The method for proving Theorem 1.3 is inspired by the ideas and methods used
in [21] for Euler-Bernoulli beam with piezoelectric actuator. Theorem 1.3 gives us
two exact L2-controllability results. The first result of Theorem 1.3 shows that, for
the end of the piezoelectric actuator in an uncountable zero measure set, we have the
exact L2-controllability in space Y3 x Y3. The second result of Theorem 1.3 shows
that, for almost all choices of the end of the piezoelectric actuator, we have the exact
L?-controllability in Sobolev spaces more regular than Y, x Y3.

In order to obtain the exact controllability in less regular space, we propose the
following Theorem.

THEOREM 1.4. 1. Let the set A is same as the set in Theorem 1.3. Then for
every & and n with ”th and ”2—;5 belonging to the set A and for any T > 27/«

all initial data in Yz x Yo are exactly (H')'-controllable in (&,n) at time T.
2. Let € > 0 and the set B, is same as the set in Theorem 1.3. Then for every &
and n with % and "2;5 belonging to the set Be and for any T > 2m\/«, all

initial data in Yaye X Yoi. are exactly (HY) -controllable in (£,n) at time T.

As we have already mentioned, the definition of exact (H!)'-controllability is
inspired by [17]. Similar to Theorem 1.3, the method for proving Theorem 1.4 is
inspired by [21]. The differences between Theorem 1.4 and Theorem 1.3 are the space
of the control function and the space of the controllable initial data. In Theorem 1.4,
the control function belongs to (H'(0,7))" rather than L?*(0,T) and the space of
the controllable initial data is larger than the space in Theorem 1.3 with the same
choice of £ and 7. Roughly speaking, the larger (less regular) the space of control
function is, the larger (less regular) the space of controllable initial data is. To the
best knowledge of the authors, such a result has not been developed yet for beam
equation with piezoelectric actuator or interior control.

Theorems 1.3 and 1.4 give some sufficient conditions for exact controllability. All
the results show the dependence of the space of exactly controllable initial data on
the location of the actuator. The proofs of these two Theorems are quite similar.
First we use the HUM to claim the controllability is equivalent to the observability
of its adjoint problem (see Propositions 4.1 and 4.4). Then we use the preliminaries
introduced in Section 2 to prove the observability inequalities. The main difference
between the proofs of Theorem 1.3 and Theorem 1.4 is that the measurements in
Theorem 1.3 and Theorem 1.4 are different (see Propositions 4.1 and 4.4).

1.3. Non-controllability results. After the controllability results, we show
some non-controllability results. In Section 4, from Propositions 4.1 and 4.4 and the
solution (3.5) of the adjoint problem, we can see that condition
772775’ 7724;5 cR\Q
is necessary to have any exact controllability result. Inspired by the study of [21]
for Euler-Bernoulli beam with piezoelectric actuator, we prove the following non-

(1.3)
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4 Y. BAI, C. PRIEUR AND Z. WANG

controllability results. They show that the condition (1.3) is not sufficient in the
sense that there are £ and 7 satisfying (1.3) that do not allow the control of arbitrary
regular initial data in any time T'.

THEOREM 1.5. 1. For any B > —1, there exist & and n satisfying (1.3) such
that for any T > 0, the space Ygy3 X Yo contains initial data that are not
exactly L?-controllable in (£,7) at time T.

2. For any B > —2, there exist & and n satisfying (1.3) such that for any T >
0, the space Ypi3 X Ygio contains initial data that are mot exactly (H')'-
controllable in (£,m) at time T.

Remark 1.6. In Theorem 1.5, the initial data space is different between exact
L2-controllability and exact (H')'-controllability because the well-posedness result is
in space Ys x Y7 as u belongs to L2(0,T) while the well-posedness result is in space
Y1 x Yy as u belongs to (H'(0,T))" (see subsections 3.1 and 3.2).

Theorem 1.3 gives no information on the exact L2-controllability of initial data
in Y43 X Ygyo for B < 1 and Theorem 1.4 gives no information on the exact (H')'-
controllability of initial data in Yg43 x Ygyo for 8 < 0. A partial answer is given by
the following results.

THEOREM 1.7. Suppose that e >0, T > 0 and &, n in (0,7) are arbitrary.
1. The set Ys_. x Yo_. contains some initial data that are not exactly L>-
controllable in (£,m) at time T.
2. The set Yo_. X Y1_. contains some initial data that are not exactly (Hl)'—
controllable in (&,7n) at time T.

Notice that Theorems 1.3 and 1.4 require T' > 27\/a, however, in [21] the exact
controllability results for Euler-Bernoulli beam have no requirement for control time.
Consequently, a huge difference between Rayleigh beam and Euler-Bernoulli beam
is revealed and the reason lies in various distributions of their eigenvalues. More
precisely, under same boundary condition (1.1b), the eigenvalues of Rayleigh beam
equation are Jﬁ for k in N* (see subsection 3.1) while the eigenvalues of Euler-
Bernoulli beam equation are k* for k in N* (see [21]). Roughly speaking, this fact
makes that Rayleigh beam equation possesses finite propagation speed and that Euler-
Bernoulli beam equation possesses infinite propagation speed. For this reason, the
exact controllability results of Rayleigh beam all require T > 27/« while the exact
controllability results of Euler-Bernoulli beam hold for all T > 0 (see [21]). Based on
this fact, we give the non-controllability results for 0 < T' < 2m/a. Inspired by [2],
we propose and prove Theorem 1.8. In [2], the simultaneous controllability for two
elastic strings was studied and the lack of approximate controllability was obtained
when the control time is smaller than the critical time.

THEOREM 1.8. Assume 0 < T < 2w/ and &, n in (0,7) are arbitrary.
1. For any 8 > —1, the space Ygi3 X Ygyo contains initial data that are not
exactly L?-controllable in (£,7) at time T.
2. For any B > —2, the space Ygi3 x Ygyo contains initial data that are not
exactly (HY) -controllable in (&,n) at time T.

Remark 1.9. For the question T = 27/, whether the exact controllability still
holds remains open.

Notice that in Theorem 1.5, the lack of controllability holds for some special
¢ and n which are related to the space of initial data. However, in Theorems 1.7
and 1.8, non-controllability holds for any £ and 1. From Theorem 1.8, we can see that
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CONTROLLABILITY FOR RAYLEIGH BEAM 5

T > 2m\/a is necessary for exact controllability for Rayleigh beam equation and that
minimal time for the exact controllability is obtained. As far as we know, this is the
first result stating a lack of controllability for Rayleigh beam in short control time.

So far, the exact controllability for Rayleigh beam equation with piezoelectric
actuator has been fully considered. As said in Remark 1.9, exact controllability in
critical time is an open problem. Controllability for other type of beam equation with
piezoelectric actuator, such as shear beam equation, also remains open.

2. Preliminaries. In this section, we provide some known results on the theory
of diophantine approximation (see [5, 14]) and Riesz basis property of exponential
family (see [3]).

For a real number p, we denote by ||p||z the difference, taken positively, between
p and the nearest integer, i.e.,

lpllz = min o —n|.

Let us denote by A the set of all irrationals p in (0,1) such that if [0,a1,...,an...]
is the expansion of p as a continued fraction, then (a,) is bounded. Its Lebesgu

measure is equal to zero (see [5]). The following property of this set is essentially
useful in our work (see [14]).

PROPOSITION 2.1. A number p is in A if and only if there exists a constant C > 0
such that

(2.1) lapllz >

2| Q

for all strictly positive integer q.

The next proposition, which is proved in [5], shows that an inequality slightly
weaker than (2.1) holds for almost all points in (0, 1). This proposition is the definition
of set B..

PROPOSITION 2.2. For any € > 0 there exists a set B. C (0,1) having Lebesgue
measure equal to 1 and a constant C' > 0, such that for any p in Be,

C
(2-2) ||QPHZ > F

for all strictly positive integer q.

The following proposition on simultaneous approximation (see [5]) used in [21] is
quite important to prove Theorem 1.7.

PROPOSITION 2.3. Let p1,...,pr be k irrationals in (0,1). Then there exists a
strictly increasing sequence of natural numbers q, such that
1 k
@i igffk(l\qnp1|\z,.-.,||qnpi||z, s llanpkllz) < r1 2l

The next proposition (see Theorem I1.4.18 of [3]) on Riesz basis property of ex-
ponential family in L2(0,T) is essential for us to prove Theorem 1.8.

PROPOSITION 2.4. Let {\,}nez be a sequence of complex numbers such that

sup [ImA,| < oo, inf |\, — Ap| > 0.
ne7z n#Em

This manuscript is for review purposes only.
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6 Y. BAI, C. PRIEUR AND Z. WANG

Set
N(z,r) :=#{ ]z <Re\p, <z +7r}, 2€R r>0,

where §A is the number of elements in the set A. Assume that for some T > 0,

N(z,r) T
—— = —, asr— o0
r 27

uniformly relative to x € R. Then for any T' in (0,T), family {e*t},cz contains a

subfamily G that forms a Riesz basis in L?(0,T").
3. Well-posedness of (1.1). In subsection 3.1, we show the well-posedness
result of system (1.1) with L2(0,7) control function which has been proved in [23].

In subsection 3.2, we prove the well-posedness and regularity results of system (1.1)
with (H'(0,T))" control function.

3.1. Well-posedness of (1.1) with L?(0,T) control function. We state the
well-posedness result and show the proof here, because the process of the proof is also
used in other sections.

THEOREM 3.1. Suppose that (w®, w') belongs to Yo x Yi. For any u in L*(0,T)
and for any & and n in (0,7), the initial and boundary value problem (1.1) admits a
unique solution having the reqularity

(3.1) w € C([0,T); Ya) N C'([0,T]; Ya).

In order to prove Theorem 3.1, let us first consider the adjoint problem of (1.1)

(323’) ¢tt(x7t) - a¢zmtt($;t) + ¢zmwz(x7t) = 0, << ™, t > 07
(3.2b) #(0,t) = ¢(m,t) = ¢Puu(0,t) = Ppp(m,t) =0, >0,
(3.2¢) 6(z,0) = 6°(z), ¢u(2,0) = ¢'(z), O<z<m.

The following lemma proved in [23] shows the well-posedness of the adjoint problem
(3.2) and some trace regularities needed in the proof of Theorem 3.1.

LEMMA 3.2. For any initial data (¢°, ') in Yo x Y1, there exists a unique weak
solution ¢ of (3.2) in the class C([0,T);Y2) N C*([0,T);Y1). Moreover, for all b in
(0,7) we have ¢, (b,-) belongs to H*(0,T) and there exist C,C’ > 0 such that

(3.3) 1620, M 0,7y SCUID° T2 (0.m) + 10" 171 (0,.m))
(3.4) 162(0, 7207y <C'(16° 11 0,0y + 10172 (0.7))-

Proof. Tt is easy to see, by the semigroup method, that the problem (3.2) is
well-posed in the space Y x Y7 (see [20]).

Next we prove (3.3) and (3.4). Since {z + sin(kz)}ren~ are eigenfunctions of
(3.2a) and (3.2b), we put

¢(x) = Z apsin(kz), ¢'(x) = Z by, sin(kx),

k>1 k>1

with (k%ay) and (kby) in [?(R). Obviously, we have

k2 bpV1+ ak? | k2 )
(3.5) ¢(xz,t) = kZZl [ak cos (\/mt> + = 2 sin (mt)] sin(kx).

This manuscript is for review purposes only.
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Then for all T > 0, ¢,.(b,-) belongs to H'(0,T) and

k’4
/ |62t(b,)?dz < C Y K ( T +bﬁ> <O K(ak + ),

E>1 E>1

which yields (3.3). And simultancously we have

1
/ |62(b,1)|2dz < C7) K ( a2 + bQJrkak) <O (afk® +b}),
k>1 k>1
which clearly yields (3.4). O

Proof of Theorem 3.1. Thanks to Lemma 3.2, the following backward adjoint
problem is well-posed in Y5 x Y7 for every 7 > 0 and ¢ in Y.

(3.6a) Vi (2, 1) — Uzt (T, 1) + Vpgwe (2,8) =0, 0<z < m, te€(0,7),
(3.6b) v(0,t) = v(m,t) = V32(0,8) = Vg (7, t) =0, te€(0,7),
(3.6¢) v(z,7) =0, v(z,7) =g(z), 0<z<m.

Moreover, for any b in (0, 7) we have

(3.7) [[02 (b, ) L2(0,7) < Cligllye-

Since (1.1a) is linear, it is enough to consider the case w® = w! = 0. Suppose

again g belongs to C§°(0,7), and let v be the solution of (3.6). Define a linear operator
L :=1— ady;. It is well-known that operator £ is an isomorphism from Y5 to Y and
an isomorphism from Y; to Y_; by Lax-Milgram Theorem. If we multiply (1.1a) by
v and integrate by parts we obtain

(3.8) / Lw(x,7)g(z)dz —/0 u(t)(vg(n, t) — v (€, 1))dt

Trace regularity (3.7) implies that

[ a0t - e t))dt] < Cllull 0.1 lgllvo.

so by (3.8), we obtain Lw(-,T) belongs to Yy, and hence w(-, 7) belongs to Yz, for all
7 in [0,T]. By replacing 7 by 7+ h in (3.8) we easily get that

(3.9) w e C([0,T];Yz).

Denote R := (I — ady)~t. It follows from Lax-Milgram Theorem that operator R is
an isomorphism from Y_5 to Yy and an isomorphism from Y_; to Y;. Applying R to
both sides of (1.1a) yields

d
(3.10) Wit (2, 1) + RWpae (2, 1) = u(t)Ra[én(m) — d¢(x)].
Regularity (3.9) implies that
(3.11) Rwzzee € C([0,T]; Yo).

This manuscript is for review purposes only.
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8 Y. BAI, C. PRIEUR AND Z. WANG

As w satisfies (3.10) and % belongs to Y_5 for all b in (0, 7), we obtain from (3.11)
that

(3.12) wy € L*(0,T;Yp).

From (3.9) and (3.12), by applying the intermediate derivative theorem (see [18]) it
follows that

(3.13) w; € L*(0,T;Y7).

The conclusion (3.1) is now a consequence of (3.9) and (3.13) and of the general lifting
result from [16]. O

3.2. Well-posedness of (1.1) with (H(0,T))’ control function. As con-
trol function u belongs to (H*(0,7))’, we need to define the solution of (1.1) in the
weak form. First notice that u is not a distribution. The definition of a function w in
(H'(0,T))" is given by following.

DEFINITION 3.3. A function u is said to belong to (H*(0,T))" if there exist some
functions ug and uy in L?(0,T) such that for all ¢ in H(0,T), we have

T
(3.14) (w.0) = [ (wod+ wiondt.
0
We denote
(3.15) =g — 24
Note that in (3.15), % is not taken in the sense of distribution, but taken in the

sense between H'(0,T) and its dual space.
Inspired by [17], we define the weak solution of (1.1) by transposition and prove
the well-posedness. We explain the results in three steps.
1. We prove the well-posedness and trace regularity of a non-homogeneous prob-
lem (3.16).
2. Using the solution of non-homogeneous problem (3.16), we define the weak
solution of (1.1) by transposition.
3. We prove the well-posedness of (1.1) with control function u in (H*(0,T))’.
Step 1. In order to define the weak solution of (1.1) by transposition, we need the
following well-posedness and trace regularity of a non-homogeneous problem. Assume
f belongs to L(0,T;Y_1) and (6°, ') belongs to Y3 x Y1, let us consider the following
backward non-homogeneous problem

(3.16a) O (2, 1) — aBppit (2, ) 4+ Oppua(x,t) = f(2,8), 0<ax<m te(0,T),
(3.16b) 0(0,t) = 0(m,t) = 0,,(0,t) = Oy (m,t) =0, t€(0,T),

(3.16¢) 0(z,T) = 0% 0,(x,T)=0", 0<uz<m.

The following proposition proves the well-posedness and trace regularity of (3.16)

which is needed in the definition of weak solution of (1.1). Our approach to prove
this proposition is inspired by ideas and methods used in [1, 23].

PROPOSITION 3.4. For any initial data (6°,0%) in Yo x Yy and f in L1 (0,T;Y_4),
there exists a unique weak solution § of (3.16) in the class C([0,T]; Y2)NC([0,T]; Y1).
Moreover, for all b in (0, ) we have 0, (b, -) belongs to H'(0,T) and there exists C > 0
such that

(3.17) 1026, ) 0.0y < CUNm2(0.7) + 10 |2 0,m) + (1]l 220,75y 1))

This manuscript is for review purposes only.
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CONTROLLABILITY FOR RAYLEIGH BEAM 9
Proof. Applying R to both sides of (3.16a) to obtain
O (2, t) + ROppaa(x,t) = Rf(x,t).

Notice that Rf belongs to L'(0,T;Y7), then the problem (3.16) admits a unique
solution 6§ in C([0,T]; Y2) NC*(]0,T7]; Y1) by the classical semigroup method (see [20]).
And there exists a constant C'7 > 0 such that

(3.18) 101l cro,1v2) < CrUl0% N m2(0,7) + 11012 0.0y + I fll 220,57 1))-

Then we need to prove trace regularity (3.17). The following lemma proved in [1]
and [23] shows that operator Rd,,., is “similar” to a elliptic operator —éam.

LEMMA 3.5. The linear operator L = —é@m — ROzpzz is bounded from Ys to Y.
Using this lemma, we can reduce the proof of (3.17) to a regularity property for a
string equation. We consider the initial value problem

1
O1,4(x,t) — Eol’m(m’t) =Rf(z,t), 0<z<mte(0,T),
gl(oat) = gl(ﬂ,t) =0, te (O,T),

Ql(x,T) = 90, 91,t(x,T) = 91, O<z<m.

The relations above imply that 8, = 6 — 6, satisfies

1
021t (x,t) — a@g,m(x,t) =L, 0<z<mte(0,T),
92(0,t) = 92(7T,t) =0, te (O,T),
O2(x,T) =0, O24(x,T) =0, 0<z<m.

Since 6 belongs to C([0,T);Y2) and L is bounded from Y3 to Y3, L belongs to
C([0,T); Y2). Then by the classical theory for evolution equations of hyperbolic type
(see [15]), we obtain that 65 belongs to C([0,T]; H3(0,7)) N C*([0,T]; H(0,7)) and
there exists a constant Cr > 0 such that

102, 02.¢)[| ¢ (j0,17; 53 0,7) x 72 (0,7)) < Cll0llc((0,175v2) -

This inequality, combined with (3.18) and the standard trace theorem, implies that
for any b in (0, ),

(3.21) 102,02 (b, 0,7y < Cr(116°] 5200,0) + 10 | £120,m) + 1f | 20,757 1))

As for 64, it is already proved by using multiplier methods in [10] that there exists a
constant Ct > 0 such that
102,2(b, ) 2 0.7y SO0 m2(0,7) + 10 12 (0,0) + IRF I L2 0.7372))

(3.22) e X
<Cr(10°lz2c0,x) + 107 |2 0,7) + If 0,77 0))-

Then trace regularity (3.17) follows from (3.21) and (3.22). d

Step 2. Now we give the definition of the weak solution of (1.1). Denote by X
a Hilbert space consisting of 6, the solution of (3.16). And give X’ a natural Hilbert
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structure such that {f,0° '} — 6 is an isomorphism from L'(0,T;Y_1) x Y5 x Y7 to
X. From Proposition 3.4 we have

X C C([0,T);Y2) N C*([0,T); Y1),

(3.23) 0 X =0,(b-)ecH,T) Vbe(0,n).

Assume that {f,6°,6'} belongs to L'(0,T;Y_1) x Y2 x Y1 and that {u,w® w'}
belongs to L?(0,T) x Y2 x Y;. Denote by 6 the solution of (3.16) and by w the solution
of (1.1) given by Theorem 3.1. Multiplying (1.1a) by 6, we obtain

T T T T
/ / (Wrt — AWaatt + Wapwy )0t — / / ()L [5, () — b ()]t
o Jo o Jo dz )

Integrating by parts we get
T T T
/ / wfdadt + / [Cwy(T)0° — Lw(T)0Yde
o Jo 0
T

= 7/ u(t) (0 (n,t) — 0,(&,1))dt + /W[ﬁwlé)(O) — Lw"60,(0))dz.
0 0

Now relaxing the assumption of u belonging to L?(0,T) to u belonging to (H'(0,T))’,
we obtain from (3.15) that

T ™ ™
/ / wfdxdt + / [Lw(T)0° — Lw(T)6|dz
o Jo 0
T
(3.24) —_ /0 [uo(t)(0(n, 1) — 04(&, 1)) + ur (£)(Oue(n, 1) — 024 (€, 1))]dt

" 1 — wO X
+ /O [Lw0(0) — Lw08,(0)]da.

Now we set (3.24) as the definition of weak solution.

DEFINITION 3.6. Let T > 0, u in (H'(0,T))" and (w®, w') in Y1 x Yy be given.
A solution of the (1.1) is a function w in C([0,T); Y1) such that, for every {f,0°,6'}
in LY(0,T;Y_1) x Yo x Y1, (3.24) holds and (w(T),w:(T)) belongs to Y1 x Yj.

Step 8. Then we are able to prove the well-posedness of (1.1) when u belongs to
(H'(0,7))".

THEOREM 3.7. Suppose (w®, wl) belongs to Y1 x Yy. For any u in (H*(0,T)) and
for any € and i in (0, 7), the initial and boundary value problem (1.1) admits a unique
weak solution in sense of Definition 3.6. And the map {w®, wl, u} — {w,w(T),w,(T)}
is linear and continuous with respect to the corresponding norm.

Proof. Since u belongs to (H'(0,T)), there exist ug, u; in L?*(0,7) such that

u = ug— 24 where 2 is in sense of (H'(0,T))’ derivative. Moreover, {f,6°,6'} — 0

is an isomorphism from L'(0,7;Y_;) x Y3 x Y to X. Therefore, we define a linear
form I" on X such that

') = - /0 [0 (£) (0 (1, 1) = 02(€, 1)) + ua () (Bt (0, 1) — O (€, 2))]dE

" 1 —rw .
+ /0 [Lw0(0) — Lw°0,(0)]da.
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Since (w”, w!) belongs to Y; x Yp, then (Lw®, Lw!) belongs to Y_; X Y_ 5. From
Proposition 3.4 we have I" is a continuous linear form on X. Denote by (f1, f2) the
linear form between Y, and Y_., for any v > 0 and denote by (g1, g2) the linear form
between L>°(0,7;Y;) and L(0,T;Y_1). Therefore, for the linear form I in X”, there
exists unique {w, (s, ¢} in L°(0,T;Y7) X Y_2 x Y_1 such that

(3.26) (w, )+ (¢, 0°) + (—¢,0) =T(0) V0 e X.
Next we claim that w above is actually the weak solution of (1.1). It is sufficient to
prove that w satisfies (1.1) in weak sense, Lw(T') = ¢ and Lw(T) = (..

Notice that {z — sin(kz)}ren+ are eigenfunctions of ROyyey. Let m(x) = sin(kz)
for some k in N*. Firstly we set Rf(t) = h(t)m, 6° = 0 and ' = 0, then f(t) =
h(t)Lm. Denote by A = k*/(1 + ak?) the corresponding eigenvalue. Then we obtain
from Proposition 3.4 for ¢t in (0,T)

0(t) = a(t)m,
where ¢ satisfies
g +Ag = q(T) = q(T) =0,
namely
I Jx
q(t) = —— sin((t — o)V A)h(o)do

(t) 7 ((t=0)VA)h(o)

Then

T
T(0) = — (ma(n / £+ u () (D)]dt
+ q(0)(Lw", m) — gu(0) (L, m),

and we have
(3.27)

(w, f) = / (w, £m) (g + M)t = —(ma () — ma(€)) / o (£)a(£) + ur (Har (1)t

=+ q(O)(L"wla m) - qt(o)(£w07 m)
Notice that (w, Lm) = (Lw,m), then (3.27) implies that

(Lo, m)en + A(Lw,m) = — (ma(n) — ma(€)) (u - ‘9“) ,

(Lw, m)(0) =(Lw’, m),
(Lw,m):(0) :(ﬁwl, m),

where % is taken in the sense of (H'(0,7))’". Since m(z) = sin(kz) and k > 1 is an

arbitrary natural number, then w satisfies (1.1) in weak sense.
Now if we set f =0, #° = 0 and §' = —m, then for ¢ in (0,7)

(3.28)

o(t) %sin((T —HVN)m

Then (3.26) implies that

T
(¢;m) =T(0) = — (ma(n) — mz(ﬁ))/o [UO(t)l sin((7 — t)V/A)

VA
(3.29) —up(t) cos((T — )V \)]dt
+ (Lw?, m)% sin(TVA) + (Lw®, m) cos(TVN).
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12 Y. BAI, C. PRIEUR AND Z. WANG

Moreover, (3.28) implies that

(Lw, m)(T) =(Lw®, m) cos(TVA) + (Lw",m) sin(TV)
(3.30) r VA )
= ol = o) [ sin(( = )W) (w0 - G2 ) e
Note the definition of % and compare to (3.29), we obtain (Lw,m)(T) = (¢, m),

which proves Lw(T') = (.
Next we set f =0, 60 = m and 6 = 0, then for ¢ in (0,7

0(t) = cos((T — t)V\)m.
Then (3.26) implies that

T
(Gestm) = T(6) = () = mo() [ fualt)eos((T = VA
+ uy (£)VAsin((T — £)VA)]dt
+ (Lw', m) cos(TVX) — (Lw®, m)VAsin(TVN).
Moreover, (3.28) implies that
(Lw, m)(T) = — (Lw®, m)VAsin(TVX) + (Lw', m) cos(TV\)

(3.31)

(3.32) v ou
— (me(n) — mz(g))/ cos((T — o)VA) (Uo - 81) do.
o 1%
Note the definition of % and compare to (3.31), we obtain (Lw, m)«(T) = (¢, m),

which implies Lw(T) = (..

Now we have proved there exists unique {w, w(T),w(T)} in L>°(0,T; Y1) x Y1 x Yy
such that (3.24) holds and the map {w® w!,u} — {w,w(T),w;(T)} is linear and
continuous with respect to the corresponding norm. In fact we have property w
belongs to C([0,T]; Y1). Since when the known data {w®, w!, u} belongs to Y3 x Y7 x
L?(0,T), we have (3.1), then according to the results we obtained above, this property
is preserved in the density argument. It concludes the proof of Theorem 3.7. ]

4. Proofs of the main results. In this section, we prove the main results. For
exact controllability results, Theorems 1.3 and 1.4, we use the HUM, introduced in
[17], to illustrate the controllability problem is equivalent to the observability problem
of the adjoint system. Then we prove the observability inequality in each case. For
non-controllability results, Theorems 1.5, 1.7, and 1.8, we show the observability
inequalities are false. Essentially, we obtained some sufficient conditions and some
necessary conditions for the observability inequality.

4.1. Exact L2-controllability (Proof of Theorem 1.3). Choose (¢°, ') in
(C°[0,7])? satisfying the compatible conditions (1.2) and denote by ¢(z,t) the solu-
tion of (3.2) with initial value (¢°, ¢1).

Consider a backward adjoint system

(4.1a)

Ui (2, 1) — QWpatt (T, 1) + Ypzaa(z,t) = u t)%[én(m) —d¢(z)], O<a<mt>0,
(4.1b) Y(0,t) = Y(m,t) = ¥pe(0,8) = Yyp(m,t) =0, >0,
(4.1c) (@, T)=e(x,T)=0, 0<z<m,
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CONTROLLABILITY FOR RAYLEIGH BEAM 13
where w in L?(0,T) will be chosen later. Problem (4.1) is well-posed according to
Theorem 3.1. Then, multiplying (4.1a) by ¢ and integrating by parts, we get

T T
12) [ @) - 6@ Lo 0de = [ u®ent) - oul6. D)k
0 0
Let u(t) = ¢.(n,t) — ¢ (&, t). Since (3.4), u belongs to L?(0,T). Define a linear
operator A satisfying

(43> A<¢07¢1) = ([’wt(’o)’_ﬁw(’o))

Since (L4(+,0),—L(+,0)) belongs to Y_; x Yy by Theorem 3.1, operator A is well
defined. In particularly,

(4.4) (A%, 61, (6°, 61)) = / 162(,8) — ba(E,8) Pl

Therefore, we can define a seminorm

2

T
(4.5) 1%, &Yl = (/ %(mt)—%(f,t)lzdt) :
0

for all (¢%, ¢') in (C°°[0, 71])? satisfying the compatible conditions (1.2).
A classical argument in HUM implies the following proposition.

PROPOSITION 4.1. All initial data in Yy X Ygio are exactly L?-controllable in
(&,m) at time T if and only if there exists a constant ¢ > 0 such that

T
(4.6) /O [62(1,1) = 6a(&,)Pdt = c(¢°IIF-s + [0 IFr-5-1)
for all (¢°, 1) in (C°[0,7])? satisfying the compatible conditions (1.2).

Equation (4.6) is called observability inequality. As in the proof of Lemma 3.2,
the solution ¢ of the adjoint problem (3.2) has the form of (3.5), which implies that

T
/0 g2 (n,t) — b (&, )AL

(4.7) =4 /OT ,%:1 k sin (W) sin (W) {ak COS (\/lf—zwt)

2
bpv1+ ak? | k2
k V1+ ak?

Remark 4.2. From (4.7), we can see that (1.3) is necessary for controllability.

To prove observability inequality (4.6) for some 3, we use the following Ingham
inequality (see [12, 4]) to our problem.

LEMMA 4.3. Let (vg)kez be a strictly increasing sequence of real numbers and let
Yoo > 0 be defined by

Yoo = lim [vpq1 — vl
|k|—o0
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For any real T > 27 /vs0, there exist two constants Cy1, Co > 0 such that, for any
sequence (zx)kez in 12(C),

2
Cy Z lzp]? < /T Zxkei”’“t dt < Cy Z |a:k|2.
kEZ 0 |kez kEZ
We apply Lemma 4.3 with
2
Y
20, =2T_f = (ak — Zlml}f—gl—al@) k sin (16(7)2—1—5)) sin (k(n;@) .

As limjg| o0 [Vk41 — vk| = 1/y/c, then for any real T > 2m\/a, there exist two
constants Cp, Cy > 0 such that,

o () o (59) ()]

T
(4.8) s/\%mﬂ—%@m%t

<@§y?(ﬁijfW»FmUM;Q>m(HE{UT

k>1

When LJ;E and =5 belong to A, from (2.1) we see that there exists a constant
C > 0 such that for all k > 1 we have
wC C
a ()| s €
m(kﬂk

o (4120) e 1220

Inequalities (4.8) and (4.9) imply that
a; b1+ ak?)
BT owm )

which is exactly (4.6) when 8 = 1. This fact completes the proof of the first part of
Theorem 1.3.

When Lff and =5 belong to B., from (2.2) we see that there exists a constant
C > 0 such that for all k > 1 we have

(229

(4.9)

T
/0 |¢a:(777t) - ¢z(€at)|2dt > CZ

E>1

(4.10) > o

Inequalities (4.8) and (4.10) imply that

T 2 »2(1 k2
/O ‘¢m(777 ) ¢m(£ t | de 2 CZ <k2+s k(k.;;.? )> )

k>1

which is exactly (4.6) when 8 = 1+ e. This completes the proof of the second part of
Theorem 1.3.
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4.2. Exact (H')’-controllability (Proof of Theorem 1.4). Similarly to sub-
section 4.1, we use the HUM to study the controllability problem. Let (¢°, ') in
(C*°[0, 7r])? satisfy the compatible conditions (1.2). Denote by ¢ the solution of (3.2)
with initial value (¢°, ¢!).

Consider a backward system (4.1) where u in (H'(0,7))" will be chosen later.
Problem (4.1) is well-posed according to Theorem 3.7. Then multiplying (4.1a) by ¢
and integrating by parts, we obtain

T

(4.11) /OF ¢°(x)Lapy(2,0) — ¢' () Lop(2, 0)dz = / u(t)(¢x(n,t) — ¢z (€, 1))dt.

0

Recall the definition (3.15) of u, this equation is equivalent to

/Tr (bo(:c)ﬁwt(ac, 0) — qbl(x)ﬁw(x, 0)dx
(4.12) 0
- / o (1) (B0 (1, £) — B (6,8)) + ur (E)(Sar (s 1) — dar (€, ).

Let uo(t) = 0 and u1(t) = ¢pue(n,t) — ¢ue (€, ). Since (3.3), uy belongs to L?(0,T),

and therefore, u = —agtl belongs to (H'(0,T))’, where the derivative % is taken in
sense of (H1(0,T))". Define a linear operator A, satisfying
(4.13) Ax(@%,01) = (Lepr(-,0), = L3(-,0)).

Since (L4(-,0),—L(+,0)) belongs to Y_o x Y_; because of Theorem 3.7, operator
A, is well defined. In particularly,

T

(4.14) (A (6%, 8, (6°, 61)) = / (a1, 1) — GurlE, 1) 2l

Therefore, we can define a seminorm

T 2
F, ‘= (/0 ‘¢It(n7t) - ¢zt(€7t)|2dt> y

for all (¢°,¢') in (C*°[0,n])? satisfying the compatible conditions (1.2).
A classical argument in HUM shows the following proposition.

(4.15) 1%, o1

PROPOSITION 4.4. All initial data in Yai3 x Yaio are exactly (H')'-controllable
in (&,n) at time T if and only if there exists a constant ¢ > 0 such that

T
(4.16) / 1600(0,8) — dur (6, )2t > ¢ (116012s + 61 2y—ss)

for all (¢°, 1) in (C[0,7])? satisfying the compatible conditions (1.2).

After a similar argument in subsection 4.1. We have the following result. Assume
T > 2m+/a. When "2—';5 and % belong to A, there exists a constant ¢ > 0 such that

417 2d Cl%k‘2 bi
. Dqrt(M — Qg > E —=
( 1 ) /O | xt( 775) .Lt(§7t)‘ t Ck>1 (1 2 + kQ) ,
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16 Y. BAI, C. PRIEUR AND Z. WANG

which is exactly (4.16) when 8 = 0. This completes the proof of the first part of
Theorem 1.4.
When 7’2—":5 and "2—_: belong to B, there exists a constant ¢ > 0 such that

T 21.2 2
2 agk by
@18) [ loalnt) - onle0Parz e (ki + k).

k>1

which is exactly (4.16) when 8 = e. This completes the proof of the second part of
Theorem 1.4.

4.3. Condition (1.3) is not sufficient (Proof of Theorem 1.5). As men-
tioned in Remark 4.2, condition (1.3) is necessary for controllability. Thanks to Propo-
sitions 4.1 and 4.4, to show condition (1.3) is not sufficient for L?-controllability, it
is sufficient to show there exist ¢ and 7 satisfying (1.3) such that (4.6) is false for
any 3 > —1 and ¢ > 0. Similarly, to show condition (1.3) is not sufficient for (H)’-
controllability, it is sufficient to show there exist £ and 7 satisfying (1.3) such that
(4.16) is false for any > —2 and ¢ > 0.

For any fixed 8 > —1 and

3
(4.19) v > max <2ﬁ +1, 2) )
we choose
N+E{ o On
4.20 =
( ) 2w nZ::l 107!’
where a,, belongs to {0,1,...,9} for all n > 1, and a,, is not identically zero for great

n. According to [22] the right-hand side of (4.20) is a Liouville number, i.e., it is
transcendental and there exists a strictly increasing sequence of integers ¢,, such that

sin (qnm)‘ < T Vn > 1.
In

(4.21) =

Now consider the sequence of initial data
(4.22) oo () = giisin(gne),  ¢p(x) =0 V€ (0,7),

where = 28 if 3 > 0and p = 1if -1 < 8 < 0. Obviously (¢2, L) belongs to
(C*°[0,7])? and satisfies compatible conditions (1.2) and

(4.23) ldoll3-s + lonll7-s-1 = 00 VB> —1.

So by (4.7), (4.19), and (4.21), we have

T
A |¢n,x("7at) - ¢n,x(§,t)|2dt

2
=4 /T qn sin (qnm> sin (an> gk cos it dt
(4.24) 0 2m 2 1+ ag?
2
§4qul(u+1) sin (qnn—’_é)
27

<UrT@? P17 50, asn — oco.
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CONTROLLABILITY FOR RAYLEIGH BEAM 17

Relations (4.23) and (4.24) show that (4.6) is false for any 8 > —1 and ¢ > 0.

Then we show that there exist £ and » in (0, 7) satisfying (1.3) such that (4.16)
is false for any 8 > —2 and ¢ > 0. The proof is quite similar to the proof above in
this subsection. For any fixed § > —2, we only need to change v as

(4.25) v > max (25 + 2,3) )

and to set u = %6 if 8 >0and p =1if —2 < f < 0. By similar calculation, we
obtain that (4.16) is false for any 8 > —2 and ¢ > 0.

4.4. Non-controllability for less regular initial data set (Proof of The-
orem 1.7). Similar to last subsection, we focus on (4.6) and (4.16). By applying
Proposition 2.3, for any £ and 7 in (0, 7) we obtain the existence of a strictly increas-
ing sequence of positive integers {gy, },>1 such that

sin (qnn—i—g>’ < il , sin (qnn_gﬂ < l Vn > 1.
2 )= Va > )=V

First consider the sequence of initial data

(4.27) #° (z) = sin(gux), é5(x) =0 V€ (0,r).

We note that

(4.26)

(4.28) I¢nllzre + llonll3esr = Cai" = 00, 1 — o0,

where C' is a positive constant. By (4.7) and (4.26) we have
(4.29)

T
/O |bne(1,1) = P (& 1) [Pdt

:4/T qp Sin (qnn+§> sin (qnn_§> cos q,% t
0 27 2 ‘/1—|—aq72l

where K is a positive constant. So (4.28) and (4.29) show that (4.6) is false for 8 = —¢
and arbitrary ¢ > 0.
If we choose the sequence of initial data

(4.30) o5 (x) = q, " sin(gnz), ¢h(x) =0 Va e (0,m).
We note that

dt <K VYn>1,

(4.31) 99 1541 + [ dnll5er2 = Cap® — 00, 1 — o0,

where C'is a positive constant. By (4.26) we have

T
/(; |¢n,:ct(777t) - ¢n,xt(§7t)|2dt

(4.32) :4/T ¢n Sin (q 77+§> sin (q 77_5) qﬁ cos dn t
0 " " o " on V14 ag? V14 ag?

<K Vn2>1,

2
dit

where K is a positive constant. So (4.31) and (4.32) show that (4.16) is false for
B8 = —e — 1 and arbitrary ¢ > 0.
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18 Y. BAI, C. PRIEUR AND Z. WANG

4.5. Non-controllability in short control time (Proof of Theorem 1.8).
We study the lack of controllability when 0 < T' < 27/« in this subsection. For any
B > —1, we need to find {(¢%,, ¢L,) }men+ such that

T
/ o (1) — b o€, )2 =50, a5 m — 00
0

and
69l + bl F-s-1 > ¢>0

for any m > 1 and 8 > —1.

As in subsection 4.1, denote

k2

k= ——.

V1+ ak?
Obviously, {vk}rez- is a strictly increasing sequence and limy_ o0 [Vet1 — k| =
1/y/a > 0. Define N(x,r) as in Proposition 2.4 corresponding to {vi}rez~, we have
the following lemma.

LEMMA 4.5. Let {vy}rez and N(z,r) be defined above. We have

(4.34) N@r) —Va, asr— oo
r

(4.33) Vp = —V_

uniformly relative to x in R.

We will prove this lemma in Appendix A. For any 0 < T < 2m/a, we can choose a
T’ such that 0 < T < T’ < 2my/a. Let f in L?(0,2m\/a) be a real valued function
such that f(t) = 0if 0 <t < T and | f|z2¢0,r) # 0. According to Lemma 4.5
and Proposition 2.4, the family {e?*'},cz+ contains a subfamily G+ which forms a

Riesz basis in L2(0,7").
Remark 4.6. The algorithm proposed in the proof of Proposition 2.4 (see Theorem
I1.4.18 of [3]) allows us to construct a subfamily G+ with symmetric spectrum, i.e.,
oMt —ixt

e Gr = e € Grr.

This fact is used in our proof.

According to the remark above, there exists a strictly increasing sequence of integer
{qn}nez~ satisfying ¢, = —q_p, such that Gp» = {e*an!}, cz.. Then for f in L2(0,T")
defined above, there exists a sequence {l,, }ncz+ in [?(C) such that

Ft) =" lnee’ in L*(0,7")

ner*
and
0< Z |1n|* < 0.
ner*
Since f(t) is a real valued function, l,, = [_,. Now we can defined a sequence
{(¢2,, &L ) }men= of initial data such that
(4.35)

m —1
9;1(33) =2 Z Re(ln) |:Qn sin <Qn 77;£> sin <Qn 7755)] Sin(‘]nx)a
n=1

1 _ G . n+&\ . n—&\]" s )
o (T) = — Q;Im(ln) [qn sin (qn2> sin <qn 5 >} m sin(gpx).
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610
611
612
613
614

615

616

617

618

619
620
621
622

623

624
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As mentioned in Remark 4.2, we assume (1.3) holds. This fact implies the sequence
{(¢2,, &L ) }men- of initial data is well-defined.

m?

Since 0 < Y, ez |ln]? < 00 and I, = I_,,, then there exists a mg > 1 such that
lmg # 0. So for any 8 > —1 and m > myg, we have

(4.36) $m -6 + I bmllz-s—1 = N0mollzr-5 + | dmllzr-s-1 = ¢ > 0.
Moreover, thanks to (4.7), we have

2
T m

T
(4.37) | oty = ustectPae =4 [ |30 teet] ar

n=—m,n#0

Since 0 = f(t) = >, ez lneon’ in L*(0,T), we obtain that

T
(4.38) /0 |G,z (n,t) — Gm,a (&, t)|2dt —0, asm — oo.

Relations (4.36) and (4.38) finish the proof of the lack of exact L?-controllability for
any 8> —1,0<T < 2my/a and &, n in (0, 7).

As for the lack of exact (H')'-controllability for any 8 > —2, 0 < T' < 2m+/a and
&, nin (0,7), we only need to change the initial data in (4.35) to
(4.39)

0 () =2 Z Re(ly) [qn sin (qnn;ré) sin (qnﬂzf)] 7V1;'2aq” sin(gna),
n=1

m -1
qﬁ,ln (x)=—2 Z Im(l,) {qn sin <qnn;§) sin <qn772£)] sin(gpx).
n=1

Similarly, (4.38) still holds for any g > —2 and m > mg. Moreover, we have

(4.40)

2
m

T T
/ |Gt (1,8) = .ot (€, 1)t = 4 / > lpetet| dt =0, asm — oo
0 0

n=—m,n#0

Relations (4.36) and (4.40) finish the proof of the lack of exact (H!)'-controllability
for any 8 > —2,0 < T < 2my/a and &, n in (0, 7).

Appendix A. Proof of Lemma 4.5. Solve % < r, we have k <

[(ar? + rv/a2r? +4)/2]2. Thus we define a real function g : (0,400) — (0,400) as
g(r) = [(ar? + rv/a2r2 + 4)/2]2 and define {2} = q(z) — 1, where g(z) = mingez{q >
x}. Obviously, z — 1 < {z} < z. Then we have N(0,r) = {g(r)}. Notice that for
x >0, we have N(z,r) = N0,z +r) — N(0,2) = {g(x + )} — {g(z)}. Therefore,

gl +r)—g(x) =1 < N(z,r) <g(z+7) —g(z) +1.
Now we need to estimate g(x + r) — g(x) for z,7 > 0. Let f(z) = ﬁ for z > 0.
Then ) .
() =22(1 + az?)"2 —az®(1 + ax?) "2,

N

() =21+ a2®)"2 — 5az?(1 + az®) "2 + 3022 (1 + aa?) 5.
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639 Solve f”(x) > 0, we obtain 0 < & < 1/2/«a. Therefore, there exists a Ny in N satisfying
640 No > 1/2/a+ 1 such that for all n > Ng, A,1 — Ay, is decreasing to 1/y/a. Then for
641 all r > 0, N(z,r) is increasing in & > Ny. Then for x > Ny, N(Ng,r) < N(z,r) <
642 limy 1o N(z,7). Simple calculation shows that lim,_,+[g(z + ) — g(z)] = Var.
643  Therefore, we obtain that for x > Ny,

644 g(No +71) —g(Ng) =1 < N(z,7) < Var + 1.
645 For 0 <z < Ny, we have

N(z,r) <N(x, Ny —x)+ N(No,r) = N(0, Ng) — N(0,z) + N(No,r)
646
- <N(0,No) + N(No,r) < Var + 1+ g(No).
647 Assume that r > Ny, then we have
N(z,r) >N(No,7 — Ng +2) = N0,z +r) — N(0, Np)
018 >g(z+71)—g(Ng)—1> min g(z+7r)—g(Ng) — 1.
z€[0,No]
649 Then for all z > 0 and r > Ny, we have

650 IFin ]g(:zz +7)—g(Ng) =1 < N(z,7r) < vVar+1+ g(Ng),
z€[0,No

651 and hence,

N
652 (A.1) lim N,r) _ Va
r—00 r
653 is uniformly relative to x > 0.
654 For z <0, if |z| < r, then
655 N(O, o) + N0, — |z]) < N(z,7) < N(0,]al) + N0, — Jo) + 1.

656 Let 6 belong to [0,1], and we consider g(6r) + g((1 — 6)r). Notice that

o=

2 V2

658 Therefore, we obtain lim, o g(6r)/r = y/af. Consequently, (A.1) holds uniformly
659 relative to —r < x < 0.
660 If |z| > r, then

2,.2 Vo202 1 4 3
657 g(0r) = (a&r +brvatéint + ) :L<a92+9\/a292+4/r2) .

661 N(|lz| =r,r) < N(xz,r) < N(Jz| —r,7) + 1.

662 Set t = |z| —r > 0, then as same as in the situation x > 0, we have (A.1) holds
663 uniformly relative to ¢ > 0, which means that (A.1) holds uniformly relative to |z| > r.
664 Combining all the situations, we obtain that (A.1) holds uniformly relative to x
665 in R. Lemma 4.5 is thus proved.
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