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Numerical comparison of nonlocal macroscopic
models of multi-population pedestrian flows with
anisotropic kernel

Paola Goatin, Daniel Inzunza and Luis Miguel Villada

AbstractWepropose three variants of a nonlocalmacroscopic pedestrian flowmodel
accounting for anisotropic interactions between different groups and including the
presence of walls or other obstacles in the walking domain.We compare the solutions
behaviour in the case of bi-directional flows and othogonally crossing flows by
numerical simulation based on high order finite difference schemes.

1 Introduction

Macroscopic models of (vehicular and pedestrian) traffic flow, including integral
dependencies on the unknowns, have been introduced and studied in the last decade
by several authors [1, 2, 4, 5, 6, 7, 11]. The nonlocal dependencies of the flux
function is intended to model the agents’ reaction to the presence of other agents in a
(downstream) neighborhood of their location. In particular, nonlocal models allow to
reproduce some characteristic behaviour of pedestrian flows, such as lane formation
and other interesting patterns. Also, they can intrinsically account for the presence
of obstacles in the walking domain, as explained in [3], avoiding the enforcement of
an artificial vector field mimicking the discomfort close to obstacles, see e.g. [4].
In this paper, we extend the approach described in [3] to the presence of two

populations with different preferred velocities (given by different targets), which
interact while crossing each other on the walking domain. In particular, we propose
threemodel variants, defined by their nonlocal dependencies, andwe study themodel
behaviours in different situations and with different interaction parameters.
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2 Nonlocal macroscopic pedestrian flow models

We refer to the class of nonlocal crowd dynamics models for two populations with
different destinations trying to avoid each other in a confined environment and
described by their densities 𝜌1 and 𝜌2. We consider the following initial-boundary
value problem for a non-local system of two conservation laws that describes the
evolution of the pedestrian density 𝝆 = (𝜌1, 𝜌2)𝑇 as a function of time 𝑡 and
position x = (𝑥1, 𝑥2) on a walking domain Ω ⊂ R2:

𝜕𝑡 𝝆 + divx 𝐹
(
𝝆, 𝝂

(
x,I[𝝆(𝑡)] (x)

) )
= 0, x ∈ Ω, 𝑡 ≥ 0,

𝝆(0, x) = 𝝆0 (x), x ∈ Ω,

𝝆(𝑡, x) = 0, x ∈ 𝜕Ω.

(1)

Here 𝝂 = (𝝂1, 𝝂2)𝑇 with 𝝂𝑘 = (𝜈𝑘1 , 𝜈
𝑘
2 ), 𝑘 = 1, 2, are two vector fields that (with

slight abuse of notation) are defined as

𝝂𝑘 (𝑡, x) := 𝝂𝑘
(
x,I𝑘 [𝝆(𝑡)] (x)

)
= (1− 𝜖1I𝑘 [𝝆(𝑡)] (x))𝝁𝑘 (x) − 𝜖2I𝑘 [∇𝝆(𝑡)] (x), (2)

where 𝝁𝑘 are the (normalized) fixed smooth vector fields of preferred directions (e.g.,
given by the regularized solution of an eikonal equation), and I𝑘 [𝝆(𝑡)] are non-local
correction terms that depend on the current density distribution, where the notation
indicates a functional dependence, i.e., I𝑘 depends on the function 𝝆(𝑡) := 𝝆(𝑡, ·) as
a whole. Also, 𝜖1 > 0 and 𝜖2 > 0 are scaling factors, which temper the impact of the
correction terms. In particular, we consider the following models:

(M1)
{
𝜕𝑡 𝜌

1 + divx
[
𝑉1𝜌

1 (1 − 𝜌1)
( (

1 − 𝜀1I1 (𝜌1)
)
𝝁1 (x) − 𝜀2I1 (∇𝜌2)

) ]
= 0,

𝜕𝑡 𝜌
2 + divx

[
𝑉2𝜌

2 (1 − 𝜌2)
( (

1 − 𝜀1I2 (𝜌2)
)
𝝁2 (x) − 𝜀2I2 (∇𝜌1)

) ]
= 0,

(M2)
{
𝜕𝑡 𝜌

1 + divx
[
𝑉1𝜌

1 (1 − 𝜌1)
( (

1 − 𝜀1I1 (𝜌1 + 𝜌2)
)
𝝁1 (x) − 𝜀2I1 (∇𝜌2)

) ]
= 0,

𝜕𝑡 𝜌
2 + divx

[
𝑉2𝜌

2 (1 − 𝜌2)
( (

1 − 𝜀1I2 (𝜌1 + 𝜌2)
)
𝝁2 (x) − 𝜀2I2 (∇𝜌1)

) ]
= 0,

(M3)
{
𝜕𝑡 𝜌

1 + divx
[
𝑉1𝜌

1 (1 − I1 (𝜌1 + 𝜌2))
(
𝝁1 (x) − 𝜀2I1 (∇𝜌2)

) ]
= 0,

𝜕𝑡 𝜌
2 + divx

[
𝑉2𝜌

2 (1 − I2 (𝜌1 + 𝜌2))
(
𝝁2 (x) − 𝜀2I2 (∇𝜌1)

) ]
= 0,

where

I𝑘 (𝜌) :=
𝜂𝑖 ∗𝑤 𝜌√︁

1 + ∥𝜂𝑖 ∗𝑤 𝜌∥2
.

Above, for 𝑘 = 1, 2, 𝜂𝑘 are smooth non-negative kernels with compact support such
that

∬
R2 𝜂𝑘 (x) dx = 1 and 𝑉𝑘 > 0 are the pedestrians’ maximal speeds.

Therefore, each pedestrian moves in the preferred direction 𝝁𝑘 (x) but scales its
speed according to the presence of other people (either its own population as in
model (M1) or both population as in (M2) and (M3)), which it sees in its horizon.
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The 𝑘-th population also deviates from its preferred trajectory due to the interaction
with the individuals of the ℓ-th population according to −𝜖2I𝑘 (∇𝜌ℓ).
To account for the presence of boundaries, in the form of walls or other obstacles,

as in [3] the convolution product ∗𝑤 is defined as(
𝜂 ∗𝑤 𝜌(𝑡)

)
(x) =

∬
R2

𝜌𝑤(𝑡, y)𝜂(x − y) dy, (3)

where 𝜌𝑤 : R2 → R+ is the extension of the pedestrian density including the presence
of obstacles:

𝜌𝑤(𝑡, x) :=


𝜌(𝑡, x) if x ∈ Ω,
𝑅𝑤 if x ∈ 𝐵(Ω, 𝑑 (supp 𝜂)) \Ω,
0 elsewhere,

(4)

with 𝑅𝑤 ≥ 1 big enough so that 𝝂(𝑡, x) · n(x) ≤ 0 for all x ∈ 𝜕Ω, 𝑡 ≥ 0, where n is
the outward normal to Ω.1
Aiming at reproducing the limited vision field of pedestrians, oriented towards

the direction of movement, we consider conic convolution kernels constructed as
follows: given a kernel function 𝜂(x) with compact support, we cut a conic section
𝜂(x)𝜒S(x,𝑙,𝛼,𝜸𝑖) (x) of angle 2𝛼 oriented in direction 𝜸𝑘 (x), 𝑘 = 1, 2, which is
described by the region

S(x, 𝑙, 𝛼, 𝜸𝑖) =
{

y ∈ R2 : ∥y − x∥ ≤ 𝑙,
(y − x) · 𝜸𝑖 (x)
∥y − x∥



𝜸𝑖 (x)


 ≥ cos𝛼

}
.

The section 𝜂𝜒S(x,𝑙,𝛼,𝜸𝑖) is smoothed by convolution with a Gaussian kernel 𝑔(x) =
exp(−(∥x∥2/2𝜎)) with 𝜎 = 5× 10−4, then normalized and finally shifted so that the
maximum of the normalized smoothed kernel is centered in (0, 0), see Example 2
in [3] for more details.

3 Numerical scheme

We consider Ω = [𝑎, 𝑏] × [𝑐, 𝑑] and we use a uniform Cartesian grid with nodes
(𝑥𝑖1, 𝑥

𝑗

2), 𝑖 = 1, . . . , 𝑀 and 𝑗 = 1, . . . , 𝑁 such that 𝑥𝑖1 = (𝑖−1/2)ℎ1, 𝑥 𝑗

2 = ( 𝑗 −1/2)ℎ2,
where ℎ1 = (𝑏 − 𝑎)/𝑀 and ℎ2 = (𝑑 − 𝑐)/𝑁 . This provides 𝑀 × 𝑁 grid points
xi := (𝑥𝑖1, 𝑥

𝑗

2), where i = (𝑖, 𝑗) ∈ M := {1, . . . , 𝑀} × {1, . . . , 𝑁}. Moreover, the two
dimensional unit vectors e1 := (1, 0) and e2 := (0, 1) allow to denote neighbouring
grid points as xi+e1 = (𝑥𝑖+1

1 , 𝑥
𝑗

2) and xi+e2 = (𝑥𝑖1, 𝑥
𝑗+1
2 ). As in [3], we denote by

𝒖 : [0, +∞) → R2×𝑀×𝑁 the solution of (1) computed at time 𝑡 in the grid points

1 We denote by 𝑑 (𝐴) = sup
{
|x − y | : x, y ∈ 𝐴

}
the diameter of a set 𝐴 ⊂ R2 and by 𝐵(Ω, ℓ) ={

x ∈ R2 : infy∈Ω |x − y | ≤ ℓ
}
the “ball” of radius ℓ around Ω.
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where

𝑢𝑘,i (𝑡) = 𝜌𝑘 (𝑡, xi), F𝑘,i = 𝐹𝑘

(
𝝆(𝑡, xi), 𝝂

(
xi,I[𝝆(𝑡)] (xi)

) )
for 𝑘 = 1, 2 and i ∈ M .

In order to define a numerical scheme, first we approximate the solution of (1) in a
semi-discrete form by a system of ODEs

d𝒖
d𝑡

= C(𝒖), (5)

where C(𝒖) is the spatial discretization of the convective term with entries given by

C(𝒖) = (C(𝒖)i)i∈M with C(𝒖)𝑘,i = −
2∑︁
𝑙=1

1
ℎ𝑙

(
𝑓𝑘,i+ 1

2 e𝑙 − 𝑓𝑘,i− 1
2 e𝑙

)
,

for suitable numerical fluxes 𝑓𝑘,i+ 1
2 e𝑙 for 𝑘, 𝑙 = 1, 2 obtained by WENO reconstruc-

tions of split fluxes. For the numerical flux 𝑓𝑘 = 𝑓𝑘,i+ 1
2 e𝑙 , the Lax-Friedrichs-type

flux splitting 𝑓 ±
𝑘
(𝜌) is given by

𝑓 ±𝑘 (𝜌) =
1
2
( 𝑓𝑘 (𝜌) ± 𝛼𝑘𝜌) , 𝛼𝑘 = max

𝑙=1,2
max
𝜌𝑘

|𝜕𝜌𝑘 (𝜌𝑘 (1 − 𝜌𝑘)) | sup
x∈Ω

|𝜈(x) · e𝑙 |.

If R± (
𝑓𝑘,i+(−𝑟 :𝑟)e𝑙

)
= R± (

𝑓𝑘,i−𝑟e𝑙 , . . . , 𝑓𝑘,i+𝑟e𝑙
)
denotes (2𝑟 − 1)th-order WENO

upwind-biased reconstructions for 𝑟 = 2, 3, 4, then

𝑓𝑘,i+ 1
2 e𝑙 = R+

(
𝑓 +
𝑘,i+(−𝑟 :𝑟)e𝑙

)
+ R−

(
𝑓 −
𝑘,i+(−𝑟+1:𝑟+1)e𝑙

)
, 𝑘, 𝑙 = 1, 2,

see [10, 12]. In this work we consider third-order of accuracy in space with 𝑟 = 2.

To evaluate the non-local terms in (1), where the convolution term ∗𝑤 is defined
by (3), we use the following identity 𝜂 ∗𝑤 ∇𝜌 = ∇𝜂 ∗𝑤 𝜌, where the corresponding
convolutions 𝜂 ∗𝑤 𝜌, (𝜕𝜂/𝜕𝑥1) ∗𝑤 𝜌 and (𝜕𝜂/𝜕𝑥2) ∗𝑤 𝜌 are calculated approximately
on the discrete grid via a quadrature formula, in our cases a composite Simpson
rule. Since supp(𝜂) ⊂ [−𝑛0ℎ, 𝑛0ℎ] × [−𝑛0ℎ, 𝑛0ℎ] for 𝑛0 ∈ N large enough, any
convolution product is given by

(
𝜂 ∗ 𝜌(𝑡)

)
(xi) ≈

𝑛0∑︁
𝑝=−𝑛0

𝑛0∑︁
𝑞=−𝑛0

ℎ2𝑐𝑝𝑐𝑞𝜌(𝑡, xi−p)𝜂(xp),

where 𝑐𝑝 and 𝑐𝑞 are the coefficients in the quadrature rule and p = (𝑝, 𝑞). This
formula for u = (𝑢i) ∈ R𝑀×𝑁 and for the convolution product (3) can be written as

(𝜂 ∗𝑤 𝑢) (xi) =
𝑛0∑︁

𝑝=−𝑛0

𝑛0∑︁
𝑞=−𝑛0

ℎ2𝑐𝑝𝑐𝑞𝑢𝑤,i−p𝜂(xp), (6)
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where 𝑢𝑤,i is a discrete version of the function (4) defined by

𝑢𝑤,i =


𝑢i if i ∈ M,
𝑅𝑤 if xi ∈ 𝐵(Ω, 𝑑 (supp 𝜂)) \Ω,
0 elsewhere.

Clearly, the discrete convolution (6) causes a computational bottleneck. This is a
classical problem in scientific computing that is effectively handled by fast convolu-
tion algorithms, mainly based on Fast Fourier Transforms [13].

Finally, the semi-discrete scheme (5) is discretized by a third-order TVD Runge-
Kutta time discretization method. The combined space and time discretizations
define a fully discrete third-order scheme, see [3, 9] for details.

4 Numerical tests

We solve numerically (1) for 𝑡 ∈ [0, 𝑇] and x ∈ Ω with the third-order of accuracy
scheme (FD-WENO3) described in Section 3. For each iteration, the time step Δ𝑡 is
determinated by the formula

Δ𝑡

ℎ
max{𝛼1, 𝛼2} = 𝐶cfl.

In the numerical examples we choose 𝐶cfl as the largest multiple of 0.05 that yield
oscillation-free numerical solutions.
In all tests, we take a classical kernel function of the form

𝜂(x) = 315
128𝜋𝑙18 (𝑙

4 − ∥x∥4)4𝜒[0,𝑙 ] (∥x∥), x ∈ 𝐵(0, 𝑙),

we compare the dynamics given by different different angle amplitudes 𝛼 in
S(x, 𝑙, 𝛼, 𝛾𝑖) by using conic section of the kernel given by

𝜂𝑘 (x) = 𝜂(x)𝜒S(x,𝑙,𝛼,𝛾𝑖) (∥x∥) x ∈ 𝐵(0, 𝑙) 𝑘 = 1, 2.

Besides the circular symmetric kernel 𝜂 (i.e., 𝛼 = 𝜋), we consider angles 𝛼 ∈
{𝜋/2, 𝜋/3, 𝜋/6}. The other model parameters are set as

𝑉1 = 𝑉2 = 4, 𝜀1 = 0.7, 𝜀2 = 0.3 and 𝑙 = 0.5.
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4.1 Example 1: bi-directional flows

We consider the evacuation problem of two populations, 𝜌1 and 𝜌2, moving in
opposite directions in the domain Ω = [−4, 4] × [−1, 1] with exits doors set at
𝐷1 = {−4} × [−1, 1] and 𝐷1 = {4} × [−1, 1] respectively. The vectors fields
𝝁1 (x) = (1, 0) and 𝝁2 (x) = (−1, 0) are fixed constantly oriented towards the right
and left of the domain. Initial condition and directions of orientation in the vision
field are given by [

𝜌1
0

𝜌2
0

]
(x) =

[
0.9𝜒]−3.5,−2.5[×]−0.5,0.5[

0.5𝜒]2.5,3.5[×]−0.5,0.5[

]
(x),

𝜸1 (x) = (1, 0), 𝜸2 (x) = (−1, 0).

In Figure 1, we display numerical approximations for 𝜌 = 𝜌1 + 𝜌2, computed with
ℎ1 = ℎ2 = 1/40 at time𝑇 = 1.2, for modelsM1,M2 andM3with conical sections of
vision with angles 𝛼 ∈ {𝜋, 𝜋/2, 𝜋/3, 𝜋/6}. We observe that both populations scale
their speed due to their own/total density and deviate from their preferred trajectory
if the other group is in their view horizon. We observe the expected formation of
lane patterns, which are very similar for modelsM1 andM2, and more pronounced
as the vision cone narrows. Also, modelM3 reaches higher density concentrations.
In Figure 2, we plot each population’s total mass time evolution to monitor the

evacuation time given by each model. We can observe that the dynamics is quite
sensitive to changes in the amplitude of the vision cone. In particular, the evacuation
time increases as the angle 𝛼 decreases. Furthermore, we observe that model M3
produces faster evacuation than modelsM1 andM2.

4.2 Example 2: crossing flows

We consider two populations moving in orthogonal directions and crossing in a
domain Ω = [−5, 5] × [−5, 5] with exits at 𝑥 = 5 and 𝑦 = 5. The space available to
the populations is the cross section [−5, 5] × [−1, 1] ∪ [−1, 1] × [−5, 5], due to the
presences of the columns 𝐶𝑖 , 𝑖 = 1, . . . , 4, described below. The vector fields, within
the cross section, are fixed and oriented towards the respective exits, respectively
{5}× ] − 1, 1[ for 𝜌1 and ] − 1, 1[ ×{5} for 𝜌2. The columns, the directions of the
conic section and the initial condition are given by

𝐶1 = ] − 5,−1[ × ] − 5,−1[,
𝐶2 = ]1, 5[ × ] − 5,−1[,
𝐶3 = ]1, 5[ × ]1, 5[,
𝐶4 = ] − 5,−1[ × ]1, 5[,

𝜸1 (x) = (1, 0),
𝜸2 (x) = (0, 1),
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M1 M2 M3
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π
α

=
π 2

α
=

π 3
α

=
π 6

−1.0

−0.5
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1.0
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0.0

0.5
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−1.0

−0.5

0.0

0.5

1.0

−4 −2 0 2 4−1.0

−0.5

0.0

0.5

1.0

−4 −2 0 2 4−4 −2 0 2 4

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1 Example 1: Dynamics of pedestrians flow for 𝜌 = 𝜌1 + 𝜌2 in a bi-directional corridor at
simulated time 𝑇 = 1.2 for modelsM1,M2 andM3 considering different amplitudes of the cone of
vision, oriented in directions 𝜸1 = (1, 0) and 𝜸2 = (−1, 0) . Numerical approximations computed
with FD-WENO3 with Δ𝑥 = Δ𝑦 = 1/40.

and [
𝜌1

0

𝜌2
0

]
(x) =

[
0.9𝜒]−4.6,−3.4[×]−0.6,0.6[

0.3𝜒]−0.6,0.6[×]−4.6,−3.4[

]
(x).

As in Example 1, we consider the amplitude angles 𝛼 ∈ {𝜋, 𝜋/2, 𝜋/3, 𝜋/6}.
The numerical solutions are shown in Figure 2, with the first population 𝜌1

moving to the right and the second, 𝜌2, moving to the top. All the three models
display a diagonal pattern orthogonal to 𝜸1 +𝜸2, as described by various studies, see
e.g. [8], which becomemore evident as the cone of vision reduces. As in the previous
example, the behaviours of modelsM1 andM2 are similar, whileM3 displays higher
density concentrations.
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M1 M2 M3

α
=
π

α
=
π 2

α
=
π 3

α
=
π 6

0 1 2 3 4 5 6 t 7 0 1 2 3 4 5 6 t 7 0 1 2 3 4 5 6 t 7
0

0.25

0.5

0.75

||ρ
|| 1

1
0

0.25

0.5

0.75

||ρ
|| 1

1
0

0.25

0.5

0.75

||ρ
|| 1

1
0

0.25

0.5

0.75

||ρ
|| 1

1

Fig. 2 Example 1: Time evolution of the total mass for 𝜌1 (red) and 𝜌2 (blue), and corresponding
evacuation times for the modelsM1,M2 andM3, with angles 𝛼 = 𝜋, 𝜋/2, 𝜋/3 and 𝜋/6 respec-
tively.

5 Conclusion

In this work, we compared numerically three nonlocal macroscopic pedestrian flow
models describing two populations moving in different directions. We considered
anisotropic convolution kernels mimicking the effect of different cones of view to
see how they affect the interaction between these populations. For the numerical
simulation we used the FD-WENO3 scheme proposed in [3], obtaining the sharp
pattern formation as the populations cross each other in the proposed scenarios.
Furthermore, we noted that the models are very sensitive to the changes in the conic
vision angles. Future work includes the simulation of more complex scenarios, and
the study of the positivity preservation of the proposed high-order scheme.

Acknowledgements This work has been supported by: the French government, through the 3IA
Côte d’Azur Investments in the Future project managed by the National Research Agency (ANR)
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Fig. 3 Example 2: Dynamics of pedestrian flow for 𝜌1 + 𝜌2 in orthogonal crossing, at simulated
time 𝑇 = 1.4 for models M1, M2 and M3 considering different amplitudes in the angles of the
vision cones oriented in directions 𝜸1 = (1, 0) and 𝜸2 = (0, 1) .

with the reference number ANR-19-P3IA-0002; the Inria Associated Team “NOLOCO - Effi-
cient numerical schemes for non-local transport phenomena” (2018-2022); the MATH-Amsud
22-MATH-05 “NOTION - NOn-local conservaTION laws for engineering, biological and epi-
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by Centro deModelamientoMatemático (CMM) FB210005 BASAL funds for centers of excellence
from ANID-Chile.
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