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Numerical comparison of nonlocal macroscopic models of multi-population pedestrian flows with anisotropic kernel

We propose three variants of a nonlocal macroscopic pedestrian flow model accounting for anisotropic interactions between different groups and including the presence of walls or other obstacles in the walking domain. We compare the solutions behaviour in the case of bi-directional flows and othogonally crossing flows by numerical simulation based on high order finite difference schemes.

Introduction

Macroscopic models of (vehicular and pedestrian) traffic flow, including integral dependencies on the unknowns, have been introduced and studied in the last decade by several authors [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF][START_REF] Bruno | Non-local first-order modelling of crowd dynamics: a multidimensional framework with applications[END_REF][START_REF] Colombo | A class of nonlocal models for pedestrian traffic[END_REF][START_REF] Colombo | Nonlocal crowd dynamics models for several populations[END_REF][START_REF] Colombo | Nonlocal conservation laws in bounded domains[END_REF][START_REF] Colombo | Modelling crowd movements in domains with boundaries[END_REF][START_REF] Kachroo | Pedestrian Dynamics[END_REF]. The nonlocal dependencies of the flux function is intended to model the agents' reaction to the presence of other agents in a (downstream) neighborhood of their location. In particular, nonlocal models allow to reproduce some characteristic behaviour of pedestrian flows, such as lane formation and other interesting patterns. Also, they can intrinsically account for the presence of obstacles in the walking domain, as explained in [START_REF] Bürger | A non-local pedestrian flow model accounting for anisotropic interactions and domain boundaries[END_REF], avoiding the enforcement of an artificial vector field mimicking the discomfort close to obstacles, see e.g. [START_REF] Colombo | A class of nonlocal models for pedestrian traffic[END_REF].

In this paper, we extend the approach described in [START_REF] Bürger | A non-local pedestrian flow model accounting for anisotropic interactions and domain boundaries[END_REF] to the presence of two populations with different preferred velocities (given by different targets), which interact while crossing each other on the walking domain. In particular, we propose three model variants, defined by their nonlocal dependencies, and we study the model behaviours in different situations and with different interaction parameters.

Nonlocal macroscopic pedestrian flow models

We refer to the class of nonlocal crowd dynamics models for two populations with different destinations trying to avoid each other in a confined environment and described by their densities 𝜌 1 and 𝜌 2 . We consider the following initial-boundary value problem for a non-local system of two conservation laws that describes the evolution of the pedestrian density 𝝆 = (𝜌 1 , 𝜌 2 ) 𝑇 as a function of time 𝑡 and position x = (𝑥 1 , 𝑥 2 ) on a walking domain Ω ⊂ R 2 :

         𝜕 𝑡 𝝆 + div x 𝐹 𝝆, 𝝂 x, I [𝝆(𝑡)] (x) = 0, x ∈ Ω, 𝑡 ≥ 0, 𝝆(0, x) = 𝝆 0 (x), x ∈ Ω, 𝝆(𝑡, x) = 0, x ∈ 𝜕Ω. (1) 
Here 𝝂 = (𝝂 1 , 𝝂 2 ) 𝑇 with 𝝂 𝑘 = (𝜈 𝑘 1 , 𝜈 𝑘 2 ), 𝑘 = 1, 2, are two vector fields that (with slight abuse of notation) are defined as

𝝂 𝑘 (𝑡, x) := 𝝂 𝑘 x, I 𝑘 [𝝆(𝑡)] (x) = (1 -𝜖 1 I 𝑘 [𝝆(𝑡)] (x)) 𝝁 𝑘 (x) -𝜖 2 I 𝑘 [∇𝝆(𝑡)] (x), (2)
where 𝝁 𝑘 are the (normalized) fixed smooth vector fields of preferred directions (e.g., given by the regularized solution of an eikonal equation), and I 𝑘 [𝝆(𝑡)] are non-local correction terms that depend on the current density distribution, where the notation indicates a functional dependence, i.e., I 𝑘 depends on the function 𝝆(𝑡) := 𝝆(𝑡, •) as a whole. Also, 𝜖 1 > 0 and 𝜖 2 > 0 are scaling factors, which temper the impact of the correction terms. In particular, we consider the following models:

(M1) 𝜕 𝑡 𝜌 1 + div x 𝑉 1 𝜌 1 (1 -𝜌 1 ) 1 -𝜀 1 I 1 (𝜌 1 ) 𝝁 1 (x) -𝜀 2 I 1 (∇𝜌 2 ) = 0, 𝜕 𝑡 𝜌 2 + div x 𝑉 2 𝜌 2 (1 -𝜌 2 ) 1 -𝜀 1 I 2 (𝜌 2 ) 𝝁 2 (x) -𝜀 2 I 2 (∇𝜌 1 ) = 0, (M2) 𝜕 𝑡 𝜌 1 + div x 𝑉 1 𝜌 1 (1 -𝜌 1 ) 1 -𝜀 1 I 1 (𝜌 1 + 𝜌 2 ) 𝝁 1 (x) -𝜀 2 I 1 (∇𝜌 2 ) = 0, 𝜕 𝑡 𝜌 2 + div x 𝑉 2 𝜌 2 (1 -𝜌 2 ) 1 -𝜀 1 I 2 (𝜌 1 + 𝜌 2 ) 𝝁 2 (x) -𝜀 2 I 2 (∇𝜌 1 ) = 0, (M3) 𝜕 𝑡 𝜌 1 + div x 𝑉 1 𝜌 1 (1 -I 1 (𝜌 1 + 𝜌 2 )) 𝝁 1 (x) -𝜀 2 I 1 (∇𝜌 2 ) = 0, 𝜕 𝑡 𝜌 2 + div x 𝑉 2 𝜌 2 (1 -I 2 (𝜌 1 + 𝜌 2 )) 𝝁 2 (x) -𝜀 2 I 2 (∇𝜌 1 ) = 0,
where

I 𝑘 (𝜌) := 𝜂 𝑖 * 𝑤 𝜌 √︁ 1 + ∥𝜂 𝑖 * 𝑤 𝜌∥ 2 .
Above, for 𝑘 = 1, 2, 𝜂 𝑘 are smooth non-negative kernels with compact support such that ∬ R 2 𝜂 𝑘 (x) dx = 1 and 𝑉 𝑘 > 0 are the pedestrians' maximal speeds. Therefore, each pedestrian moves in the preferred direction 𝝁 𝑘 (x) but scales its speed according to the presence of other people (either its own population as in model (M1) or both population as in (M2) and (M3)), which it sees in its horizon.

The 𝑘-th population also deviates from its preferred trajectory due to the interaction with the individuals of the ℓ-th population according to -𝜖 2 I 𝑘 (∇𝜌 ℓ ).

To account for the presence of boundaries, in the form of walls or other obstacles, as in [START_REF] Bürger | A non-local pedestrian flow model accounting for anisotropic interactions and domain boundaries[END_REF] the convolution product * 𝑤 is defined as

𝜂 * 𝑤 𝜌(𝑡) (x) = ∬ R 2 𝜌 𝑤 (𝑡, y)𝜂(x -y) dy, (3) 
where 𝜌 𝑤 : R 2 → R + is the extension of the pedestrian density including the presence of obstacles:

𝜌 𝑤 (𝑡, x) :=          𝜌(𝑡, x) if x ∈ Ω, 𝑅 𝑤 if x ∈ 𝐵(Ω, 𝑑 (supp 𝜂)) \ Ω, 0 elsewhere, (4) 
with 𝑅 𝑤 ≥ 1 big enough so that 𝝂(𝑡, x) • n(x) ≤ 0 for all x ∈ 𝜕Ω, 𝑡 ≥ 0, where n is the outward normal to Ω.1 Aiming at reproducing the limited vision field of pedestrians, oriented towards the direction of movement, we consider conic convolution kernels constructed as follows: given a kernel function 𝜂(x) with compact support, we cut a conic section 𝜂(x) 𝜒 S (x,𝑙, 𝛼,𝜸 𝑖 ) (x) of angle 2𝛼 oriented in direction 𝜸 𝑘 (x), 𝑘 = 1, 2, which is described by the region

S(x, 𝑙, 𝛼, 𝜸 𝑖 ) = y ∈ R 2 : ∥y -x∥ ≤ 𝑙, (y -x) • 𝜸 𝑖 (x) ∥y -x∥ 𝜸 𝑖 (x) ≥ cos 𝛼 .
The section 𝜂 𝜒 S (x,𝑙, 𝛼,𝜸 𝑖 ) is smoothed by convolution with a Gaussian kernel 𝑔(x) = exp(-(∥x∥ 2 /2𝜎)) with 𝜎 = 5 × 10 -4 , then normalized and finally shifted so that the maximum of the normalized smoothed kernel is centered in (0, 0), see Example 2 in [START_REF] Bürger | A non-local pedestrian flow model accounting for anisotropic interactions and domain boundaries[END_REF] for more details.

Numerical scheme

We consider Ω = [𝑎, 𝑏] × [𝑐, 𝑑] and we use a uniform Cartesian grid with nodes

(𝑥 𝑖 1 , 𝑥 𝑗 2 ), 𝑖 = 1, . . . , 𝑀 and 𝑗 = 1, . . . , 𝑁 such that 𝑥 𝑖 1 = (𝑖 -1/2)ℎ 1 , 𝑥 𝑗 2 = ( 𝑗 -1/2)ℎ 2
, where ℎ 1 = (𝑏 -𝑎)/𝑀 and ℎ 2 = (𝑑 -𝑐)/𝑁. This provides 𝑀 × 𝑁 grid points

x i := (𝑥 𝑖 1 , 𝑥 𝑗 2 )
, where i = (𝑖, 𝑗) ∈ M := {1, . . . , 𝑀 } × {1, . . . , 𝑁 }. Moreover, the two dimensional unit vectors e 1 := (1, 0) and e 2 := (0, 1) allow to denote neighbouring grid points as

x i+e 1 = (𝑥 𝑖+1 1 , 𝑥 𝑗 2 ) and x i+e 2 = (𝑥 𝑖 1 , 𝑥 𝑗+1 
2 ). As in [START_REF] Bürger | A non-local pedestrian flow model accounting for anisotropic interactions and domain boundaries[END_REF], we denote by 𝒖 : [0, +∞) → R 2×𝑀×𝑁 the solution of (1) computed at time 𝑡 in the grid points where

𝑢 𝑘,i (𝑡) = 𝜌 𝑘 (𝑡, x i ), F 𝑘,i = 𝐹 𝑘 𝝆(𝑡, x i ), 𝝂 x i , I [𝝆(𝑡)] (x i ) for 𝑘 = 1, 2 and i ∈ M.
In order to define a numerical scheme, first we approximate the solution of (1) in a semi-discrete form by a system of ODEs

d𝒖 d𝑡 = C(𝒖), (5) 
where C(𝒖) is the spatial discretization of the convective term with entries given by

C(𝒖) = (C(𝒖) i ) i∈M with C(𝒖) 𝑘,i = - 2 ∑︁ 𝑙=1 1 ℎ 𝑙 f𝑘,i+ 1 2 e 𝑙 -f𝑘,i-1 2 e 𝑙 ,
for suitable numerical fluxes f𝑘,i+ 1 2 e 𝑙 for 𝑘, 𝑙 = 1, 2 obtained by WENO reconstructions of split fluxes. For the numerical flux 𝑓 𝑘 = f𝑘,i+ 1 2 e 𝑙 , the Lax-Friedrichs-type flux splitting 𝑓 ± 𝑘 (𝜌) is given by

𝑓 ± 𝑘 (𝜌) = 1 2 ( 𝑓 𝑘 (𝜌) ± 𝛼 𝑘 𝜌) , 𝛼 𝑘 = max 𝑙=1,2 max 𝜌 𝑘 |𝜕 𝜌 𝑘 (𝜌 𝑘 (1 -𝜌 𝑘 ))| sup x∈Ω |𝜈(x) • e 𝑙 |.
If R ± 𝑓 𝑘,i+(-𝑟:𝑟)e 𝑙 = R ± 𝑓 𝑘,i-𝑟e 𝑙 , . . . , 𝑓 𝑘,i+𝑟e 𝑙 denotes (2𝑟 -1)th-order WENO upwind-biased reconstructions for 𝑟 = 2, 3, 4, then f𝑘,i+ 1 2 e 𝑙 = R + 𝑓 + 𝑘,i+(-𝑟:𝑟)e 𝑙 + R -𝑓 - 𝑘,i+(-𝑟+1:𝑟+1)e 𝑙 , 𝑘, 𝑙 = 1, 2, see [START_REF] Jiang | Efficient implementation of weighted ENO schemes[END_REF][START_REF] Shu | High order weighted essentially nonoscillatory schemes for convection dominated problems[END_REF]. In this work we consider third-order of accuracy in space with 𝑟 = 2.

To evaluate the non-local terms in [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF], where the convolution term * 𝑤 is defined by (3), we use the following identity 𝜂 * 𝑤 ∇𝜌 = ∇𝜂 * 𝑤 𝜌, where the corresponding convolutions 𝜂 * 𝑤 𝜌, (𝜕𝜂/𝜕𝑥 1 ) * 𝑤 𝜌 and (𝜕𝜂/𝜕𝑥 2 ) * 𝑤 𝜌 are calculated approximately on the discrete grid via a quadrature formula, in our cases a composite Simpson rule. Since supp(𝜂) ⊂ [-𝑛 0 ℎ, 𝑛 0 ℎ] × [-𝑛 0 ℎ, 𝑛 0 ℎ] for 𝑛 0 ∈ N large enough, any convolution product is given by

𝜂 * 𝜌(𝑡) (x i ) ≈ 𝑛 0 ∑︁ 𝑝=-𝑛 0 𝑛 0 ∑︁ 𝑞=-𝑛 0 ℎ 2 𝑐 𝑝 𝑐 𝑞 𝜌(𝑡, x i-p )𝜂(x p ),
where 𝑐 𝑝 and 𝑐 𝑞 are the coefficients in the quadrature rule and p = ( 𝑝, 𝑞). This formula for u = (𝑢 i ) ∈ R 𝑀×𝑁 and for the convolution product (3) can be written as

(𝜂 * 𝑤 𝑢) (x i ) = 𝑛 0 ∑︁ 𝑝=-𝑛 0 𝑛 0 ∑︁ 𝑞=-𝑛 0 ℎ 2 𝑐 𝑝 𝑐 𝑞 𝑢 𝑤,i-p 𝜂(x p ), (6) 
where 𝑢 𝑤,i is a discrete version of the function (4) defined by

𝑢 𝑤,i =          𝑢 i if i ∈ M, 𝑅 𝑤 if x i ∈ 𝐵(Ω, 𝑑 (supp 𝜂)) \ Ω, 0 elsewhere.
Clearly, the discrete convolution (6) causes a computational bottleneck. This is a classical problem in scientific computing that is effectively handled by fast convolution algorithms, mainly based on Fast Fourier Transforms [START_REF] Zur Gathen | Modern Computer Algebra[END_REF].

Finally, the semi-discrete scheme ( 5) is discretized by a third-order TVD Runge-Kutta time discretization method. The combined space and time discretizations define a fully discrete third-order scheme, see [START_REF] Bürger | A non-local pedestrian flow model accounting for anisotropic interactions and domain boundaries[END_REF][START_REF] Inzunza | Métodos Implicitos-Explicitos para Problemas de Convección-Difusión-Reacción no Lineales y no Locales[END_REF] for details.

Numerical tests

We solve numerically (1) for 𝑡 ∈ [0, 𝑇] and x ∈ Ω with the third-order of accuracy scheme (FD-WENO3) described in Section 3. For each iteration, the time step Δ𝑡 is determinated by the formula

Δ𝑡 ℎ max{𝛼 1 , 𝛼 2 } = 𝐶 cfl .
In the numerical examples we choose 𝐶 cfl as the largest multiple of 0.05 that yield oscillation-free numerical solutions. In all tests, we take a classical kernel function of the form

𝜂(x) = 315 128𝜋𝑙 18 (𝑙 4 -∥x∥ 4 ) 4 𝜒 [0,𝑙] (∥x∥),
x ∈ 𝐵(0, 𝑙),

we compare the dynamics given by different different angle amplitudes 𝛼 in S(x, 𝑙, 𝛼, 𝛾 𝑖 ) by using conic section of the kernel given by

𝜂 𝑘 (x) = 𝜂(x) 𝜒 S (x,𝑙, 𝛼,𝛾 𝑖 ) (∥x∥) x ∈ 𝐵(0, 𝑙) 𝑘 = 1, 2.
Besides the circular symmetric kernel 𝜂 (i.e., 𝛼 = 𝜋), we consider angles 𝛼 ∈ {𝜋/2, 𝜋/3, 𝜋/6}. The other model parameters are set as

𝑉 1 = 𝑉 2 = 4, 𝜀 1 = 0.7, 𝜀 2 = 0.
3 and 𝑙 = 0.5.

Example 1: bi-directional flows

We consider the evacuation problem of two populations, 𝜌 

𝜸 1 (x) = (1, 0), 𝜸 2 (x) = (-1, 0).
In Figure 1, we display numerical approximations for 𝜌 = 𝜌 1 + 𝜌 2 , computed with ℎ 1 = ℎ 2 = 1/40 at time 𝑇 = 1.2, for models M1, M2 and M3 with conical sections of vision with angles 𝛼 ∈ {𝜋, 𝜋/2, 𝜋/3, 𝜋/6}. We observe that both populations scale their speed due to their own/total density and deviate from their preferred trajectory if the other group is in their view horizon. We observe the expected formation of lane patterns, which are very similar for models M1 and M2, and more pronounced as the vision cone narrows. Also, model M3 reaches higher density concentrations.

In Figure 2, we plot each population's total mass time evolution to monitor the evacuation time given by each model. We can observe that the dynamics is quite sensitive to changes in the amplitude of the vision cone. In particular, the evacuation time increases as the angle 𝛼 decreases. Furthermore, we observe that model M3 produces faster evacuation than models M1 and M2.

Example 2: crossing flows

We consider two populations moving in orthogonal directions and crossing in a domain Ω = [-5, 5] × [-5, 5] with exits at 𝑥 = 5 and 𝑦 = 5. The space available to the populations is the cross section [START_REF] Colombo | Nonlocal crowd dynamics models for several populations[END_REF], due to the presences of the columns 𝐶 𝑖 , 𝑖 = 1, . . . , 4, described below. The vector fields, within the cross section, are fixed and oriented towards the respective exits, respectively {5}× ] -1, 1[ for 𝜌 1 and ] -1, 1[ ×{5} for 𝜌 2 . The columns, the directions of the conic section and the initial condition are given by As in Example 1, we consider the amplitude angles 𝛼 ∈ {𝜋, 𝜋/2, 𝜋/3, 𝜋/6}. The numerical solutions are shown in Figure 2, with the first population 𝜌 1 moving to the right and the second, 𝜌 2 , moving to the top. All the three models display a diagonal pattern orthogonal to 𝜸 1 + 𝜸 2 , as described by various studies, see e.g. [START_REF] Hoogendoorn | Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena[END_REF], which become more evident as the cone of vision reduces. As in the previous example, the behaviours of models M1 and M2 are similar, while M3 displays higher density concentrations. 

[-5, 5] × [-1, 1] ∪ [-1, 1] × [-5,
𝐶 1 = ] -5, -1[ × ] -5, -1[, 𝐶 2 = ]1, 5[ × ] -5, -1[, 𝐶 3 = ]1, 5[ × ]1, 5[, 𝐶 4 = ] -5, -1[ × ]1, 5[, 𝜸 1 (x) = (1, 0), 𝜸 2 (x) = (0, 1),

Conclusion

In this work, we compared numerically three nonlocal macroscopic pedestrian flow models describing two populations moving in different directions. We considered anisotropic convolution kernels mimicking the effect of different cones of view to see how they affect the interaction between these populations. For the numerical simulation we used the FD-WENO3 scheme proposed in [START_REF] Bürger | A non-local pedestrian flow model accounting for anisotropic interactions and domain boundaries[END_REF], obtaining the sharp pattern formation as the populations cross each other in the proposed scenarios. Furthermore, we noted that the models are very sensitive to the changes in the conic vision angles. Future work includes the simulation of more complex scenarios, and the study of the positivity preservation of the proposed high-order scheme. 
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  We denote by 𝑑 ( 𝐴) = sup |xy | : x, y ∈ 𝐴 the diameter of a set 𝐴 ⊂ R 2 and by 𝐵(Ω, ℓ) = x ∈ R 2 : inf y∈Ω |xy | ≤ ℓ the "ball" of radius ℓ around Ω.

  1 and 𝜌 2 , moving in opposite directions in the domain Ω = [-4, 4] × [-1, 1] with exits doors set at𝐷 1 = {-4} × [-1, 1] and 𝐷 1 = {4} × [-1,[START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF] respectively. The vectors fields 𝝁 1 (x) = (1, 0) and 𝝁 2 (x) = (-1, 0) are fixed constantly oriented towards the right and left of the domain. Initial condition and directions of orientation in the vision field are given by

Fig. 1

 1 Fig. 1 Example 1: Dynamics of pedestrians flow for 𝜌 = 𝜌 1 + 𝜌 2 in a bi-directional corridor at simulated time 𝑇 = 1.2 for models M1, M2 and M3 considering different amplitudes of the cone of vision, oriented in directions 𝜸 1 = (1, 0) and 𝜸 2 = (-1, 0). Numerical approximations computed with FD-WENO3 with Δ𝑥 = Δ𝑦 = 1/40.

1 Fig. 2

 12 Fig. 2 Example 1: Time evolution of the total mass for 𝜌 1 (red) and 𝜌 2 (blue), and corresponding evacuation times for the models M1, M2 and M3, with angles 𝛼 = 𝜋, 𝜋/2, 𝜋/3 and 𝜋/6 respectively.

Fig. 3

 3 Fig. 3 Example 2: Dynamics of pedestrian flow for 𝜌 1 + 𝜌 2 in orthogonal crossing, at simulated time 𝑇 = 1.4 for models M1, M2 and M3 considering different amplitudes in the angles of the vision cones oriented in directions 𝜸 1 = (1, 0) and 𝜸 2 = (0, 1).
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