Y Magnouche
email: youcef.magnouche@dauphine.fr

A R Mahjoub
email: ridha.mahjoub@lamsade.dauphine.fr

S Martin

The multi-terminal vertex separator problem : Branch-and-Cut-and-Price

Keywords: Vertex separator problem, integer linear programming, combinatorial optimization, column generation, Branch-and-Price, Branch-and-Cut-and-Price

We are given a graph G = (V ∪ T, E), with V ∪ T the set of vertices where T is a set of terminals and E the set of edges. The multi-terminal vertex separator problem consists in finding a subset of vertices S ⊆ V of minimum size intersecting all paths between every pair of terminals. In this paper we present three extended linear integer programming formulations for the multi-terminal vertex separator problem and we develop Branch-and-Price and Branch-and-Cut-and-Price algorithms. For each formulation we present the pricing problem, the branching scheme and the computation of the dual bound used during the column generation phase. Computational results are reported comparing the performance of the formulations on a set of instances.

Introduction

Given a simple graph G = (V ∪ T, E) with V ∪ T the set of vertices, where T is a set of distinguished vertices called terminals, a multi-terminal vertex separator S in G is a subset of vertices such that the graph induced by (V ∪ T) \ S consists of |T | disjoint components, each with exactly one terminal. The multi-terminal vertex separator problem (MTVSP for short), consists in finding a multi-terminal vertex separator in G of minimum size. When a weight w(v) ∈ Z + is associated with a vertex v ∈ V , finding the multi-terminal vertex separator of a minimum weight can, polynomially, be reduced to solving the size version of the MTVSP in a transformed graph. This latter consists in replacing v by a clique K w(v) of size w(v) such that each vertex of K w(v) is adjacent to the neighbors of v. The MTVSP is a NPhard problem [START_REF] Garg | Multiway cuts in directed and node weighted graphs[END_REF]. It has many applications [START_REF] Ben-Ameur | The k-separator problem[END_REF]. A multi-terminal vertex separator can be used to evaluate the robustness of the network connecting the terminals. The MTVSP has also applications in social networks. Indeed, by solving a multi-terminal vertex separator problem, one gets different components each containing exactly one terminal. These components may represent communities with one leader. The multi-terminal vertex separator may then represent persons connecting communities. The MTVSP has also other applications in different areas like VLSI conception, linear algebra, connectivity problems and parallel algorithms.

In this paper, we propose three extended formulations for the MTVSP. We develop a Branch-and-Price algorithm for each formulation and a Branchand-Cut-and-Price algorithm for two of them.

The MTVSP was already considered in [START_REF] Cornaz | The multi-terminal vertex separator problem: Polyhedral analysis and branch-and-cut[END_REF]. The authors propose two integer programming formulations for the problem and present a polyhedral study. They describe several classes of valid inequalities and develop a Branch-and-Cut algorithm. In [START_REF] Naves | The graphs with the max-mader-flowmin-multiway-cut property[END_REF], the authors give a linear system for the MTVSP, and characterize the class of graphs for which this system is totally dual integral (i.e., the dual problem has an integer optimal solution for any integer weight vector for which the primal has a bounded optimal solution). The MTVSP is a variant of the k-separator problem that consists, given a graph G = (V, E), in partitioning V into k + 1 subsets {S, V 1 , . . . , V k } in such a way that S is minimum and there is no edge between any two different subsets V i and V j . Many variants of this problem have been studied in the literature [START_REF] Balas | The vertex separator problem: a polyhedral investigation[END_REF][START_REF] Ben | On the minimum cut separator problem[END_REF][START_REF] Ben-Ameur | The k-separator problem[END_REF][START_REF] Biha | An exact algorithm for solving the vertex separator problem[END_REF][START_REF] Cornaz | Mathematical formulations for the balanced vertex k-separator problem[END_REF][START_REF] De | The vertex separator problem: algorithms and computations[END_REF]. In [START_REF] Balas | The vertex separator problem: a polyhedral investigation[END_REF] and [START_REF] De | The vertex separator problem: algorithms and computations[END_REF], the authors consider the following problem. Given a simple graph G = (V, E) and an integer β(n) with n = |V |, partition V into three subsets A, B and C such that |C| is minimum, no vertex in A is adjacent to a vertex in B and max{|A|, |B|} ≤ β(n). In [START_REF] Ben | On the minimum cut separator problem[END_REF], a different variant of the k-separator problem is considered. Given a simple graph G = (V, E) and a, b ∈ V two terminals, the problem here is to partition V into three subsets A, B and C minimizing the size of the cut induced by C such that a ∈ A, b ∈ B and no vertex in A is adjacent to a vertex in B. It is shown that the problem can be solved in polynomial time and is equivalent to a minimum cut problem in an auxiliary graph. In [START_REF] Cornaz | Mathematical formulations for the balanced vertex k-separator problem[END_REF], the balanced vertex k-separator problem is considered. This consists, given a graph G = (V, E), in finding a subset S ⊂ V of minimum cardinality such that after removing S from G, the remaining vertices can be partitioned into k disjoint subsets with balanced sizes. The authors present a compact formulation and a polyhedral analysis for the problem. They also propose an extended formulation and develop a Branch-and-Price algorithm.

Column generation is an efficient approach for solving linear programs with large number of variables [START_REF] Desaulniers | Column generation[END_REF]. In each step of the method, we consider a restricted linear program given by a few number of variables. This is called the restricted master problem (RMP). The idea of the method is to generate in each iteration new columns (variables) to add to the restricted master. This is called the Pricing. If such algorithm is combined with a Branch-and-Bound algorithm, then the resulting approach is called a Branch-and-Price algorithm. A Branch-and-Cut-and-Price algorithm is a combination of a Branch-and-Price and a cutting plane algorithm [START_REF] Ji | Branch-and-price-and-cut on the clique partitioning problem with minimum clique size requirement[END_REF]. Such algorithms are used for solving integer linear programs with large number of variables and constraints.

In this paper we will present three extended formulations for the MTVSP. For each formulation we develop a Branch-and-Price algorithm. We first define the pricing problem that we solve at each iteration of the column generation algorithm. We also identify the basic columns that we use in the first restricted master problem. This helps the column generation algorithm to start with a good primal bound. Moreover, we detail the computation of the Lagrangian bound which represents a dual bound for the problem. Therefore, if the two bounds are equal, we stop the column generation algorithm even if there are other variables to add to the RMP. Then we present a strategy for adding the new variables to the RMP in order to speed up the resolution of the RMP. Finally, we explain how the master problem structure is exploited to add new valid inequalities without changing the pricing problem. This permits to develop a Branch-and-Cut-and-Price algorithm.

In the rest of this section we give some notations. We denote by G = (V ∪ T, E) a simple graph with V ∪ T a set of vertices where T is the set of terminals and E the set of edges. Let n = |V |, k = |T | and m = |E|. In the rest of this paper, and for sake of convenience, we will refer to the multiterminal vertex separator as separator. Given a vertex v ∈ V ∪ T , we denote by N (v) ⊆ (V ∪ T) \ {v} the set of vertices adjacent to v and by d(v) the size of N (v). Given a subset W ⊆ (V ∪ T), we denote by N (W) ⊆ (V ∪ T) \ W the set of vertices adjacent to at least one vertex in W . A path between two terminals is called a terminal path. For two terminals t, t ∈ T , let P tt be a terminal path. For a set of vertices W ⊂ V ∪ T , the subgraph of G induced by W , denoted by G[W], is the graph whose set of nodes is W and set of edges consists of all the edges of E having their end vertices in W . For v ∈ V , let δ(v) denote the set of edges incident to v and δ(W) the set of edges having exactly one vertex in

W . If x ∈ R V ∪T , let x(W) = v∈W x(v).
In all figures of this paper, the terminals are represented by triangles.

In this paper we consider the following hypotheses

1-|T | ≥ 3, otherwise the MTVSP is polynomial [8].
2-There is no edge between two terminals, otherwise the problem has no solution.

3-For every two different terminals t, t ∈ T , we have

N (t) ∩ N (t) = ∅.
Otherwise all vertices in N (t) ∩ N (t) must belong to the separator. In this case we can remove these vertices from the graph.

4-For each vertex v ∈ V, there is at least one terminal path, containing v. Otherwise v cannot belong to a minimal separator. In this case we can delete it from the graph. Checking if a node v belongs to a terminal path, can be done in polynomial time. This consists in computing a flow of value 2 of minimum weight between v and an artificial sink connected to all the terminals of T , where the edges have a capacity and a weight equal to 1.

5-Graph G is connected. Otherwise, we consider the MTVSP on each component.

The paper is organized as follows. In Sections 2, 3 and 4, we present the three extended linear integer programming formulations for the MTVSP. For each formulation we give a column generation scheme to solve the linear relaxation, the way to compute the Lagrangian bound. We then present the branching scheme used in the Branch-and-Price algorithm. Section 5 is devoted to the Branch-and-Cut-and-Price algorithms, and Section 6 is devoted to the numerical results. In this section we will introduce a formulation for the MTVSP based on the terminal-sets. Indeed, any solution of the MTVSP can be seen as a partition of the vertex set into k + 1 subsets such that k of them are disjoint terminal-sets. Thus the variables of this formulation are associated to the terminal-sets. Then the multi-terminal vertex separator problem reduces to finding k disjoint terminal-sets such that the cardinality of the multi-terminal vertex separator is minimum. Let W be the set of all terminal-sets of G. For W ∈ W, let x W be a 0 -1 variable which takes 1 if W is selected and 0 if not. We notice that these variables are exponential in number. For v ∈ V , let y(v) be a 0 -1 variable which takes 1 if v is selected in the multi-terminal vertex separator and 0 if not.

The terminal-set formulation

A terminal-set W ⊆ V ∪ T is
Given a terminal-set W ∈ W, let a W ∈ {0, 1} E and b W ∈ {0, 1} V ∪T be the vectors defined as follows,

a W uv = 1 if {u, v} ∩ W = ∅, 0 otherwise. for all uv ∈ E, b W v = 1 if vertex v ∈ W, 0 otherwise. for all v ∈ V ∪ T.
The MTVSP is equivalent to the following integer linear program,

min v∈V y(v) (1)
W ∈W -a W e x W ≥-1 ∀e ∈ E, (2)
W ∈W b W v x W + y(v) = 1 ∀v ∈ V, (3)
W ∈W b W t x W = 1 ∀t ∈ T, (4)
x W ≥ 0 ∀ W ∈ W, (5) y
(v) ≥ 0 ∀ v ∈ V, (6)
x integer, (7) y integer.

Inequalities (2) ensure the disjunction of the terminal-sets, inequalities (3) ensure that every vertex in V is either in the multi-terminal vertex separator or in exactly one terminal-set and not in both. Finally, inequalities (4) guarantee that each terminal belongs to a terminal-set.

Theorem 2.1. For each feasible solution (x, y) of (2)- [START_REF] Balas | The vertex separator problem: a polyhedral investigation[END_REF], y is the incidence vector of a multi-terminal vertex separator.

Proof . From equations (3), if x is integer, y so is.

Theorem 2.2. For each feasible solution (x, y) of (2) -(6) and (8), y is the incidence vector of a multi-terminal vertex separator.

Proof . Suppose that y is not an incidence vector of a multi-terminal vertex separator. It follows that there exists a terminal path P tt between two terminals t and t such that y(P tt) = 0. Note that, since x may be fractional, each vertex v ∈ V ∪ T may belongs to several fractions of terminal-sets.

We claim that, for an edge uv from P tt , u and v must belong to the same terminal-set of the solution. In fact suppose that there are W 1 and W 2 such that u ∈ W 1 , v ∈ W 2 such that x W 1 > 0 and x W 2 > 0. As y(u) = 0, by inequalities (3), it follows that

W ∈W b W u x W = 1. As x W 2 > 0, it follows that W ∈W
a W e x W > 1, contradicting inequalities (2). Therefore, all vertices of P tt are in the terminal-set. On the other hand, t and t cannot belong to the same terminal-set, a contradiction.

Model (1)-(5) is called the master problem. It has an exponential size, thus we need a column generation procedure to solve its continuous relaxation.

Let u ∈ R E + , η ∈ R V and λ ∈ R T be the dual variables associated with inequalities (2), (3), (4), respectively. The dual of the linear relaxation of (1)-(5), denoted by DLMP, is given by

max e∈E -u e + v∈V η v + t∈T λ t e∈E -a W e u e + v∈V η v b W v + t∈T λ t b W t ≤ 0 ∀ W ∈ W, (9)
v∈V

η v ≤ 1 ∀ v ∈ V, (10)
u e ≥ 0 ∀e ∈ E, η v ∈ R ∀v ∈ V, λ t ∈ R ∀t ∈ T.
The master problem is initialized with a subset of variable and then the additional variables necessary to solve its linear relaxation, are generated by separating the associated dual constraints [START_REF] Ben-Ameur | The k-separator problem: polyhedra, complexity and approximation results[END_REF]. This constitutes the pricing problem. DLMP will be used for both defining the pricing problem and computing the Lagrangian bound.

Pricing problem

Given a dual solution π = (u, η, λ), the pricing problem is nothing but the separation problem for the dual constraints [START_REF] Ben-Ameur | The k-separator problem: polyhedra, complexity and approximation results[END_REF], that is to say, it consists in finding a subset W ∈ W such that

e∈E -u e a W e + v∈V η v b W v + t∈T λ t b W t > 0.
If such W does not exist, then the current solution is optimal. This can be reduced to a binary linear program. In fact consider the following binary variables

r(v) = 1 if vertex v ∈ W, 0 otherwise. for all v ∈ V ∪ T, z(uv) = 1 if {u, v} ∩ W = ∅, 0 otherwise. for all uv ∈ E.
Note that r represents a terminal-set W . Thus, inequality (9), associated with W , can be written as e∈E -u e z(e)

+ v∈V η v r(v) + t∈T λ t r(t) ≤ 0,
Therefore, the pricing problem is equivalent to the following mixed integer linear program P , max e∈E -u e z(e)

+ v∈V η v r(v) + t∈T λ t r(t) z(uv) ≥ r(u) ∀uv ∈ E, (11) z
(uv) ≥ r(v) ∀uv ∈ E, (12) z
(uv) ≤ r(u) + r(v) ∀uv ∈ E, (13)
z(ut)≤ 1 - t∈T \{t } r(t) ∀ut ∈ E, (14)
t∈T

r(t) = 1, (15)
z(e) ≥ 0 ∀e ∈ E, (16) z
(e) ≤ 1 ∀e ∈ E, (17) r(v) ≥ 0 ∀v ∈ V, (18) r(v) ≤ 1 ∀v ∈ V, (19) r(v) integer ∀v ∈ V ∪ T, (20) z
(e) integer ∀e ∈ E. (21)
Inequalities (11) -(13) link variables z and r. If a terminal t ∈ T is in the solution, inequalities [START_REF] Cornaz | The vertex k-cut problem[END_REF] ensure that all nodes adjacent to the terminals of T \ {t} are not in the solution. Finally, inequalities [START_REF] Cornaz | The multi-terminal vertex separator problem: Polyhedral analysis and branch-and-cut[END_REF] guarantee that exactly one terminal is selected in the solution.

If the optimal value of P is greater than 0, then we add the column corresponding to W , the optimal solution of P , to the restricted master problem (RMP). Otherwise, the current solution of the RMP is optimal.

Program P can be simplified. The following lemmas show that some inequalities in P can be deleted.

Lemma 2.1. Inequalities (13) can be deleted.

Proof . Let P be the linear program obtained from P by deleting inequalities [START_REF] Cornaz | Mathematical formulations for the balanced vertex k-separator problem[END_REF]. Consider an optimal solution (r, z) of P . Let (r , z) be the solution obtained from (r, z) by setting z (uv) = 0 for all uv ∈ E with r(u) = r(v) = 0. Clearly, (r , z) satisfies the inequalities of P . Moreover, since the weight of z(e) in the objective function is less than or equal to 0, (r , z) is an optimal solution of P .

Lemma 2.2. Inequalities (16) can be deleted.

Proof . By inequalities [START_REF] De | The vertex separator problem: algorithms and computations[END_REF], r(v) ≥ 0 for all v ∈ V ∪ T . Moreover, by inequalities [START_REF] Chen | An improved parameterized algorithm for the minimum node multiway cut problem[END_REF], z(uv) ≥ r(v) for all uv ∈ E. Therefore z(uv) ≥ 0, and hence inequalities [START_REF] Dahlhaus | The complexity of multiterminal cuts[END_REF] are redundant and can then be deleted.

Lemma 2.3. For an edge e = uv such that u e = 0, inequalities (17) can be deleted.

Proof . Note that α ≤ 1 for all inequalities of P of the form z(e) ≥ α. Moreover, for all e ∈ E, the weight of z(e) in the objective function is less than or equal to 0. Since u e = 0, it follows that z(e) ≤ 1 in the optimal solution of P for all e ∈ E such that u e = 0.

Lemma 2.4. Constraints (21) can be deleted.

Proof . Let P be the program obtained from P by deleting constraints [START_REF] Ji | Branch-and-price-and-cut on the clique partitioning problem with minimum clique size requirement[END_REF]. Suppose there is an optimal fractional solution (r, z) of P , with z(e) fractional for some e ∈ E. Since r(v) ∈ {0, 1} for all v ∈ V , and the coefficient of the z variables in the objective function are less than or equal to 0, we have that 0 < z(e) < 1. As a consequence, any inequality among (11) -(14) cannot be tight for (r, z), if it is induced by e. In addition, if e = uv, it follows that r(u) = r(v) = 0. Let (r , z) be the solution obtained from (r, z) by setting z (e) = 0. We have in consequence that (r , z) is a solution of P . Moreover, the value of (r , z) is greater than that of (r, z), a contradiction.

In what follows we denote by P the linear program obtained from P by deleting inequalities (13), (16) and constraints [START_REF] Ji | Branch-and-price-and-cut on the clique partitioning problem with minimum clique size requirement[END_REF]. Hence solving the pricing problem reduces to solving P .

A m × n integral matrix A is said to be totally unimodular if and only if each set R ⊆ {1, . . . , m} can be divided into two disjoints sets R 1 and R 2 such that

i∈R 1 A ij - i∈R 2 A ij ∈ {-1, 0, +1}, j = 1, 2, . . . , n.
Remark that one of the characterization of totally unimodular matrices, is that A is totally unimodular if and only if for any integer vector b, the polyhedron {Ax ≥ b, x ≥ 0} is integer.

Theorem 2.3. The pricing problem can be solved in polynomial time.

Proof . As a terminal-set contains exactly one terminal, looking for a terminalset can be decomposed into a sequence of subproblems, each consisting in finding a terminal-set with a specific terminal t * . This is equivalent to solving P by fixing one variable r(t *) to 1 and all other variables r(t), t ∈ T \ {t * } to 0. As a consequence, equality (15) becomes redundant and can then be deleted. The linear relaxation of the resulting program associated with t * is as follows,

max e∈E -u e z(e) + v∈V η v r(v) + λ t * r(t *) z(uv) ≥ r(u) ∀uv ∈ E, z(uv) ≥ r(v) ∀uv ∈ E, z(ut) ≤ 0 ∀ut ∈ E, t = t * , z(e) ≤ 1 ∀e ∈ E, r(v) ≥ 0 ∀v ∈ V, r(v) ≤ 1 ∀v ∈ V.
Let A be the matrix of the above linear program. Now we need to prove that an optimal integer solution of the above linear program can be found in a polynomial time. To this end, we show that A is totally unimodular which is is enough to prove the theorem.

Claim 2.1. Matrix A is totally unimodular.

Proof . Note that A is totally unimodular if its transpose A so is. For any subset of rows R in A we can divide it into two subsets R 1 and R 2 , one containing the rows associated with variables z and the other with variables r, respectively. Since, all elements of A are in {-1, 0, +1}, each constraint contains at most two variables (at most one variable of z and at most one variable of r), it follows that for each column j ∈ {1, 2, . . . , n},

i∈R 1 A ij - i∈R 2 A ij ∈ {-1, 0, +1}. Therefore, A is a totally unimodular.
By the remark above and Claim 2.1, it follows that an optimal solution of P can be obtained by solving its linear relaxation. Consequently, the pricing problem reduces to solving k linear programs with polynomial size, which can be done in polynomial time.

Heuristic algorithm for the pricer

In what follows, we propose a heuristic for the pricing problem. The aim is to use the heuristic as a first phase in the pricing in order to speed up its resolution. The first step of the algorithm consists in selecting a terminal which may be an appropriate terminal for a terminal-set violating [START_REF] Ben-Ameur | The k-separator problem: polyhedra, complexity and approximation results[END_REF]. We have remarked from numerical tests that terminal t * maximizing (λ t + tv∈E -u tv) would be a good choice. The second step consists in adding one by one each vertex of V , not adjacent to terminals of T \ {t * }, to W and to check whether the value of W increases or not. If it decreases, we do not add the node to W . This heuristic is given in Algorithm 1

Algorithm 1: Heuristic for the pricing problem Data: The above algorithm runs in O(n + m)-time. Now we will discuss the first restricted master problem.

Graph G = (V ∪ T, E) and π = (u, η, λ) Result: Inequality (9) violated by π 1 begin 2 t * ← argmax t∈T (λ t + tv∈E -u tv); 3 W ← {t * }; 4 Z W ← λ t * + t * v∈E -u t * v ; 5 for (v ∈ V \ N (T \ {t * })) do 6 tmp ← Z W + η v ; 7 for (vu ∈ E) do 8 if (u / ∈ W) then

Basic columns

The first restricted master problem is induced by a collection W 1 ⊂ W of terminal-sets. W 1 contains a first set of k terminal-sets of cardinality 1, each consists of only one terminal, see Figure 2.(a). Note that as the terminals are pairwise non adjacent, each singleton, consisting of one terminal, is a terminal-set. Set W 1 also contains k maximal terminal-sets W t 1 , . . . , W t k , with terminals t 1 , . . . , t k of T , respectively i.e., W

t i = {t i } ∪ (V \ N (T \ {t i })), see Figure 2.(b).

Column generation strategy

The strategy for finding new columns is to solve the pricing problem. This is first handled using the heuristic presented in Algorithm 1. If the heuristic fails to find an appropriate terminal-set, then we use the exact method by solving P to generate columns with positive values, if there is any.

Branching scheme

By Theorems 2.2 and 2.1, two branching schemes can be considered :

1-y ∈ {0, 1} and x ∈ [0, 1] : The branching scheme is reduced to the classical branching on y, it generates two nodes by imposing either y(v) = 1 or y(v) = 0 for some fractional variable y(v).

2-y ∈ [0, 1] and x ∈ {0, 1} : Consider a restricted master problem associated with a subset of terminal-sets W ⊆ W. For two vertices u, v ∈ V ∪T , let W u,v ⊆ W be the set of all terminal-sets in W containing both u and v. The branching scheme that we will use is as follows.

If for u, v ∈ V ∪ T , 0 < W ∈W u,v
x W < 1, then the branching generates two nodes by imposing either

W ∈W u,v x W = 1, or W ∈W u,v
x W = 0.

Lemma 2.5. For any fractional solution, there exists a pair of terminals

u, v ∈ V ∪ T such that 0 < W ∈W u,v x W < 1.
Proof . Consider a restricted master problem (RMP) associated with a set of terminal-sets W ⊆ W. Suppose that the solution x of this RMP is fractional. Consider a terminal-set W 0 ∈ W such that 0 < x W 0 < 1, and suppose that

|W 0 | is maximum. Since W 0 = ∅, let v ∈ W 0 .
We distinguish two cases.

• Case 1:

|W 0 | = 1. It then follows that v is a terminal. By (4), there must exist another terminal-set W 0 ∈ W such that v ∈ W 0 and 0 < x W 0 < 1. As W 0 = W 0 and v ∈ W 0 ∩ W 0 , it follows that |W 0 | > |W 0 |
. This is a contradiction with the maximality of |W 0 |.

• Case 2: |W 0 | ≥ 2. By (3), W ∈W b W v x W ≤ 1.
-

If W ∈W b W v x W < 1, then it is clear that for all u ∈ W 0 \ {v}, 0 < W ∈W u,v
x W < 1 and the lemma follows.

-

If W ∈W b W v x W = 1
, then again the result follows. For otherwise, for all vertex u ∈ W 0 \ {v},

W ∈W u,v x W = 1. Let * W v = {W ∈ W | v ∈ W and x W > 0}, * W u,v = {W ∈ W u,v | x W > 0} for all u ∈ W 0 \ {v}.
Clearly, for all u ∈ W 0 \{v},

W ∈W b W v x W = W ∈W v x W = W ∈W u,v x W = 1. We claim that W 0 ⊂ W i for all W i ∈ W u,v \ {W 0 } and u ∈ W 0 \ {v}.
In fact, suppose, on the contrary that W 0

W i for some set W i ∈ W u,v \ {W 0 } and u ∈ W 0 \ {v}. Hence, there is u ∈ W 0 \W i . As W ∈W u ,v x W = 1, W i / ∈ W u ,v
, and

W ∈W v x W = 1,
it follows that x W i = 0, a contradiction and the claim follows. However this contradicts again the fact that |W 0 | is maximum.

A branching scheme is said to be complete, if it can generate any feasible solution. As corollary, we obtain the following.

Corollary 2.1. The two branching schemes, presented above, are complete.

Lagrangian bound

The Lagrangian bound is a value that represents the dual bound of the linear relaxation of the master problem (LMP). It is the value of the objective function of DLMP (dual of the LMP).

To compute the Lagrangian bound, we need a feasible solution of DLMP. In what follows we will show how to construct a feasible solution of DLMP during the column generation phase. Let π = (u, η, λ) be a dual vector obtained from a restricted master problem induced by W ⊆ W. And let Z be the optimal value of the pricer with respect to π. For all W ∈ W, we then have that

e∈E -u e a W e + v∈V η v b W v + t∈T λ t b W t ≤ Z.
Each terminal-set W ∈ W contains exactly one terminal. It follows that t∈T b W t = 1. Moreover, for all terminal t ∈ T , b W t is integer. Let λ ∈ R T be the vector defined as follows

• λ t = λ t -Z for all terminal t ∈ T . It follows that for all W ∈ W, e∈E -u e a W e + v∈V η v b W v + t∈T λ t b W t ≤ 0.

The isolating-separator formulation

In this section we will give a second extended formulation for the MTVSP based on isolating separators.

An isolating-separator S ⊆ V , associated with a terminal t ∈ T , is a set of vertices that intersects all paths between t and the terminals of T \ {t}.

For a terminal t ∈ T , let S t be the set of all the isolating-separators in G associated with t. Let S = t∈T S t be the set of all isolating-separators in G.

Note that S may contain similar isolating-separators but each is associated with a particular terminal. In Figure 4, set S t represents an isolating-separator since it intersects all paths (represented by dashed lines) between t and all other terminals. We remark the following.

Remark 3.1. Any MTV separator is an isolating-separator that can be associated with any terminal.

In what follows we will introduce a formulation for the MTVSP based on the isolating-separators. Indeed, any solution of the MTVSP can be seen as the union of several isolating-separators, each intersecting all terminal paths between one specific terminal and all the other terminals. Then, the multi-terminal vertex separator problem reduces to finding a set of isolatingseparators such that the cardinality of their union is minimum. Given an isolating-separator S ∈ S, let x S be a variable which takes 1 if S is chosen and 0 if not. And for v ∈ V , let y v be a variable such that y(v) takes 1 if v belongs to at least one selected isolating-separator and 0 if not. We notice that the variables x are exponential in number.

Given an isolating-separator S ∈ S, let a S ∈ {0, 1} V ×T , a S ∈ {0, 1} V and b S ∈ {0, 1} T be the vectors defined as follows

a S v,t = 1 if v belongs to S and S ∈ S t , 0 otherwise. for all v ∈ V, t ∈ T, b S t = 1 if S ∈ S t , 0 otherwise. for all t ∈ T.
The MTVSP is equivalent to the following integer linear program min y(V) (22)

y(v) - S∈S a S v,t x S ≥ 0 ∀t ∈ T, ∀v ∈ V, (23
) S∈S b S t x S = 1 ∀t ∈ T, (24)
x S ≥ 0

∀ S ∈ S, (25)
y(v) ∈ {0, 1} ∀ v ∈ V. (26
)
Inequalities [START_REF] Naves | The graphs with the max-mader-flowmin-multiway-cut property[END_REF] ensure that a vertex belonging to a selected isolatingseparator, also belongs to the multi-terminal vertex separator. Equalities [START_REF] Savelsbergh | A branch-and-price algorithm for the generalized assignment problem[END_REF] guarantee that exactly one isolating-separator, associated with each terminal, is selected. 22)-(26) is the master problem. It has an exponential size, thus we need a column generation procedure to solve its continuous relaxation.

Let u ∈ R T ×V + and η ∈ R T be the dual variables associated with inequalities [START_REF] Naves | The graphs with the max-mader-flowmin-multiway-cut property[END_REF] and equations [START_REF] Savelsbergh | A branch-and-price algorithm for the generalized assignment problem[END_REF]. The dual of the linear program (22)-(25), denoted by DLMP, is given by the following program

max t∈T η t t∈T u v t ≤ 1 ∀v ∈ V, v∈V t∈T -a S v,t u v t + t∈T b S t η t ≤ 0 ∀S ∈ S, (27)
u v t ≥ 0 ∀t ∈ T, v ∈ V, η t ∈ R ∀t ∈ T.
The master problem is initialized with a subset of variables, and the additional variables, necessary to solve its linear relaxation, are generated by separating the associated dual constraints (27). This constitutes the pricing problem.

Pricing problem

Given a dual solution π = (u, η), the pricing problem is nothing but to the separation problem for the dual constraints (27), i.e., it consists in finding a subset S ∈ S such that

v∈V t∈T -a S v,t u v t + t∈T b S t η t > 0.
Then the pricing problem can be solved by finding the terminal t ∈ T and an isolating separator S t for it such that -v∈V u v t a S vt + η t is maximum. If this value is greater than 0, then we add the corresponding column to the RMP. Otherwise, the current solution of the RMP is optimal.

Theorem 3.1. The pricing problem can be solved in polynomial time.

Proof . For a terminal t ∈ T , let G t = (V ∪{t, t s }, E) be the graph obtained from G by merging all terminals of T \ {t} into one terminal t s . Let c ∈ R V such that c(v) = u v t for all v ∈ V . To solve the pricing problem, we need to iterate over each terminal t ∈ T and solve the minimum weight two-terminal vertex separator problem in graph G t . The latter is polynomially solvable [START_REF] Menger | Zur allgemeinen kurventheorie[END_REF][START_REF] Ben | On the minimum cut separator problem[END_REF]. Let Z * t be the value of the optimal two-terminal vertex separator in graph G t . The optimal solution for the pricer is the two-terminal separator with minimum value Z * t -η t . It follows that the pricer problem can be solved in polynomial time.

Basic columns

Let us remark that set V represents an isolating-separator for any terminal of T . Thus, V ∈ S t for all t ∈ T . So, for the basic columns, we can add a variable associated with set V for each terminal of T . Moreover, any multi-terminal vertex separator is also an isolating-separator for any terminal of T . Thus, for each terminal t ∈ T , we add a variable associated with an isolating-separator S t that is a multi-terminal vertex separator.

The following heuristic permits to compute a MTV separator of G = (V ∪ T, E) by merging the MTV separators of G = (V ∪ {t, t }, E) for all t, t ∈ T .

Algorithm 2: Isolating terminal heuristic.

Data: The multi-terminal vertex separator between two terminals can be reduced to the max flow problem. We have used the lemon implementation of the Goldberg's preflow algorithm that runs in O(n 2 √ m). Therefore, the above algorithm runs in O(k 2 n 2 √ m)-time.

Graph G = (V ∪ T, E) Result: Vertex separator S ⊆ V 1 begin 2 S = ∅; 3 for t,

Column generation strategy

The column generation strategy aims at generating several columns at each iteration of the column generation phase. This may speed up the resolution time. It is based on the fact that an isolating-separator S may be related to several terminals of T . Therefore, each time we generate a new column, we check if the associated isolating-separator can also correspond to other terminals. Then, we add several columns by iteration. This can be done in a polynomial time. It consists, for a terminal t ∈ T , in adding a super terminal t * adjacent to all terminal of T \ {t} and solving a min-cut problem between t and t * . This can be done in O(kn 2 √ m) time.

Branching scheme

The branching scheme is reduced to the classical branching on y, it generates two nodes by imposing either y(v) = 1 or y(v) = 0 for some fractional variable y(v).

Lagrangian bound

Let π = (u, η) be a dual vector obtained from the linear relaxation of a restricted master problem. Let Z be the optimal value of the pricer. Remark that

v∈V t∈T -a S v,t u v t + t∈T b S t η t ≤ Z ∀S ∈ S.
Let η ∈ R T + be a vector such that η t = η t -Z for all terminal t ∈ T . Since

t∈T b S t = 1, it follows that v∈V t∈T -a S v,t u v t + t∈T b S t η t ≤ 0 ∀S ∈ S
Consequently, π = (u, η) is a feasible solution for the DLMP and LB = t∈T η t is a lower bound for LMP.

The two-terminal vertex separator formulation

A two-terminal vertex separator S is a set of vertices whose removal disconnects a pair of terminals. We say that S separates this pair of terminals. For t, t ∈ T , let S t t ⊆ S be the set of all two-terminal vertex separators of G that separate t and t . Let S = t,t ∈T S t t be the set of all two-terminal vertex separators of G. Note that S may contain similar two-terminal vertex separators but each is associated with a particular pair of terminals. 7 gives an example of a two-terminal vertex separator. We can see that S is a two-terminal vertex separator for terminals t 1 and t 3 as well as t 2 and t 3 but not a two-terminal vertex separator for terminals t 1 and t 2 .

To clarify the definition, let us remark the following which can be easily seen.

Remark 4.1. Any MTV separator is a two-terminal vertex separator that can be associated to any pair of terminals.

In what follows we will introduce a formulation for the MTVSP based on the two-terminal vertex separators. Any MTV separator of G can be seen as the union of a set of two-terminal vertex separators such that each pair of terminal can be represented by at least one element of the set. Then, the multi-terminal vertex separator problem reduces to finding such a set of two-terminal vertex separators such that the cardinality of their union is minimum. For S ∈ S, let x S be a variable which takes 1 if S is chosen and 0 if not. And for v ∈ V , let y v be a variable which takes 1 if v belongs to the multi-terminal vertex separator and 0, if not. Note that the variables x are exponential in number.

Given a two-terminal vertex separator S ∈ S, let a S ∈ {0, 1} V ×T ×T and b S ∈ {0, 1} T ×T be the vectors defined as follows

a S tt v = 1 if v ∈ S
y(v) - S∈S a S tt v x S ≥ 0 ∀v ∈ V, ∀t, t ∈ T, (29
) S∈S b S tt x S = 1 ∀t, t ∈ T, (30)
x S ≥ 0 ∀S ∈ S, (31)

y(v) ∈ {0, 1} ∀v ∈ V. (32)
Inequalities (29) ensure that each vertex belonging to at least one selected two-terminal vertex separator, also belongs to the multi-terminal vertex separator. Inequalities (30) allow to select exactly one two-terminal vertex separator per pair of terminals.

Lemma 4.1. Constraints (32) can be replaced by y(v) ∈ N for all v ∈ V .

Proof . By (30), for all t, t ∈ T , 1

= S∈S b S tt x S ≥ S∈S a S tt v x S .
Therefore, by (29), y(v) ≤ 1 in any optimal solution. Theorem 4.1. For each feasible solution (x, y) of (29) -(32), y is the incidence vector of a multi-terminal vertex separator.

Proof . By (30), for each pair of terminals t, t ∈ T , there is one S ∈ S t t such that x S > 0. Denote this two-terminal vertex separator by S t t . It is clear that S = t,t S t t is a multi-terminal vertex separator of G. As y is integer, by (29), it follows that for all t, t ∈ T and v ∈ S t t , y v = 1.

Model (28)-(31) is the master problem. As it has an exponential size, we need a column generation procedure to solve its continuous relaxation.

Let u ∈ R V ×T ×T + and η ∈ R T ×T be the dual variables associated with inequalities (29) and (30). The dual of the linear relaxation of (28)-(31), denoted by DLMP, is given by max

t,t ∈T η tt t,t ∈T (v∈V -a S tt v u v tt + b S tt η tt) ≤ 0, ∀S ∈ S, (33)
t,t ∈T u v tt ≤ 1, ∀v ∈ V, (34)
u v tt ≥ 0, ∀v ∈ V, ∀t, t ∈ T, (35) η tt ∈ R, ∀t, t ∈ T, (36)
The master problem is initialized with a subset of variables, and then the additional variables necessary to solve its linear relaxation are generated by separating the associated dual constraints (33). This constitutes the pricing problem.

Pricing problem

Given a dual solution π = (u, η), the pricing problem consists in finding a subset S ∈ S such that

t,t ∈T v∈V -a S tt v u v tt + b S tt η tt > 0.
Thus, the pricing problem reduces to generating a two-terminal vertex separator S associated with two terminals t, t ∈ T such that v∈V -u v tt a S tt v +b S tt η tt is maximum.

Theorem 4.2. The pricing problem can be solved in polynomial time.

Proof . For all t, t ∈ T , let

c t t : V ∪ (T \ {t, t }) → R such that for all v ∈ V , c t t (v) = u v
tt and for all t ∈ T \ {t, t }, c t t (t) = +∞. Solving the pricing problem consists in iterating over each pair of terminals t, t ∈ T , and finding a two-terminal vertex separator S ∈ S t t of minimum weight in G w.r.t c t t . This is equivalent to finding a minimum cut separating t and t , which can then be solved in polynomial time [START_REF] Ben | On the minimum cut separator problem[END_REF].

Basic columns

It is clear that any multi-terminal vertex separator is also a two-terminal vertex separator for any pair of terminals. Thus, for each pair of terminals t, t ∈ T , we add a variable associated with a multi-terminal vertex separator obtained using the heuristic in Algorithm 2. We also use this heuristic to obtain a good primal bound.

Column generation strategy

The idea of this column generation strategy is to iterate over all pairs of terminals t, t ∈ T and to look for the minimum two-terminal vertex separator intersecting all paths between t and t in G w.r.t u tt . We stop when a two-terminal vertex separator S is found with a positive reduced cost, i.e.,

t,t ∈T v∈V -u v tt a S tt v + b S tt η tt > 0.
We then add the associated column. We remarked from the numerical tests that when we iterate over all pairs of terminals, it would be more interesting to start with a pair of terminals t, t ∈ T having a maximum value η tt . Each time we add a new column to the restricted master problem, we check if the associated two-terminal vertex separator separates other terminals. Then, we add several columns in the same iteration.

Branching scheme

As before the branching generates two nodes by imposing either y(v) = 1 or y(v) = 0 for some fractional variable y(v).

The Lagrangian bound

Let π = (u, η) be a dual vector obtained from the linear relaxation of a restricted master problem. Let Z be the optimal value of the pricer. Hence,

t,t ∈T v∈V -a S tt v u v tt + b S tt η tt ≤ Z ∀S ∈ S. (37
)
Let η ∈ R T ×T be the vector such that η tt = η tt -Z for all terminal t, t ∈ T . Then (37) can be written as Let LR Isolating and LR T wo-terminal be the linear relaxations associated with the isolating-separator and two-terminal vertex separator formulations, respectively.

t,t ∈T v∈V -a S tt v u v tt + b S tt η tt ≤ 0 ∀S ∈ S.
Theorem 4.3. The optimal solution of LR Isolating is greater than or equal to the one of LR T wo-terminal .

Proof . It is enough to prove that each feasible solution of LR Isolating is also a feasible solution of LR T wo-terminal . Note that, every isolating-separator associated with terminal t ∈ T is a two-terminal vertex separator of t and t for all t ∈ T \ {t}. Let (x, y) ∈ R S × R V be the optimal solution of LR Isolating and S t = {S ∈ S t | x S > 0} = {S 1 , . . . , S |S t | } for all t ∈ T . Let T = {t 1 , . . . , t k }. Consider the following two-terminal vertex separators

• S t 1 t j l = S l for all S l ∈ S t 1 , t j ∈ T \ {t 1 } such that 1 < j < k, • S t i t j l = S l for all S l ∈ S t i , t i , t j ∈ T such that 1 < i < j, • S t k t 1 l = S l for all S l ∈ S t k .
Let x be the incidence vector of these two-terminal vertex separators and ȳ = y. We have that (x, ȳ) is a solution of LR T wo-terminal . Moreover, both relaxations have the same value.

Branch-and-Cut-and-Price

In this section we propose Branch-and-Cut-and-Price algorithms based on the terminal-set formulation, the isolating-separator and the two-terminal vertex separator formulations. These formulations use a variable vector y ∈ {0, 1} V such that y(v) = 1 if v belongs to the MTV separator and 0 if not. It follows that one can add valid inequalities to these formulations.

In what follows we present the valid inequalities that we will add to the isolating-separator and the two-terminal vertex separator formulations in order to cut the non feasible solutions and to strengthen the linear relaxation. We add three classes of valid inequalities introduced in [START_REF] Cornaz | The multi-terminal vertex separator problem: Polyhedral analysis and branch-and-cut[END_REF]. We note that adding valid inequalities on y variables will not affect the pricing problems. The valid inequalities used in the Branch-and-Cut-and-Price algorithms are presented below.

A first class of inequalities is induced by the so-called terminal trees.

A terminal tree H = (V (H) ∪ T (H), E(H)), is a tree such that the terminals of T (H) are the leaves of H. Let d H (v) be the degree of v in H and q ∈ N the number of terminals in T (H). Figure 9.(c) displays a terminal tree with four terminals. If H = (V (H) ∪ T (H), E(H)) is a terminal tree subgraph of G, then the following terminal tree inequality

v∈V (H) (d H (v) -1)y v ≥ q -1. (38
)
is valid for the MTVS polytope. A heuristic is used to separate this class of inequalities that runs in O(mlog(m)) time, described in [START_REF] Cornaz | The multi-terminal vertex separator problem: Polyhedral analysis and branch-and-cut[END_REF].

The inequalities of the second class are induced by the so-called star trees. A star tree H = (V (H) ∪ T (H), E(H)) of G is a tree such that the terminals of T (H) are the leaves of H and all the other (non-terminal) nodes, different from the root node, are of degree two. Let q ∈ N be the number of terminals in T (H). Figure 9.(a) displays a star tree with 4 terminals. If H = (V (H) ∪ T (H), E(H)) is a star tree subgraph of G with root v r , then the following star tree inequality

y(V (H) \ {v r }) + (q -1)y vr ≥ q -1 (39)
is valid for the MTVS polytope. The class is a subclass of terminal tree inequalities. Moreover, it has a separation algorithm different from the one proposed for the terminal tree cuts that runs in O(k 2 n(n + m)log(n)) time [START_REF] Cornaz | The multi-terminal vertex separator problem: Polyhedral analysis and branch-and-cut[END_REF].

A third class of inequalities is induced by the so-called terminal cycles.

A terminal cycle J = (V (J) ∪ T (J), E(J)) is given by a cycle C and q disjoint paths between a vertex in C and a terminal in T . Figure 9.(b) displays a terminal cycle with three terminals. If J = (V (J) ∪ T (J), E(J)) is a terminal cycle subgraph of G, then the following terminal cycle inequality

y(V (J)) ≥ |q| 2 (40)
is valid for the MTVS polytope. A heuristic is used to separate this class of inequalities that runs in O(kn 2 (n + m)log(m)) time, described in [START_REF] Cornaz | The multi-terminal vertex separator problem: Polyhedral analysis and branch-and-cut[END_REF].

Computational Results

Based upon the previous theoretical results, we have developed a Branchand-Price algorithm for each extended formulation presented in Sections 2, 3 and 4. Branch-and-Cut-and-Price algorithms are developed for the isolatingseparator and the two-terminal vertex separator formulations in order to efficiently solve the multi-terminal vertex separator problem. After a numerical comparison, only the branching scheme on y variables is considered, in this paper, for the terminal-set formulation. We use two kinds of instances, the DIMACS graph coloring instances [1] and random instances generated using boost graph library [2]. The terminals are new nodes added to the graphs. Each terminal is randomly connected to at least 2 vertices and to at most a given deg T ∈ N vertices. In the Tables below, deg T is fixed in relation with the size of the graph, i.e., the higher the size of the graph is, the higher deg T is. The edges incident to the terminals are added in such a way that they respect Hypotheses 1-5 stated in Section 1. The instances are available on [3]. The primal bound is the value associated with any multiterminal vertex separator of G. We use the heuristic in Algorithm 2 to solve the MTVSP for generating a good primal bound. In the column generation phases, we stop generating variables, either when there is no column to add, or when the Lagrangian bound is equal to the objective value. instances. We remark that the instance "games120" has been solved with 9 terminals but not with 5 and 7 terminals. Moreover, on "huck", the higher is the number of terminals, the faster is the algorithm. Tables 3 and4 report results obtained by the Branch-and-Cut-and-Price algorithm with the terminal-set formulation for the DIMACS and the random instances, respectively. The results obtained from this algorithm are similar to those of the Branch-and-Price one. This behavior is explained by the fact that the cuts are only separated when the gap is greater or equal to 1.0. Since, in most of the instances, the column generation did not manage to decrease enough the linear relaxation within the time limit, no cut has been generated. minal tree inequalities, have significatively strengthened the linear relaxation of the problem. These also permitted to decrease the number of generated columns that do not exceed here 3000 for most of the instances. Moreover, the Branch-and-Cut-and-Price algorithm showed a better performance than the Branch-and-Price algorithm. One can observe that the latter could not solve the instance "anna" with 5, 7, and 9 terminals within the time limit. Moreover, it solved "david" with 9 terminals in 3435.23 seconds. Whereas, the Branch-and-Cut-and-Price solved the "anna" instances in less than 1448 seconds (the one with 5 and 7 have been solved in less than 20 seconds), and "david" with 9 terminals in 102.28 seconds. column generation. The computational results have permitted to measure the impact of each formulation and approach. They have shown that the Branch-and-Cut-and-Price algorithms perform better than the Branch-and-Price ones, and than the Branch-and-Cut algorithm [START_REF] Cornaz | The multi-terminal vertex separator problem: Polyhedral analysis and branch-and-cut[END_REF] for more realistic DIMACS instances. The added cuts have been very effective, in particular, for the isolating-separator formulation. Big-sized random instances could be solved using this algorithm. However, the Branch-and-Cut algorithm was shown to be more efficient for large random instances.

Further variants of the multi-terminal vertex separator problem are of practical interest and can also be considered. One variant would be an extension of the MTVSP to the balanced case, that is to say when the k elements of the partition, containing the terminals, have balanced cardinalities. Another variant would be the edge version of the MTVSP. Here the problem consists in finding an edge subset whose removal partitions the graph into k disjoint subsets, each containing exactly one terminal [START_REF] Dahlhaus | The complexity of multiterminal cuts[END_REF]. It would be interesting to study the polyhedral structures of these problems and to develop cutting plane based approaches for them.

 a set of vertices containing exactly one terminal and such that the neighbors of W do not contain terminals, i.e.,|W ∩ T | = 1 and N (W) ∩ T = ∅. Figure 1 shows three graphs with different configurations. Also, the subset of vertices in Figure 1.(a) is not a terminalset since there is one terminal adjacent to this subset. The subset of vertices in Figure 1.(b) does not define a terminal-set since it contains no terminals. The subset of vertices in Figure 1.(c) represents a terminal-set.

Figure 1 :

 1 Figure 1: Three different subsets

9 tmp ← tmp -u vu ; 10 end 11 end 12 if (tmp > Z W) then 13 Z W ←tmp ; 14 W ← W ∪ {v}; 15 end 16 end 17 Check

 91011121314151617 if inequality (9) associated with W is violated by π ; 18 end

Figure 2 :

 2 Figure 2: Basic Columns

 Thus, (u, η, λ) is a feasible solution for DLMP and LB = e∈E -u e + v∈V η v + t∈T λ t is a lower bound for LMP.

Figure 3 :

 3 Figure 3: Example of the Lagrangian bound

Figure 4 :

 4 Figure 4: Example of an isolating-separator

Figure 5 :

 5 Figure 5: Example of a solution of the isolating-separator formulation

Figure 6 :

 6 Figure 6: Example of the Lagrangian bound

Figure 7 :

 7 Figure 7: Example of a two-terminal vertex separator

Figure

 Figure 7 gives an example of a two-terminal vertex separator. We can see that S is a two-terminal vertex separator for terminals t 1 and t 3 as well as t 2 and t 3 but not a two-terminal vertex separator for terminals t 1 and t 2 .

 = 1, (u, η, µ) is a feasible solution for the DLMP, and LB = t,t ∈T η tt is a lower bound for LMP.

Figure 8 :

 8 Figure 8: Example of the Lagrangian bound

Figure 8

 8 Figure 8 displays the state of the Lagrangian bound and the upper bound (optimal solution of the restricted master problem) during the column generation phase at the root node.

Figure 9 :

 9 Figure 9: Examples of star tree, terminal cycle and terminal tree graphs

 t ∈ T do

	4 5	S t t ← a multi-terminal vertex separator of (V ∪ {t, t }, E); S ← S ∪ S t t ;

6 end 7 Sort S = {v 0 , v 1 , . . . , v |S| } from the vertex of the smallest degree to the vertex of the largest degree in G; 8 for (i ∈ {0, . . . , |S|}) do 9 if S \ {v i } is a multi-terminal vertex separator then 10 S ← S \ {v i }; 11 end 12 end 13 return S; 14 end

Table 1 :

 1 Results with the Branch-and-Price algorithm of the terminal-set formulation on DIMACS instances.

	Instance	n	Den	k	Cols Gap No Opt Heur	CPU
	anna	138 0.11	5 15252	38	2	-	28	-
				7 17588	1	6	25	35 2 942.97
				9 14513	2	10	32	46 1 048.37
	david	87 0.22	5 13871	1	5	19	20 2 390.71
				7	3967	4	4	24	30	115.91
				9 13249	6	78	29	31 1 376.27
	DSJC1000.1 1000 0.20	5	1481	-	1	-	200	-
				7	1533	-	1	-	300	-
				9	1559	-	1	-	400	-
	DSJC125.1	125 0.10	5	5041	-	1	-	28	-
				7	6384	-	1	-	42	-
				9	6042	4	4	-	56	-
	DSJR500.1	500 0.06	5	1721	-	1	-	100	-
				7	2160	-	1	-	150	-
				9	2121	-	1	-	200	-
	games120	120 0.18	5	5346	-	1	-	24	-
				7	6722	-	1	-	36	-
				9	8547	0	1	46	48 2 903.35
	huck	74 0.23	5 10226	0	1	11	13	431.90
				7	9304	10	11	17	20	228.94
				9	4752	7	16	23	28	64.70
	inithx.i.1	864 0.05	5	1655	-	1	-	109	-
				7	1775	-	1	-	159	-
				9	1963	-	1	-	208	-
	inithx.i.2	645 0.07	5	1456	-	1	-	111	-
				7	1836	-	1	-	172	-
				9	1969	-	1	-	229	-
	inithx.i.3	621 0.07	5	1547	-	1	-	115	-
				7	1756	-	1	-	176	-
				9	1990	-	1	-	236	-
	jean	80 0.17	5	7937	0	1	12	16	270.63
				7	5072	2	7	19	23	86.81
				9	2691	3	5	21	25	17.92
	miles1000	128 0.80	5	1974	-	1	-	28	-
				7	2215	-	1	-	42	-
				9	2253	-	1	-	56	-
	mulsol.i.1	197 0.21	5	2048	-	1	-	33	-
				7	2193	-	1	-	46	-
				9	2511	-	1	-	59	-
	mulsol.i.2	188 0.22	5	2229	-	1	-	39	-
				7	2422	-	1	-	57	-
				9	2808	-	1	-	77	-
	mulsol.i.3	184 0.24	5	2185	-	1	-	40	-
				7	2376	-	1	-	59	-
				9	2813	-	1	-	78	-
	myciel6	95 0.17	5	5571	0	1	20	20 1 850.77
				7	5928	0	1	30	30 1 185.75
				9 12605	7	13	40	40 1 619.49
	myciel7	191 0.13	5	2822	-	1	-	40	-
				7	2845	-	1	-	60	-
				9	3513	-	1	-	80	-
	queen12 12	144 0.51	5	2135	-	1	-	32	-
				7	2357	-	1	-	48	-
				9	2782	-	1	-	64	-
	queen13 13	169 0.47	5	1825	-	1	-	36	-
				7	1843	-	1	-	54	-
				9	2294	-	1	-	72	-
	queen14 14	196 0.44	5	1562	-	1	-	40	-
				7	1807	-	1	-	60	-
				9	1952	-	1	-	80	-

Table 5 :

 5 Results with the Branch-and-Price algorithm of the isolating-separator formulation on DIMACS instances.

	Instance	n	Den	k	Cols	ST	TC	TT Gap No Opt Heur	CPU
	anna	138 0.11	5 13616 356	63 1664	38	2	-	28	-
				7 17489 442	26 1032	1	6	25	35 2 912.74
				9 12952 624	32	846	2	7	32	46 1 609.97
	david	87 0.22	5 10701 126	0	128	1	3	19	20 1 640.55
				7	3861 190	14	213	4	4	24	30	95.56
				9	3637 222	0	249	6	8	29	31	93.80
	DSJC1000.1 1000 0.20	5	1476	0	0	0	-	1	-	200	-
				7	1533	0	0	0	-	1	-	300	-
				9	1586	0	0	0	-	1	-	400	-
	DSJC125.1	125 0.10	5	5201	0	0	0	-	1	-

Table 7 :

 7 Results with the Branch-and-Cut-and-Price algorithm of the isolating-separator formulation on DIMACS instances.

	Instance	n	Den	k	Cols	ST	TC	TT Gap	No Opt Heur	CPU
	anna	138 0.11	5	2126	149	0	180	8	116	21	28	11.70
				7	2608	109	0	213	2	161	25	35	18.79
				9 23947	172	0 1703	6 2202	32	46 1 447.35
	david	87 0.22	5	376	81	0	102	9	14	19	20	0.71
				7	2074	156	0	412	16	159	24	30	9.86
				9	7940	102	0 1145	20	637	29	31	102.28
	DSJC1000.1 1000 0.20	5	1479	318	74	463	1	5	200	200	136.45
				7	2862 1359 393 1728	60	6	-	300	-
				9	3469 1390 310 1893	70	76	-	400	-
	DSJC125.1	125 0.10	5	492	43	30	58	0	1	28	28	1.18
				7	421	149	23	232	0	1	42	42	2.83
				9 35821 2123	4 1127	19	666	-	56	-
	DSJR500.1	500 0.06	5	2855	769	26 1015	0	1	100	100	438.42
				7	4116 1696	9	803	5	16	150	150	-
				9	4543 1500	0	10	19	12	200	200	-
	games120	120 0.18	5	283	83	0	95	0	1	23	24	0.50
				7	359	138	0	210	0	1	34	36	2.03
				9 19315	762	0 1266	14	330	46	48 1 533.08
	huck	74 0.23	5	135	13	0	36	3	8	11	13	0.07
				7	257	11	0	75	10	63	17	20	0.37
				9	423	20	0	167	11	48	23	28	0.98
	inithx.i.1	864 0.05	5	1853	345	0	456	53	67	109	109	48.97
				7 14371 1451	0	597	21	649	-	158	-
				9 11022 2400	0	619	13	356	-	181	-
	inithx.i.2	645 0.07	5	2699	775	0	136	2	44	90	111	85.79
				7 13585 2385	0	146	14	662	-	128	-
				9 11290 2030	0	234	18	547	-	164	-
	inithx.i.3	621 0.07	5	2761	942	0	115	1	75	91	115	98.11
				7 13741 3451	0	434	5	413	117	176	-
				9 15198 1756	0	287	19 1490	164	236	-
	jean	80 0.17	5	156	12	0	33	0	1	12	16	0.08
				7	542	38	0	103	9	58	19	23	0.98
				9	1135	13	0	183	13	262	21	25	3.07
	miles1000	128 0.80	5	186	20	0	31	0	1	28	28	0.20
				7	237	58	0	85	5	3	42	42	0.70
				9	430	71	0	155	12	15	56	56	2.43
	mulsol.i.1	197 0.21	5	340	36	0	50	37	41	33	33	0.67
				7	392	50	0	84	27	37	46	46	1.16
				9	717	72	0	159	38	61	59	59	4.10
	mulsol.i.2	188 0.22	5	283	58	0	78	0	1	39	39	0.41
				7	785	166	0	216	15	63	57	57	4.89
				9	2099	179	0	264	11	393	68	77	22.47
	mulsol.i.3	184 0.24	5	275	63	0	79	7	15	40	40	0.50
				7	608	135	0	225	10	88	56	59	3.74
				9	1030	116	0	191	6	101	66	78	8.09
	myciel6	95 0.17	5	235	24	3	30	0	1	20	20	0.15
				7	319	75	0	133	5	3	30	30	0.63
				9	2626	257	1	451	20	73	40	40	18.91
	myciel7	191 0.13	5	514	67	11	87	0	1	40	40	1.41
				7	509	169	6	261	0	1	60	60	5.70
				9 24606 1771	4 1113	15	415	80	80	-
	queen12 12	144 0.51	5	224	24	0	35	0	1	32	32	0.26
				7	308	75	0	123	0	1	48	48	1.19
				9	416	110	0	234	2	3	64	64	2.63
	queen13 13	169 0.47	5	242	31	0	45	0	1	36	36	0.34
				7	337	82	0	138	0	1	54	54	1.84
				9	440	123	0	237	0	1	72	72	3.61
	queen14 14	196 0.44	5	291	36	0	51	0	1	40	40	0.61
				7	402	95	0	151	0	1	60	60	2.78
				9	449	133	0	236	0	1	80	80	4.50

Table 11 :

 11 Results with the Branch-and-Cut-and-Price algorithm of the two-terminal vertex separator formulation on DIMACS instances.

For the Branch-and-Cut-and-Price algorithms, a cutting phase is considered, using the valid inequalities (38), (39) and (40) at the end of each column generation phase, if the gap between the linear relaxation value and the best primal bound is greater or equal than 1. We perform the separation of all cuts at each iteration. We use the separation algorithms presented in [START_REF] Cornaz | The multi-terminal vertex separator problem: Polyhedral analysis and branch-and-cut[END_REF]. The Branching tree is managed by our algorithms using a depth first search. All flow problems are solved using Lemon library [4], and the linear programs are solved using Cplex. The numerical experiments were done on an Intel Core Processor 2.39 GHz ×24 with 20Gb RAM, running under Linux 64 bits. The maximum CPU run time has been fixed to 1 hour.

In the different Tables given below, we have the following entries. n : the number of vertices in V . Den : the density of the graph. k : the number of terminal in T .

Cols

: the number of columns added during the Branch-and-Price or the Branch-and-Cut-and-Price algorithms. ST : the number of the star tree inequalities generated. TC : the number of the terminal cycle inequalities generated. TT : the number of the terminal tree inequalities generated. Gap % : the relative error between the best upper and lower bound obtained at the root node of the branching tree.

No

: the number of nodes in the branching tree. Opt : the optimal objective value. Heur : the cardinality of the MTV separator given by the heuristic in Algorithm 2. CPU : the CPU time in seconds, given by the Branch-and-Price or the Branch-and-Cut-and-Price algorithm.

Tables 1-12 concern the Dimacs and random instances which are induced by graphs having up to 1000 nodes, and whose number of terminals is fixed to 5, 7 and 9. The symbol "-" in the tables means that the corresponding instance has not been solved in the time limit. Tables 1 and2 report results obtained by the Branch-and-Price algorithm with the terminal-set formulation for the DIMACS and the random instances, respectively. As it appears from the tables, the algorithm could not solve most of the instances in the time limit. Only instances of less than 150 nodes could be solved, and the CPU time is high. We also notice that the number of generated columns is high for both types of instances, more than 5000 in most of the solved The results obtained by the Branch-and-Price algorithm of the isolatingseparator formulation are shown in Tables 5 and6. Here, the algorithm could solve 77% of the instances in the time limit and 50% of the instances in less than 60 seconds. The Gap is around 60% in most of the instances. This may be explained by the fact that the linear relaxation is weak. Also, the number of nodes in the branching tree is not less than 100 in most of the cases. However, it increases with the size of the instance. Contrary to the terminal-set formulation, in most of the instances, the higher is the number of terminals, slower is the algorithm. Tables 7 and8 concern results obtained by the Branch-and-Cut-and-Price algorithm based on the isolating-separator formulation. As it appears, the algorithm could solve 84% of the instances and 60% in less than 60 seconds, which is better than the Branch-and-Price algorithm. The Gap is equal to 0% in 24% of the instances while it is less or equal to 10% in 45% of instances. This implies that the linear relaxation here is quite strong. This is also clear from the fact that several instances are solved in the root node of the branching tree. Concerning the new valid inequalities used here, as we can see, few terminal-cycle inequalities are generated for most of the instances. However, the terminal tree inequalities appear quite useful for solving the problem. Comparing these results with the ones of Tables 5 and 6 obtained by the Branch-and-Price algorithm of the isolating-separator formulation, we can notice that the added inequalities, in particular the ter- In Tables 9 and10 are reported the results obtained by the Branchand-Price algorithm based on the two-terminal vertex separator formulation.

Here the algorithm was able to solve around 72% of DIMACS instances within the time limit of 1 hour and around 46% in less than 2 minutes. However, the Gap is high, around 60% for most of the instances. Thus it also appears that the linear relaxation of the two-terminal vertex separator formulation is not sufficiently strong. The numerical results in Tables 3, 4, 9 and 10 confirm Theorem 4.3. Indeed, we notice that the gap given by the two-terminal vertex separator formulation is always equal to the gap given by the isolation-separator formulation. Tables 11 and12 are related to the Branch-and-Cut-and-Price algorithm based on the two-terminal vertex separator formulation. As it appears, the algorithm could solve 81% of the instances. Moreover, 13 instances have been solved in the root node, which implies that the linear relaxation here is sufficiently strong. One can also observe that the cycle inequalities played virtually no role in the resolution of the problem comparing to the terminal tree and the star tree inequalities, which have shown to be useful. Moreover, comparing with the Branch-and-Price algorithm of the two-terminal vertex separator formulation, it appears that the added inequalities have been very efficient and permitted to considerably reduce both the CPU time and the number of generated columns. Overall tables, we notice that the heuristic gives the optimal solution in most cases.

Conclusion

In this paper, we have proposed three extended integer programming formulations for the MTVSP. For each of the formulations, we have developed a Branch-and-Price algorithm and presented extensive computational results. And for two of the formulations, we have added three families of valid inequalities presented in [START_REF] Cornaz | The multi-terminal vertex separator problem: Polyhedral analysis and branch-and-cut[END_REF], to develop Branch-and-Cut-and-Price algorithms. For all the formulations, we have shown how to compute the dual bound within the column generation phase and analyzed the complexity of the pricing problem, the branching scheme, and the strategy of the