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Abstract
This study attempts to improve the performance of Generalized Likelihood Ratio Test-based indicators via
blind filtering the of vibration signals. The key point is the optimization of the filter coefficients to maximize
the indicator of interest. The filter coefficients are optimized through Rayleigh quotient iteration. The pro-
posed method’s performance and applicability are demonstrated on both simulated and real vibration signals
measured on an experimental test rig. The outcome of the study shows that the Rayleigh quotient iteration
is a potent tool for maximizing such complex condition monitoring indicators. Inspections over the filtered
signals reveal that the optimal filters promote particular signal patterns linked to a bearing fault in vibration
signals. The indicator estimated over the filtered signals is able to detect the bearing fault more robustly
when compared to the raw signals.

1 Introduction

The tools to detect anomalies in rotating machinery based on vibration signals rapidly develop as the com-
plexity of the machines increases. Modern rotating machines are comprised of an immense amount of com-
ponents; therefore, tracking their health condition is a challenging task. Thanks to the ever-increasing com-
putational power, we can now utilize reliable condition indicators (CI), which are computationally expensive.
The potential of blind filtering for enhancing the fault detection capability of a complex condition monitoring
indicator is investigated. The coefficients of the blind filter are optimized through the generalized Rayleigh
quotient iteration. The proposed approach’s performance is tested on both simulated and experimental vi-
bration signals.

An early filter optimization approach to promote a signal’s statistical feature is called the Minimum Entropy
Deconvolution (MED) [1]. It was first introduced to recover the impulsive pattern in seismic signals by
optimizing a filter that maximizes the kurtosis of the vibration signals. Approaches similar to MED with
higher orders than fourth-order moments of a signal are studied further [2]. Nevertheless, kurtosis and its
higher-order counterparts suffer from being sensitive to outliers that may occur due to strong noise. In or-
der to benefit from the repetition of the impulses, for instance, emitted by a roller element bearing fault,
Maximum Correlated Kurtosis Deconvolution (MCKD) is proposed as a part of the family of MED-based
approaches [3]. Methods optimizing a filter while maximizing the feature of interest are not limited to kur-
tosis. Influenced by MED, a blind deconvolution method based on the Jarque-Bera statistic is also proposed
[4]. Moreover, a novel application embedding the l0-norm into the MED method has been introduced in
literature [5] and shown to have the potential to overcome the shortcomings of the MED.



The common trend in vibration-based condition monitoring is toward using the second-order cyclostationary
content within the signal, similar to MCKD. For example, rolling element bearing faults generate impulses
which demonstrate the second-order cyclostationary pattern in vibration signals. In a recent study, a measure
that quantifies the cyclostationary content embedded in vibration signals is maximized using a deconvolution
filter which is optimized through Rayleigh quotient iteration [6]. The Rayleigh quotient iteration is also
proposed to be used to maximize the sparsity of the envelope spectra for roller element bearing fault detection
[7]. Likewise, several members of Box-Cox sparsity measures are used as the indicator of interest to optimize
filters via the Rayleigh quotient [8]. The studies mentioned above summarize the key approaches in the
literature that are developed to promote a feature in vibration signals by filtering them with optimal filters.

In this study, a novel CI based on the Generalized Likelihood Ratio Test (GLRT) [9] is utilized as the figure
of merit to optimize the filter. Antoni and Borghesani devised several GLRT-based condition monitoring
indicators to detect distinct fault-related patterns in vibration signals [9]. One of these indicators estimates
the deviation of signal’s distribution from the Gaussian for fault detection. In practice, the deviation from
the Gaussian generally manifests itself as impulsiveness in vibration signals. This indicator is utilized as the
measure to be maximized in the Rayleigh quotient optimization to estimate the optimal filter coefficients. The
goal is to estimate the indicator on the filtered signals for early and robust detection of roller element bearing
fault from vibration signals. The proof of concept is firstly performed on simulated signals; furthermore,
performance tests are made on experimental vibration signals measured on an academic rig. The underlying
theory regarding the GLRT-based indicator and the Rayleigh quotient optimization is laid out in Section 2.
The proof of concept on simulated signals and the results of the performance tests on experimental signals
are demonstrated in Section 3. The conclusive remarks and key findings are given in Section 4.

2 Methodology

The indicator used as the measure to be maximized is derived using the GLRT. Furthermore, the indicator is
written in the generalized Rayleigh quotient form to optimize the filter. Therefore, a brief explanation of the
GLRT and the generalized Rayleigh quotient is needed.

2.1 Generalized likelihood ratio test

The generalized likelihood ratio test is a member of the likelihood test family, hence, it compares how
well a distribution fits one of the two proposed hypotheses. These hypotheses can be called H1 and H0

(null hypothesis). In essence these hypotheses represent the damaged and healthy state of the signal or
the machine, respectively [9]. Signals to be tested are linked with the hypotheses by describing each with
different probability functions (PDF). Thus, H0 and H1 can be defined as follows:

H0 : x(n) ∼ px(x|H0,θ0)

H1 : x(n) ∼ px(x|H1,θ1)
(1)

where px represents the PDF parameterized by either θ0 or θ1 and x is the signal. The quantities in bold
indicate that they are either vector or matrix quantities, and the amplitude of a signal at any time n is noted
with x(n). Then, the GLRT can be written as:

Λ(x) =
px(x|H1, θ̂1)

px(x|H0, θ̂0)
(2)

which already displays the form of the indicator. In Eq. 2, the quantities θ̂0 and θ̂1 are the maximum
likelihood estimates (MLE) of the defined probability density functions. Therefore, if hypothesis one tends
to hold for consecutive measurements, in other words, the MLE of the numerator in Eq. 2 is higher, then
Λ would increase. If, on the other hand, H1 does not hold, then the indicator converges to unity. A useful
feature of the generalized likelihood ratio test is being equal to one or higher values. The GLRT is generally



expressed as a logarithm as it offers mathematical conveniences for the maximum likelihood estimations.
Therefore, an indicator can be defined in the log-likelihood form as follows [9]:

ln(Λ(x)) =
L−1∑
n=0

ln(px(x|H1, θ̂1))−
L−1∑
n=0

ln(px(x|H0, θ̂0)) (3)

Hence, with LH1 and LH0 being the log-likelihoods of hypotheses H1 and H0, respectively, Eq. 3 can be
rewritten as:

IH1/H0
= c
LH1 − LH0

L
≥ 0 (4)

Now that the indicator definition using the GLRT is briefly explained, the derivation of the indicator utilized
in this study can be laid out.

2.1.1 Indicator derivation

One of the proposed indicators in [9] is defined to test non-Gaussianity versus Gaussianity of vibration
signals under the stationary assumption. Therefore, the former defined via generalized Gaussian PDF is
tested against the null hypothesis that assumes the latter. Hence, the hypotheses can be written as:

H0 : x ∼ N (x; 0, σ)

H1 : x ∼ GN (x; 0,η, β)
(5)

where σ, η, and β denote the variance, the scale parameter and the shape factor, respectively. Introducing
the MLE of these hypotheses into Eq. 4 forms the indicator that tests non-Gaussianity versus Gaussanity [9],
which is demonstrated as:

IGGS/GS(x) = ln〈|x(n)|2〉 − 2

β̂
ln〈|x(n)|β̂〉+ 2C(c, 2, β̂) (6)

In Eq. 6, the shape factor β̂ is the MLE of the generalized Gaussian PDF and the function C can be found
in Appendix B. For the details of the MLE of H0 and H1 readers can refer to [9]. In the original study, an
approximate form of IGGS/GS is also proposed as [9]:

I ′GGS/GS(x) = ln

(
〈|x(n)|2〉

〈|x(n)|β̂〉
2

β̂

)
(7)

In the present study, the figure of merit to be maximized using Rayleigh quotient iteration is chosen to be
the indicator I ′GGS/GS as it is free from the mathematical complexity that comes along with the function C.

This indicator essentially assesses the impulsiveness of the signal. The shape factor β̂ is a measure of the
deviation of the distribution from the Gaussian, and as β converges to zero, the distribution tends to be more
impulsive. This indicator is further written in the Rayleigh quotient form to be maximized.

2.2 Rayleigh quotient derivation

The underlying idea is to filter the vibration signals with an optimal finite impulse response filter to maximize
the measure of interest of the signal. Therefore, the indicator is formed based on the filtered signal s,
estimated with the following convolution of the raw signal x with length L.

s = x ∗ h (8)



Let h be the filter; the convolution shown in Eq. 8 can be written in matrix form as follows:

s = Xh (9)

where X is a 2D matrix version of x. It must be noted that the filtered signal s is not expected to be the
source signal, but it is an approximation at which the figure of merit is maximum. Hence, the filtered signal
is plugged into the expression of I ′GGS/GS defined in Eq. 6 and taking the exponential of both sides of the
equation, the following expression is obtained.

exp(I ′GGS/GS(x)) =
〈|s(n)|2〉

〈|s(n)|β̂〉
2

β̂

(10)

The indicator is defined in the exponential function to form the Rayleigh quotient. Since the exponential
is a positive real-valued function, maximizing the exp(I ′GGS/GS) is equivalent to maximizing the indicator
with regard to the filter optimization. In other words, the filter optimized for the highest exp(I ′GGS/GS) also
results in the maximum of the I ′GGS/GS of the filtered signal s.

The numerator of the Eq. 10 can be expressed in matrix form as:

〈|s(n)|2〉 =
1

L
sHs (11)

The denominator, on the other hand, requires several more steps to write in the final form. For clarity, the
derivation steps of the quantity at the denominator of Eq. 10 are given in Appendix C. The final form of the
denominator, hence, is expressed as:

〈|s(n)|β̂〉
2

β̂ = sHdiag

(
|s(n)|β̂−2

γ

)
s (12)

where γ is given as follows:

γ = L
2

β̂ (sHdiag(|s(n)|β̂−2)s) (13)

The final form of the Rayleigh quotient of the exponential form of the indicator I ′GGS/GS is obtained by
plugging Eqs. 11 and 12 into the expression shown in Eq. 10 of the exponential indicator. Hence, the
following equation is obtained:

exp(I ′GGS/GS(x)) =
1

L

hHXHXh

hHXHdiag

(
|s(n)|β̂−2

γ

)
Xh

(14)

Equation 14 already reveals the Rayleigh quotient form [10]. The maximum value of the generalized
Rayleigh quotient can be estimated by solving the following generalized eigenvalue problem,

Rw1h = Rw2hλ (15)

whereRw1 andRw2 are defined as

Rw1 = XHX (16)

Rw2 = XHdiag

(
L
|s(n)|β̂−2

γ

)
X (17)



The maximum eigenvalue and corresponding eigenvector are equivalent to the maximum value exp(I ′GGS/GS(x))

and the optimal filter, respectively. As mentioned, the exponential of the indicator is exploited to form the
Rayleigh quotient. Nonetheless, the indicator I ′GGS/GS is estimated over the signals filtered with the optimal
filter. Hence, the results are shown and discussed based on I ′GGS/GS . Ideally, the optimal filter is expected
to band-pass filter around the carrier frequency of the bearing fault; hence, the impulsive pattern caused by
the bearing fault protrudes from noise.

2.2.1 Rayleigh quotient iteration

The generalized eigenvalue problem shown in Eq. 15 is solved via an iterative approach. A filter is initial-
ized first to estimate Rw1 and Rw2 which are further used to solve for the eigenvalue and corresponding
eigenvector. The maximum eigenvalue is accepted as the solution of the iteration step and is utilized in
the next iteration. The solution is assumed to be converged when the relative error estimated based on the
difference between two consecutive eigenvalues drops below 1 %. The Rayleigh quotient iteration benefits
from its rapid convergence rate as long as the numerical stability is satisfied [11]. A study on the effect of
the filter parameters on the Rayleigh quotient iteration demonstrates that filter initialization does not signif-
icantly influence the solution while its length is problem-dependent [12]. Therefore, in this study, filters are
initialized with the simple difference filter. It is basically an array of zeros where the second and the fourth
point are 1 and −1, respectively. Moreover, filter lengths of 100 and 200 are chosen for the simulated and
the experimental signals, as they provide the most conclusive results.

3 Results

This section demonstrates and discusses results from the simulated and the experimental vibration signals
with roller element bearing faults.

3.1 Signal simulations

The proposed concept is first tried out on simulated vibration signals. Signals simulating vibrations emitted
from a roller bearing with an outer race fault are generated with periodic impulses recurring at 20 Hz. These
signals are convolved with an impulse response function with the carrier frequency of 1000 Hz. The slippage
phenomenon is taken into account, and a deviation of no more than 2% of the fault frequency is introduced
to the impulses. White noise is added to vary the signal-to-noise (SNR) from −30 dB to 30 dB.

Figure 1 demonstrates the evolution of the I ′GGS/GS estimated over the filtered and the raw signals. The
indicator level persists near zero for both the raw and the filtered signals up to the SNR of around −8.5 dB,
after which a sharp increase in the trend of the filtered signal is observed. The peak point of this first increase
is around 30 times the initial value. On the other hand, the trend of I ′GGS/GS of the raw signals smoothly rises
and reaches the same level as the peak of the initial increase of the filtered signals at around SNR of 1 dB.
The early increase in the trend of the filtered signals compared to the raw signals implies that the Rayleigh
quotient optimization succeeds in estimating an optimal filter to maximize I ′GGS/GS and the impulsive pattern
purports from the noisy signal. Further trends of I ′GGS/GS for the raw and the filtered signals exhibit similar
behaviour where the value of the indicator for both trends is increasing. However, it must be noted that the
indicator level for the filtered signals is always approximately 1.5 to 2 times higher than the raw signals.
Furthermore, at considerably high SNR, while the trend I ′GGS/GS of the raw signals exhibits a converging
behaviour, that of the filtered signals demonstrates an ever-increasing pattern. This nuance may be crucial to
accurately assess the severity of a bearing fault if such high SNR levels are attained.

The efficacy of the filtering, which results in a higher value of the indicator on filtered signals, is further
scrutinized. Therefore, the first 2000 samples of the raw and the filtered signal at −7 dB, which corresponds
to the position of the dashed line in Fig. 1, are displayed in Fig. 2 in the time domain and inspected. The
impulsive pattern is recovered on the filtered signal which inherently results in a more significant level
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Figure 1: Evolution of the indicator for the filtered and the raw simulated signals

of I ′GGS/GS on the filtered signal than the raw signal. Moreover, as the distributions of these signals are
considered, Fig. 3 illustrates the higher occurrence at the tails of the amplitude distribution for the filtered
signal. In other words, the amplitude distribution of the filtered signal deviated from the Gaussian distribution
which causes the increase of I ′GGS/GS .
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Figure 2: The raw and the filtered signals at −7 dB SNR

The spectra of the filtered and the raw signals are also investigated to comprehend why the optimal filter
recovers the impulsive pattern. The spectra of the two signals at −7 dB are shown in Fig. 4. The amplitudes
of the frequency bins at around the carrier frequency of 1000 Hz are slightly higher than the noise floor on the
spectrum of the raw signal. On the other hand, it can be deduced from the spectrum of the filtered signal that
the carrier frequency is band-pass filtered. The amplitude of the noise floor is reduced while the amplitudes
around 1000 Hz are increased due to filtering. This also stresses that the optimal filter performs as intended
such that it promotes impulsiveness by band-pass filtering the carrier frequency of the simulated vibration
signals with a bearing faults.

An important issue regarding the Rayleigh quotient iteration is its numerical stability. Numerical stability and
convergence behaviour may be of concern for relatively long filters. The relative error trends of the Rayleigh
quotient iteration for simulated signals at six different SNR levels are displayed in Fig. 5. Iterations made
for the low SNR signals reach the threshold at the first iteration, while for larger SNR signals, the threshold
is met at higher iterations. The critical point concerning the numerical stability is the monotonous decline of
the relative error down to the threshold value. This smooth decrease is observed for all simulated signals. A
representative subset of six trends are shown in Fig. 5 for clarity.
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Figure 3: Histogram of the raw and the filtered signals at −7 dB SNR
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Figure 4: Spectra of the raw and the filtered signals at −7 dB SNR
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Figure 5: The trends of relative error during the Rayleigh quotient iterations for several simulated signals

3.2 Experimental signals

The vibration signals are measured on an academic test rig, and the dataset is made available by Flanders
Make. The three datasets utilized in this study are sampled for one second or ten seconds at 50 kHz rate. The
measurements are run-to-failure tests initiated with Rockwell-C indentation of 100 kg in the bearing inner



race of the bearing 6205-C-TVH. Measurements are performed at constant speeds of 2000 rpm and 1800
rpm for one-second and ten-second signals, respectively. The vibration sensors are located in the vicinity of
the bearings; hence the only considerable source of vibration is the bearing fault. Therefore, signals do not
need to be whitened. The measurements are named as dataset 1, 2, and 3. While the first two datasets are
comprised of one-second long signals, the third dataset is sampled for 10 seconds.

The indicator trends estimated over the filtered and raw signals of dataset 1 are shown in Fig. 6a. The initial
level of I ′GGS/GS for the healthy state of the signal is near zero and steady for both signals. Then an initial
increase is observed on both the filtered and the raw signal trends at around measurement 160, after which
they demonstrate a similar trend. The level of the indicator, however, for the filtered signals is much higher
than the raw signal, which may allow the end-user to be alarmed regarding the presence of an anomaly in a
more robust manner. The visual inspection of the raw and filtered signals explains the difference since the
impulses of the filtered signals are more dominant compared to the raw signals, as can be seen in Fig. 6b.

100 200 300 400

0

1

2

3

4 Raw signal
Filtered signal

Meas no [-]

In
di

ca
to

r l
ev

el
 [-

]
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Figure 6: Results obtained on dataset 1

A scenario similar to dataset 1, where the initial plateau representing the healthy phase of the signal is
followed by a sharp rise on the indicator for both raw and filtered signals, is observed in Fig. 7a for dataset
2. Detail must be noted that on the trend of the filtered signals, the initial increase is followed by a falling
and rising pattern of 3 measurements where the drop reaches the level of I ′GGS/GS of the raw signals. This
occurs because the iterative solution fails to find the optimal filter; hence, the filtered signal is not significantly
different from the original signal. Another interesting detail appears after around measurement 388. There is
a descending trend starting at around measurement 388 on the indicator level of the raw signals. This could
be because the fault tends to become distributed; thus, the signal distribution tends to be less impulsive.
On the other hand, the increasing trend persists for the filtered signals after measurement 388 because the
optimized filter is capable of maximizing the impulsiveness of the signals. The stronger impulsive pattern
can also be observed on filtered signals compared to the raw signal in the time domain in Fig. 7b.
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Figure 7: Results obtained on dataset 2

The third dataset, as mentioned above, is comprised of ten-seconds signals. The level of I ′GGS/GS for the
filtered signals is almost twice that of the raw signals for the damaged state of the signals. It must be noted
that the trends are smoother than in the previous two graphs. This is because the MLE is performed more
accurately as signals are longer. Moreover, the filter may be optimized in a more accurate manner as the
frequency resolution of a ten-second signal is higher than a one-second signal. Therefore, the trends of the
lines in Fig. 8a are free from abrupt drops and rises. The clear difference between the filtered and the raw
signals is demonstrated in Fig. 8b. The filtered signal at the measurement shown with the dashed line on Fig.
8a demonstrates evident peaks with higher amplitudes than the peaks in the raw signal in the time domain.
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Figure 8: Results obtained on dataset 3

4 Conclusion

This study aims to investigate the capability of blind filtering to enhance the fault detection performance
of a Generalized Likelihood Ratio Test-based indicator. It is demonstrated that the indicator, I ′GGS/GS ,
developed using the GLRT can be written in the generalized Rayleigh quotient form. Furthermore, the
optimal blind filter can be evaluated via Rayleigh quotient optimization to maximize the indicator estimated
on the filtered signals. The approach is first tried out on simulated signals for the proof of concept. The
outcome stresses that the method has the potential for the early and robust detection of roller element bearing
faults. The onset of the increasing trend of the GLRT-based indicator estimated on filtered signals is observed
significantly earlier than that of the raw signals. Moreover, the indicator level is considerably higher in
filtered signals, which allows for developing more robust alarming for the end-user. The results obtained from
the experimental signals also partly confirm the outcomes of the signal simulations. The rise of I ′GGS/GS
appears to be higher from the healthy to the damaged state of the machine on filtered signals. Hence, it offers
a more reliable alarm for bearing fault detection purposes. On the other hand, an early onset for the rising
trend is not achieved for the filtered signals. A significant aspect of the proposed method is that it requires
no input regarding the machine kinematics. However, it can only offer anomaly detection but cannot be
directly employed for diagnostic purposes since the fault detection is performed based on the deviation of
the signal distribution from the Gaussian, which may be caused due to interference from several components
in a rotating machine. This approach can be extended to further vibration-based indicators for early and
robust detection of anomalies in rotating machinery.
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Appendix

A Nomenclature

A Cross-sectional area
CI Condition indicator
GS Gaussian stationary
GGS Generalized Gaussian stationary
GLRT Generalized likelihood ratio test
MED Minimum entropy deconvolution
MCKD Maximum correlated kurtosis deconvolution
MLE Maximum likelihood estimation
PDF Probability density function
SNR Signal-to-noise ratio

B Auxillary functions

The explicit form of the quantity C given in Eq. 10 [9].

C(c, β̂0, β̂1) = ln

(
β̂

1

β̂0
−1

0 Γ(c/β̂0)

β̂
1

β̂1
−1

1 Γ(c/β̂1)

)
+

1

β̂0
− 1

β̂1
(18)

C Rayleigh quotient derivation details

The denominator of Eq. 10 can be written as follows:

〈|s(n)|β̂〉
2

β̂ =

〈
|s(n)|2

|s(n)|2−β̂

〉2/β̂

(19)

Re-writing it in matrix form results in the following:

〈|s(n)|β̂〉
2

β̂ =

(
1

L
sHdiag

(
1

|s(n)|2−β̂

)
s

)2/β̂

(20)

Both numerator and denominator of Eq. 20 is multiplied by sHs to obtain the following form.

〈|s(n)|β̂〉
2

β̂ =
1

Lβ̂/2

sHdiag(|s(n)|β̂−2)s
(sHdiag(|s(n)|β̂−2)s)1−2/β̂

(21)

Now that the sH and s appears in the left and the right hand side of Eq. 21, respectively, the following
expression can be used to form the denominator of the Rayleigh quotient.

〈|s(n)|β̂〉
2

β̂ = sHdiag

(
1

Lβ̂/2

diag(|s(n)|β̂−2)
(sHdiag(|s(n)|β̂−2)s)1−2/β̂

)
s (22)

The expression γ is defined as follows to simplify the final equation.



γ = L2/β̂(sHdiag(|s(n)|β̂−2)s)1−2/β̂ (23)
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