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Adding the notion of spatial locality to the susceptible-infected-recovered (or SIR) model, allows to capture
local saturation of an epidemic. The resulting minimum model of an epidemic, consisting of five ordinary
differential equations with constant model coefficients, reproduces slowly decaying periodic outbursts, as
observed in the COVID-19 or Spanish flu epidemic. It is shown that if immunity decays, even slowly, the model
yields a fully periodic dynamics.
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Introduction. Mathematical models of epidemics remain
indispensable in the understanding and control of disease
spreading. These models help to take political decisions
such as mobility restrictions during the COVID-19 crisis.
An example of an epidemic model is the compartmental
susceptible-infected-recovered (SIR) [1] model, which is the
paradigm model to illustrate the elementary dynamics of epi-
demic spreading in a well-mixed community.

The SIR dynamics describe the exponential increase of
infected individuals up to a level where the epidemic saturates
through herd immunity. After this saturation, the number of
infected individuals declines exponentially towards zero. In
most epidemics, this global immunity is not attained after
the first peak, or wave, of infections. Indeed, another feature
of epidemics is quasicyclic behavior with several waves of
infection spaced by a period of several months. This behavior
is, for instance, observed during the COVID-19 pandemia [2],
the 2014 Ebola outbreak in Guinea [3], as well as during the
influenza epidemic in the early 20th century [4].

The main contribution of the present work is the in-
sight that these two features (rapid saturation and quasicyclic
behavior) are caused by the same underlying physical phe-
nomenon. We propose an alternative modeling of the global
effect of local epidemic saturation. To this end, we introduce
the concept of local herd immunity, which means that, in the
population directly in contact with the infected individuals
(or clusters), a sufficient amount of individuals is immune, so
that spreading slows down or even stops [5]. This does, in
general, not imply that (global) herd immunity is attained by
the total population. To understand how exactly this local herd
immunity leads to epidemic waves, we derive and analyze an
alternative variant of the SIR model, introducing the minimum
amount of additional complexity required to obtain successive
epidemic waves.

The SIR model is too simple to describe the dynamics
of a realistic epidemic, in particular since no distinction is
made between susceptible individuals which are in contact,
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or on the contrary, far away from contagious individuals.
This well-mixedness assumption can be leveraged in var-
ious ways. One possible way is to radically change the
approach and consider agent-based descriptions [6–8]. If one
wants to keep a compartmental approach, diffusion can be
added to the system [9,10], memory effects [11], or one can
consider SIR-type models on lattices or using small-world
networks [12–14]. We recently proposed a minimal refine-
ment to introduce the notion of space dependence in the
compartmental approach, dividing the community into only
two groups: individuals close to and those far away from
the infected [5]. It is this approach, which successfully in-
troduced the effect of local herd immunity on the first wave
of the epidemics that we will improve to model successive
outbursts.

In the domain of mathematical modeling of epidemics,
various ways are explored to reproduce quasicyclic behavior
[15]. Examples are to adapt predator-prey descriptions [16,17]
or to introduce time-dependent model constants [18–20]. This
latter approach needs to arbitrarily set the period and the
beginning of the pandemic. However, the emergence of pan-
demics is, in general, not correlated to typical seasons and can
occur at any time [21]. What is new here is that we do not
explicitly try to model the quasicyclic behavior; instead we
demonstrate that it is a direct consequence of the spatial dy-
namics of an epidemic. The present investigation suggests that
saturation is attained well before global collective immunity is
reached due to local collective immunity in clusters and that,
after a phase of decline, the epidemic revives when local out-
breaks have decayed sufficiently to become mathematically
equivalent to new small-size clusters.

SBIGR, the global dynamics of an epidemic in a nonfully-
mixed community. In the following we introduce the SBIGR
approach, which is a compartmental model. The acronym
comes from the names of the five compartments that we will
introduce, as usual in compartmental modeling. In addition
to the classical S, I, R susceptible, infected, recovered (or re-
moved) compartments, there are two new compartments B, G,
which introduce the notion of spatial locality in the model. We
now explain this further.
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FIG. 1. Representation of the SBIGR model. The susceptible
part of the population is subdivided into individuals B inside the
blob, and S, outside the blob. The recovered are also subdivided
into individuals G inside and individuals R outside the blob. The
blob population is constituted by N∗ = B + I + G. The dashed arrow
from the R to the S compartment reflects the temporal decrease of
immunity.

The total population consists of N individuals. Within well-
defined clusters the local dynamics is given by a SIR like
approach. We define a subensemble N∗ of individuals within
local clusters around the infected. These individuals are either
(local) susceptible B, infected I , or (local) recovered G. For
the individuals far away from the infected, we have in our
description two types: susceptibles S and recovered R. Both
the ensembles S and B indicate therefore susceptibles, far
away from or close to the infected, respectively. Similarly R
and G both indicate recovered individuals. It is important to
understand that the subensemble N∗, in the following named
the blob, represents multiple independent clusters with little or
no connectivity, that will share similar constant physiological
and social parameters, leading to similar dynamical equations.
Both N and N∗ are thus macroscopic quantities. The five types
of individuals are represented as compartments in Fig. 1.

Within the blob, corresponding to the ensemble of clusters,
we have a SIR type of dynamics

dB

dt
= −β

BI

N∗ + φSB, (1)

dI

dt
= β

BI

N∗ − γ I, (2)

dG

dt
= γ I − φGR, (3)

with N∗ = B + I + G. For a fixed total population size, we
have then

dS

dt
= −φSB + χR, (4)

dR

dt
= φGR − χR, (5)

where we added an exchange term χR from the R to the S
compartment. This term represents the decrease of immunity
after infection that we will consider null (χ = 0) for the

FIG. 2. Graphical representation of the evolution of an (a) accel-
erating or (b) decelerating epidemic. The “blob” around the infected
I represents all people that are in close contact with contagious
individuals. The blob expands when the local concentration of I is
large. The blob will shrink if little infected are present. S and B
are susceptibles, G, R are recovered. Change in surface, δA during
a time-interval δt is indicated as a shaded area.

moment. Without the fluxes φSB and φGR we have a local
SIR system, with B, G taking the place of S, R, respectively.
Schematically, the compartments are shown in Fig. 1, where
the fluxes φSB and φGR are indicated by arrows in both di-
rections. The novelty of the SBIGR model is to estimate
these fluxes with a physical model for the spatial evolution
of the clusters, introducing a diffusion approach for the blob
evolution [22].

In Fig. 2 we propose a visual representation of the model.
We insist here that this is not a spatial representation of
clusters and moving individuals, but a schematic where the
ensemble of clusters is regrouped in one single blob. We
can then consider that the size of the blob evolves but that
the individuals remain fixed in space. The collective effect
of the movement of individuals within the blob, resulting in
contamination by contact, is embodied by the value of β. The
effect of interactions between individuals which are inside and
outside a cluster determines the values of κ and ζ [5].

This approach allows a geometrical interpretation of the
present compartmental model without introducing an agent-
based description. In this framework, we do not resolve the
movement of individuals explicitly, but describe the evolution
of the fictive surface of the blob. We call this surface A∗ and
the total surface containing all individuals N is denoted A. We
have then that N∗/N = A∗/A.

On the left of Fig. 2 we illustrate the blob expansion,
governed by the proximity of infected people (inside the blob,
close to the border) with susceptibles (outside the blob). In a
time-interval δt , it is observed that the number of susceptible
individuals, which were outside the blob but who will become
part of it, is given by

[δB]+ = δA+ S

A
, (6)

where S/A is the average concentration of susceptibles outside
the blob. In the schematic, δA+ corresponds to the increase
of surface of the blob. This increase of surface should be, at
least dimensionally, proportional to δA+ ∼ κ̃δt , where κ̃ is
a diffusion coefficient. The unknown at this point is how κ̃

depends on the other parameters of the problem. What we do
know is that the blob will expand when the concentration of
infected individuals is large enough. We should therefore have
a dependency on the local proportion of infected in the blob
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I/N∗ and we have therefore in the simplest form κ̃ = κI/N∗
and thereby

φ+
SB ≈

[
δB

δt

]+
= κ

A

SI

N∗ . (7)

Let us now consider the case where the blob shrinks. Sim-
ilarly, the amount of individuals that were in the blob, but
will find themselves outside it, are given by the decrease of
surface, multiplied by the local concentration of the B. We
have, therefore, if the blob shrinks, that

[δS]+ = δA− B

A∗ . (8)

If we now model the shrinking by a negative diffusion process,
independent of the presence or not of infected people, and
we introduce ζ the diffusion coefficient associated with this
process, we have

φ−
SB ≈

[
δS

δt

]+
= ζ

B

A∗ = ζ

A

BN

N∗ . (9)

Thereby we modeled both the positive and the negative con-
tributions to the flux between S and B,

φSB = κ

A

SI

N∗ − ζ

A

BN

N∗ . (10)

Exactly the same derivation, considering now the G, R indi-
viduals, leads to the expression

φGR = −κ

A

RI

N∗ + ζ

A

GN

N∗ . (11)

To obtain these expressions we assumed that N � N∗, which
is a well-satisfied assumption in most applications. In the
following, since A is fixed, we will replace the quantities κ/A
and ζ/A by κ and ζ so that κ−1 and ζ−1 can be associated
with the typical timescales of diffusion during expansion and
shrinking, respectively. In more sophisticated descriptions the
influence of the uncertainty of these parameters can be inves-
tigated [23], or its values can be changed drastically to mimic
mobility restrictions [5].

In the present description all terms are expressed as di-
mensional quantities. To simplify the analysis, we introduce
dimensionless variables, where all compartments are normal-
ized by N . For instance, we note S̃ = S/N , and introduce
the same normalization for B, I, G, R. This naturally implies
Ñ∗ = N∗/N . Omitting in the following the tildes since we will
only use normalized quantities, we have

dS

dt
= − κ

N∗ SI + ζ

N∗ B + χR,

dB

dt
= − β

N∗ BI + κ

N∗ SI − ζ

N∗ B,

dI

dt
= β

N∗ BI − γ I,

dG

dt
= γ I + κ

N∗ RI − ζ

N∗ G,

dR

dt
= − κ

N∗ RI + ζ

N∗ G − χR,

N∗ = B + I + G, (12)

where the division by N∗, a quantity which varies in time as
the epidemic evolves, is a very important feature of the SBIGR
model. By identifying the ratios ζ

N∗ , β

N∗ , and κ
N∗ to normalized

coefficients of the differential system, this introduces without
any ad-hoc or external forcing a time dependence of the oth-
erwise constant coefficients ζ , β, and κ .

Before numerically integrating the model, we first interpret
the physical meaning of the five model parameters.

The value of γ −1 represents the typical duration of the
contagious period of an individual and β will determine the
contagiousness, i.e., the rate at which an infected individual
contaminates susceptible individuals. These two quantities
determine to a large extent the initial, exponential phase of
an epidemic. In particular, their ratio β/γ determines the
reproduction number in the beginning of an epidemic. This
number β/γ = R0(0) ≈ 2, at least in the beginning of the
COVID-19 pandemic [24]. The new quantities in the SBIGR
model are the growing and shrinking timescales 1/κ and 1/ζ ,
as well as 1/χ , if decrease of immunity is taken into account.

The κ parameter, associated with the expansion of the blob
sets the height of the first epidemic peak. Indeed, the SBIGR
dynamics allow to reproduce the saturation of an outbreak
before the total population has attained herd immunity. It is
possible to estimate the peak value of the number of infected
individuals analytically (see the Appendix). The peak is given
by

Imax ≈ κ

γ

(
β − γ

β

)2

S. (13)

The parameter ζ does not appear in this expression, but is
key in determining the long-time dynamics. Indeed, the blob
deflates after local herd immunity has been attained, and we
show in the Appendix that at long times the blob evolves as

dN∗

dt
≈ −ζ , (14)

which allows to show that for given β and γ the typical decay
time scales like T ∼ κ/(ζγ ).

These ideas are further assessed by numerical integration
of the model. We use the PYGOM library developed by Pub-
lic Health England [25] that makes use of the integrators
provided by the SCIPY package. We solve the initial value
problem with a timestep of one day. Thereto we need the
definition of initial conditions and values for the control pa-
rameters. For the initial conditions we consider the case of the
very beginning of an epidemic where B(0) = G(0) = R(0) =
0, I (0) ≡ I0 = 10−5 � 1, and S(0) = 1 − I0. The parameters
β and γ are determined such that β/γ = 2. We take γ = 0.18,
which gives an order of magnitude of the infectious period
of approximately one week (72% of the individuals have
been cured or removed from the I compartment after seven
days). These values are of the order of magnitude of the first
epidemic wave of the COVID-19 epidemic. We set for the
moment χ = 0 (persistent immunity).

We illustrate the model with κ = 0.002 and ζ = 0.00015
in Fig. 3. The most salient feature of this stackplot is the cyclic
nature of the epidemic: even in the absence of decay of immu-
nity (χ = 0), the SBIGR model, representing the epidemic as
an inflating and deflating blob, exhibits well-defined waves,
characteristic for pandemics such as COVID-19.
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FIG. 3. (a) Numerical integration of the SBIGR model
[Eqs. (12)]. The figure shows a stackplot of the quantities B, I, G.
Slowly decaying oscillations are observed for this set of parameters.
In the inset it is illustrated that the time-interval T between two
peaks of the number of infected individuals (indicated by dots in the
main plot) is set by the parameter κ/ζ .

To understand the influence of the parameters on the period
of the waves, we systematically varied ζ for different values
of κ (keeping κ > ζ ). It is shown in the inset of Fig. 3, as
demonstrated in the appendix that the effective period be-
tween successive local maxima of the number of infected is
proportional to κ/ζ .

A standing question is obviously whether this very simple
model shows more than qualitative agreement with a real-
istic pandemic. However, quantitative comparison over long
time periods is not straightforward. Clearly, in the current
pandemic, different countries used different control strategies
such as strict lockdowns. These would, to some extent, in-
fluence the parameters β and κ of the model, and possibly
ζ , so that these parameters cannot be chosen strictly constant
anymore. This will possibly influence the periodic character of
the pandemic and more certainly modify the relative heights
of successive peaks.

Varying the model parameters as a function of time is a
common way to reproduce a posteriori the evolution of an
epidemic [26]. This would, however, severely complicate the
understanding of the model. It is remarkable that the present
model with constant coefficients reproduces saturation of the
first wave followed by a close to periodic slowly decaying
dynamics. We investigated different countries and observed
that some countries show a more periodic behavior than oth-
ers. One of the countries where the data of the number of
daily new infected cases is most periodic is South Africa. We
keep β = 0.36, γ = 0.18 and the linear relation in the inset
of Fig. 3 allows to determine the value for κ/ζ . Subsequently,
results for different values of κ are shown in Fig. 4.

The most important observation is that the SBIGR model
allows to reproduce, for these model parameters, the correct
period of the waves and a good estimate of the order of
magnitude of the number of infected individuals. Indeed the
exact number is most probably underestimated significantly
in the beginning of the epidemic since tests were less avail-
able. Furthermore, what our model does obviously not take
into account in its simplest form, is the genetic evolution of

FIG. 4. (a) Comparison of the results of the SBIGR model
[Eqs. (12)] with data of newly reported cases for South Africa.
Results for different values of κ are shown for a fixed value of κ/ζ .

the virus leading to variants which have different properties,
thereby affecting the values of β, γ . Nevertheless, even with-
out taking these effects into account, the results are strikingly
similar, and we hope that more sophisticated models based on
this framework, beyond the scope of the present work, will
significantly improve our understanding of the epidemics.

Existence of a limit cycle. The epidemic waves in Fig. 4
are very pronounced. Their amplitude decays and clearly the
number of infected individuals will eventually tend to zero
and stay there. Indeed, since the population-size N is fixed
and lasting immunity is obtained, the epidemic will eventually
die out. If we model, as in Fig. 1 the transfer from the R
to the S compartment by a linear transfer term ±χR, the
natural decay of immunity can be taken into account. This
can correspond both to the genetic evolution of the virus or
to the evolution of the immune system of the individuals in
the R compartment. We added, for the same parameters as
used to model the evolution of the COVID-19 pandemic in
South Africa, this transfer term and we varied the value of χ .
More complicated models could introduce a nonlinearity in
this term, or time variations, mimicking the different immune
decline of variants of a virus.

We illustrate, using a phase-space plot in BIG space in
Fig. 5, that the dynamics of our model tends to a limit cycle for

FIG. 5. Phase-space plot of the SBIGR model [Eqs. (12)] with
decrease of immunity χ > 0. For the current parameters, for values
of χ > χcrit = 7.15 × 10−4, corresponding to a typical immunity
decrease time t1/2 ≈ 1000 days leads to a limit cycle, representing
a nonvanishing periodic epidemic. For χ < 7.15 × 10−4, the system
reaches a stable point.
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χ > χcrit = 7.15 × 10−4, corresponding to a value 1/χcrit ∼
t1/2 ≈ 103 days, the time at which the immunity has decayed
for an isolated person to 50%. This value of t1/2 is an order of
magnitude larger than estimated for the COVID-19 disease,
where t1/2 = O(102) days [27]. Considering that in the cur-
rent pandemic the natural immunity acquired after infection
decays with a typical timescale approximately three months,
we can conclude that, within the scope of our model, the
COVID-19 virus will evolve on such a limit cycle.

The origin of the limit cycle can be illustrated analytically
by carrying an analysis of the simplified system where we set
the quantities S and R to 1 and 0, respectively. This allows
to reduce the model to three ordinary differential equations
(ODEs), which mimic the beginning of the epidemic de-
scribed by the SBIGR model. For this reduced system it is
straightforward to determine expressions for the fixed points
of the system and the eigenvalues associated with the lin-
earized system. In the Appendix we show that this analysis
yields, for fixed γ and β, values for κ and ζ which lead to a
limit cycle. As we illustrated in Fig. 5, this limit cycle is in the
full model (with evolving S, R) damped for χ < χcrit.

Discussion and conclusion. The main conclusion that can
be drawn from the current work is that epidemic waves can be
caused by the spatial nature of the spreading of the disease
which will, at long times, often be slower than the local
saturation. This saturation allows to decrease the local concen-
tration of the infected so that the spread slows down. However,
this saturation does not, by any means, indicate the end of
an epidemic since the deflation of the blob, representing the
ensemble of clusters around infected individuals will eventu-
ally lead to a situation where a new spread of the disease is
possible. The resulting epidemic waves can therefore not be
eradicated by a lockdown which is shorter than at least several
times ζ−1. Obviously, the model needs to be refined before
precise quantitative predictions can be formulated. Further-
more, even though compartmental models are powerful tools
in the study of epidemic spreading, uncertainty in coefficients
leads to a large unpredictability at long times [23]. In our
opinion the main contribution of such models is therefore the
understanding of phenomena and their ability to probe the
influence of certain measures. The power of our approach is
that, to reproduce the main features of the COVID-19 epi-
demic (saturation and cyclic dynamics), the SBIGR model
does not need to model the effect of social distancing, finite
incubation time, demographic evolution, lockdown, seasonal
fluctuations, vaccination, evolution of the virus, and so on.
The complexity of the model remains, therefore, limited to
five quantities, evolving according to five ODEs with con-
stant parameters, opening a way to efficiently construct more
complex models to assess the influence of different factors on
epidemic waves.

The data that support the findings of this study are openly
available from the Johns Hopkins University database [2].
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APPENDIX

1. Short time behavior: Height of the first peak

To better understand the influence of the different param-
eters, we analytically estimate the height of the peak as a
function of κ assuming ζ = 0. The resulting equation for B
becomes then

dB

dt
= − β

N∗ BI + κ

N∗ SI. (A1)

A maximum for B is obtained by setting the time derivative
to zero leading to the solution for the maximum of B at time
τ ,

B(τ ) = κ

β
S(τ ). (A2)

To estimate the height of the first peak, we assume the expo-
nential increase of both I and G in this phase. The exponential
of I is determined by the exponent β − γ and G will increase
with the same exponential time dependence. Indeed, during
this phase, we have

dG

dt
≈ γ I, (A3)

so that, if I ∼ exp(β − γ ) ∼ G, we have

G = γ

β − γ
I (A4)

and we assume that this approximation holds until the number
of infected individuals peaks. We now set the time derivative
in the equation for I equal zero to obtain at this peak

γ I (B + I + G) = βBI (A5)

since I > 0, and using Eqs. (A4) and (A2), we have at t = τ ,

I (τ ) = (β − γ )2

γ β
B(τ ) = (β − γ )2

γ β

κ

β
S(τ ). (A6)

If, finally, we assume that the number of infected peaks ap-
proximately at the same time as B, and that S(τ ) ≈ S(0) = 1,
we obtain that the first peak of the number of infected is given
by

Imax = (β − γ )2

β2

κ

γ
. (A7)

This expression shows thus that the height of the first peak of
the epidemic is directly proportional to the value of κ .

2. Timescale of the epidemic waves

An estimate of the period of the waves can be obtained
by considering the dynamics of the blob. The blob is de-
fined as N∗ = B + I + G. Summing the equations for B, I, G
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yields

dN∗

dt
= κ

N∗ (S + R)I − ζ

N∗ (B + G). (A8)

We can assess the long-time evolution of an epidemic wave,
when I ↓ 0. In this limit, the second term becomes dominant
and N∗ ≈ B + G. We obtain then the expression

dN∗

dt
≈ −ζ . (A9)

The decay of the blob is therefore linear, so that we can
estimate the order of magnitude of the time T from the peak
of a wave to the beginning of the next wave by

T ≈ N∗
max

ζ
. (A10)

To estimate the maximum blob size, we combine the expres-
sions for the maximum of I, G and B [Eqs. (A4), (A2), and
(A6)] to find the expression

N∗
max ≈ κ

γ
S, (A11)

so that the typical decay time can be estimated to be

T ≈ κ

ζγ
. (A12)

This expression is thus an order of magnitude estimate of the
typical decay time of an epidemic wave and determines, in
the periodic regime, the time interval between two successive
epidemic waves.

3. Analysis of the limit cycle

To pinpoint the origin of the oscillatory behavior, we set
S = 1 and R = 0. This yields the simplified system

dB

dt
= − β

N∗ BI + κ

N∗ I − ζ

N∗ B,

dI

dt
= β

N∗ BI − γ I,

dG

dt
= γ I − ζ

N∗ G. (A13)

The fixed point of this system is

(B, I, G)

=
(

κβ − κγ − γ ζ

β2
,

(κβ − κγ − γ ζ )ζ

β(κ + ζ )γ
,

× (κβ − κγ − γ ζ )2

(κ + ζ )γ β2

)
. (A14)

The Jacobian of the system shows that, for the param-
eters used in this study, [β = 0.36, γ = 0.18, ζ = 1.25 ×
10−4, κ = 2 × 10−3] the fixed point has two complex conju-
gate eigenvalues and one real eigenvalue

λ(1,2) = a ± ib, λ(3) = c. (A15)

We find in day−1 units a = 1.32 × 10−3, b = 0.0357, and c =
−0.0718. This is representative of an unstable point (a > 0),
the trajectory around the point focusing on a plane orthogonal
to the third eigenvector (c < 0) and rotating with a period
2π/b = 5.8 months, as observed in Fig. 3.
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