

Non-invasive on-site Raman and XRF study of the 17th-18th century painted enamelled Chinese metal wares and porcelains: Comparison with French enamelling technology

Philippe Colomban, Burcu Kirmizi, Bing Zhao, Jean-Baptiste Clais, Michele Gironda, Vincent Cochet

▶ To cite this version:

Philippe Colomban, Burcu Kirmizi, Bing Zhao, Jean-Baptiste Clais, Michele Gironda, et al.. Non-invasive on-site Raman and XRF study of the 17th-18th century painted enamelled Chinese metal wares and porcelains: Comparison with French enamelling technology. 5th International Conference on Innovation in Art Research and Technology (inArt 2022), Jun 2022, Paris, France. hal-03964497

HAL Id: hal-03964497

https://hal.science/hal-03964497

Submitted on 1 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Non-invasive on-site Raman and XRF study of the 17th-18th century painted enamelled Chinese metal wares and porcelains: Comparison with French enamelling technology

Philippe Colomban^a, Burcu Kırmızı^b, Bing Zhao^c, Jean-Baptiste Clais^d, Michele Gironda^e, Vincent Cochet^f

^a Sorbonne Université, CNRS, MONARIS UMR8233, 4 Place Jussieu, 75005 Paris, France ^b Yıldız Technical University, Dept. of Conservation and Restoration of Cultural Property, Beşiktaş 34349 İstanbul, Turkey ^c CNRS, Collège de France, CRCAO, UMR8155, 75005 Paris, France d Musée du Louvre, Département des objets d'art, quai F. Mitterand, 75001 Paris, France ^e XGLab S.R.L – Bruker, 23 Via Conte Rosso, 20134 Milan, Italy

^f Château de Fontainebleau, 77300 Fontainebleau, France

Background and Scope of the Study

Both Chinese and European historical records report that French Ambassador of Louis XIV and the French Jesuit missionaries were hosted at the Kangxi Court during the 17th century, and they presented outstanding enamelled artefacts as gifts to the Chinese emperor. Among these presents were enamelled metal objects which offer a complex realistic painted decor of enamels. It is also known that according to the demand of Kangxi Emperor, this advanced enamelling technology was taught to Chinese craftsmen at the workshops inside the Beijing Forbidden Palace. Royal archives mention that pigments and ingredients required to make such enamels were imported from Europe and this trade was regularly followed [1-2]. In this study, we present the non-invasive on-site study of 10 enamelled metal wares dating to the 17th-18th centuries (Qing Dynasty) from the collections of Musée du Louvre and Château de Fontainebleau (Musée Chinois) by non-invasive mobile Raman microspectroscopy and portable X-ray fluorescence spectroscopy. These metal wares were produced by cloisonné and/or painted enamel techniques. The objective of the study is to compare the enamelling technology used in these artefacts, regarding the different types of enamels with the identification of pigments/opacifiers and glass compositions used [3]. The study is expected to provide arguments to identify the use of imported enamels and/or enamel recipes from Europe to China at the end of the 17th century under the guidance of Jesuits as reported in the historical records.

[1] B. Zhao, G.Y. Wang, I. Biron, P. Colomban, L. Hilaire-Pérez, La circulation des techniques de l'émail entre la France et la Chine du XVIIème au XIXème siècle. Le CNRS en Chine Bulletin, 21, 20-25. 2016

[2] C.F. Shih, Evidence of East-West exchange in the eighteenth century: The establishment of painted enamel art at the Qing Court in the reign of Emperor Kangxi. Natl. Palace Mus. Res. Q. 24, 45-94, 2007

[3] P. Colomban, B. Kırmızı, B. Zhao, J-B. Clais, Y. Yang, V. Droguet, Non-invasive on-site raman study of pigments and glassy matrix of 17th-18th century painted enamelled Chinese metalwares: Comparison with French enamelling technology, Coatings, 10(5), 2020

Analytical Techniques

- Mobile Raman set-up (HORIBA Jobin-Yvon, Longjumeau France)
- 532 nm Ventus 300 mW laser (Laser Quantum) and ×50 (NIKON) and x200 (Mitutoyo Corp.) long working distance objectives.

The mobile Raman analysis @ Musée chinois

- Portable Elio XRF instrument (XGLab Bruker, Italy)
- 40 kV tube voltage, 100 µA current, 40 s acquisition time

Glassy Si-O Matrix

Pigments and Opacifiers

White: Fluorite (320 cm⁻¹)

Glassy Si-O Matrix (C)

Glassy Si-O Matrix (P)

Pigments and Opacifiers (P)

White: Lead arsenate (~820 cm⁻¹)

Blue: Co²⁺ ions

and 1040 cm⁻¹

Fe Mn Co

5 Energy / keV 10

R975 bottle for the metal and enamelled areas

Pigments and Opacifiers (C)

Blue: Co²⁺ ions

enamels:

Results-Discussion

Variations of lead-alkali type of glass: a) the strongest component at

~1030 to 1050 cm⁻¹, b) rather similar intensity of ~975 and 1045 cm⁻¹

components, c) the strongest component at $\sim 1065-1070$ cm⁻¹, d) the

Light green: Pb-Sb-Sn(Zn) pyrochlore (~135,251,337,375,470 cm⁻¹)

The Kangxi tripod mostly displays the characteristics of Chinese

The Qianlong ewer with cloisonné (C) / painted (P)

Yellow: Pb-Sn pyrochlore (~135,330,445,520 cm⁻¹)

green enamels are made with European ingredients/techniques.

technology with fluorite opacification and copper red. Only the yellow and

Lead-alkali type of glass with the strongest component at ~1070 cm⁻¹

Green: Pb-Sn pyrochlore (\sim 135,330,450,520 cm⁻¹) + Co²⁺ ions

Lead-alkali type of glass with the strongest components at ~980 cm⁻¹

Green: Pb-Sn/Pb-Sb-(Zn) pyrochlore (~135,335,450,510 cm⁻¹) +

Dark red

Dark greer

Pink: Au° nanoparticles (fluorescence) + arsenate (815 cm⁻¹)

The Kangxi tripod with cloisonné (C) enamels:

strongest component at ~1080-1100 cm⁻¹

Yellow: Pb-Sn pyrochlore (~135,320,435 cm⁻¹)

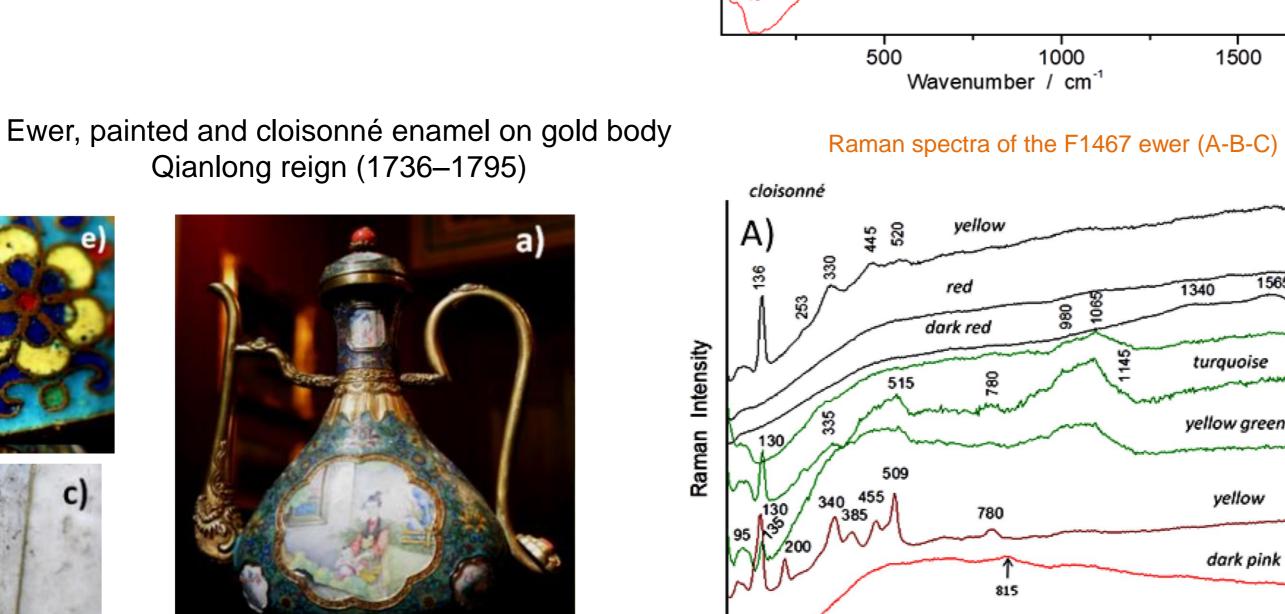
Cassiterite (631,780 cm $^{-1}$) + Co $^{2+}$ ions

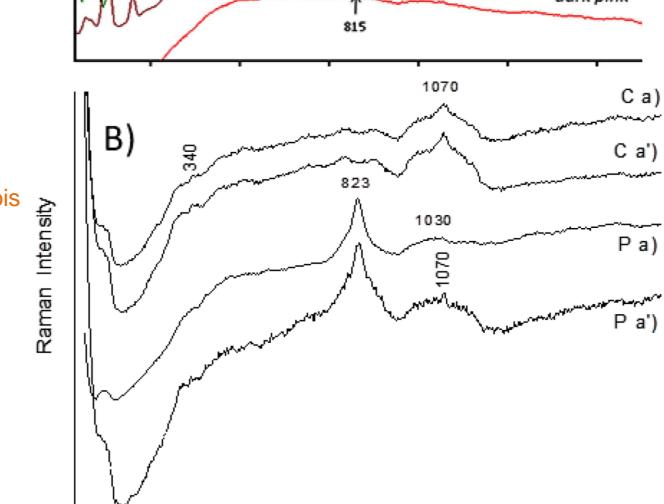
Red: Cu° nanoparticles (fluorescence)

康熙帝

Kangxi Emperor

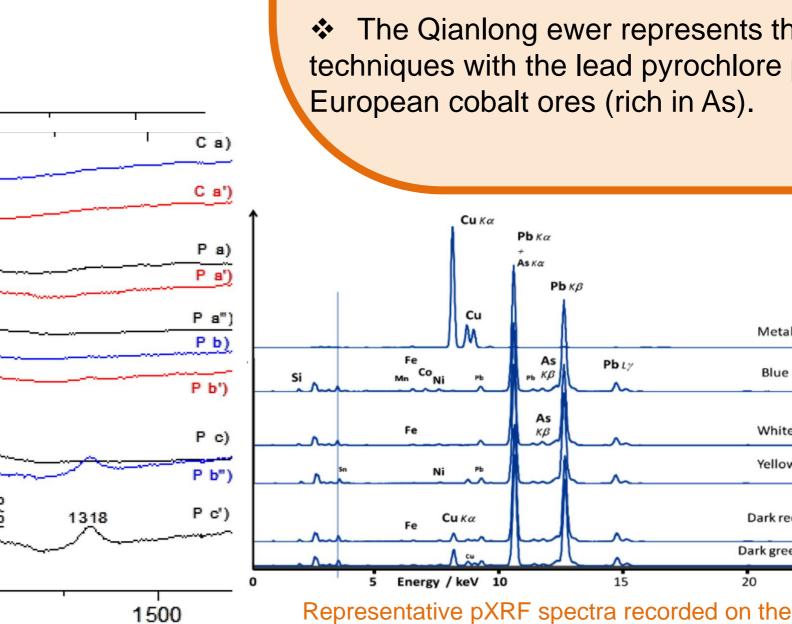
Incense tripod, cloisonné enamel end of Kangxi reign (1662-1722)




F1448C @ Chateau de Fontainebleau, Musée Chinois H:27 cm / D:26 cm

Qianlong reign (1736–1795)

Raman spectra of the F1448C tripod (A-B) light green Sgreen


green yellow Ce) C f) Cf) 1500 Wavenumber / cm⁻¹

Wavenumber / cm²

Orange: Hematite (225, 410,1318 cm⁻¹) The Qianlong ewer represents the use of European ingredients/ techniques with the lead pyrochlore pigment, gold nanoparticles and European cobalt ores (rich in As).

Blue: Co²⁺ ions + lead arsenate (~820 cm⁻¹)

Co²⁺ ions + Cassiterite (632,775 cm⁻¹)

Yellow: Pb-Sb pyrochlore (~130,340,455,506 cm⁻¹)

Qianlong Emperor

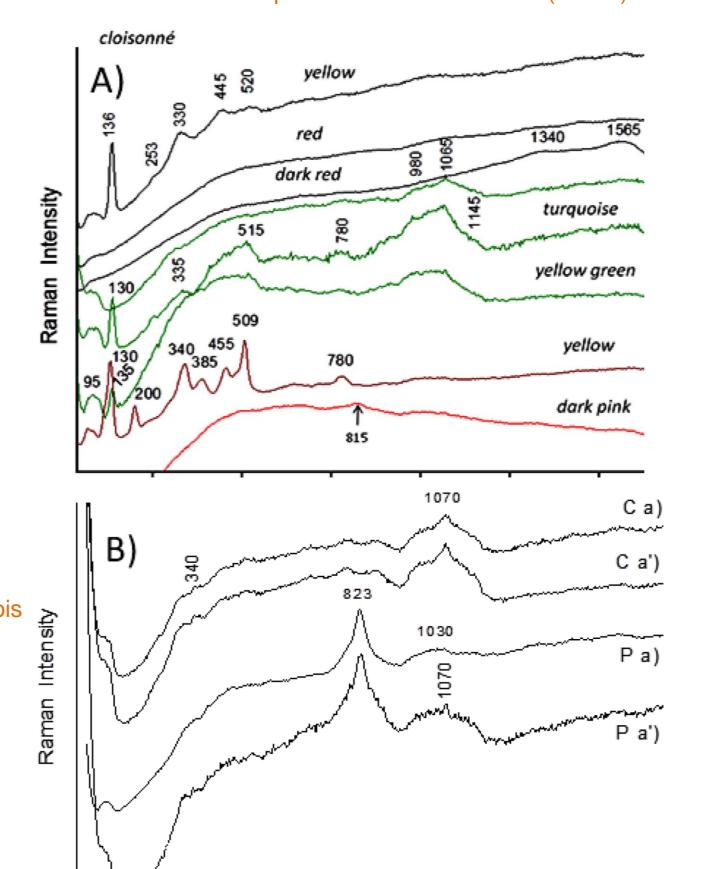
Details of the cloisonné enamel

Qianlong mark on the base

Details of the painted enamel medallion

F1467 @ Chateau de Fontainebleau, Musée Chinois H:40 cm / D:20 cm

Conclusion


This analytical study confirms the capability of on-site Raman analysis with mobile set-up for characterization of the sophisticated enamelled wares from China. The 17th-18th century turn marks the period of close contact between Europe and China through the Jesuits hosted at the Chinese Court. The results particularly contribute to identification of the artefacts where ingredients or recipes from Europe had been used for enamelling.

It is significant that cassiterite was probably used as an opacifier in some of the metal wares. Lead arsenate detected in some of the 17th –18th century blue enamels is related to the use of arsenic-rich European cobalt ores.

* This work has been carried out in the framework of the LIA CNRS-Palace Museum and Campus France PHC Cai Yuanpei programs in preparation of ANR EnameIFC. Vincent Cochet, former Head of the Château de Fontainebleau, and Site, Sarah Paronetto, keeper at Chateau de Fontainebleau and Catherine Gougeon from Musée du Louvre are acknowledged for their contribution.

R975 @ Musée du Louvre Qianlong period

