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1. Introduction

Let A be a finite set (the alphabet), and consider a group G acting faithfully and
“self-similarly” on the set A� of words over A. This means that every g 2 G acts
in the form

.a1 : : : an/
g D a0

1.a2 : : : an/
g0

(1.1)

for some a0
1 2 A and some g0 2 G depending only on a1; g; we encode them as

.g0; a0
1/ D x̂ .a1; g/ for a map x̂ WA � G ! G � A. If furthermore G is finitely

generated (say by a finite set S of states, so G is a quotient FS � G of the
free group on S ), then its action may be described by finite data, namely a lift
ˆWA � S ! FS � A of the restriction of x̂ to the generators of G. A finitely
generated group given in this manner is called functionally recursive [6, §3], or
self-similar; we call G the group presented by ˆ, and write G D hˆi, and we call
ˆ a (state-asynchronous) transducer. Note that we restrict ourselves to alphabet-

synchronous transducers (see the remark in §1.5): they read and write precisely
one letter at each clock tick.

Even though the map ˆ completely determines the action of G, and therefore
G itself, it is unclear how much of G is known from ˆ. Our first result is as
negative as can be:

Theorem A. There is no algorithm that, given ˆWA � S ! FS � A and s 2 S ,

determines whether s D 1 in hˆi.
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Large classes of finitely generated groups can be presented as functionally re-
cursive ones; notably, all the “iterated monodromy groups” of Nekrashevych [20],
and the automata groups mentioned in §1.1 below.

1.1. Automata groups. Assume now that G is a functionally recursive group,
and that in the action (1.1) the elements g0 have length at most the length of g, in
the generating set S . Then, up to replacing S by S [ S�1 [ ¹1º, the map ˆ takes
the form ˆWA � S ! S � A; we call it a finite state transducer. The group G
is called an automata group; these form a notorious class of groups, containing
all finitely generated linear groups as well as infinite torsion groups such as the
“Grigorchuk group” [9] and “Gupta–Sidki groups” [12]. The Grigorchuk group
is also a group of intermediate word-growth, and was used to settle the Milnor
problem on group growth [10].

The action of S , and of G itself, may be conveniently described by a finite
labeled graph called its Moore diagram. Consider the directed graph� with vertex
set S and an edge from s to t labeled .a; b/ whenever ˆ.a; s/ D .t; b/; then the
action of s 2 S on A� is determined as follows: given a1 : : : an 2 A�, find the
unique path in� starting at s and whose first label letters read a1 : : : an; let b1 : : : bn

be the second label letters; then .a1 : : : an/
s D b1 : : : bn. See Figure 1 for the graph

� describing the Grigorchuk group.
Every element of G (say represented by a word w of length n in S ) admits

a similar description, but now using a graph with vertex set Sn. The word w
represents the identity in G if and only if at every vertex reachable from w

all the outgoing edges have labels in ¹.a; a/ j a 2 Aº. It follows that the
word problem is decidable in G, and even belongs to LinSpace (and therefore
to ExpTime); but that is about as much as is known. We consider the “order
problem” (determine the order of an element), which was raised at the end of
last century by Sidki [22, §§5.2-5.3, and public lectures] and by Grigorchuk,
Nekrashevych and Sushchansky [11, Problem 7.2.1(a)], and was independently
solved by Gillibert [8]:

Theorem B. There is no algorithm that, given ˆWA � S ! S � A and s 2 S ,

determines the order of s in hˆi, namely the cardinality of hsi.

Worse than that, the action is uncomputable in the following sense: consider
the natural extension of the action of hˆi to A1. Then we have the following
variants of Theorems A and B:

Theorem A0. There is no algorithm that, given ˆWA � S ! FS � A and a 2 A

and s 2 S , determines whether a1 is fixed by s.

Theorem B0. There is no algorithm that, givenˆWA�S ! S �A and a 2 A and

s 2 S , determines the cardinality of the orbit of a1 under hsi.
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Finally, the results in Theorems A and B can be expressed in a uniform
framework as follows:

Theorem A00. There is a functionally recursive group hˆi withˆWA�S ! FS �A

such that ¹s 2 FS j s D 1 in hˆiº is not recursive.

Theorem B00. There is an automata group hˆi with ˆWA � S ! S � A, and two

states s; t 2 S , such that the set ¹n 2 N j stn has finite orderº is not recursive.

b d

c

a e

.1; 1/
.0; 0/

.1; 1/

.0; 0/

.1; 1/

.0; 0/

.0; 1/; .1; 0/

.0; 0/

.1; 1/

Figure 1. The transducer generating the Grigorchuk group. Here A D ¹0; 1º and S D

¹a; b; c; d; eº.

1.2. Contracting groups. Assume now thatG is a functionally recursive group,
and that in the action (1.1) the elements g0 are much shorter than g, in the
generating set S , in the sense that there are constants � < 1 and C with jg0j �

�jgj C C for all g 2 G. Then, up to replacing S by the set of all words of
length � C=.1 � �/, we also have jg0j � jgj; we have thus defined a subclass
of automata groups, called contracting automata groups (see §3.4 for a more
precise definition). Their word problem is decidable in LogSpace (and therefore in
PolyTime). We will see, however, that the order and orbit order problems remain
unsolvable in that restricted class:

Theorem C (= Theorem 3.4). The transducers constructed in Theorems B and B0

may be assumed to generate contracting groups.

1.3. Sketch of proofs. We encode Minsky machines in functionally recursive
groups. Minsky machines (see [19, Chapter 11]) are restricted Turing machines
with two tapes, which may move the tapes and sense the tapes’ end but may
not write on them; equivalently, they are finite state automata equipped with two
counters with values in N that may be incremented, decremented and tested for 0.
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Let M be a Minsky machine. We construct a functionally recursive group
containing elements x; y and an element s for each state of M, and encode config-
urations of M in the group as follows: when the machine is in state s with counter
values .m; n/, we encode it by the word sx2m

y2n
. The action of the group is so

devised that if the machine transitions from .s; m; n/ to .s0; m0; n0/ then the action

of sx2m
y2n

induces, on a certain subtree, the action of s0x2m0

y2n0

. It then follows
that the image of a prescribed ray under sx2m

y2n
records the computational steps

of M when started in .s; m; n/, and in particular whether the machine reached a
final state—the image of the ray will then contain a certain marker symbol. We
construct an auxiliary element t that only acts on sequences containing this marker
symbol, and then .sx2m

y2n
/t .sx2m

y2n
/�1 fixes the original ray if and only if the

machine never reaches the final state. Taking the commutator of that last element
with an element acting only in the neighbourhood of the original ray yields a group
element that is trivial if and only if the machine never reaches the final state.

It is an inherent part of the construction that sometimes the output of the
transducer is longer than the input (e.g., if M increments its first counter, the
functional recursion must replace x by x2).

To obtain an automata group, namely a group generated by a state-synchronous
transducer, we modify the construction above by having the transducer consume

a power of its input word sx2m
y2n

to produce s0x2m0

y2n0

; e.g., the incrementation
of the first counter may be performed by erasing every second s and every sec-
ond block of y2n

’s. A transducer is constructed out of M in such a manner that
if M runs forever when started in configuration .s�; 0; 0/, passing through con-
figurations .si ; mi ; ni/ for i D 0; 1; : : : , then the orbit under s�xy of some ray
(constructed out of .s0; s1; : : : /) will be infinite so s�xy has infinite order; while
if M stops then s�xy has finite order.

1.4. Tilings. Our results on functionally recursive groups and transducers may
also be interpreted in terms of tilings. Let C be a finite set of colours, and let
T � CN;E;S;W be a set of Wang tiles. A valid tiling is a map t W Z

2 ! T with
t .x; y/N D t .x; y C 1/S and t .x; y/E D t .x C 1; y/W for all x; y 2 Z

2. Berger
showed in [4] that it is undecidable to determine, given T , whether there exists a
valid tiling by T . This has been improved: for �; � 2 ¹N;E; S;W º, call a set of
tiles ��-deterministic if for every c; d 2 C there exists at most one tile u 2 T with
u� D c and u� D d , and ��-complete if there exists precisely one tile u 2 T with
these conditions. Lukkarila showed in [17] that the undecidability result holds
even under the restriction that T is NE;NW; SE; SW -deterministic. Clearly a
SW -complete tileset tiles uniquely the first quadrant for any choice of colours on
the axes.

Our result on the order problem has the following translation into tilings. We
consider tilings of the upper half-plane ¹.x; y/ j y � 0º. Then the following
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problem is undecidable even for SE; SW -complete tilesets:

“given c 2 C , is there an integer n 2 N such that every tiling of

the upper half-plane with c1 on the horizontal axis is horizontally

n-periodic?”

(1.2)

Indeed, givenˆWA�S ! S�A, setC D AtS and wheneverˆ.a; s/ D .s0; a0/

build a tile with N;E; S;W -labels s0; a0; s; a respectively; also build tiles with
N;E; S;W -labels c; d; c; d for all .c; d/ 2 C 2 n .S �A/. Then the tiling problem
in (1.2) has a solution for c 2 S if and only if c has finite order in hˆi.

The word problem may also be translated to a tiling problem, but now in
hyperbolic space. The tileset is now T � CN;E;S1;S2;W . The lattice Z

2 is now
ƒ WD ¹2y.i C x/ j x; y 2 Zº � H. A tiling is a map t Wƒ ! T with
t .2y.i C x//E D t .2y.i C x C 1//W and t .2y.i C 2x//N D t .2yC1.i C x//S1

and t .2y.i C 2x C 1//N D t .2yC1.i C x//S2 for all x; y 2 Z. Tiles are visualized
as pentagons assembling into a tiling of the hyperbolic plane, invariant under the
transformations z 7! z C 1 and z 7! 2z:

The following problem is undecidable even for NE;NW -complete tilesets:
“given c 2 C , does every tiling of ¹x C iy 2 H j x 2 Œ0; 1�; y � 1ºwith c on the

edge from i to i C 1 have identical labels on the boundary half-lines ¹x D 0º and

¹x D 1º?”.
Indeed by subdividing and inserting the empty state we may assume that the

map ˆ describing our functionally recursive group satisfies ˆ.A � S/ � S2 � A;
then tiles are defined as above.

1.5. History. Links have been established since the beginning between undecid-
able problems in theoretical computer science—halting of Turing machines—and
in algebra—word problems for instance. Minsky machines, because of their sim-
plicity, have been early recognized as useful tools in this correspondence, see e.g.
Gurevich’s work [13] on identities in semigroups.

Automata semigroups are defined quite similarly to automata groups; one
merely drops the requirement that the action be by invertible maps. Deci-
sion problems have been extensively studied within the class of automata semi-
groups [1, 15]. Gillibert proved in [7] that the order problem is unsolvable in that
class. His proof is based on the undecidability of Wang’s tiling problem [4], and
harnesses Kari’s solution of the nilpotency problem for cellular automata [14].

There are usually serious difficulties in converting a solution in semigroups to
one in groups. In particular, the tilings at the heart of Gillibert’s construction give
fundamentally non-invertible transformations of A�.
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On the other hand, a direct approach to the order problem succeeded for the
restricted class of “bounded automata” groups; Bondarenko, Sidki and Zapata
prove in [5] that they have solvable order problem.

The general context considered by Grigorchuk, Nekrashevych and Sushchan-
sky in [11, Problem 7.2.1(a)] is that of asynchronous automata, namely automata
given by ˆWA � S ! S � A� that produce zero or more letters of output each
time an input letter is read. For these automata, it was already shown by Belk and
Bleak [3] that the order problem is undecidable.

Gillibert’s proof of Theorem B uses a simulation of arbitrary Turing machines
by transducers via cellular automata.

Acknowledgments. The authors are grateful to the anonymous referee for valu-
able references and remarks on Minsky machines that helped improve the clarity
of the text.

This work is supported by the “@raction” grant ANR-14-ACHN-0018-01.

2. Functionally recursive groups and Minsky machines

All our theorems are proven by embedding Minsky machine computations into
functionally recursive groups. Let us recall more precisely the definition of these
machines:

Definition 2.1. A Minsky machine is a computational device M equipped with
two integer countersm; n and a finite amount of additional memory. It has a finite
set S of states, an initial state s� 2 S , a final state s� 2 S , and for each state s ¤ s�
an instruction, which can be any of the following kind:

I: .s; m; n/ 7! .s0; mC 1; n/;

II: .s; m; n/ 7! .s0; m; nC 1/;

III: .s; m; n/ 7! .s0; mC 1; nC 1/;

IV: .s; m; n/ 7! .s0; m � 1; n/, only valid if m > 0;

V: .s; m; n/ 7! .s0; m; n� 1/, only valid if n > 0;

VI: .s; m; n/ 7! .s0; n; m/;

VII: .s; m; n/ 7! .m D 0 ‹ s0 W s00; m; n/;

VIII: .s; m; n/ 7! .n D 0 ‹ s0 W s00; m; n/;

IX: .s; m; n/ 7! m D 0 ‹ .s0; m; n/ W .s00; m � 1; n/;

X: .s; m; n/ 7! n D 0 ‹ .s0; m; n/ W .s00; m; n� 1/.

(We use the C style “?:” operator, with ‘a ‹ b W c’ meaning ‘if a then b else c’.)
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As M is turned on, its state and counters initialize at .s0; m0; n0/ D .s�; 0; 0/,
and then .siC1; miC1; niC1/ is determined from .si ; mi ; ni / using the prescribed
rules. If at some moment si D s� then M stops; otherwise it runs forever.

The machine M may also be treated as a machine with input, say n 2 N; it is
then initialized at .s0; m0; n0/ D .s�; 0; n/.

We recall the main result on Mealy machines, testifying to their computational
power:

Proposition 2.2 ([18]). (1) There is no algorithm that, given a Minksy machine M,

determines whether M stops.

(2) There is a “universal” Minsky machine M such that

¹n 2 N j M stops when turned on in configuration .s�; 0; 2
n/º

is not recursive.

Proposition 2.2 is proven (in [18, Theorem I]) by showing how an arbitrary
Turing machine T may be emulated by a Minsky machine MT. Beware, however,
that the input of T must be preprocessed before it is fed to MT; for instance, if T

starts with k 2 N on its tape, written in binary, then MT should start with 2k in
its second counter.

Likewise, a universal Turing machine Tu (that receives on its input tape a
description of a Turing machine T and simulates it) can be emulated by a universal
Minsky machine Mu, that starts with 2k on its second counter, for k a Gödel-
encoding of T.

Minsky machines with at least five counters are universal calculators; namely,
for every primitive recursion function �.n/ there exists a five-counter Minsky
machine that, when turned on in configuration .s�; 0; 0; 0; 0; n/, stops in config-
uration .s�; 0; 0; 0; 0; �.n//. This is not true for two-counter Minsky machines:
there does not, for example, exist a machine that starts in .s�; 0; n/ and stops in
.s�; 0; 2

n/, see [21]. However, a five-counter Minsky machine may be emulated by
a two-counter Minsky machine, by representing its configuration .s; i; j; k; `; m/
as .s; 0; 2i3j 5k7`11m/ in the two-counter associated machine, see [19, Chapter 14]
for details.

We finally note that only one of the instructions {I,II} and III is necessary,
and that in the presence of VI only one of I,II, one of IV,V, one of VII,VIII and
one of IX,X is necessary. Minimal sets of instructions are {III,IV,V,VII,VIII} and
{I,IV,VI,VII} and {III,IX,X} and {I,VI,IX}.

2.1. Proof of Theorem A0. Let M be a Minsky machine with stateset S0 D

¹si ; sj ; : : : º. Without loss of generality, we assume that all instructions of M are
of type I, VI, IX.
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We construct a functionally recursive group hˆMi presented by ˆMWA� S !

FS � A, for sets A; S given as follows: the generating set S consists of

� elements x, y, s�, t and u;

� for each state si 2 S0 of type I or IX, an element si ;

� for each state si 2 S0 of type VI, three elements si ; ai ; bi .

The alphabet A consists of

� four letters 0, 1, �1 and �2;

� for each state si 2 S0 of type I, a letter i1;

� for each state si 2 S0 of type IX, two letters i1 and i2;

� for each state si 2 S0 of type VI, five letters i1; i2; : : : ; i5.

Our notation thus compactly associates a collection of alphabet letters with states
of M: its states si ; sj ; sk; : : : correspond to alphabet letters i1; j1; k1; : : : ; i2; : : : ;
thus for instance with s5 of type IX are associated letters 51; 52.

The mapˆMWA�S ! FS �A is given below, with � denoting the empty word
in FS . Whenever a value of ˆM is unspecified, we take it to mean ˆM.a; s/ D

.s; a/.

� For the states s� and t; u we put

ˆM.0; s�/ D .�; �1/I ˆM.�1; x/ D .�; �1/I ˆM.�1; y/ D .�; �1/I

ˆM.�1; s�/ D .�; 0/I ˆM.�2; x/ D .�; �2/I ˆM.�2; y/ D .�; �2/I

ˆM.�1; t / D .�; �2/I ˆM.0; u/ D .u; 1/I ˆM.�2; s�/ D .�; �2/I

ˆM.�2; t / D .�; �1/I ˆM.1; u/ D .u; 0/I

� for all g 2 S n ¹uº we putˆM.1; g/ D .�; 1/, and for all a 2 A n ¹0; 1º we put
ˆM.a; u/ D .�; a/;

� for each instruction .si ; m; n/ 7! .sj ; mC 1; n/ of type I we put

ˆM.0; si/D .sj ; i1/I ˆM.i1; si /D .�; 0/I

ˆM.i1; x/D .x2; i1/I ˆM.i1; y/D .y; i1/I

� for each instruction .si ; m; n/ 7! .sj ; n; m/ of type VI, ˆM.a; s/ is written at
position .a; s/ of Table 1.

Table 1

input letter
0 i1 i2 i3 i4 i5

el
em

en
to

f
S x .xbi x ; i1/ .�; i3/ .x; i2/ .x2; i4/ .y; i5/

y .yx ; i1/ .y; i2/ .y; i4/ .x; i5/

si .aibix; i1/ .�; 0/

ai .ai ; i2/ .�; 0/

bi .bi ; i4/ .a�1
i
sj ; i5/ .�; i2/ .�; i3/
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� for each instruction .si ; m; n/ 7! .m D 0 ‹ sj W sk ;max.0; m � 1/; n/ of type
IX we put

ˆM.0; si/ D .sk; i1/I ˆM.i1; x/ D .s�1
k sjx; i2/I ˆM.i1; y/ D .y; i1/I

ˆM.i1; si/ D .�; 0/I ˆM.i2; x/ D .x�1s�1
j skx; i1/I ˆM.i2; y/ D .y; i2/:

Theorem A0 follows from the undecidability of the halting problem for the
Minsky machines (Proposition 2.2) and the following

Proposition 2.3. Consider the infinite sequence W D 01. Then the Minsky

machine M does not halt if and only if the action of hˆMi satisfies

W .s�xy/t.s�xy/�1

D W:

Proof. We encode the states of M by elements of FS . The word

.six
2m

y2n

/t .six
2m

y2n

/�1

corresponds to the configuration .si ; m; n/.
It is convenient to write ˆM.a; g/ D .g0; a0/ in the form a � g D g0 � a0.

In this manner, the computation of the functionally recursive action is given by
a sequence of exchanges of letters with words in FS . We check the following
equalities:

If .si ; m; n/ ! .sj ; mC 1; n/ is an instruction of type I, then

0 � .six
2m

y2n

/t .six
2m

y2n

/�1 D .sjx
2mC1

y2n

/t .sjx
2mC1

y2n

/�1 � 0: (2.1)

Indeed 0 � six
2m
y2n

D sj � i1 � x2m
y2n

D sjx
2mC1

y2n
� i1; the claim follows from

i1 � t D t � i1 and the reverse i1 � .six
2m
y2n

/�1 D .sjx
2mC1

y2n
/�1 � 0.

If .si ; m; n/ ! .sj ; n; m/ is an instruction of type VI, then

0mC2 � .six
2m

y2n

/t .six
2m

y2n

/�1 D .sjx
2n

y2m

/t .sjx
2n

y2m

/�1 � 0mC2: (2.2)

Indeed we first check 0 �six
2m

y2n

D aibix.x
bi x/2

m
.yx/2

n

� i1 D aix
2m

biy
2n

x � i1.
We obtained a word with two “blocks” of x: the blocks x2m

and x20
. Each

time a ‘0’ letter is multiplied on the left of that word, the size of the first block will
halve and the size of the second one will double: for m; n; p 2 N, we have

0 � aix
2mbiy

nxp D aix
mbiy

nx2p � i4

so 0mC1 � six
2m
y2n

D aixbiy
2n
x2m

� .i4/
mi1. Then

0 � aixbiy
2n

x2m

D ai .a
�1
i sj /x

2n

y2m

� i5;
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so 0mC2 � six
2m
y2n

D sjx
2n
y2m

� i5.i4/
mi1. Recalling that we have a � t D t � a for

all a D i1; : : : ; i5, the claim is proven.

If .s; m; n/ ! .m D 0 ‹ sj W sk ;max.m � 1; 0/; n/ is an instruction of type IX,
then if m D 0 we have

0 � .six
2m

y2n

/t .six
2m

y2n

/�1 D .sjx
2m

y2n

/t .sjx
2m

y2n

/�1 � 0 (2.3)

while if m > 0 we have

0 � .six
2m

y2n

/t .six
2m

y2n

/�1 D .skx
2m�1

y2n

/t .skx
2m�1

y2n

/�1 � 0: (2.4)

Indeed in the first case we have

0 � sixy
2n

D sk.s
�1
k sjx/y

2n

� i2;

while in the second case we have

0 � six
2m

y2n

D sk.s
�1
j skx � x�1s�1

k sjx/
2m�1

y2n

� i1 D skx
2m�1

y2n

� i1:

Recalling that we have a � t D t � a for all a D i1; i2, the claim is proven.

From (2.1)–(2.4) it follows that if M does not halt thenW .s�xy/t.s�xy/�1
D W .

Conversely, if M halts then there exist k;m; n 2 N such that

0k � .s�xy/t.s�xy/
�1 D .s�x

2m

y2n

/t .s�x
2m

y2n

/�1 � 0k :

Then

0 � s�x
2m

y2n

t .s�x
2m

y2n

/�1 D �1 � t .s�x
2m

y2n

/�1 D �2 � .s�x
2m

y2n

/�1 D �2:

In that case, we have W .s�xy/t.s�xy/�1
D 0k�20

1 ¤ W . �

The computations are best carried on ˆM’s dual Moore diagram �, see Fig-
ure 2: this is the directed labeled graph with vertex set A and with for all
a 2 A; s 2 S an edge from a to b labeled .s; t / whenever ˆM.a; s/ D .t; b/.
One checks an equality ‘ˆM.a; s/ D .t; b/’ by finding in � a path starting at a
with input label s; the endpoint of the path is b, and the output label is t .

2.2. Proof of Theorem A. We have not yet used the letter 1 and the state u of
ˆM. Theorem A follows now from the following

Proposition 2.4. The Minsky machine M halts if and only if

Œ.s�xy/t.s�xy/
�1; u� ¤ 1 in hˆMi:
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0

1 �1 �2

i1

i1 i2i1

i2

i3

i4

i5 Type I

Type IX

Type VI

.u; u/
.s�; �/

.si ; sj /

.si ; sk/.si ; ai bi x/

.ai ; ai /

.g; �/8g ¤ u

.t; �/

.x; �/ .y; �/ .x; �/ .y; �/

.s�; �/

.x; x2/

.y; y/

.t; t/

.t; t/

.y; y/

.x; s�1
k

sj x/

.t; t/

.x; x�1s�1
j

skx/
.y; y/

.t; t/

.x; xbi x/
.y; yx /

.x; �/

.bi ; bi /

.x; x/

.bi ; a�1
i

sj /

.x; x2/
.y; y/

.t; t/

.x; y/ .y; x/

.t; t/

Figure 2. The dual Moore diagram of ˆM, used in the proof of Theorem A

Proof. The element u acts onA! as follows: it scansX 2 A! for its longest prefix
in ¹0; 1º�, and exchanges all 0’s and 1’s in that prefix. Write g D .s�xy/t.s�xy/

�1;
from Proposition 2.3 we know that g fixes 01 if and only if M does not halt.

Assume first that M does not halt; then g in fact also fixes ¹0; 1º1, so the
supports of g and u are disjoint and Œg; u� D 1 in hˆMi.

Assume next that M does halt; without loss of generality, we may assume M

does not stop immediately, so there is k � 1 such that .0kC1/g D 0k�2. Since
.0kC1/u D 1kC1 and .0k�2/

u D 1k�2 and .1kC1/g D 1kC1 and .1k�2/
g D

1k�2, the commutator Œg; u� acts as a 2-2-cycle .0kC1; 0k�2/.1
kC1; 1k�2/ and in

particular Œg; u� ¤ 1 in hˆMi:

1kC1 0kC1 0k�2 1k�2
g

u g u
g

�

2.3. Proof of Theorem A00. Consider a Minsky machine Mu such that ¹n 2 N j

Mu halts when started in configuration .s�; 0; 2n/º is not recursive, see Proposi-
tion 2.2(2). Theorem A00 follows by considering in the group hˆMu

i the elements
Œ.s�xy

2n
/t .s�xy

2n
/�1; u�; this set of words is recursive, but the subset of those

that equal 1 in hˆMu
i is not recursive.
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3. Automata groups and Minsky machines

3.1. Proof of Theorem B. Let M by a Minsky machine with stateset S0.
Without loss of generality, we assume that all instructions of M are of type
III,IV,V,VII,VIII, as defined in the beginning of Section 2, so

S0 D SIII t SIV t SV t SVII t SVIII t ¹s�º:

We consider the transducer with stateset S WD S˙1
0 t ¹�; x; x�1; y; y�1º and

alphabet

A D ¹IIIi ; IVi ;Vi ;VIIj ;VIIIj j i D 1; 2; N1; N2I j D 1; : : : ; 4; N1; : : : ; N4º:

The structure of the transducer is given by its map ˆMWA � S ! S � A, first
described as a table, with ˆM.a; s/ at position .a; s/. The state � is the identity,
and ˆM.a; �/ D .�; a/ for all a 2 A.

For all instructions .s; m; n/ 7! .s0; m C 1; n C 1/ of type III and for all
t 2 S0 n SIII we have Table 2.

Table 2

input letter
III1 III2 IIIN1 IIIN2

in
st

at
e x .x; III1/ .x; III2/ .x�1; IIIN1/ .x�1; IIIN2/

y .y; III1/ .y; III2/ .y�1; IIIN1/ .y�1; IIIN1/

s .s0; III2/ .�; III1/ .�; IIIN2/ ..s0/�1; III N1/

t .�; III N1/ .�; IIIN2/ .�; III1/ .�; III2/

For all instructions .s; m; n/ 7! .s0; m�1; n/ of type IV and for all t 2 S0 nSIV ,
we have Table 3. The same applies for an instruction of type V, with the roles of
x; y switched.

Table 3

input letter
IV1 IV2 IVN1 IVN2

in
st

at
e x .x; IV2/ .�; IV1/ .�; IV N2/ .x�1; IVN1/

y .y; IV1/ .y; IV2/ .y�1; IVN1/ .y�1; IVN2/

s .s0; IV1/ .s0; IV2/ ..s0/�1; IVN1/ ..s0/�1; IVN2/

t .�; IVN1/ .�; IVN2/ .�; IV1/ .�; IV2/

For an instruction .s; m; n/ 7! .m D 0 ‹ s0 W s00; m; n/ of type VII and for all
t 2 S0 n SVII , we have Table 4. The same applies for an instruction of type VIII,
with the roles of x; y switched. Note that s� is treated as a state t in all tables
above.
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Table 4

input letter
VII1 VII2 VII3 VII4 VII N1 VIIN2 VIIN3 VIIN4

in
st

at
e x .x;VII4/ .�;VII3/ .�;VII2/ .x;VII1/ .x�1;VIIN4/ .�;VII N3/ .�;VII N2/ .x�1;VIIN1/

y .y;VII1/ .�;VII2/ .�;VII3/ .y;VII4/ .y�1;VIIN1/ .�;VII N2/ .�;VII N3/ .y�1;VII N4/

s .�;VII2/ .s00;VII1/ .s0;VII4/ .�;VII N4/ ..s00/�1;VII N2/ .�;VII N1/ .�;VII3/ ..s0/�1;VIIN3/

t .�;VII N1/ .�;VIIN2/ .�;VIIN3/ .�;VII N4/ .�;VII1/ .�;VII2/ .�;VII3/ .�;VII4/
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Theorem B follows from the undecidability of the halting problem for Minsky
machines, and the following

Proposition 3.1. The Minsky machine M constructed above halts if and only if

the element s�xy has finite order in hˆMi.

Proof. Set G D hˆMi. For g 2 G, denote by C.g/ its symmetrized conjugacy
class:1

C.g/ WD ¹g˙x j x 2 Gº:

Given a symmetrized conjugacy class C , choose a representative g in it, let
A D A1 t � � � t A` be the decomposition of A into cycles for the action of g,
and choose representatives ai 2 Ai . We have x̂

M.ai ; g
#Ai / D .hi ; ai/ for some

hi 2 G, and it is easy to see that the collection of symmetrized conjugacy class
¹C.hi/ j i D 1; : : : ; `º is independent of the choice of g and the ai .

We construct an integer-labeled, directed graph2 whose vertices are sym-
metrized conjugacy classes in G; for a conjugacy class C as above, there are `
edges starting at C , ending respectively at C.h1/; : : : ; C.h`/ with labels #A1; : : : ;

#A`.

Lemma 3.2. For g 2 G, its order (in N [ ¹1º) is the least common multiple,

along all paths starting at C.g/, of the product of the labels along the path.

Proof. Consider a path starting at C.g/, with labels n1; : : : ; ns, and going through
vertices C.g1/; : : : ; C.gs/. Then g has an orbit of length n1 on A, so the order of
g is a multiple of n1. Furthermore, gn1 fixes pointwise that orbit, and acts as an
element of C.g1/ on any sequence that starts by a letter in that orbit. Recursively,
the order of g1 is a multiple of n2 � � �ns, so the order of g is a multiple of n1 � � �ns.
In particular, if there are paths with arbitrarily large product of labels then g has
infinite order.

Conversely, if g has infinite order then there are arbitrarily long orbits of g
on A�, so there are paths with arbitrarily large product of labels; and if m be the
least common multiple of all path labels then all edges on paths starting at C.gm/

are labeled 1 so gm fixes every sequence and therefore gm D 1. 4

Let us compute the subgraph spanned by C.s�xy/. For the computations, it is
helpful to picture the operation of the transducer ˆM by means of its dual Moore
diagram �, see Figure 3. Given g 2 G, we compute all primitive cycles in �

1 The reason we consider symmetrized conjugacy classes is that every element of C.g/

has same order, and a process will naturally produce symmetrized conjugacy classes out of
symmetrized conjugacy classes, but would not be well-defined at the level of usual conjugacy
classes.

2 This graph essentially appears in the solution of [5] to the order problem in bounded
automata.
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whose input label is a power of g, and read the corresponding output label; these
are the hi in the map on symmetrized conjugacy classes C.g/ ¹C.hi/º.

III1

III2

IIIN1

IIIN2

IV1

IV2

IVN1

IVN2

VII1

VII2 VII3

VII4

VIIN3

VIIN4 VIIN1

VIIN2

.s
;
s

0
/

.x; x/

.y; y/

.x; x/

.y; y/

.y; y 1/

.x; x 1/
.s

;
.s

0
/

1
/

.y; y 1/

.x; x 1/

.s; s0/

.x; x/

.y; y/

.s; s0/

.y; y/

.s; .s0/ 1/

.y; y 1/

.s; .s0/ 1/

.x
;
x

1
/

.y; y 1/

.x; x/
.y; y/

.s; s00/ .s; s0/

.y; y/

.s; .s00/ 1/

.x; x 1/

.y; y 1/

.s; .s0/ 1/

.y; y 1/

Figure 3. The dual Moore diagram of ˆM, used in the proof of Theorem B

We first note, by direct inspection, that x and y commute in G. This follows
by tracing the path x�1y�1xy in the graphs above, and noting that they always
induce the trivial permutation of A with output either trivial or conjugate to
.x�1y�1xy/˙1.

We now claim that, if .s; m; n/ ! .s0; m0; n0/ is a transition of the machine M,

then the conjugacy class C.sx2m

y2n

/ has at least one arrow to C.s0x2m0

y2n0

/, and
possibly other arrows, all of them to C.1/. We also claim that if s is not of type

IV or V, then arrows to C.s0x2m0

y2n0

/ are with labels > 1; and all arrows from
C.s�x

2m
y2n

/ are arrows to C.1/. We see that if the machine halts then every path
starting at C.s�xy/ has only a finite number of labels > 1, and this shows that the
order of s�xy is finite.

On the other hand, if the machine does not halt then there is an path with
infinitely many labels > 1 (because no Minsky machine can decrease its counters
infinitely many times in a row) so s�xy has infinite order.
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Note that our transducer has the property ˆM.LNi ; g/ D ˆM.Li ; g
�1/, for

all g 2 S and all L 2 ¹III; IV;V;VII;VIIIº. Also note that ˆM.Li ; t / D

ˆM.Li ; t
�1/ D .�; LNi/ whenever t is any instruction not of type L.

Using this, we can prove that if t is not of typeL, then tgngn�1 � � �g1tg1g2 � � �gn

fixes the orbit ¹Liº with output �. Indeed,

tgngn�1 � � �g1tg1g2 � � �gn D .gntgnt
�1 � tgn�1gn�2 � � �g1tg1g2 � � �gn�1/

gn ;

and we use induction on n. It follows that .txmyn/2 fixes Li with outputs �, i.e.,
there is an arrow from C.txmyn/ to C.1/ with label 2.

Let us first restrict to the orbit ¹IIIiº of G on A. We consider g WD sxmyn with
s an instruction of type III. It acts as a product of two cycles .III1; III2/.III N1; III N2/;
the output label of g2 on the first cycle, starting at III1, is

s0xmyn�xmyn D s0x2my2n;

and the output of g2 starting on the second cycle at III N1 is

�x�my�n.s0/�1x�my�n 2 C.s0x2my2n/:

There are therefore two arrows from C.sx2m
y2n

/ to C.s0x2mC1
y2nC1

/, as re-
quired. We do not consider g WD txmyn with t an instruction of different type
or s�, because it was considered above (there are some arrows to C.1/ with la-
bels 2).

We restrict next to the orbit ¹IViº of G and consider the case g D sx2myn.
(We do not need to consider cases g D sx2mC1yn or g D txmyn, for the first
because we suppose that if m D 0 then M does not perform an instruction of type
IV, and for the second because it was already considered above.)

An element g D sx2myn fixes IV1, IV2, IV N1 and IV N2, its outputs are respec-
tively s0.x�/myn D s0xmyn, s0xmyn, .s0/�1x�my�n and .s0/�1x�my�n. Hence
there are four arrows from C.sx2m

y2n
/ to C.s0x2m�1

y2n
/, all with labels 1.

We restrict next to the orbit ¹VIIiº of G and perform the same computations;
the result is in Table 5.

Table 5

g 2 G cycles of g output, starting at first element of the cycle

sx2myn

.VII1;VII2/ �s00x2myn

.VII3;VII4;VIIN4;VIIN3/ s0x2myn�x�2my�n.s0/�1� D 1

.VIIN1;VIIN2/ .s00/�1�x�2my�n

sx2mC1yn

.VII1;VII3/ �s0x2mC1yn

.VII2;VII4;VIIN1;VIIN3/ s00x2mC1yn�x�2m�1y�n.s00/�1� D 1

.VIIN2;VIIN4/ �x�2m�1y�n.s0/�1�
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If m > 0 then there are two arrows from C.sx2m
y2n

/ to C.s00x2m
y2n

/ with
label 2 and an arrow to C.1/with label 4; ifm D 0 then there are two arrows from
C.sx2m

y2n
/ to C.s00x2m

y2n
/ with label 4 and an arrow to C.1/ with label 4.

The orbits ¹Vi º and ¹VIIIiº are investigated in the same way as ¹IViº and ¹VIIiº

respectively. �

3.2. Proof of Theorem B00. Consider a Minsky machine Mu such that ¹n 2 N j

Mu halts when started in configuration .s�; 0; 2n/º is not recursive, see Proposi-
tion 2.2(2). Theorem B00 follows by considering in the group hˆMu

i the elements
s D s�x and t D y.

3.3. Proof of Theorem B0. Let M be a Minsky machine with stateset S0. With-
out loss of generality, we assume that all instructions are of type III,IX,X.

We associate to it the transducer with stateset

Q WD S0 t ¹�; x; yº

and alphabet

A D ¹0; IIIi ; IXj ;Xj j i D 1; 2I j D 1; : : : ; 4º:

The structure of the transducer is given by its map ˆMWA �Q ! Q � A.
The state � is the identity, and ˆM.a; �/ D .�; a/ for all a 2 A.

� For all instructions

.si ; m; n/ 7�! .s0
i ; mC 1; nC 1/

of type III we have Table 6 and every instruction t of another type acts as
ˆM.t; III`/ D .III`; t /.

Table 6

input letter
0 III1 III2

in
st

at
e x .�; 0/ .x; III1/ .x; III2/

y .�; 0/ .y; III1/ .y; III2/

si .s0
i
; III1/ .�; III2/ .�; 0/

� For all instructions

.sj ; m; n/ 7�! m D 0 ‹ .s0
j ; m; n/ W .s00

j ; m � 1; n/

of type IX we have Table 7 and every instruction t of another type acts as
ˆM.IX`; t / D .t; IX`/.
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Table 7

input letter
0 IX1 IX2 IX3 IX4

in
st

at
e x .�; 0/ .�; IX2/ .�; IX1/ .x; IX4/ .�; IX3/

y .�; 0/ .�; IX1/ .�; IX2/ .y; IX3/ .y; IX4/

sj .�; IX1/ .s00
j
; IX4/ .s0

j
; IX3/ .s0

j
; IX2/ .�; 0/

� The same applies for every instruction

.sk ; m; n/ 7�! n D 0 ‹ .s0
k; m; n/ W .s00

k ; m; n� 1/

of type X, with the roles of x and y switched.

� For all a 2 A we have ˆM.a; s�/ D .�; a/.

We claim that the orbit of 01 under s�xy is finite if and only if the machine
M stops.

SetG D hˆMi. We construct an integer-labeled, directed graph whose vertices
are elements of G. For g 2 G consider its action on A and the minimal pg such
that gpg fixes 0, i.e., 0 � gpg D g0 � 0. In our graph we put an edge g ! g0 with
label pg on it.

The size of the the orbit of 01 under s�xy is a finite number or 1 and it is
equal to the product of the labels along the path starting at s�xy.

We claim that for any instruction .s; m; n/ ! .s0; m0; n0/ there is an edge from

sx2m
y2n

to s0x2m0

y2n0

with label 3, and an edge from s�x
2m
y2n

to 1. This is
checked on the dual Moore diagram of ˆM, see Figure 4:

We first note that x and y commute inG. If g D six
myn and si is an instruction

of type III, then the orbit of 0 under the action of g is .0; III1; III2/. There is an
edge labeled 3 from g to s0

ix
myn�xmyn D s0

ix
2my2n.

Consider next sj an instruction of type IX. There are two cases: if g D sjxy
n

then the orbit of 0 is .0; IX2; IX4/ and the output is �s0
jxy

n�; if g D sjx
2myn then

the orbit of 0 is .0; IX1; IX4/ and the output is �s00
j x

myn�.

This means that if m D 0 then there is an edge labeled 3 from sjx
2m

y2n

to s0
jx

2m
y2n

, and if m > 0 then there is an edge labeled 3 from sjx
2m
y2n

to

s00
j x

2m�1
y2n

.
The same naturally applies to instructions of type IX. Finally, for allm; n 2 N

the element s�xmyn fixes 0, and there is an edge labeled 1 from s�x
myn to 1.

3.4. Contracting automata: proof of Theorem C. We finally explain how to
make the transducersˆM of the previous subsections contracting. We expand the
definition from the introduction:



The word and order problems 19

0

IX1IX2

IX3 IX4

X1 X2

X3X4

III1 III2

.s
i
; s

0
i
/

.s

.si
.y; y/

.x; x/

.s
i

.y; y/

.x; x/

.sk

.s
k

;
s

00 k
/

.s
k

;
s

0 k
/

.x; x/

.sk

.x; x/
.y; y/

.sj

.s
j

;
s

00 j
/

.s
j

;
s

0 j
/

.y; y/

.sj

.y; y/

.x; x/

Figure 4. The dual Moore diagram of ˆM, used in the proof of Theorem B0

Definition 3.3 ([20, Definition 2.11.1]). Let G D hˆi be a self-similar automata
group with ˆWA � S ! S � A and x̂ WA � G ! G � A. For g 2 G and u 2 A�,
the state g@u is the unique element ofG such that .uv/g D ugvg@u; namely, the
action of g on the tails of sequences starting with u.

The group G is contracting if there exists a finite subset N � G such that, for
all g 2 G, there exists n.g/ 2 N such that g@u 2 N whenever juj � n.g/.

The minimal subset N satisfying the definition is called the nucleus. In
particular, one has n@a 2 N for all .a; n/ 2 A � N , so ˆ induces an automaton
still written ˆWA � N ! N � A. Up to replacing S by zS WD S [ N and A by
zA WD An for n larger than maxg2 zS2 n.g/, thus making the transducer process n

letters at a time, one may also assume

x̂ . zA � zS2/ � zS � zA:

A transducer ˆ with this extra property is called nuclear.
Note that is is probably undecidable whether a self-similar group hˆi is con-

tracting; but it is easy to decide whether a transducerˆWA�S ! S�A is nuclear:
by minimizing the composite transducer A�S3 ! S �A�S2 ! S2 �A�S !

S3 � A, find the set R of all words s1s2s3 2 S3 that equal 1 in G. Then ˆ is
nuclear if and only if for all a 2 A; s1; s2 2 S there exists s3 2 S such that if
ˆ.a; s1/ D .s0

1; b/ and ˆ.b; s2/ D .s0
2; c/ then s0

1s
0
2s

�1
3 2 R. The more precise

form of Theorem C is:

Theorem 3.4. There is no algorithm that, given a nuclear transducerˆWA�S !

S�A and a 2 A and s 2 S , determines the cardinality of the orbit of a1 under hsi.
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There is no algorithm that, given a nuclear transducerˆWA�S ! S �A and

s 2 S , determines the order of s in hˆi.

Note that the group is not changed by these operations of replacing S by
N and A by An. If ˆ is nuclear, then hˆi is contracting in the sense of the
introduction, since jg0j � .jgjC1/=2 in the word metric defined byN . Conversely,
if jg0j � �jgj C C then one may take N D ¹g 2 G j C=.1 � �/ � jgjº to see that
G is contracting in the sense of Definition 3.3.

Lemma 3.5. Let ˆWA � S ! S � A be a transducer. If there is a constant

n 2 N such that every reduced path of length � n in the dual Moore diagram of

ˆ contains an � letter along its output, then hˆi is contracting.

Proof. Consider g 2 hˆi, and represent it by a word w 2 S� of length ` D jgj.
Factor w D w1 : : : wt with jwi j D n for all i D 1; : : : ; t � 1 and jwt j < n.

Then every g0 as in (1.1) is computed by following, in the dual Moore diagram,
the path starting at a1 with label w on its input. The output label along that path
is g0, and by hypothesis each time a segment wi is read, for i < t , an � letter is
produced for g0; so jg0j � `� t C 1. Now t D d`=ne, so

jg0j � `� d`=ne C 1 � .1� 1=n/jgj C 1: �

We shall modify the transducers ˆM by composing them with appropriate
machines. We recall the general definition: letˆWA�S ! S �A and‰WB�S !

S � B be transducers with same stateset S . Their composition is the transducer
ˆ ı‰ with alphabet A � B , given by

ˆ ı‰W .A � B/ � S D A � .B � S/
A�‰
�! A � .S � B/

D .A � S/� B
ˆ�B
�! .S � A/ � B D S � .A � B/:

We are given a transducer ˆ with stateset S D ¹s1; : : : ; s`; x; yº and alpha-
bet A. We write G D hˆi, and freely identify words in S� with their value in G.
We require that x; y commute.

For every i 2 ¹1; : : : ; `º, consider the transducer ˆi with alphabet Ai D ¹0; 1º

and transitions ˆi .a; q/ D .a D 0 ‹ q W �; q D si ‹ 1� a W a/.
Note (by drawing the dual Moore diagram and deleting the transitions with �

output) that the only paths with input and output of same length are of the form
s�a

i wsb
i for some a; b 2 ¹0; 1º and w a word not involving si .

Note also that for a word w of form sjx
myn

(1) if i D j then ˆi .0; w
2/ D .w; 0/ and ˆi .1; w

2/ D .w0; 1/ with w0 conjugate
to w;

(2) if i ¤ j then ˆi .0; w/ D .w; 0/ and ˆi .1; w/ D .�; 1/.
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Consider also a transducer ˆ0 with alphabet A0 D ¹0; 1º3 and transitions

ˆ0..a; b; c/; si/ D .c D 0 ‹ si W �; .a; b; 1� c// for all i I

ˆ0..a; b; c/; x/ D .a D 0 ‹ x W �; .1� a; b; c//I

ˆ0..a; b; c/; y/ D .b D 0 ‹ y W �; .a; 1� b; c//:

Note that, in the dual Moore diagram of ˆ0, all paths with input label of the
form s�a

i xmynsb
j have shorter output label as soon as jmj C jnj � 3. Note

also that if w is a word of the form six
myn then for all .a; b; c/ 2 A0 we

have ˆ0..a; b; c/; w
2/ D .w0; .a; b; c// for some permutation w0 of w; so in

particular w0 is conjugate to w because x and y commute. Furthermore, for
.a; b; c/ D .0; 0; 0/ we get w0 D w in G.

Proposition 3.6. Under the hypotheses above, the transducerˆ0 WD ˆıˆ0 ıˆ1 ı

� � � ıˆ` generates a contracting group, and whenever we haveˆ.a; .six
myn/t / D

.s0
ix

m0

yn0

; a/ in the original transducer we have for all j 2 ¹0; 1º`C3 the relation

ˆ0..j; a/; .six
myn/4t / D .w; .j; a//, with w either equal to 1 or conjugate to

s0
ix

m0

yn0

. Furthermore, if j D 0`C3 then w D s0
ix

m0

yn0

:

Proof. After applying the transducers ˆ1; : : : ; ˆ`, the only words that don’t get
shortened are of the form s�a

i w.x; y/sb
j for some i; j 2 ¹1; : : : ; `º and some

a; b 2 ¹0; 1º. These get shortened by ˆ0 as soon as jwj � 3, using the fact that x
and y commute. It follows that hˆ0i is contracting.

Consider the transitions of .sixmyn/4 in transducer ˆ1 ı � � � ı ˆ`. On input
letter 0` it produces .sixmyn/2, on input letter 0 � � �1 � � � 0 with the ‘1’ in position
i it produces a conjugate of .sixmyn/2 and on all other input letters it produces �.
Feed then .sixmyn/2 to transducerˆ0; on input letter 000 it produces sixmyn and
on all other input letters it produces a conjugate of sixmyn. Feed finally sixmyn

to ˆ to conclude the proof. �

We are ready to finish the proof of Theorem 3.4. We constructed an integer-
labeled graph for a transducerˆ, whose vertices are elements ofG for Theorem B0

or symmetrized conjugacy classes for Theorem B.
By Proposition 3.6, the transducerˆ0 is contracting. Let us check that the order

problems for hˆi and for hˆ0i are equivalent.
A graph for ˆ0 will have the same set of vertices as the graph for ˆ, and

Proposition 3.6 shows that this new graph has the same set of outgoing edges
for each element of form six

myn, with labels multiplied by 4 and, possibly, some
new edges to 1 (or to C.1/). Since in the old graph there were no loops at non-
identity elements, s�xy has infinite order in hˆ0i if and only if it has infinite order
in hˆi, and the orbit of .0; 0`C3/1 is infinite under the action of s�xy 2 hˆ0i if
and only if the orbit of 01 is infinite under the action of s�xy 2 hˆi.

Finally, by replacing the stateset S by zS D S [N and A by zA D An, we may
assume that ˆ0 is nuclear.
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4. Outlook

We proved in this article the undecidability of the order problem for automata
groups, namely groups of transformations generated by a transducer.

If the transducer belongs to a restricted class, it may well be that the order
problem becomes decidable. Klimann, Picantin and Savchuk compute in [16]
orbits of automata groups and deduce some positive results on the order problem.

Here are some classes of transducers that seem to be of particular importance:

Transducers of polynomial growth. In a transducerˆ (represented by a graph as in
Figure 1), let ˛.n/ denote the number of paths of length n that end in a non-identity
state. If ˛.n/ is a bounded function (as is the case for the Grigorchuk group), then
the order problem is solvable in hˆi, see [5]. Is it still solvable if ˛.n/ is bounded
by a linear function? or by a polynomial of degree d? The groups generated by
such transducers have been considered by Sidki [22].

Reset transducers. These are transducers ˆ with ˆ.a; s/ D .�.a/;  .a; s// for
some functions �;  ; namely, the state reached by the transducer is independent of
the original state. These transducers are intimately connected to tilings, by Kari’s
construction [14]. Gillibert proved in [7] that the order problem is unsolvable for
semigroups of reset automata. Is it solvable in groups of reset automata?

Reversible transducers. These are transducers whose dual is invertible; they
should be related to reversible Turing or Minsky machines. Is the order problem
solvable for groups generated by reversible automata?

Bireversible transducers. These are transducers ˆ such that all 8 transducers
obtained from ˆ by inverting or permuting the stateset and alphabet remain
transducers; they give another point of view on square complexes (by tiling the
plane with squares whose labels are .a; s; a0; s0/ when ˆ.a; s/ D .s0; a0/). Is the
order problem solvable for groups generated by bireversible automata?

We expect it to be undecidable whether a functionally recursive group is
actually an automata group (for a larger generating set), whether an automata
group is contracting, and even whether a contracting group is finite (for the
finiteness problem of automata groups, see [1]). Again, the related questions for
semigroups are known to be undecidable by constructions in or similar to [7].
All these questions may be asked in terms of finiteness of orbits rather than
finiteness of (cyclic) subgroups, as we actually did in this paper; see [2] for a
general connection.
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