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We prove that the word problem is undecidable in functionally recursive groups, and that the order problem is undecidable in automata groups, even under the assumption that they are contracting.

Introduction

Let A be a finite set (the alphabet), and consider a group G acting faithfully and "self-similarly" on the set A of words over A. This means that every g 2 G acts in the form .a 1 : : : a n / g D a 0 1 .a 2 : : : a n / g 0 (1.1)

for some a 0 1 2 A and some g 0 2 G depending only on a 1 ; g; we encode them as .g 0 ; a 0 1 / D x ˆ.a 1 ; g/ for a map x ˆW A G ! G A. If furthermore G is finitely generated (say by a finite set S of states, so G is a quotient F S G of the free group on S ), then its action may be described by finite data, namely a lift ˆW A S ! F S A of the restriction of x ˆto the generators of G. A finitely generated group given in this manner is called functionally recursive [6, §3], or self-similar; we call G the group presented by ˆ, and write G D hˆi, and we call ˆa (state-asynchronous) transducer. Note that we restrict ourselves to alphabetsynchronous transducers (see the remark in §1.5): they read and write precisely one letter at each clock tick.

Even though the map ˆcompletely determines the action of G, and therefore G itself, it is unclear how much of G is known from ˆ. Our first result is as negative as can be:

Theorem A. There is no algorithm that, given ˆW A S ! F S A and s 2 S , determines whether s D 1 in hˆi.

1.1. Automata groups. Assume now that G is a functionally recursive group, and that in the action (1.1) the elements g 0 have length at most the length of g, in the generating set S . Then, up to replacing S by S [ S 1 [ ¹1º, the map ˆtakes the form ˆW A S ! S A; we call it a finite state transducer. The group G is called an automata group; these form a notorious class of groups, containing all finitely generated linear groups as well as infinite torsion groups such as the "Grigorchuk group" [START_REF] Grigorchuk | On Burnside's problem on periodic groups[END_REF] and "Gupta-Sidki groups" [START_REF] Gupta | On the Burnside problem for periodic groups[END_REF]. The Grigorchuk group is also a group of intermediate word-growth, and was used to settle the Milnor problem on group growth [START_REF] Grigorchuk | On Milnor's problem of group growth[END_REF].

The action of S , and of G itself, may be conveniently described by a finite labeled graph called its Moore diagram. Consider the directed graph with vertex set S and an edge from s to t labeled .a; b/ whenever ˆ.a; s/ D .t; b/; then the action of s 2 S on A is determined as follows: given a 1 : : : a n 2 A , find the unique path in starting at s and whose first label letters read a 1 : : : a n ; let b 1 : : : b n be the second label letters; then .a 1 : : : a n / s D b 1 : : : b n . See Figure 1 for the graph describing the Grigorchuk group. Every element of G (say represented by a word w of length n in S ) admits a similar description, but now using a graph with vertex set S n . The word w represents the identity in G if and only if at every vertex reachable from w all the outgoing edges have labels in ¹.a; a/ j a 2 Aº. It follows that the word problem is decidable in G, and even belongs to L S (and therefore to E T ); but that is about as much as is known. We consider the "order problem" (determine the order of an element), which was raised at the end of last century by Sidki [22, § §5.2-5.3, and public lectures] and by Grigorchuk, Nekrashevych and Sushchansky [START_REF] Grigorchuk | Suščans 0 kiȋ, Automata, dynamical systems, and groups[END_REF]Problem 7.2.1(a)], and was independently solved by Gillibert [START_REF] Gillibert | An automaton group with undecidable order and Engel problems[END_REF]:

Theorem B.
There is no algorithm that, given ˆW A S ! S A and s 2 S , determines the order of s in hˆi, namely the cardinality of hsi.

Worse than that, the action is uncomputable in the following sense: consider the natural extension of the action of hˆi to A 1 . Then we have the following variants of Theorems A and B: Theorem A 0 . There is no algorithm that, given ˆW A S ! F S A and a 2 A and s 2 S , determines whether a 1 is fixed by s. Theorem B 0 . There is no algorithm that, given ˆW A S ! S A and a 2 A and s 2 S , determines the cardinality of the orbit of a 1 under hsi.

The word and order problems 3 Finally, the results in Theorems A and B can be expressed in a uniform framework as follows:

Theorem A 00 . There is a functionally recursive group hˆi with ˆW AS ! F S A such that ¹s 2 F S j s D 1 in hˆiº is not recursive. Theorem B 00 . There is an automata group hˆi with ˆW A S ! S A, and two states s; t 2 S , such that the set ¹n 2 N j st n has finite orderº is not recursive. 

Contracting groups.

Assume now that G is a functionally recursive group, and that in the action (1.1) the elements g 0 are much shorter than g, in the generating set S , in the sense that there are constants < 1 and C with jg 0 j jgj C C for all g 2 G. Then, up to replacing S by the set of all words of length C =.1 /, we also have jg 0 j jgj; we have thus defined a subclass of automata groups, called contracting automata groups (see §3.4 for a more precise definition). Their word problem is decidable in L S (and therefore in P T ). We will see, however, that the order and orbit order problems remain unsolvable in that restricted class:

Theorem C (= Theorem 3.4). The transducers constructed in Theorems B and B 0 may be assumed to generate contracting groups.

Sketch of proofs.

We encode Minsky machines in functionally recursive groups. Minsky machines (see [START_REF] Minsky | Computation finite and infinite machines[END_REF]Chapter 11]) are restricted Turing machines with two tapes, which may move the tapes and sense the tapes' end but may not write on them; equivalently, they are finite state automata equipped with two counters with values in N that may be incremented, decremented and tested for 0.

Let M be a Minsky machine. We construct a functionally recursive group containing elements x; y and an element s for each state of M, and encode configurations of M in the group as follows: when the machine is in state s with counter values .m; n/, we encode it by the word sx 2 m y 2 n . The action of the group is so devised that if the machine transitions from .s; m; n/ to .s 0 ; m 0 ; n 0 / then the action of sx 2 m y 2 n induces, on a certain subtree, the action of s 0 x 2 m 0 y 2 n 0 . It then follows that the image of a prescribed ray under sx 2 m y 2 n records the computational steps of M when started in .s; m; n/, and in particular whether the machine reached a final state-the image of the ray will then contain a certain marker symbol. We construct an auxiliary element t that only acts on sequences containing this marker symbol, and then .sx 2 m y 2 n /t .sx 2 m y 2 n / 1 fixes the original ray if and only if the machine never reaches the final state. Taking the commutator of that last element with an element acting only in the neighbourhood of the original ray yields a group element that is trivial if and only if the machine never reaches the final state.

It is an inherent part of the construction that sometimes the output of the transducer is longer than the input (e.g., if M increments its first counter, the functional recursion must replace x by x 2 ).

To obtain an automata group, namely a group generated by a state-synchronous transducer, we modify the construction above by having the transducer consume a power of its input word sx 2 m y 2 n to produce s 0 x 2 m 0 y 2 n 0 ; e.g., the incrementation of the first counter may be performed by erasing every second s and every second block of y 2 n 's. A transducer is constructed out of M in such a manner that if M runs forever when started in configuration .s ; 0; 0/, passing through configurations .s i ; m i ; n i / for i D 0; 1; : : : , then the orbit under s xy of some ray (constructed out of .s 0 ; s 1 ; : : : /) will be infinite so s xy has infinite order; while if M stops then s xy has finite order. 1.4. Tilings. Our results on functionally recursive groups and transducers may also be interpreted in terms of tilings. Let C be a finite set of colours, and let T C N;E;S;W be a set of Wang tiles. A valid tiling is a map t W Z 2 ! T with t .x; y/ N D t .x; y C 1/ S and t .x; y/ E D t .x C 1; y/ W for all x; y 2 Z 2 . Berger showed in [START_REF] Berger | The undecidability of the domino problem[END_REF] that it is undecidable to determine, given T , whether there exists a valid tiling by T . This has been improved: for ; 2 ¹N; E; S; W º, call a set of tiles -deterministic if for every c; d 2 C there exists at most one tile u 2 T with u D c and u D d , and -complete if there exists precisely one tile u 2 T with these conditions. Lukkarila showed in [START_REF] Lukkarila | The 4-way deterministic tiling problem is undecidable[END_REF] that the undecidability result holds even under the restriction that T is NE; N W; SE; S W -deterministic. Clearly a S W -complete tileset tiles uniquely the first quadrant for any choice of colours on the axes.

Our result on the order problem has the following translation into tilings. We consider tilings of the upper half-plane ¹.x; y/ j y 0º. Then the following problem is undecidable even for SE; S W -complete tilesets:

"given c 2 C , is there an integer n 2 N such that every tiling of the upper half-plane with c 1 on the horizontal axis is horizontally n-periodic " (1.2) Indeed, given ˆW AS ! S A, set C D AtS and whenever ˆ.a; s/ D .s 0 ; a 0 / build a tile with N; E; S; W -labels s 0 ; a 0 ; s; a respectively; also build tiles with N; E; S; W -labels c; d; c; d for all .c; d / 2 C 2 n .S A/. Then the tiling problem in (1.2) has a solution for c 2 S if and only if c has finite order in hˆi.

The word problem may also be translated to a tiling problem, but now in hyperbolic space. The tileset is now T C N;E;S 1 ;S 2 ;W . The lattice

Z 2 is now ƒ WD ¹2 y .i C x/ j x; y 2 Zº H. A tiling is a map t W ƒ ! T with t .2 y .i C x// E D t .2 y .i C x C 1// W and t .2 y .i C 2x// N D t .2 yC1 .i C x// S 1 and t .2 y .i C 2x C 1// N D t .2 yC1 .i C x// S 2
for all x; y 2 Z. Tiles are visualized as pentagons assembling into a tiling of the hyperbolic plane, invariant under the transformations z 7 ! z C 1 and z 7 ! 2z:

The following problem is undecidable even for NE; N W -complete tilesets: "given c 2 C , does every tiling of ¹x C iy 2 H j x 2 OE0; 1; y 1ºwith c on the edge from i to i C 1 have identical labels on the boundary half-lines ¹x D 0º and ¹x D 1º ".

Indeed by subdividing and inserting the empty state we may assume that the map ˆdescribing our functionally recursive group satisfies ˆ.A S / S 2 A; then tiles are defined as above.

1.5. History. Links have been established since the beginning between undecidable problems in theoretical computer science-halting of Turing machines-and in algebra-word problems for instance. Minsky machines, because of their simplicity, have been early recognized as useful tools in this correspondence, see e.g. Gurevich's work [START_REF] Ju | The problem of equality of words for certain classes of semigroups[END_REF] on identities in semigroups.

Automata semigroups are defined quite similarly to automata groups; one merely drops the requirement that the action be by invertible maps. Decision problems have been extensively studied within the class of automata semigroups [START_REF] Akhavi | On the finiteness problem for automaton (semi)groups[END_REF][START_REF] Klimann | Implementing computations in automaton (semi)groups[END_REF]. Gillibert proved in [START_REF] Gillibert | The finiteness problem for automaton semigroups is undecidable[END_REF] that the order problem is unsolvable in that class. His proof is based on the undecidability of Wang's tiling problem [START_REF] Berger | The undecidability of the domino problem[END_REF], and harnesses Kari's solution of the nilpotency problem for cellular automata [START_REF] Kari | The nilpotency problem of one-dimensional cellular automata[END_REF].

There are usually serious difficulties in converting a solution in semigroups to one in groups. In particular, the tilings at the heart of Gillibert's construction give fundamentally non-invertible transformations of A .

On the other hand, a direct approach to the order problem succeeded for the restricted class of "bounded automata" groups; Bondarenko, Sidki and Zapata prove in [START_REF] Bondarenko | On the conjugacy problem for finite-state automorphisms of regular rooted trees[END_REF] that they have solvable order problem.

The general context considered by Grigorchuk, Nekrashevych and Sushchansky in [START_REF] Grigorchuk | Suščans 0 kiȋ, Automata, dynamical systems, and groups[END_REF]Problem 7.2.1(a)] is that of asynchronous automata, namely automata given by ˆW A S ! S A that produce zero or more letters of output each time an input letter is read. For these automata, it was already shown by Belk and Bleak [START_REF] Belk | Some undecidability results for asynchronous transducers and the Brin-Thompson group 2V[END_REF] that the order problem is undecidable.

Gillibert's proof of Theorem B uses a simulation of arbitrary Turing machines by transducers via cellular automata.
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Functionally recursive groups and Minsky machines

All our theorems are proven by embedding Minsky machine computations into functionally recursive groups. Let us recall more precisely the definition of these machines: (We use the C style "?:" operator, with 'a ‹ b W c' meaning 'if a then b else c'.)

As M is turned on, its state and counters initialize at .s 0 ; m 0 ; n 0 / D .s ; 0; 0/, and then .s i C1 ; m i C1 ; n i C1 / is determined from .s i ; m i ; n i / using the prescribed rules. If at some moment s i D s then M stops; otherwise it runs forever.

The machine M may also be treated as a machine with input, say n 2 N; it is then initialized at .s 0 ; m 0 ; n 0 / D .s ; 0; n/.

We recall the main result on Mealy machines, testifying to their computational power:

Proposition 2.2 ([18]). (1)

There is no algorithm that, given a Minksy machine M, determines whether M stops.

(2) There is a "universal" Minsky machine M such that ¹n 2 N j M stops when turned on in configuration .s ; 0; 2 n /º is not recursive.

Proposition 2.2 is proven (in [18, Theorem I]) by showing how an arbitrary Turing machine T may be emulated by a Minsky machine M T . Beware, however, that the input of T must be preprocessed before it is fed to M T ; for instance, if T starts with k 2 N on its tape, written in binary, then M T should start with 2 k in its second counter.

Likewise, a universal Turing machine T u (that receives on its input tape a description of a Turing machine T and simulates it) can be emulated by a universal Minsky machine M u , that starts with 2 k on its second counter, for k a Gödelencoding of T.

Minsky machines with at least five counters are universal calculators; namely, for every primitive recursion function .n/ there exists a five-counter Minsky machine that, when turned on in configuration .s ; 0; 0; 0; 0; n/, stops in configuration .s ; 0; 0; 0; 0; .n//. This is not true for two-counter Minsky machines: there does not, for example, exist a machine that starts in .s ; 0; n/ and stops in .s ; 0; 2 n /, see [START_REF] Schroeppel | A two-counter machine cannot calculate 2 n[END_REF]. However, a five-counter Minsky machine may be emulated by a two-counter Minsky machine, by representing its configuration .s; i; j; k; `; m/ as .s; 0; 2 i 3 j 5 k 7 `11 m / in the two-counter associated machine, see [START_REF] Minsky | Computation finite and infinite machines[END_REF]Chapter 14] for details.

We finally note that only one of the instructions {I,II} and III is necessary, and that in the presence of VI only one of I,II, one of IV,V, one of VII,VIII and one of IX,X is necessary. Minimal sets of instructions are {III,IV,V,VII,VIII} and {I,IV,VI,VII} and {III,IX,X} and {I,VI,IX}.

Proof of

Theorem A 0 . Let M be a Minsky machine with stateset S 0 D ¹s i ; s j ; : : : º. Without loss of generality, we assume that all instructions of M are of type I, VI, IX.

We construct a functionally recursive group hˆMi presented by ˆMW A S ! F S A, for sets A; S given as follows: the generating set S consists of elements x, y, s , t and u; for each state s i 2 S 0 of type I or IX, an element s i ; for each state s i 2 S 0 of type VI, three elements s i ; a i ; b i . The alphabet A consists of four letters 0, 1, 1 and 2 ; for each state s i 2 S 0 of type I, a letter i 1 ; for each state s i 2 S 0 of type IX, two letters i 1 and i 2 ; for each state s i 2 S 0 of type VI, five letters i 1 ; i 2 ; : : : ; i 5 . Our notation thus compactly associates a collection of alphabet letters with states of M: its states s i ; s j ; s k ; : : : correspond to alphabet letters i 1 ; j 1 ; k 1 ; : : : ; i 2 ; : : : ; thus for instance with s 5 of type IX are associated letters 5 1 ; 5 2 .

The map ˆMW A S ! F S A is given below, with denoting the empty word in F S . Whenever a value of ˆM is unspecified, we take it to mean ˆM.a; s/ D .s; a/. Proof. We encode the states of M by elements of F S . The word

.s i x 2 m y 2 n /t .s i x 2 m y 2 n / 1 corresponds to the configuration .s i ; m; n/.
It is convenient to write ˆM.a; g/ D .g 0 ; a 0 / in the form a g D g 0 a 0 . In this manner, the computation of the functionally recursive action is given by a sequence of exchanges of letters with words in F S . We check the following equalities:

If .s i ; m; n/ ! .s j ; m C 1; n/ is an instruction of type I, then 0 .s i x 2 m y 2 n /t .s i x 2 m y 2 n / 1 D .s j x 2 mC1 y 2 n /t .s j x 2 mC1 y 2 n / 1 0:

(2.1)

Indeed 0 s i x 2 m y 2 n D s j i 1 x 2 m y 2 n D s j x 2 mC1 y 2 n i 1 ; the claim follows from i 1 t D t i 1 and the reverse i 1 .s i x 2 m y 2 n / 1 D .s j x 2 mC1 y 2 n / 1 0.
If .s i ; m; n/ ! .s j ; n; m/ is an instruction of type VI, then

0 mC2 .s i x 2 m y 2 n /t .s i x 2 m y 2 n / 1 D .s j x 2 n y 2 m /t .s j x 2 n y 2 m / 1 0 mC2 : (2.2)
Indeed we first check

0 s i x 2 m y 2 n D a i b i x.x b i x / 2 m .y x / 2 n i 1 D a i x 2 m b i y 2 n x i 1 .
We obtained a word with two "blocks" of x: the blocks x 2 m and x 2 0 . Each time a '0' letter is multiplied on the left of that word, the size of the first block will halve and the size of the second one will double: for m; n; p 2 N, we have

0 a i x 2m b i y n x p D a i x m b i y n x 2p i 4 so 0 mC1 s i x 2 m y 2 n D a i xb i y 2 n x 2 m .i 4 / m i 1 . Then 0 a i xb i y 2 n x 2 m D a i .a 1 i s j /x 2 n y 2 m i 5 ; so 0 mC2 s i x 2 m y 2 n D s j x 2 n y 2 m i 5 .i 4 / m i 1 .
Recalling that we have a t D t a for all a D i 1 ; : : : ; i 5 , the claim is proven.

If .s; m; n/ ! .m D 0 ‹ s j W s k ; max.m 1; 0/; n/ is an instruction of type IX, then if m D 0 we have

0 .s i x 2 m y 2 n /t .s i x 2 m y 2 n / 1 D .s j x 2 m y 2 n /t .s j x 2 m y 2 n / 1 0 (2.3)
while if m > 0 we have

0 .s i x 2 m y 2 n /t .s i x 2 m y 2 n / 1 D .s k x 2 m 1 y 2 n /t .s k x 2 m 1 y 2 n / 1 0: (2.4)
Indeed in the first case we have

0 s i xy 2 n D s k .s 1 k s j x/y 2 n i 2 ;
while in the second case we have

0 s i x 2 m y 2 n D s k .s 1 j s k x x 1 s 1 k s j x/ 2 m 1 y 2 n i 1 D s k x 2 m 1 y 2 n i 1 :
Recalling that we have a t D t a for all a D i 1 ; i 2 , the claim is proven.

From (2.1)-(2.4) it follows that if M does not halt then W .s xy/t.s xy/ 1 D W . Conversely, if M halts then there exist k; m; n 2 N such that 0 k .s xy/t .s xy/ 1 D .s x 2 m y 2 n /t .s x 2 m y 2 n / 1 0 k :

Then 0 s x 2 m y 2 n t .s x 2 m y 2 n / 1 D 1 t .s x 2 m y 2 n / 1 D 2 .s x 2 m y 2 n / 1 D 2 :
In that case, we have W .s xy/t.s xy/ 1 D 0 k 2 0 1 ¤ W . Assume first that M does not halt; then g in fact also fixes ¹0; 1º 1 , so the supports of g and u are disjoint and OEg; u D 1 in hˆMi.

Assume next that M does halt; without loss of generality, we may assume M does not stop immediately, so there is k 1 such that .0 kC1 / g D 0 k 2 . Since .0 kC1 / u D 1 kC1 and .0 k 2 / u D 1 k 2 and .1 kC1 / g D 1 kC1 and .1 k 2 / g D 1 k 2 , the commutator OEg; u acts as a 2-2-cycle .0 kC1 ; 0 k 2 /.1 kC1 ; 1 k 2 / and in particular OEg; u ¤ 1 in hˆMi: For all instructions .s; m; n/ 7 ! .s 0 ; m 1; n/ of type IV and for all t 2 S 0 nS IV , we have Table 3. The same applies for an instruction of type V, with the roles of x; y switched. For an instruction .s; m; n/ 7 ! .m D 0 ‹ s 0 W s 00 ; m; n/ of type VII and for all t 2 S 0 n S VII , we have Table 4. The same applies for an instruction of type VIII, with the roles of x; y switched. Note that s is treated as a state t in all tables above. C.g/ WD ¹g ˙x j x 2 Gº:

1 kC1 0 kC1 0 k 2 1 k 2 g u g u g 2 
Given a symmetrized conjugacy class C , choose a representative g in it, let A D A 1 t t A `be the decomposition of A into cycles for the action of g, and choose representatives a i 2 A i . We have x ˆM.a i ; g #A i / D .h i ; a i / for some h i 2 G, and it is easy to see that the collection of symmetrized conjugacy class ¹C.h i / j i D 1; : : : ; `º is independent of the choice of g and the a i .

We construct an integer-labeled, directed graph whose vertices are symmetrized conjugacy classes in G; for a conjugacy class C as above, there are èdges starting at C , ending respectively at C.h 1 /; : : : ; C.h `/ with labels #A 1 ; : : : ; #A `. Lemma 3.2. For g 2 G, its order in N [ ¹1º is the least common multiple, along all paths starting at C.g/, of the product of the labels along the path.

Proof. Consider a path starting at C.g/, with labels n 1 ; : : : ; n s , and going through vertices C.g 1 /; : : : ; C.g s /. Then g has an orbit of length n 1 on A, so the order of g is a multiple of n 1 . Furthermore, g n 1 fixes pointwise that orbit, and acts as an element of C.g 1 / on any sequence that starts by a letter in that orbit. Recursively, the order of g 1 is a multiple of n 2 n s , so the order of g is a multiple of n 1 n s . In particular, if there are paths with arbitrarily large product of labels then g has infinite order.

Conversely, if g has infinite order then there are arbitrarily long orbits of g on A , so there are paths with arbitrarily large product of labels; and if m be the least common multiple of all path labels then all edges on paths starting at C.g m / are labeled 1 so g m fixes every sequence and therefore g m D 1. 4

Let us compute the subgraph spanned by C.s xy/. For the computations, it is helpful to picture the operation of the transducer ˆM by means of its dual Moore diagram , see Figure 3. Given g 2 G, we compute all primitive cycles in The reason we consider symmetrized conjugacy classes is that every element of C.g/ has same order, and a process will naturally produce symmetrized conjugacy classes out of symmetrized conjugacy classes, but would not be well-defined at the level of usual conjugacy classes.

This graph essentially appears in the solution of [START_REF] Bondarenko | On the conjugacy problem for finite-state automorphisms of regular rooted trees[END_REF] to the order problem in bounded automata.

whose input label is a power of g, and read the corresponding output label; these are the h i in the map on symmetrized conjugacy classes C.g/ ¹C.h i /º. We first note, by direct inspection, that x and y commute in G. This follows by tracing the path x 1 y 1 xy in the graphs above, and noting that they always induce the trivial permutation of A with output either trivial or conjugate to .x 1 y 1 xy/ ˙1.

III 1 III 2 IIIN 1 IIIN 2 IV 1 IV 2 IVN 1 IVN 2 VII 1 VII 2 VII 3 VII 4 VIIN 3 VIIN 4 VIIN
We now claim that, if .s; m; n/ ! .s 0 ; m 0 ; n 0 / is a transition of the machine M, then the conjugacy class C.sx 2 m y 2 n / has at least one arrow to C.s 0 x 2 m 0 y 2 n 0 /, and possibly other arrows, all of them to C.1/. We also claim that if s is not of type IV or V, then arrows to C.s 0 x 2 m 0 y 2 n 0 / are with labels > 1; and all arrows from C.s x 2 m y 2 n / are arrows to C.1/. We see that if the machine halts then every path starting at C.s xy/ has only a finite number of labels > 1, and this shows that the order of s xy is finite.

On the other hand, if the machine does not halt then there is an path with infinitely many labels > 1 (because no Minsky machine can decrease its counters infinitely many times in a row) so s xy has infinite order. L. Bartholdi and I. Mitrofanov Note that our transducer has the property ˆM.L N i ; g/ D ˆM.L i ; g 1 /, for all g 2 S and all L 2 ¹III; IV; V; VII; VIIIº. Also note that ˆM.L i ; t / D ˆM.L i ; t 1 / D .; L N i / whenever t is any instruction not of type L. Using this, we can prove that if t is not of type L, then tg n g n 1 g 1 tg 1 g 2 g n fixes the orbit ¹L i º with output . Indeed, tg n g n 1 g 1 tg 1 g 2 g n D .g n tg n t 1 tg n 1 g n 2 g 1 tg 1 g 2 g n 1 / g n ; and we use induction on n. It follows that .tx m y n / 2 fixes L i with outputs , i.e., there is an arrow from C.tx m y n / to C.1/ with label 2.

Let us first restrict to the orbit ¹III i º of G on A. We consider g WD sx m y n with s an instruction of type III. It acts as a product of two cycles .III 1 ; III 2 /.III N 1 ; III N 2 /; the output label of g 2 on the first cycle, starting at III 1 , is

s 0 x m y n x m y n D s 0 x 2m y 2n ;
and the output of g 2 starting on the second cycle at III N 1 is

x m y n .s 0 / 1 x m y n 2 C.s 0 x 2m y 2n /:

There are therefore two arrows from C.sx 2 m y 2 n / to C.s 0 x 2 mC1 y 2 nC1 /, as required. We do not consider g WD tx m y n with t an instruction of different type or s , because it was considered above (there are some arrows to C.1/ with labels 2).

We restrict next to the orbit ¹IV i º of G and consider the case g D sx 2m y n . (We do not need to consider cases g D sx 2mC1 y n or g D tx m y n , for the first because we suppose that if m D 0 then M does not perform an instruction of type IV, and for the second because it was already considered above.)

An element g D sx 2m y n fixes IV 1 , IV 2 , IV N 1 and IV N 2 , its outputs are respectively s 0 .x/ m y n D s 0 x m y n , s 0 x m y n , .s 0 / 1 x m y n and .s 0 / 1 x m y n . Hence there are four arrows from C.sx 2 m y 2 n / to C.s 0 x 2 m 1 y 2 n /, all with labels 1.

We restrict next to the orbit ¹VII i º of G and perform the same computations; the result is in Table 5. 

; VII N 3 / s 0 x 2m y n x 2m y n .s 0 / 1 D 1 .VII N 1 ; VII N 2 / .s 00 / 1 x 2m y n sx 2mC1 y n .VII 1 ; VII 3 / s 0 x 2mC1 y n .VII 2 ; VII 4 ; VII N 1 ; VII N 3 / s 00 x 2mC1 y n x 2m 1 y n .s 00 / 1 D 1 .VII N 2 ; VII N 4 / x 2m 1 y n .s 0 / 1
If m > 0 then there are two arrows from C.sx 2 m y 2 n / to C.s 00 x 2 m y 2 n / with label 2 and an arrow to C.1/ with label 4; if m D 0 then there are two arrows from C.sx 2 m y 2 n / to C.s 00 x 2 m y 2 n / with label 4 and an arrow to C.1/ with label 4.

The orbits ¹V i º and ¹VIII i º are investigated in the same way as ¹IV i º and ¹VII i º respectively.

3.2.

Proof of Theorem B 00 . Consider a Minsky machine M u such that ¹n 2 N j M u halts when started in configuration .s ; 0; 2 n /º is not recursive, see Proposition 2.2 [START_REF] Angeli | Infinite automaton semigroups and groups have infinite orbits[END_REF]. Theorem B 00 follows by considering in the group hˆM u i the elements s D s x and t D y.

Proof of Theorem B

0 . Let M be a Minsky machine with stateset S 0 . Without loss of generality, we assume that all instructions are of type III,IX,X.

We associate to it the transducer with stateset Q WD S 0 t ¹; x; yº and alphabet A D ¹0; III i ; IX j ; X j j i D 1; 2I j D 1; : : : ; 4º:

The structure of the transducer is given by its map

ˆMW A Q ! Q A.
The state is the identity, and ˆM.a; / D .; a/ for all a 2 A.

For all instructions

.s i ; m; n/ 7 ! .s 0

i ; m C 1; n C 1/
of type III we have Table 6 and every instruction t of another type acts as ˆM.t; III `/ D .III `; t /. Set G D hˆMi. We construct an integer-labeled, directed graph whose vertices are elements of G. For g 2 G consider its action on A and the minimal p g such that g p g fixes 0, i.e., 0 g p g D g 0 0. In our graph we put an edge g ! g 0 with label p g on it.

The size of the the orbit of 0 1 under s xy is a finite number or 1 and it is equal to the product of the labels along the path starting at s xy.

We claim that for any instruction .s; m; n/ ! .s 0 ; m 0 ; n 0 / there is an edge from sx 2 m y 2 n to s 0 x 2 m 0 y 2 n 0 with label 3, and an edge from s x 2 m y 2 n to 1. This is checked on the dual Moore diagram of ˆM, see Figure 4:

We first note that x and y commute in G. If g D s i x m y n and s i is an instruction of type III, then the orbit of 0 under the action of g is .0; III 1 ; III 2 /. There is an edge labeled 3 from g to s 0 i x m y n x m y n D s 0 i x 2m y 2n . Consider next s j an instruction of type IX. There are two cases: if g D s j xy n then the orbit of 0 is .0; IX 2 ; IX 4 / and the output is s 0 j xy n ; if g D s j x 2m y n then the orbit of 0 is .0; IX 1 ; IX 4 / and the output is s 00 j x m y n . This means that if m D 0 then there is an edge labeled 3 from s j x 2 m y 2 n to s 0 j x 2 m y 2 n , and if m > 0 then there is an edge labeled 3 from s j x 2 m y 2 n to s 00 j x 2 m 1 y 2 n .

The same naturally applies to instructions of type IX. Finally, for all m; n 2 N the element s x m y n fixes 0, and there is an edge labeled 1 from s x m y n to 1.

3.4.

Contracting automata: proof of Theorem C. We finally explain how to make the transducers ˆM of the previous subsections contracting. We expand the definition from the introduction: ˆW A G ! G A. For g 2 G and u 2 A , the state g@u is the unique element of G such that .uv/ g D u g v g@u ; namely, the action of g on the tails of sequences starting with u.

The group G is contracting if there exists a finite subset N G such that, for all g 2 G, there exists n.g/ 2 N such that g@u 2 N whenever juj n.g/.

The minimal subset N satisfying the definition is called the nucleus. In particular, one has n@a 2 N for all .a; n/ 2 A N , so ˆinduces an automaton still written ˆW A N ! N A. Up to replacing S by z S WD S [ N and A by z A WD A n for n larger than max g2 z S 2 n.g/, thus making the transducer process n letters at a time, one may also assume

x ˆ. z A z S 2 / z S z A:
A transducer ˆwith this extra property is called nuclear. Note that is is probably undecidable whether a self-similar group hˆi is contracting; but it is easy to decide whether a transducer ˆW AS ! S A is nuclear: by minimizing the composite transducer A S 3 ! S A S 2 ! S 2 A S ! S 3 A, find the set R of all words s 1 s 2 s 3 2 S 3 that equal 1 in G. Then ˆis nuclear if and only if for all a 2 A; s 1 ; s 2 2 S there exists s 3 2 S such that if ˆ.a; s 1 / D .s 0 1 ; b/ and ˆ.b; s 2 / D .s 0 2 ; c/ then s 0 1 s 0 2 s 1 3 2 R. The more precise form of Theorem C is: Theorem 3.4. There is no algorithm that, given a nuclear transducer ˆW A S ! S A and a 2 A and s 2 S , determines the cardinality of the orbit of a 1 under hsi.

There is no algorithm that, given a nuclear transducer ˆW A S ! S A and s 2 S , determines the order of s in hˆi.

Note that the group is not changed by these operations of replacing S by N and A by A n . If ˆis nuclear, then hˆi is contracting in the sense of the introduction, since jg 0 j .jgjC1/=2 in the word metric defined by N . Conversely, if jg 0 j jgj C C then one may take N D ¹g 2 G j C =.1 / jgjº to see that G is contracting in the sense of Definition 3.3. Lemma 3.5. Let ˆW A S ! S A be a transducer. If there is a constant n 2 N such that every reduced path of length n in the dual Moore diagram of ˆcontains an letter along its output, then hˆi is contracting.

Proof. Consider g 2 hˆi, and represent it by a word w 2 S of length `D jgj. Factor w D w 1 : : : w t with jw i j D n for all i D 1; : : : ; t 1 and jw t j < n.

Then every g 0 as in (1.1) is computed by following, in the dual Moore diagram, the path starting at a 1 with label w on its input. The output label along that path is g 0 , and by hypothesis each time a segment w i is read, for i < t , an letter is produced for g 0 ; so jg 0 j ` t C 1. Now t D d`=ne, so We are given a transducer ˆwith stateset S D ¹s 1 ; : : : ; s `; x; yº and alphabet A. We write G D hˆi, and freely identify words in S with their value in G. We require that x; y commute.

For every i 2 ¹1; : : : ; `º, consider the transducer ˆi with alphabet A i D ¹0; 1º and transitions ˆi .a; q/ D .a D 0 ‹ q W ; q D s i ‹ 1 a W a/.

Note (by drawing the dual Moore diagram and deleting the transitions with output) that the only paths with input and output of same length are of the form s a i ws b i for some a; b 2 ¹0; 1º and w a word not involving s i . Note also that for a word w of form s j x m y n (1) if i D j then ˆi .0; w 2 / D .w; 0/ and ˆi .1; w 2 / D .w 0 ; 1/ with w 0 conjugate to w;

(2) if i ¤ j then ˆi .0; w/ D .w; 0/ and ˆi .1; w/ D .; 1/. Note that, in the dual Moore diagram of ˆ0, all paths with input label of the form s a i x m y n s b j have shorter output label as soon as jmj C jnj 3. Note also that if w is a word of the form s i x m y n then for all .a; b; c/ 2 A 0 we have ˆ0..a; b; c/; w 2 / D .w 0 ; .a; b; c// for some permutation w 0 of w; so in particular w 0 is conjugate to w because x and y commute. Furthermore, for .a; b; c/ D .0; 0; 0/ we get w 0 D w in G. Proposition 3.6. Under the hypotheses above, the transducer ˆ0 WD ˆı ˆ0 ı ˆ1 ı ı ˆ`generates a contracting group, and whenever we have ˆ.a; .s i x m y n / t / D .s 0 i x m 0 y n 0 ; a/ in the original transducer we have for all j 2 ¹0; 1º `C3 the relation ˆ0..j; a/; .s i x m y n / 4t / D .w; .j; a//, with w either equal to 1 or conjugate to s 0 i x m 0 y n 0 . Furthermore, if j D 0 `C3 then w D s 0 i x m 0 y n 0 :

Proof. After applying the transducers ˆ1; : : : ; ˆ`, the only words that don't get shortened are of the form s a i w.x; y/s b j for some i; j 2 ¹1; : : : ; `º and some a; b 2 ¹0; 1º. These get shortened by ˆ0 as soon as jwj 3, using the fact that x and y commute. It follows that hˆ0i is contracting.

Consider the transitions of .s i x m y n / 4 in transducer ˆ1 ı ı ˆ`. On input letter 0 `it produces .s i x m y n / 2 , on input letter 0 1 0 with the '1' in position i it produces a conjugate of .s i x m y n / 2 and on all other input letters it produces . Feed then .s i x m y n / 2 to transducer ˆ0; on input letter 000 it produces s i x m y n and on all other input letters it produces a conjugate of s i x m y n . Feed finally s i x m y n to ˆto conclude the proof.

We are ready to finish the proof of Theorem 3.4. We constructed an integerlabeled graph for a transducer ˆ, whose vertices are elements of G for Theorem B 0 or symmetrized conjugacy classes for Theorem B.

By Proposition 3.6, the transducer ˆ0 is contracting. Let us check that the order problems for hˆi and for hˆ0i are equivalent.

A graph for ˆ0 will have the same set of vertices as the graph for ˆ, and Proposition 3.6 shows that this new graph has the same set of outgoing edges for each element of form s i x m y n , with labels multiplied by 4 and, possibly, some new edges to 1 (or to C.1/). Since in the old graph there were no loops at nonidentity elements, s xy has infinite order in hˆ0i if and only if it has infinite order in hˆi, and the orbit of .0; 0 `C3 / 1 is infinite under the action of s xy 2 hˆ0i if and only if the orbit of 0 1 is infinite under the action of s xy 2 hˆi.

Finally, by replacing the stateset S by z S D S [ N and A by z A D A n , we may assume that ˆ0 is nuclear.

Outlook

We proved in this article the undecidability of the order problem for automata groups, namely groups of transformations generated by a transducer.

If the transducer belongs to a restricted class, it may well be that the order problem becomes decidable. Klimann, Picantin and Savchuk compute in [START_REF] Klimann | Orbit automata as a new tool to attack the order problem in automaton groups[END_REF] orbits of automata groups and deduce some positive results on the order problem.

Here are some classes of transducers that seem to be of particular importance:

Transducers of polynomial growth. In a transducer ˆ(represented by a graph as in Figure 1), let ˛.n/ denote the number of paths of length n that end in a non-identity state. If ˛.n/ is a bounded function (as is the case for the Grigorchuk group), then the order problem is solvable in hˆi, see [START_REF] Bondarenko | On the conjugacy problem for finite-state automorphisms of regular rooted trees[END_REF]. Is it still solvable if ˛.n/ is bounded by a linear function? or by a polynomial of degree d ? The groups generated by such transducers have been considered by Sidki [START_REF] Sidki | Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity[END_REF].

Reset transducers. These are transducers ˆwith ˆ.a; s/ D ..a/; .a; s// for some functions ; ; namely, the state reached by the transducer is independent of the original state. These transducers are intimately connected to tilings, by Kari's construction [START_REF] Kari | The nilpotency problem of one-dimensional cellular automata[END_REF]. Gillibert proved in [START_REF] Gillibert | The finiteness problem for automaton semigroups is undecidable[END_REF] that the order problem is unsolvable for semigroups of reset automata. Is it solvable in groups of reset automata?

Reversible transducers. These are transducers whose dual is invertible; they should be related to reversible Turing or Minsky machines. Is the order problem solvable for groups generated by reversible automata?

Bireversible transducers. These are transducers ˆsuch that all 8 transducers obtained from ˆby inverting or permuting the stateset and alphabet remain transducers; they give another point of view on square complexes (by tiling the plane with squares whose labels are .a; s; a 0 ; s 0 / when ˆ.a; s/ D .s 0 ; a 0 /). Is the order problem solvable for groups generated by bireversible automata?

We expect it to be undecidable whether a functionally recursive group is actually an automata group (for a larger generating set), whether an automata group is contracting, and even whether a contracting group is finite (for the finiteness problem of automata groups, see [START_REF] Akhavi | On the finiteness problem for automaton (semi)groups[END_REF]). Again, the related questions for semigroups are known to be undecidable by constructions in or similar to [START_REF] Gillibert | The finiteness problem for automaton semigroups is undecidable[END_REF]. All these questions may be asked in terms of finiteness of orbits rather than finiteness of (cyclic) subgroups, as we actually did in this paper; see [START_REF] Angeli | Infinite automaton semigroups and groups have infinite orbits[END_REF] for a general connection.
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 1 Figure 1. The transducer generating the Grigorchuk group. Here A D ¹0; 1º and S D ¹a; b; c; d; eº.
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 22 The computations are best carried on ˆM's dual Moore diagram , see Figure 2: this is the directed labeled graph with vertex set A and with for all a 2 A; s 2 S an edge from a to b labeled .s; t / whenever ˆM.a; s/ D .t; b/. One checks an equality 'ˆM.a; s/ D .t; b/' by finding in a path starting at a with input label s; the endpoint of the path is b, and the output label is t . Proof of Theorem A. We have not yet used the letter 1 and the state u of ˆM. Theorem A follows now from the following Proposition 2.4. The Minsky machine M halts if and only if
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 4 Figure 4. The dual Moore diagram of ˆM, used in the proof of Theorem B 0

1 :

 1 jg 0 j ` d`=ne C 1 .1 1=n/jgj C We shall modify the transducers ˆM by composing them with appropriate machines. We recall the general definition: let ˆW A S ! S A and ‰W B S ! S B be transducers with same stateset S . Their composition is the transducer ˆı ‰ with alphabet A B, given by ˆı ‰W .A B/ S D A .B S / A‰ ! A .S B/ D .A S / B ˆB ! .S A/ B D S .A B/:

The word and order problems 21 Consider

 21 also a transducer ˆ0 with alphabet A 0 D ¹0; 1º 3 and transitions ˆ0..a; b; c/; s i / D .c D 0 ‹ s i W ; .a; b; 1 c// for all i I ˆ0..a; b; c/; x/ D .a D 0 ‹ x W ; .1 a; b; c//I ˆ0..a; b; c/; y/ D .b D 0 ‹ y W ; .a; 1 b; c//:

  Theorem A 0 follows from the undecidability of the halting problem for the Minsky machines (Proposition 2.2) and the following Proposition 2.3. Consider the infinite sequence W D 0 1 . Then the Minsky machine M does not halt if and only if the action of hˆMi satisfies W .s xy/t.s xy/ 1 D W:

				Table 1		
				input letter	
		0	i 1	i 2	i 3	i 4	i 5
	element of S	x y s i .a i b i x; i 1 / a i .a i ; i 2 / b	.x b i x ; i 1 / .; i 3 / .y x ; i 1 / .y; i 2 / .; 0/ .; 0/	.x; i 2 /	.x 2 ; i 4 / .y; i 5 / .y; i 4 / .x; i 5 /

For the states s and t; u we put ˆM.0; s / D .; 1 /I ˆM. 1 ; x/ D .; 1 /I ˆM. 1 ; y/ D .; 1 /I ˆM. 1 ; s / D .; 0/I ˆM. 2 ; x/ D .; 2 /I ˆM. 2 ; y/ D .; 2 /I ˆM. 1 ; t / D .; 2 /I ˆM.0; u/ D .u; 1/I ˆM. 2 ; s / D .; 2 /I ˆM. 2 ; t / D .; 1 /I ˆM.1; u/ D .u; 0/I for all g 2 S n ¹uº we put ˆM.1; g/ D .; 1/, and for all a 2 A n ¹0; 1º we put ˆM.a; u/ D .; a/; for each instruction .s i ; m; n/ 7 ! .s j ; m C 1; n/ of type I we put ˆM.0; s i / D .s j ; i 1 /I ˆM.i 1 ; s i / D .; 0/I ˆM.i 1 ; x/ D .x 2 ; i 1 /I ˆM.i 1 ; y/ D .y; i 1 /I for each instruction .s i ; m; n/ 7 ! .s j ; n; m/ of type VI, ˆM.a; s/ is written at position .a; s/ of Table 1. i .b i ; i 4 / .a 1 i s j ; i 5 / .; i 2 / .; i 3 / for each instruction .s i ; m; n/ 7 ! .m D 0 ‹ s j W s k ; max.0; m 1/; n/ of type IX we put ˆM.0; s i / D .s k ; i 1 /I ˆM.i 1 ; x/ D .s 1 k s j x; i 2 /I ˆM.i 1 ; y/ D .y; i 1 /I ˆM.i 1 ; s i / D .; 0/I ˆM.i 2 ; x/ D .x 1 s 1 j s k x; i 1 /I ˆM.i 2 ; y/ D .y; i 2 /:

  OE.s xy/t .s xy/ 1 ; u ¤ 1 in hˆMi:

	.x; x 2 /		.g; /8g ¤ u .y; y/		.x; /		.y; /	.x; /	.y; /
			i 4		1		1	.t; /	2
		.t; t /		.b i ; b i /		.u; u/	.s ; /	.s ; /
	.x; y/	.y; x/						.x; x 2 /
	i 5			i 2	.a i ; a i /	0	.s i ; s j /	i 1	.t; t /	Type I
	.t; t /		.x; x/	Type VI				.y; y/
				.x; /	.s i ; a i b i x/		.s i ; s k /	Type IX	.t; t /
	.b i ; a 1 i s j /	i 3	.t; t /	i 1	.t; t /	i 1	.x; s 1 k s j x/	i 2
				.y; y x /	.x; x b i x /	.y; y/		.x; x 1 s 1 j s k x/	.y; y/

Figure 2. The dual Moore diagram of ˆM, used in the proof of Theorem A

Proof. The element u acts on A ! as follows: it scans X 2 A ! for its longest prefix in ¹0; 1º , and exchanges all 0's and 1's in that prefix. Write g D .s xy/t .s xy/ 1 ; from Proposition 2.3 we know that g fixes 0 1 if and only if M does not halt.

Automata groups and Minsky machines 3.1. Proof of Theorem B.

  Let M by a Minsky machine with stateset S 0 . Without loss of generality, we assume that all instructions of M are of type III,IV,V,VII,VIII, as defined in the beginning of Section 2, so S 0 D S III t S IV t S V t S VII t S VIII t ¹s º:The structure of the transducer is given by its map ˆMW A S ! S A, first described as a table, with ˆM.S 0 n S III we have Table2.

	We consider the transducer with stateset S WD S ˙1 0 t ¹; x; x 1 ; y; y 1 º and alphabet
	A D ¹III i ; IV i ; V i ; VII j ; VIII j j i D 1; 2; N 1; N 2I j D 1; : : : ; 4; N 1; : : : ; N 4º:
			Table 2
			input letter
		III 1	III 2	III N 1	III N 2
	in state	s .s 0 ; III 2 / .; III 1 / t .; III N 1 / .; III N 2 /	.; III N 2 / .; III 1 /	1 / ..s 0 / 1 ; III N 1 / .; III 2 /

.3. Proof of Theorem A 00 . Consider a Minsky machine M u such that ¹n 2 N j M u halts when started in configuration .s ; 0; 2 n /º is not recursive, see Proposition 2.2(2). Theorem A 00 follows by considering in the group hˆM u i the elements OE.s xy 2 n /t .s xy 2 n / 1 ; u; this set of words is recursive, but the subset of those that equal 1 in hˆM u i is not recursive. 3. a; s/ at position .a; s/. The state is the identity, and ˆM.a; / D .; a/ for all a 2 A. For all instructions .s; m; n/ 7 ! .s 0 ; m C 1; n C 1/ of type III and for all t 2 x .x; III 1 / .x; III 2 / .x 1 ; III N 1 / .x 1 ; III N 2 / y .y; III 1 / .y; III 2 / .y 1 ; III N 1 / .y 1 ; III N

Table 3

 3 

		input letter
	in state	IV 1 x .x; IV 2 / .; IV 1 / IV 2 y .y; IV 1 / .y; IV 2 / .y 1 ; IV N IV N 1 .; IV N 2 / 1 / s .s 0 ; IV 1 / .s 0 ; IV 2 / ..s 0 / 1 ; IV N 1 / ..s 0 / 1 ; IV N IV N 2 .x 1 ; IV N 1 / .y 1 ; IV N 2 / 2 / t .; IV N 1 / .; IV N 2 / .; IV 1 / .; IV 2 /

Table 4

 4 The Minsky machine M constructed above halts if and only if the element s xy has finite order in hˆMi.Proof. Set G D hˆMi. For g 2 G, denote by C.g/ its symmetrized conjugacy class:

	input letter

x .x; VII 4 / .; VII 3 / .; VII 2 / .x; VII 1 / .x 1 ; VII N 4 / .; VII N 3 / .; VII N 2 / .x 1 ; VII N 1 / y .y; VII 1 / .; VII 2 / .; VII 3 / .y; VII 4 / .y 1 ; VII N 1 / .; VII N 2 / .; VII N 3 / .y 1 ; VII N 4 / s .; VII 2 / .s 00 ; VII 1 / .s 0 ; VII 4 / .; VII N 4 / ..s 00 / 1 ; VII N 2 / .; VII N 1 / .; VII 3 / ..s 0 / 1 ; VII N

Table 5 g 2

 52 

	G	cycles of g	output, starting at first element of the cycle
		.VII 1 ; VII 2 /	s 00 x 2m y n
	sx 2m y n	.VII 3 ; VII 4 ; VII N 4	

Table 7

 7 of type X, with the roles of x and y switched.For all a 2 A we have ˆM.a; s / D .; a/.We claim that the orbit of 0 1 under s xy is finite if and only if the machine M stops.

				input letter	
		0	IX 1	IX 2	IX 3	IX 4
	in state	x y s j .; IX 1 / .s 00 .; 0/ .; IX 2 / .; IX 1 / .x; IX 4 / .; IX 3 / .; 0/ .; IX 1 / .; IX 2 / .y; IX 3 / .y; IX 4 / j ; IX 4 / .s 0 j ; IX 3 / .s 0 j ; IX 2 / .; 0/
	The same applies for every instruction	
		.s k ; m; n/ 7 ! n D 0 ‹ .s 0 k ; m; n/ W .s 00 k ; m; n 1/