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We prove that for a compact metric space the property of having finite covering dimension is equivalent to the existence of a total order with finite snake number.

Introduction

The following concept was introduced in [START_REF] Erschler | Spaces that can be ordered effectively: virtually free groups and hyperbolicity[END_REF]. Let M be a metric space and let T be a total order on M (that is, for any distinct points x, y ∈ M either x < T y or y < T x). Then for the ordered space (M, T ) one calculates the order breakpoint Br(M, T ) ∈ N ∪ {+∞}. The value min T Br(M, T ) is a quasi-isometry invariant for uniformly discrete metric spaces.

It was shown in [START_REF] Erschler | Assouad-Nagata dimension and gap for ordered metric spaces[END_REF] that a metric space with finite Assouad-Nagata dimension admits an order T for which Br(M, T ) < ∞. It was also shown that some properties contradicting to finiteness of Assoud-Nagata dimension also forbid orders with finite Br, and it was raised a question whether the existence of orders with finite Br is equivalent to finiteness of Assoud-Nagata dimension.

For metric spaces there are various definitions of dimension based on coverings by sets with bounded intersection multiplicity. In order to establish similar results for Lebesgue covering dimension, we introduce the notion of snake number as an analogue of Br. Definition 1. Let M be a metric space, T be a total order on M, and let (U 1 , U 2 ) be an ordered pair of subsets of M. We say that (U 1 , U 2 ) contains a snake of length s if there exists a sequence of points

a 0 < T a 1 < T • • • < T a s
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such that U 1 contains the points a 0 , a 2 , . . . , a 2⌊s/2⌋ and U 2 contains the points a 1 , a 3 , . . . , a 2⌈s/2⌉-1 . Definition 2. Let (M, T ) be an ordered metric space and let x, y be distinct points of M. The snake number Snake T (x, y) is the greatest number s such that for any ε > 0 the pair of neighborhoods (B ε (x), B ε (y)) contains a snake of length s. If the greatest such number does not exist, we say that Snake(x, y) = ∞. Definition 3. Let M be a metric space and T be a total order on M. The Snake number of the ordered space (M, T ) is defined as Snake(M, T ) := sup x,y∈M,x =y Snake T (x, y).

The main result of this paper is Theorem 1.1. Let M be a compact metric space. Then the following conditions are equivalent:

(1) the covering dimension dim M < ∞ (2) there exists an order T on M such that Snake(M, T ) < ∞.

Let us specify the upper and lower bounds.

Theorem 1.2. Let (M, T ) be an ordered compact metric space such that Snake(M, T ) s. Then dim M s.

Theorem 1.3. Let M be a compact metric space with dim M s. Then there exists an order T for which Snake(M, T ) 2s + 1.

One can find similarities with the following classical result. Theorem 1.4 ([4]). Let M be a compact metric space with covering dimension dim M ≥ n. Suppose f : A → M is a continuous mapping of a closed subspace A of the Cantor set C onto the space M. Then there exist n + 1 points x 0 , . . . , x n ∈ A such that

f (x 1 ) = • • • = f (x n ) .
(In fact, Hurewitz proved this result for small inductive dimension ind that is equal to dim for compact metric spaces). From Theorem 1.2 one can conclude by passing to the limit the following fact Proposition 1.5. Let M be a compact metric space with dim M ≥ n. Suppose f : A → M is a continuous mapping of a closed subspace A of R onto the space M. Then there exist n + 1 points

x 0 < • • • < x n such that f (x 0 ) = f (x 2 ) = • • • = f (x 2⌊n/2⌋ ) and f (x 1 ) = f (x 3 ) = • • • = f (x 2⌈n/2⌉-1 ).
2. Preliminaries 2.1. Snake numbers of a segment and of a circle.

Example 2.1. Obviously, for the segment I = [0, 1] and the natural order T (x < T y if x < y) we have Snake(I, T ) = 1.

Example 2.2. If we glue the ends of the segment, we obtain the circle S 1 . We take the order T from Example 2.1 and specify that 0 = 1 < T x for any other point x. It is easy to see that if 0 < x, y < 1, then Snake(x, y) = 1, and Snake(0, x) = 2, so Snake(S 1 , T ) = 2.

Proposition 2.3. Snake(S 1 , T ′ ) 2 for any order T ′ .

Proof. For any point x ∈ S 1 there is an antipodal point A(x). We colour each point x blue if x < T A(x) or red if x > T A(x). Since S 1 contains points of both colours, there exists x 0 that belongs to the boundary of the blue set. For a natural n, choose in

B 1/n (x 0 ) a blue point b n and a red point r n . If A(b n ) < T r n , then (B 1/n (x 0 ), B 1/n (A(x 0 ))) contains the snake b n < T A(b N ) < T r n of length 2. Otherwise, (B 1/n (A(x 0 )), B 1/n (x 0 )) contains the snake A(r n ) < T r n < T A(b n ) of length 2.
One of these two events occurs for infinitely many different n, hence for arbitrarily large n.

We will use the following properties of ind and dim ( [START_REF] Engelking | Dimension theory[END_REF]):

(1) (Monotonicity) if M 1 is a subspace of M then ind M 1 ind M;

(2) (The sum theorem) if a separable metric space M can be represented as the union of a sequence F 1 , F 2 , . . . of closed subspaces such that ind F i n for i = 1, 2, . . . , then ind M n;

(3) (The coincidence theorem) for every separable metric space M we have ind M = dim M.

Some basics of the topological dimension theory.

Definition 4. Let X be a set and A a family of subsets of X. By the order of the family A we mean the largest integer n such that the family A contains n + 1 sets with a non-empty intersection; in no such integer exists, we say that the family A has order ∞. A cover B is a refinement of another cover A of the same space if for every B ∈ B there exists an A ∈ A such that B ⊂ A.

Definition 5. To every metric space M one assigns the covering dimension of M, denoted by dim M, which is ∞ or an integer larger that or equal to -1; the definition of the function dim is defined by the following conditions:

(1) dim M n, where n = -1, 0, 1, . . . , if every finite open cover of the space M has a finite open refinement of order n;

(2) dim M = n if dim M n and dim M > n, i.e. the inequality dim M n -1 does not hold; (3) dim M = ∞ if dim M > n for n = -1, 0, 1, . . .
Definition 6. To every metric space M one assigns the small inductive dimension of M, denoted by ind M, which is ∞ or an integer larger than or equal to -1; the definition of the function ind is defined by the following conditions:

(1) ind M = -1 if and only if M = ∅;

(2) ind M n, where n = 0, 1, . . . , if for every point x ∈ M and each r > 0 there exists an open set Let M be a disjoint union M = A ⊔ B, and suppose that x 1 < T x 2 for all x 1 ∈ A, x 2 ∈ B. Then there exists an order T ′ on the boundary ∂A such that Snake(∂A, T ′ ) n -1.

U ⊂ M such that x ∈ U ⊂ B ε (x) and the dimension of its boundary ind ∂U n -1; (3) ind M = n if ind M > n; (4) ind M = ∞ if ind M > 0, 1, 2, . . .
Proof. For distinct points x 0 , y 0 ∈ ∂A we set x < T ′ y if for any ε > 0 there exist x ∈ B ε (x 0 ) ∩ A and some δ > 0 such that x < T B δ (y 0 ) ∩ A, i.e.

x < T y for any y ∈ B δ (y 0 ) ∩ A.

We first show that for any x 0 , y 0 at least one of the relations x 0 < T ′ y 0 and y 0 < T ′ x 0 holds. Denote X k = B 1/k (x 0 )∩A, Y k = B 1/k (y 0 )∩A. For all sufficiently large k, the pairs (X k , Y k ) and (Y k , X k ) do not contain snakes of length n + 1. Consider the largest m such that there is a sequence of points t 1 < T t 2 < T • • • < T t m such that (i) all t i with odd i belong to X k and all t i with even i belong to Y k or (ii) all t i with odd i belong to Y k and all t i with even i belong to X k . holds. If t 1 ∈ X k , then t 1 < T y for any y ∈ Y k , otherwise the sequence

y < T t 1 < T • • • < T t m is longer. Similarly, if t 1 ∈ Y k , then t 1 < T x for any x ∈ Y k .
If the situation (i) holds for infinitely many k's, then x 0 < T ′ y 0 , otherwise y 0 < T ′ x 0 .

Assume that for m > 1 there exists a cycle

x 0 < T ′ x 1 < T ′ • • • < T ′ x m = x 1 Take ε 0 > 0. The set B ε (x 0 ) ∩ A contains a point y 0 such that y 0 < T B ε 2 (x 1 ) ∩ A for some ε 2 < ε 1 . Similarly, in B ε 1 (x 1 ) ∩ A there is a point y 1 such that y 1 < T B ε 2 (x 2 ) ∩ A for some ε 2 < ε 1
, and so on, we construct a sequence

y 0 < T y 1 < T y 2 < T . . .
The points y 0 , y m , y 2m , . . . belong to B ε 0 (x 0 )∩A, the points y 1 , y m+1 , y 2m+1 , . . . belong to B ε 1 (x 1 ) ∩ A. Since ε 0 was arbitrary, Snake(x 0 , x 1 ) = ∞. This contradiction shows that the ralations x < T ′ y and y < T ′ x cannot hold simultaneously and that the relation < T ′ is transitive. So T ′ is indeed an order relation.

Finally, assume that Snake T ′ (x, y) n for some points x, y ∈ ∂A. Take an arbitrary ε > 0. Then there is a sequence of points

t 0 < T ′ t 1 < T ′ • • • < T ′ t n ,
the points with odd indices belong to B ε (x) ∩ ∂A, and the points with even indices belong to B ε (y) ∩ ∂A.

Choose δ > 0 and as before, we can find a sequence of points r 0 < T r 1 < T • • • < T r n such that y i ∈ B δ (t i )∩A for i = 0, 1, . . . , n. Both B ε (x) and B ε (y) contain points from B, hence (B ε+δ (x), B ε+δ (y)) contains a snake of length n + 1. This leads us to a contradiction. Definition 7. Let (M, T ) be an ordered metric space. We call a subset X ⊂ M T -convex if for any triple of points x < T y < T z such that x, z ∈ X the point y also ∈ X. For a subset A ⊂ M we define its T -convex hull as the smallest T -convex subset of M that contains A. Lemma 3.2. Let (M, T ) be an ordered compact metric space such that Snake(M, T ) < ∞. Let x 0 ∈ M and r > 0. Then there is a finite family of T -convex subsets X 1 , . . . , X m such that their union covers M -B r (x 0 ) and does not intersect some neighbourhood B ε (x 0 ) of x 0 .

Proof. Let Snake(M, T ) = s -1 < ∞. For any y = x 0 we can choose ε y > 0 such that (B εy (y), (B εy (x 0 )) does not contain a snake of length s. The union of sets B εy (y) covers M -{x 0 }. The set N = {x ∈ X : d(x 0 , x) ≥ r} is compact, so there exists ε > 0 and a finite set Y ⊂ M such that (1) N ⊂ y∈Y B ε (y), [START_REF] Erschler | Spaces that can be ordered effectively: virtually free groups and hyperbolicity[END_REF] for any y ∈ Y the pair (B ε (y), B ε (x 0 )) does not contain a snake of length s.

Denote U := B ε (x 0 ). We introduce an equivalence relation on the points of the set N: a ∼ b if the T -convex hull of the set {a, b} does not intersect U.

It is easy to see that ∼ is indeed an equivalence relation. Suppose that for some y ∈ Y the ball B ε (y) intersects at least s + 1 of ∼equivalence classes. Choose a point in each class: Proof. We proceed by induction on n. If Snake(M, T ) 0, then |M| 1 and dim M 0. Suppose the statement is true for n -1. We use the definition of small inductive dimension, we want to show that for every point x ∈ M and each r > 0 there exists an open set U ⊂ M such that x ∈ U ⊂ B r (x) and ind ∂U n -1.

c 0 < T c 2 < T • • • < T c s .
Using Lemma 2 we find T -convex sets X 1 , . . . , X m such that their union covers M -B r (x) and does not intersect some neighborhood B ε (x). Let X be the closure of the union of all X i , i = 1, . . . , m. We succeed if we show that ind ∂X n -1.

Since ∂X ⊂ ∪∂X i , it's enough to show that ind B n -1 for any T -convex set B and to use the monotonicity property of ind.

But indeed, M can be partitioned into three sets A, B and C such that all points of B are T -less than all points of A and all points of C are T -greater than all points of A. Since ∂(A ∪ B) and ∂(A ∪ C) are compact spaces, by Lemma 1 and the induction hypothesis we have ind(∂(A∪B)) n-1 and ind(∂(A∪C)) n-1. So ind ∂B n-1.

Proof of Theorem 1.3

Let M be a compact metric space with dim M n. First we construct a sequence U i , i = 0, 1, . . . of open covers of the space M satisfying the following properties (1) U i is a refinement of U i-1 for i = 1, 2, . . . ;

(2) every U ∈ U i has diameter 2 -i ;

(3) for any i and any point x ∈ M, some neighbourhood B ε (x) of x intersects no more than n + 1 sets from U i . We construct this sequence of covers by induction. Suppose we have already constructed U i-1 , then it is easy to find a cover of V that satisfies properties 1 and 2 and has order n. To obtain a cover that also satisfies property 3, note that there is r > 0 such that for any point x ∈ M the ball B r (x) is entirely contained in some set from V. The cover U i is obtained from i by replacing each U by U -r/2 , obtained by subtracting from U the closure of the (r/2)-neighborhood of its complement.

For each set

U ∈ U i+1 choose a set f (U) ∈ U i such that U ⊂ f (U). A chain is a sequence of sets (U 0 , U 1 , . . . ) such that U i-1 = f (U i ) for i = 1, 2, . . . .
Let us show that each point x ∈ M is the intersection of all elements of some chain. Indeed, finite chains whose intersection contains x form a tree with vertices of finite degrees, this thee admits arbitrarily long paths, hence from Kőnig's lemma it follows that this tree contains a ray. Fix for every point x such a chain c(x) = (U 0 (x), U 1 (x), . . . ). Obviously, c(x) = c(y) for distinct x and y.

For each i we choose an arbitrary total order T i on U i . We define a total order T on M by the following rule.

x < T y if k is such that For i = 1, . . . , n + 2 the set U k (a i ) is one of A 1 , . . . , A m 1 . Thus there are

U i (x) = U i (y) for i = 0, 1, . . . , k -1 and U k (x) < T k U k (y),
i < j such that U k (a i ) = U k (a j ). Then U k ′ (a i ) = U k ′ (a j ) for all k ′ = 0, 1, . . . , k. Since a i < T b i+1 < T a j , then U k (b i+1 ) = U k (a i ).
This contradiction shows that Snake T (x, y) 2n + 1 and Snake(M, T ) 2n + 1.

Concluding remarks

5.1. The compactification theorem says [START_REF] Engelking | Dimension theory[END_REF] that for every separable metric space X there exists a compact metric space X ′ which contains a dense subspace homeomorphic to X and satisfies dim X ′ dim X. Hence Theorem 1.3 can be extended for all separable metric spaces of covering dimension n.

5.2.

Definition 8. A topologocal space M is called totally disconnected if for every pair x, y of distinct points of M there exists an open-andclosed set U ⊂ M such that x ∈ U and y ∈ M -U.

It is easy to see that every compact totally disconnected metric space has dim = 0. Proposition 5.1. Let M be a totally disconnected separable metric space. Then it admits a total order T for which Snake(M, T ) 1.

Proof. Consider a sequence of open-and-closed sets U 0 , U 1 , . . . such that for any two distinct points x, y ∈ M at least one of the sets U i contains exactly one of x and y. For a point x ∈ M consider a binary sequence c(x), whose i-th term is 1 if x ∈ U i and 0 otherwise. We say that x < T y is c(x) is lexicographically smaller than y.

Suppose c(x) and c(y) differ at i-th term. There exists r > 0 such that all points from B r (x) have the same prefix of c(•) of length i; the same for B r (y). In this situation (B r (x), B r (y)) does not contain snakes longer than 1.

Mazurkiewicz showed [START_REF] Mazurkiewicz | Sur les problèmes κ at λ de Urysohn[END_REF] the existence of completely metrizable totally disconnected separable space of arbitrary dimension n 1 (and consequently of infinite dimension). Therefore the compactness property cannot be omitted in Theorems 1.1 and 1.2. 
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 3 Proof of Theorem 1.2 Lemma 3.1. Let (M, T ) be an ordered metric space and let Snake(M, T ) n.

Since c 0

 0 and c 1 belong to different ∼-equivalence classes, U contains a point b 0 such that c 0 < T < b 0 < T c 1 . Similarly, we found points b 1 , b 2 , . . . , b s-1 and get that (B ε (y), B ε (x 0 )) contains a snake of length 2s, we obtain a contradiction. Since each B ε (y) intersects at most s ∼-equivalence classes, the total number of classes m is finite and m s|Y |. Hence the T -convex hulls of these ∼-equivalence classes satisfy the requirements of the Lemma. Now we are ready to prove Theorem 1.2.

  i.e. we compare corresponding chains lexicographically. Now let a, b ∈ M. Choose k such that 2 -k+1 < d(a, b). Let r be such that B r (a) and B r (b) intersect at most n + 1 sets in U k . Denote these sets A 1 , . . . A m 1 and B 1 , . . . , B m 2 , m 1 , m 2 n + 1. None that no A i intersects with B j . Let's prove that (B r (a), B r (b)) does not contain a snake of length 2n + 2. Assume the contrary. The snake consists of n + 2 points a 1 , . . . , a n+2 from B r (a) and of n + 1 points b 1 , . . . , b n+1 from B r (a).

5. 3 .

 3 Examples 2.1 and 2.2 show that two spaces of the same covering dimension can have different possible minimal snake numbers. The following question arises. Question 1. For given n, what is the minimal s(n) such that for any compact metric space M s.t. dim M n there exists an order T for which Snake(M, T ) s(n)?

Since in [START_REF] Erschler | Assouad-Nagata dimension and gap for ordered metric spaces[END_REF] it was shown that for any order on the product of n tripods there is a pair of points with snake number at least 2n, the answer is 2n or 2n + 1. It was also shown in [START_REF] Erschler | Spaces that can be ordered effectively: virtually free groups and hyperbolicity[END_REF] that for n = 1 the answer is 3.