
HAL Id: hal-03964298
https://hal.science/hal-03964298

Preprint submitted on 31 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Total orders on compact metric spaces and covering
dimension

Ivan Mitrofanov

To cite this version:

Ivan Mitrofanov. Total orders on compact metric spaces and covering dimension. 2023. �hal-03964298�

https://hal.science/hal-03964298
https://hal.archives-ouvertes.fr


ar
X

iv
:2

20
6.

06
09

9v
1 

 [
m

at
h.

M
G

] 
 3

1 
M

ay
 2

02
2

TOTAL ORDERS ON COMPACT METRIC SPACES

AND COVERING DIMENSION

IVAN MITROFANOV

Abstract. We prove that for a compact metric space the prop-
erty of having finite covering dimension is equivalent to the exis-
tence of a total order with finite snake number.

Keywords: total order · covering dimension · small inductive dimen-
sion.

1. Introduction

The following concept was introduced in [2]. Let M be a metric
space and let T be a total order on M (that is, for any distinct points
x, y ∈ M either x <T y or y <T x). Then for the ordered space
(M,T ) one calculates the order breakpoint Br(M,T ) ∈ N ∪ {+∞}.
The value minT Br(M,T ) is a quasi-isometry invariant for uniformly
discrete metric spaces.
It was shown in [3] that a metric space with finite Assouad-Nagata di-

mension admits an order T for which Br(M,T ) < ∞. It was also shown
that some properties contradicting to finiteness of Assoud-Nagata di-
mension also forbid orders with finite Br, and it was raised a question
whether the existence of orders with finite Br is equivalent to finiteness
of Assoud-Nagata dimension.
For metric spaces there are various definitions of dimension based on

coverings by sets with bounded intersection multiplicity. In order to
establish similar results for Lebesgue covering dimension, we introduce
the notion of snake number as an analogue of Br.

Definition 1. Let M be a metric space, T be a total order on M , and
let (U1, U2) be an ordered pair of subsets of M . We say that (U1, U2)
contains a snake of length s if there exists a sequence of points

a0 <T a1 <T · · · <T as
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such that U1 contains the points a0, a2, . . . , a2⌊s/2⌋ and U2 contains the
points a1, a3, . . . , a2⌈s/2⌉−1.

Definition 2. Let (M,T ) be an ordered metric space and let x, y be dis-
tinct points of M . The snake number SnakeT (x, y) is the greatest num-
ber s such that for any ε > 0 the pair of neighborhoods (Bε(x), Bε(y))
contains a snake of length s. If the greatest such number does not exist,
we say that Snake(x, y) = ∞.

Definition 3. Let M be a metric space and T be a total order on M .
The Snake number of the ordered space (M,T ) is defined as

Snake(M,T ) := sup
x,y∈M,x 6=y

SnakeT (x, y).

The main result of this paper is

Theorem 1.1. Let M be a compact metric space. Then the following
conditions are equivalent:

(1) the covering dimension dimM < ∞
(2) there exists an order T on M such that Snake(M,T ) < ∞.

Let us specify the upper and lower bounds.

Theorem 1.2. Let (M,T ) be an ordered compact metric space such
that Snake(M,T ) 6 s. Then dimM 6 s.

Theorem 1.3. Let M be a compact metric space with dimM 6 s.
Then there exists an order T for which Snake(M,T ) 6 2s+ 1.

One can find similarities with the following classical result.

Theorem 1.4 ([4]). Let M be a compact metric space with covering
dimension dimM ≥ n. Suppose f : A → M is a continuous mapping
of a closed subspace A of the Cantor set C onto the space M . Then
there exist n+ 1 points x0, . . . , xn ∈ A such that

f(x1) = · · · = f(xn)

.

(In fact, Hurewitz proved this result for small inductive dimension
ind that is equal to dim for compact metric spaces). From Theorem
1.2 one can conclude by passing to the limit the following fact

Proposition 1.5. Let M be a compact metric space with dimM ≥ n.
Suppose f : A → M is a continuous mapping of a closed subspace A of
R onto the space M . Then there exist n+ 1 points x0 < · · · < xn such
that

f(x0) = f(x2) = · · · = f(x2⌊n/2⌋)
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and

f(x1) = f(x3) = · · · = f(x2⌈n/2⌉−1).

2. Preliminaries

2.1. Snake numbers of a segment and of a circle.

Example 2.1. Obviously, for the segment I = [0, 1] and the natural
order T (x <T y if x < y) we have Snake(I, T ) = 1.

Example 2.2. If we glue the ends of the segment, we obtain the circle
S1. We take the order T from Example 2.1 and specify that 0 = 1 <T x
for any other point x. It is easy to see that if 0 < x, y < 1, then
Snake(x, y) = 1, and Snake(0, x) = 2, so Snake(S1, T ) = 2.

Proposition 2.3. Snake(S1, T ′) > 2 for any order T ′.

Proof. For any point x ∈ S1 there is an antipodal point A(x). We
colour each point x blue if x <T A(x) or red if x >T A(x). Since
S1 contains points of both colours, there exists x0 that belongs to the
boundary of the blue set. For a natural n, choose in B1/n(x0) a blue
point bn and a red point rn.
If A(bn) <T rn, then (B1/n(x0), B1/n(A(x0))) contains the snake

bn <T A(bN ) <T rn of length 2. Otherwise, (B1/n(A(x0)), B1/n(x0))
contains the snake A(rn) <T rn <T A(bn) of length 2.
One of these two events occurs for infinitely many different n, hence

for arbitrarily large n. �

We will use the following properties of ind and dim ([1]):

(1) (Monotonicity) if M1 is a subspace of M then indM1 6 indM ;
(2) (The sum theorem) if a separable metric space M can be repre-

sented as the union of a sequence F1, F2, . . . of closed subspaces
such that indFi 6 n for i = 1, 2, . . . , then indM 6 n;

(3) (The coincidence theorem) for every separable metric space M
we have indM = dimM .

2.2. Some basics of the topological dimension theory.

Definition 4. Let X be a set and A a family of subsets of X. By
the order of the family A we mean the largest integer n such that the
family A contains n+1 sets with a non-empty intersection; in no such
integer exists, we say that the family A has order ∞. A cover B is a
refinement of another cover A of the same space if for every B ∈ B
there exists an A ∈ A such that B ⊂ A.
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Definition 5. To every metric space M one assigns the covering di-
mension of M , denoted by dimM , which is ∞ or an integer larger
that or equal to −1; the definition of the function dim is defined by the
following conditions:

(1) dimM 6 n, where n = −1, 0, 1, . . . , if every finite open cover
of the space M has a finite open refinement of order 6 n;

(2) dimM = n if dimM 6 n and dimM > n, i.e. the inequality
dimM 6 n− 1 does not hold;

(3) dimM = ∞ if dimM > n for n = −1, 0, 1, . . .

Definition 6. To every metric space M one assigns the small inductive
dimension of M , denoted by indM , which is ∞ or an integer larger
than or equal to -1; the definition of the function ind is defined by the
following conditions:

(1) indM = −1 if and only if M = ∅;
(2) indM 6 n, where n = 0, 1, . . . , if for every point x ∈ M and

each r > 0 there exists an open set U ⊂ M such that x ∈ U ⊂
Bε(x) and the dimension of its boundary ind ∂U 6 n− 1;

(3) indM = n if indM > n;
(4) indM = ∞ if indM > 0, 1, 2, . . .

3. Proof of Theorem 1.2

Lemma 3.1. Let (M,T ) be an ordered metric space and let

Snake(M,T ) 6 n.

Let M be a disjoint union M = A ⊔ B, and suppose that x1 <T x2 for
all x1 ∈ A, x2 ∈ B. Then there exists an order T ′ on the boundary ∂A
such that Snake(∂A, T ′) 6 n− 1.

Proof. For distinct points x0, y0 ∈ ∂A we set x <T ′ y if for any ε > 0
there exist x ∈ Bε(x0) ∩A and some δ > 0 such that x <T Bδ(y0) ∩A,
i.e.

x <T y for any y ∈ Bδ(y0) ∩A.

We first show that for any x0, y0 at least one of the relations x0 <T ′ y0
and y0 <T ′ x0 holds. Denote Xk = B1/k(x0)∩A, Yk = B1/k(y0)∩A. For
all sufficiently large k, the pairs (Xk, Yk) and (Yk, Xk) do not contain
snakes of length n + 1. Consider the largest m such that there is a
sequence of points t1 <T t2 <T · · · <T tm such that
(i) all ti with odd i belong to Xk and all ti with even i belong to Yk

or
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(ii) all ti with odd i belong to Yk and all ti with even i belong to Xk.
holds.

If t1 ∈ Xk, then t1 <T y for any y ∈ Yk, otherwise the sequence
y <T t1 <T · · · <T tm is longer. Similarly, if t1 ∈ Yk, then t1 <T x
for any x ∈ Yk. If the situation (i) holds for infinitely many k’s, then
x0 <T ′ y0, otherwise y0 <T ′ x0.
Assume that for m > 1 there exists a cycle

x0 <T ′ x1 <T ′ · · · <T ′ xm = x1

Take ε0 > 0. The set Bε(x0) ∩ A contains a point y0 such that y0 <T

Bε2(x1) ∩ A for some ε2 < ε1. Similarly, in Bε1(x1) ∩ A there is a
point y1 such that y1 <T Bε2(x2) ∩ A for some ε2 < ε1, and so on, we
construct a sequence

y0 <T y1 <T y2 <T . . .

The points y0, ym, y2m, . . . belong to Bε0(x0)∩A, the points y1, ym+1, y2m+1, . . .
belong to Bε1(x1)∩A. Since ε0 was arbitrary, Snake(x0, x1) = ∞. This
contradiction shows that the ralations x <T ′ y and y <T ′ x cannot hold
simultaneously and that the relation <T ′ is transitive. So T ′ is indeed
an order relation.
Finally, assume that SnakeT ′(x, y) > n for some points x, y ∈ ∂A.

Take an arbitrary ε > 0. Then there is a sequence of points

t0 <T ′ t1 <T ′ · · · <T ′ tn,

the points with odd indices belong to Bε(x) ∩ ∂A, and the points
with even indices belong to Bε(y) ∩ ∂A.
Choose δ > 0 and as before, we can find a sequence of points r0 <T

r1 <T · · · <T rn such that yi ∈ Bδ(ti)∩A for i = 0, 1, . . . , n. Both Bε(x)
and Bε(y) contain points from B, hence (Bε+δ(x), Bε+δ(y)) contains a
snake of length n+ 1. This leads us to a contradiction. �

Definition 7. Let (M,T ) be an ordered metric space. We call a subset
X ⊂ M T -convex if for any triple of points x <T y <T z such that
x, z ∈ X the point y also ∈ X. For a subset A ⊂ M we define its
T -convex hull as the smallest T -convex subset of M that contains A.

Lemma 3.2. Let (M,T ) be an ordered compact metric space such that
Snake(M,T ) < ∞. Let x0 ∈ M and r > 0. Then there is a finite
family of T -convex subsets X1, . . . , Xm such that their union covers
M −Br(x0) and does not intersect some neighbourhood Bε(x0) of x0.

Proof. Let Snake(M,T ) = s − 1 < ∞. For any y 6= x0 we can choose
εy > 0 such that (Bεy(y), (Bεy(x0)) does not contain a snake of length
s. The union of sets Bεy(y) covers M − {x0}. The set N = {x ∈ X :
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d(x0, x) ≥ r} is compact, so there exists ε > 0 and a finite set Y ⊂ M
such that

(1) N ⊂
⋃

y∈Y Bε(y),

(2) for any y ∈ Y the pair (Bε(y), Bε(x0)) does not contain a snake
of length s.

Denote U := Bε(x0). We introduce an equivalence relation on the
points of the set N :

a ∼ b if the T -convex hull of the set {a, b} does not intersect U.

It is easy to see that ∼ is indeed an equivalence relation. Suppose
that for some y ∈ Y the ball Bε(y) intersects at least s + 1 of ∼-
equivalence classes. Choose a point in each class:

c0 <T c2 <T · · · <T cs.

Since c0 and c1 belong to different ∼-equivalence classes, U contains
a point b0 such that c0 <T< b0 <T c1. Similarly, we found points
b1, b2, . . . , bs−1 and get that (Bε(y), Bε(x0)) contains a snake of length
2s, we obtain a contradiction.
Since each Bε(y) intersects at most s ∼-equivalence classes, the total

number of classesm is finite andm 6 s|Y |. Hence the T -convex hulls of
these ∼-equivalence classes satisfy the requirements of the Lemma. �

Now we are ready to prove Theorem 1.2.

Proof. We proceed by induction on n. If Snake(M,T ) 6 0, then |M | 6
1 and dimM 6 0. Suppose the statement is true for n − 1. We use
the definition of small inductive dimension, we want to show that for
every point x ∈ M and each r > 0 there exists an open set U ⊂ M
such that x ∈ U ⊂ Br(x) and ind ∂U 6 n− 1.
Using Lemma 2 we find T -convex sets X1, . . . , Xm such that their

union covers M − Br(x) and does not intersect some neighborhood
Bε(x). Let X be the closure of the union of all Xi, i = 1, . . . , m. We
succeed if we show that ind ∂X 6 n− 1.
Since ∂X ⊂ ∪∂Xi, it’s enough to show that indB 6 n − 1 for any

T -convex set B and to use the monotonicity property of ind.
But indeed, M can be partitioned into three sets A, B and C such

that all points of B are T -less than all points of A and all points of
C are T -greater than all points of A. Since ∂(A ∪ B) and ∂(A ∪ C)
are compact spaces, by Lemma 1 and the induction hypothesis we have
ind(∂(A∪B)) 6 n−1 and ind(∂(A∪C)) 6 n−1. So ind ∂B 6 n−1. �
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4. Proof of Theorem 1.3

Let M be a compact metric space with dimM 6 n.
First we construct a sequence Ui, i = 0, 1, . . . of open covers of the

space M satisfying the following properties

(1) Ui is a refinement of Ui−1 for i = 1, 2, . . . ;
(2) every U ∈ Ui has diameter 6 2−i;
(3) for any i and any point x ∈ M , some neighbourhood Bε(x) of

x intersects no more than n+ 1 sets from Ui.

We construct this sequence of covers by induction. Suppose we have
already constructed Ui−1, then it is easy to find a cover of V that
satisfies properties 1 and 2 and has order 6 n. To obtain a cover that
also satisfies property 3, note that there is r > 0 such that for any
point x ∈ M the ball Br(x) is entirely contained in some set from V.
The cover Ui is obtained from i by replacing each U by U−r/2, obtained
by subtracting from U the closure of the (r/2)-neighborhood of its
complement.
For each set U ∈ Ui+1 choose a set f(U) ∈ Ui such that U ⊂ f(U).

A chain is a sequence of sets (U0, U1, . . . ) such that Ui−1 = f(Ui) for
i = 1, 2, . . . .
Let us show that each point x ∈ M is the intersection of all elements

of some chain. Indeed, finite chains whose intersection contains x form
a tree with vertices of finite degrees, this thee admits arbitrarily long
paths, hence from Kőnig’s lemma it follows that this tree contains a
ray. Fix for every point x such a chain c(x) = (U0(x), U1(x), . . . ).
Obviously, c(x) 6= c(y) for distinct x and y.
For each i we choose an arbitrary total order Ti on Ui. We define a

total order T on M by the following rule.
x <T y if k is such that

Ui(x) = Ui(y) for i = 0, 1, . . . , k − 1 and Uk(x) <Tk
Uk(y),

i.e. we compare corresponding chains lexicographically.
Now let a, b ∈ M . Choose k such that 2−k+1 < d(a, b). Let r be

such that Br(a) and Br(b) intersect at most n + 1 sets in Uk. Denote
these sets A1, . . . Am1

and B1, . . . , Bm2
, m1, m2 6 n + 1. None that no

Ai intersects with Bj.
Let’s prove that (Br(a), Br(b)) does not contain a snake of length

2n + 2. Assume the contrary. The snake consists of n + 2 points
a1, . . . , an+2 from Br(a) and of n + 1 points b1, . . . , bn+1 from Br(a).
For i = 1, . . . , n+ 2 the set Uk(ai) is one of A1, . . . , Am1

. Thus there
are i < j such that Uk(ai) = Uk(aj). Then Uk′(ai) = Uk′(aj) for all
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k′ = 0, 1, . . . , k. Since ai <T bi+1 <T aj, then Uk(bi+1) = Uk(ai). This
contradiction shows that SnakeT (x, y) 6 2n + 1 and Snake(M,T ) 6

2n+ 1.

5. Concluding remarks

5.1. The compactification theorem says [1] that for every separable
metric space X there exists a compact metric space X ′ which contains
a dense subspace homeomorphic to X and satisfies dimX ′ 6 dimX .
Hence Theorem 1.3 can be extended for all separable metric spaces of
covering dimension 6 n.

5.2.

Definition 8. A topologocal space M is called totally disconnected if
for every pair x, y of distinct points of M there exists an open-and-
closed set U ⊂ M such that x ∈ U and y ∈ M − U .

It is easy to see that every compact totally disconnected metric space
has dim = 0.

Proposition 5.1. Let M be a totally disconnected separable metric
space. Then it admits a total order T for which Snake(M,T ) 6 1.

Proof. Consider a sequence of open-and-closed sets U0, U1, . . . such that
for any two distinct points x, y ∈ M at least one of the sets Ui contains
exactly one of x and y. For a point x ∈ M consider a binary sequence
c(x), whose i-th term is 1 if x ∈ Ui and 0 otherwise. We say that
x <T y is c(x) is lexicographically smaller than y.
Suppose c(x) and c(y) differ at i-th term. There exists r > 0 such

that all points from Br(x) have the same prefix of c(·) of length i; the
same for Br(y). In this situation (Br(x), Br(y)) does not contain snakes
longer than 1. �

Mazurkiewicz showed [5] the existence of completely metrizable to-
tally disconnected separable space of arbitrary dimension n > 1 (and
consequently of infinite dimension). Therefore the compactness prop-
erty cannot be omitted in Theorems 1.1 and 1.2.

5.3. Examples 2.1 and 2.2 show that two spaces of the same covering
dimension can have different possible minimal snake numbers. The
following question arises.

Question 1. For given n, what is the minimal s(n) such that for any
compact metric space M s.t. dimM 6 n there exists an order T for
which Snake(M,T ) 6 s(n)?
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Since in [3] it was shown that for any order on the product of n
tripods there is a pair of points with snake number at least 2n, the
answer is 2n or 2n + 1. It was also shown in [2] that for n = 1 the
answer is 3.
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