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Abstract The homogenized behavior of a hyperelastic composite material is characterized by an effective
stored-energy function that is functionally very different from the stored-energy functions that describe the
underlying hyperelastic constituents. Over the past two decades, several analytical and computational results
suggest that the case of isotropic incompressible Neo-Hookean composites in 2D may be the exception. This
Note conjectures that the homogenized behavior of an isotropic hyperelastic solid made of incompressible Neo-
Hookean materials is itself an incompressible Neo-Hookean material. To support this conjecture, earlier results
are summarized, a new Reuss lower bound is derived, and a set of computational results is presented for the
physically relevant cases of a Neo-Hookean matrix filled with random isotropic distributions of rigid and liquid
circular particles of identical size.
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1 Introduction

While the study of the effective or homogenized linear behavior of composites materials has a long and rich
history, that of their nonlinear behavior is much more sparse. In the case of hyperelastic composites, the non-
convexity of the stored-energy function is a major hurdle.

Define
W (F) = inf

k∈NN

{
inf

y∈kY0#

 
kY0

W (X,∇y) dX

}
, (1)

where Y0 = (0, 1)N , kY0# = {y : y = FX+u, u ∈ W 1,p
0 (kY0;RN )} stands for the set of admissible deformation

fields y(X) with average gradient
ffl
kY0

∇y dX = F and kY0-periodic fluctuations u. That formula has been
shown by Braides [1] and Müller [2] (see also [3]) to represent the effective stored-energy function of hyperelastic
composite materials with Y0-periodic microstructure, provided that the local stored-energy function W (X,F)
satisfies, for arbitrary F,

α|F|p ≤ W (X,F) ≤ β(1 + |F|p) (2)

for some α > 0, β, 1 < p < ∞.
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Conditions (2) rule out all incompressible stored-energy functions and many of the popular compressible
ones, including any compressible Neo-Hookean material. It is however expected that the formula (1) should
apply to all physically sound stored-energy functions. Fully embracing this expectation, we take (1) as the
definition for the effective stored-energy function of periodic hyperelastic composites. For the limiting case
of incompressible behavior, which is the focus of this work, we include the pointwise incompressibility of the
material as a constraint in the admissible set of deformation fields and write

W (F) =


inf

k∈NN

{
inf

y∈kY inc
0#

 
kY0

W (X,∇y) dX

}
if detF = 1

+∞ else

, (3)

where
kY inc

0# = {y : det∇y = 1 a.e., y = FX+ u, u ∈ W 1,p
0 (kY0;RN )}.

Now, for a given local stored energy function W (X,F), the resulting effective stored-energy function W (F)
is, in general, functionally very different1 from W (X,F). We conjecture that a rare exception to this rule is the
case of isotropic incompressible Neo-Hookean composites in 2D. Precisely, we conjecture that for the case of
isotropic composites with local stored-energy function

W (X,F) =


µ(X)

2
[F · F− 2] if detF = 1

+∞ else
(4)

in N = 2 space dimensions, the effective stored-energy function (3) is Neo-Hookean and that it is given by

W (F) =


µ

2

[
F · F− 2

]
if detF = 1

+∞ else
, (5)

where the effective material parameter µ is the effective shear modulus of the corresponding isotropic incom-
pressible linear elastic composite material. In other words,

µ =

 
Y0

µ(X) (1 + e12(χ)(X)) dX, (6)

where χ(X) is the Y0-periodic function that minimizes
ˆ
Y0

µ(X)ekh(X2e1 +X1e2 +ψ) · ekh(X2e1 +X1e2 +ψ) dX

on
{
ψ ∈ W 1,2(Y0;R2) : ψ Y0-periodic and Div ψ = 0

}
.

Summary of earlier results In the sequel, we provide evidence in support of the above conjecture. In doing so
we follow in the footstep of prior studies. In [4] a formula for the effective stored-energy function of a two-phase
particulate hyperelastic composite that includes isotropic Neo-Hookean composites in 2D as a special case is
derived, yielding an effective stored-energy function of the form (5) with

µ = µHS =
(1− c)µm + (1 + c)µp

(1 + c)µm + (1− c)µp
µm, (7)

where µm and µp stand for the respective shear moduli of the matrix and of the particles and c is the concentration
(area fraction) of particles. Remark that the effective material parameter µHS in (7) agrees with one of the
Hashin-Shtrikman (HS) bounds — the lower bound if µp > µm, the upper bound otherwise — for the effective
shear modulus of two-phase linear elastic composites made of isotropic incompressible constituents. The same
result (7) was derived earlier in [5] via a more direct approach.

1 This is so even in the most specialized case of isotropic incompressible composite materials made of isotropic incom-
pressible constituents, when the resulting effective stored-energy function W (F), much like the local stored-energy function
W (X,F), admits representations in terms of just N − 1 invariants.
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In [6] a formula for the effective stored-energy function of a Neo-Hookean matrix filled with a random
isotropic distribution of rigid particles in 2D is obtained. The result is again of the Neo-Hookean form (5).
There,

µ = µDS =
µm

(1− c)2
, (8)

where, as above, µm stands for the shear modulus of the underlying Neo-Hookean matrix. Interestingly, µDS in
(8) agrees with the classical result generated by the so-called differential scheme for the effective shear modulus
of a linear elastic isotropic incompressible material filled with a random distribution of circular rigid particles
of infinitely many sizes.

In a more computational direction, finite-element (FE) solutions for the effective stored-energy function of
two-phase Neo-Hookean composites made of the periodic repetition of a square unit cell Y0 = (0, 1)2 containing
60 randomly distributed circular almost-rigid particles of identical (monodisperse) size were generated in [7]
under the assumption that the minimizers in (1) are Y0-periodic. While such microstructures are not exactly
isotropic, the relatively large number of particles (more on this below) led to fairly isotropic responses, at least
for the composites with small-to-moderate particle concentration (c ≤ 0.3). The comprehensive bifurcation
studies in [8] later established that the assumption that the minimizers for the type of Neo-Hookean composites
studied in [7] are Y0-periodic is indeed justified. Furthermore [6] showed that the FE solutions put forth in [7]
were, by and large, of Neo-Hookean form.

More recently, FE solutions for the effective stored-energy function (3) of a variety of two-phase particulate
Neo-Hookean composites with either rigid (µp = +∞) or liquid (µp = 0+) particles have been obtained in [9].
The resulting effective stored-energy functions appear to be Neo-Hookean as well.

The organization of the rest of this Note is as follows. In Section 2, we recall the classical Voigt upper and
Reuss lower bounds and derive a new Reuss bound for the effective stored-energy function (3) when specialized
to isotropic incompressible Neo-Hookean composites with local stored-energy function (4). Both the Voigt and
new Reuss bounds are shown to be consistent with the conjecture (5). In Section 3, we present a comprehensive
set of numerical solutions for (3) for the physically relevant cases of a Neo-Hookean matrix filled with random
isotropic distributions of rigid — infinite shear stiffness — and liquid — incompressible with vanishingly small
shear stiffness — circular particles of monodisperse size. The results span a large range of concentrations of
particles, c ∈ [0, 0.60]. All of them seem to reinforce the conjecture (5).

From now onward, we tacitly assume that detF = 1 and that N = 2.

2 Voigt and Reuss bounds

The classical Voigt bound. The Voigt upper bound is trivial. It suffices to consider as admissible trial field in
(3) the field y(X) = FX. This yields

W (F) ≤ µV

2

[
F · F− 2

]
with µV :=

 
Y0

µ(X) dX. (9)

The classical Reuss bound. Establishing Reuss lower bounds usually requires a dual formulation of the min-
imization problem (3). But the lack of convexity stands in the way of that approach. This difficulty can be
circumvented by using appropriate types of Legendre transforms [10]. Using the standard Legendre transform

W ?(X,S) := sup
F

{S · F−W (X,F)} =
1

2µ(X)
S · S+ µ(X),

we get
µ(X)

2
[F · F− 2] ≥ S · F− 1

2µ(X)
S · S− µ(X)

for arbitrary S. Substitution in the homogenization formula (3) leads to

W (F) ≥ inf
k∈N2

{
inf

y∈kY0#

 
kY0

(
S · F− 1

2µ(X)
S · S− µ(X)

)
dX

}
.
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Since this inequality is valid for arbitrary S, we can choose it to be a constant, say S = S. For this choice, the
inequality simplifies to

W (F) ≥ S · F− 1

2

( 
Y0

1

µ(X)
dX

)
S · S−

 
Y0

µ(X) dX,

where we have made use of the fact that
ffl
kY0

∇y(X) dX = F and of the Y0-periodicity of µ(X). Optimizing
this result with respect to S finally leads to the classical Reuss bound

W (F) ≥ µR

2
F · F− µV with µR :=

( 
Y0

1

µ(X)
dX

)−1

(10)

for Neo-Hookean composites, where µV is given by (9)2.
Given that µV ≥ µR, the Reuss bound (10) violates the trivial bound W (F) ≥ 0 for small deformations

(F → I). Further, the Reuss bound (10) is unbounded from below for the limiting case when one of the phases
is rigid, for µV = +∞ then. In the opposite extreme case when one of the phases is a liquid, the Reuss bound
(10) becomes −µV since µR = 0.

The new Reuss bound. To improve on (10), we consider a different transformation inspired by, e.g., [11]. Precisely,
we introduce

Ψ?(X,S, p) = sup
F

{
S · F+ pdetF− µ(X)

2
F · F

}
(11)

and remark that, upon writing F as a 4-vector, i.e., F =


F11

F22

F12

F21

, Ψ?(X,S, p) reads as

Ψ?(X,S, p) = sup
F

{S · F+ F ·MF} with M :=


−µ(X)/2 p/2 0 0

p/2 −µ(X)/2 0 0
0 0 −µ(X)/2 −p/2
0 0 −p/2 −µ(X)/2

 .

Note that the eigenvalues mi, i = 1, ..., 4 of M are all non positive iff p2 ≤ µ2(X).

Now, take p = µ(X), then F ·MF = −µ(X)

2

[
(F11 − F22)

2 + (F12 + F21)
2
]
, so

Ψ?(X,S, µ(X)) = sup
F

{
S · F− µ(X)

2

[
(F11 − F22)

2 + (F12 + F21)
2
]}

=


+∞ if S11 + S22 6= 0 or S12 − S21 6= 0

1

8µ(X)

[
(S11 − S22)

2 + (S12 + S21)
2
]

else

Consequently, since, from (11), µ(X)

2
[F ·F− 2] ≥ S ·F+ µ(X) detF− Ψ?(X,S, µ(X))− µ(X), substituting

in the homogenization formula (3), choosing S =

(
α β

β −α

)
with arbitrary constants α and β, and exploiting the

facts that detF = 1,
ffl
kY0

∇y(X) dX = F, and that µ(X) is Y0-periodic leads to

W (F) ≥ sup
α,β

{ 
Y0

(
α(F 11 − F 22) + β(F 12 + F 21)−

1

2µ(X)
(α2 + β2)

)
dX

}
=

µR

2

[
F · F− 2

]
, (12)

which is precisely the new Reuss bound.
Note that, like its upper counterpart (9), the new Reuss bound (12) is of Neo-Hookean form and its effective

material parameter µR agrees identically with the classical Reuss bound for the effective shear modulus of linear
elastic composites made of isotropic incompressible constituents.
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Remark 1 A corollary that immediately follows from the Voigt upper bound (9) and the Reuss lower bound
(12) is that the effective stored-energy function for Neo-Hookean composites with local shear modulus µ(X) =
µ0 + t w(X), |w(X)| < C, is identically Neo-Hookean and asymptotically given by

W (F) =
1

2

(
µ0 + t

 
Y0

w(X) dX

)[
F · F− 2

]
+O(t2) (13)

in the limit of small heterogeneity contrast as t → 0. This is so because µR = µV +O(t2).

3 Computational results for a Neo-Hookean matrix filled with circular rigid and liquid particles

In this section, which complements the small-contrast result (13), we present computational results for the
effective stored-energy function (3) for two physically relevant classes of isotropic Neo-Hookean composites with
infinite heterogeneity contrast, those of a Neo-Hookean matrix filled with either rigid or liquid circular particles
of monodisperse size.

3.1 Construction of the microstructures

We begin by outlining the process by which we constructed and pre-selected the microstructures and then
describe the numerical method of solution and the final filtering procedure used to identify the microstructures
that lead to elastic behaviors that are indeed isotropic to a sufficiently high degree of accuracy.

In the spirit of [12–14], the type of isotropic particulate composite materials considered in this section
is approximated as an infinite medium made of the periodic repetition of a unit cell containing a random
distribution of a sufficiently large but finite number N of particles. A critical issue in such an approach is
the determination of that sufficiently large number N. Equally critical is the choice of an appropriate numerical
scheme that will handle large deformations, the incompressibility constraint, and the large deformation gradients
that arise between closely packed particles.

So as to be able to cover a large range of particle concentrations, we made use of the algorithm introduced
by Lubachevsky and Stillinger [15]. Although this algorithm allows to generate microstructures spanning the
full range of concentrations — from the dilute limit c ↘ 0 to the percolation threshold c ↗ cp ≈ 0.90 [15]
— we did not wish to deal with the computational challenges of extremely packed microstructures here and
restricted our attention to the range c ∈ [0, 0.60]. Moreover, we imposed the minimal distance between any pair
of particles to be greater than 1% of their radius.

We begun by generating a total of 4000 realizations of square unit cells Y0 = (−1/2, 1/2)2 containing 30, 60,
120, 240, 480, 960 randomly distributed particles. For each realization, we computed the two-point correlation

Fig. 1: Representative unit cell Y0 containing a random distribution of N = 480 monodisperse circular particles
at concentration c = 0.50 and the contour plot of its two-point correlation function P2(X) near the origin X = 0
as a function of the coordinates X1 and X2 normalized by the diameter 2a of the particles.
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function P2(X) =
ffl
Y0

θ(X′)θ(X+X′) dX′, where θ(X′) stands for the characteristic function of the particles,
that is, θ(X) = 1 if X lies within a particle and zero otherwise. As a first assessment of deviation from exact
geometric isotropy (which is only achieved in the limit of infinitely many particles), we then computed the
deviation of P2(X) from its isotropic projection I2(|X|) = 1/(2π)

´ 2π
0

P2(|X| cosφe1 + |X| sinφe2) dφ onto the
space of functions that depend on X only through its magnitude |X| ({e1, e2} stand for the principal axes of
the square unit cell Y0). Realizations that did not satisfy the condition

||P2(X)− I2(|X|)||1
||I2(|X|)||1

≤ 2× 10−2 (14)

were discarded as not sufficiently isotropic. This filtering process reduced the initial set of 4000 realizations to
just a set of 80 potentially acceptable realizations, 10 for each of the 8 concentrations

c = 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60

that we chose as a discretization of the range c ∈ [0, 0.60]. By way of an example, Fig. 1 shows a representative
unit cell Y0 containing a total of N = 480 particles at concentration c = 0.50 that satisfied the condition (14)
alongside a contour plot of its two-point correlation function.

Remark 2 The criterion (14) provides a computationally inexpensive tool to weed out microstructures that
cannot lead to isotropic elastic behaviors. However, microstructures that do satisfy (14) need not exhibit isotropic
elastic behaviors. As described further below, a thorough direct check of its constitutive behavior is required to
establish whether a Neo-Hookean composite with a finite number N of particles does indeed exhibit isotropic
elastic behavior to within the desired tolerance.

We then computed the effective stored-energy function of the particulate Neo-Hookean composites with the
above-outlined 80 potentially acceptable microstructures. Specifically, we used the discretized parametrization2

Fϕ(λ) = λ cosϕ e1 ⊗ e1 − λ sinϕ e1 ⊗ e2 + λ−1 sinϕ e2 ⊗ e1 + λ−1 cosϕ e2 ⊗ e2 (15)

in terms of the two parameters λ ∈ R and ϕ ∈ {0, π/8, π/4, 3π/8, π/2} for the applied average deformation
gradient F. Physically, this corresponds to pure shear deformations with stretches λ and λ−1 at an angle ϕ

with respect to the principal axes {e1, e2} of the unit cell Y0. For the spatial discretization, we employed the
open-source mesh generator code Gmsh [16] to discretize the unit cells with non-overlapping 6-node triangular
elements. Because of the incompressibility of the matrix material and that of the rigid and liquid particles,
we made use of a hybrid re-formulation of the variational problem (3) in which both the displacement field y

and a pressure field p are the independent fields in the problem (see, e.g., Section 5 in [17]). Furthermore, the
constitutive behavior of the rigid particles was described as a set of kinematic constraints over their boundaries
and so their interior did not require meshing [18]. The constitutive behavior of the liquid particles was described
by a Neo-Hookean stored-energy function with a shear modulus that was two orders of magnitude softer than
that of the matrix, namely, µp = µm/100. Within the hybrid re-formulation, we made use of triangular elements
featuring approximations that are quadratic in the deformation field and linear in the pressure field. In agreement
with the bifurcation analysis in [8], all generated FE solutions were Y0-periodic.

With the FE solutions at hand, the final step was to identify which of the pre-selected 80 microstructures
did indeed exhibit elastic responses that were isotropic to a sufficiently high degree of accuracy. To that end,
we checked whether the inequality

max
ϕ

{
W (Fϕ(λ))

}
−min

ϕ

{
W (Fϕ(λ))

}
min
ϕ

{
W (Fϕ(λ))

} ≤ 10−2 (16)

was satisfied. Out of the 10 pre-selected microstructures for each of the 8 concentrations c = 0.01, 0.05, 0.10,
0.20, 0.30, 0.40, 0.50, 0.60, only a few satisfied (16) for each c. As we show next, the effective stored-energy
functions for the Neo-Hookean composites with those microstructures appear to be of Neo-Hookean form.

2 Thanks to its objectivity W (QF) = W (F) ∀Q ∈ Orth+ and incompressibility W (F) = +∞ if detF 6= 1, the effective
stored-energy function (3) admits representations in terms of two scalar variables, this regardless of its anisotropy. In this
work, we found it convenient to use the representation Ψ(λ, ϕ) := W (Fϕ(λ)), where F is given by (15) with λ ∈ R and
ϕ ∈ [0, π/2]. In our calculations, we discretized the latter range as ϕ ∈ {0, π/8, π/4, 3π/8, π/2}.
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3.2 Results

Figure 2(a) presents plots of the FE results (solid circles/dashed lines) for the effective stored-energy functions
(3) of the Neo-Hookean composites with concentrations c = 0.10, 0.30, and 0.50 of circular rigid particles. The
results are normalized by the initial shear modulus µm of the underlying Neo-Hookean matrix as a function of
the deformation measure I1 = F · F = λ2 + λ−2.

0
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0.5

0.75

2 2.2 2.4 2.6 2.8 3

FE

Formula (5)
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2
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0 0.1 0.2 0.3 0.4 0.5 0.6

(b)

Fig. 2: (a) FE results for the effective stored-energy function (3) for Neo-Hookean composites made of a Neo-
Hookean matrix filled with circular rigid (µp = +∞) particles at several concentrations c as functions of the
deformation measure I1 = F ·F. (b) The corresponding effective shear modulus (6) in the conjectured formula
(5), which is also plotted in part (a) for direct comparison with the FE results, as a function of c.
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Fig. 3: (a) FE results for the effective stored-energy function (3) for Neo-Hookean composites made of a Neo-
Hookean matrix filled with circular liquid (µp = µm/100) particles at several concentrations c as functions of the
deformation measure I1 = F ·F. (b) The corresponding effective shear modulus (6) in the conjectured formula
(5), which is also plotted in part (a) for direct comparison with the FE results, as a function of c.
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For direct comparison, Fig. 2(a) includes the results (solid lines) given by the conjecture (5). Figure 2(b)
presents plots of the effective shear modulus µ in that formula, as defined by (6) and computed by FE. In particu-
lar, the results for µ are shown normalized by the initial shear modulus µm of the underlying Neo-Hookean matrix
as a function of the concentration of particles c for the values c = 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60 that
we examined.

It is evident from Fig. 2 that the effective stored-energy functions for Neo-Hookean composites made of
a Neo-Hookean matrix filled with circular rigid particles seem to be precisely of Neo-Hookean form and, in
particular, given by (5).

While the maximum applied deformations, measured by I1, are not exceedingly large in the results presented
in Fig. 2(a), we emphasize that the local stretches in the underlying Neo-Hookean matrix are large. Because the
particles are rigid and thus do not deform, the matrix must deform more than the applied average deformation.
In other words, the FE results in Fig. 2(a) fully probe the nonlinear elasticity of the underlying Neo-Hookean
matrix despite the deceivingly moderate values of I1.

Figure 3 shows results for liquid particles that are entirely analogous to those in Fig. 2. The main observation
remains the same as that for Fig. 2.
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