
HAL Id: hal-03964175
https://hal.science/hal-03964175

Submitted on 25 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preserving the autocovariance of texture tilings using
importance sampling

Nicolas Lutz, Basile Sauvage, Jean-Michel Dischler

To cite this version:
Nicolas Lutz, Basile Sauvage, Jean-Michel Dischler. Preserving the autocovariance of texture tilings
using importance sampling. Computer Graphics Forum, 2023, 42 (2), pp.347-358. �10.1111/cgf.14766�.
�hal-03964175�

https://hal.science/hal-03964175
https://hal.archives-ouvertes.fr

EUROGRAPHICS 2023 / K. Myszkowski and M. Nießner
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 2

Preserving the autocovariance of texture tilings using importance
sampling

Nicolas Lutz, Basile Sauvage and Jean-Michel Dischler

ICube, Université de Strasbourg, CNRS, France

Figure 1: Left: just repeating an exemplar perfectly preserves the autocovariance function (ACf), but produces an unpleasant repetition
effect. Middle: real-time randomized tiling and blending [HN18] avoids this and creates variety by using a random uniform sampler to draw
new contents. But by doing so, it does not preserve the ACf. Right: our new approach offers both, variety and preservation of the ACf by
applying a well-chosen importance sampler. For each view: (a) synthesized output, (b) ACf of the output, (c) ACf similarity.

Abstract

By-example aperiodic tilings are popular texture synthesis techniques that allow a fast, on-the-fly generation of unbounded and
non-periodic textures with an appearance matching an arbitrary input sample called the “exemplar”. But by relying on uniform
random sampling, these algorithms fail to preserve the autocovariance function, resulting in correlations that do not match the
ones in the exemplar. The output can then be perceived as excessively random.
In this work, we present a new method which can well preserve the autocovariance function of the exemplar. It consists in
fetching contents with an importance sampler taking the explicit autocovariance function as the probability density function
(pdf) of the sampler. Our method can be controlled for increasing or decreasing the randomness aspect of the texture.
Besides significantly improving synthesis quality for classes of textures characterized by pronounced autocovariance functions,
we moreover propose a real-time tiling and blending scheme that permits the generation of high-quality textures faster than
former algorithms with minimal downsides by reducing the number of texture fetches.

CCS Concepts
• Computing methodologies → Rendering; Texturing;

1. Introduction

Texture synthesis is the process of creating textures from a set of
parameters. It can be used to ease the texture creation process or to
texture surfaces from a set of parameters in rendering applications.

Depending on the algorithm, the generated textures may or may not
have various desirable properties, such as: 1) eliminating repetition
and alignment artifacts that both occur when trivially repeating a
periodic texture on a surface (cf. the first view of Figure 2); 2) being
extendable to a surface of unbounded (possibly infinite) size while

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.14766

https://doi.org/10.1111/cgf.14766

N. Lutz, B. Sauvage & J-M. Dischler / Preserving the autocovariance of texture tilings using importance sampling

Figure 2: Comparing most relevant tiling algorithms, with highlighted repetition artifacts (yellow). Periodic tiling, Wang tiling [CSHD03],
Content exchange [VSLD13, LSLD19], all exhibit strong repetition artifacts. Tiling and Blending [HN18] generates much less repetitions,
but comes along with ghosting artefacts related to the blending of contents. Spot noise [GGM11] does not exhibit any repetition at all and
preserves the second-order moment of the exemplar, but the numerous blendings produce Gaussian statistics, thus radically altering the
pattern.

maintaining a high level of detail; 3) being as compact as possi-
ble in terms of memory footprint; 4) being computable at very fast
framerates, e.g. being intrinsically computable in parallel at texel
level to be GPU compliant; 5) being filterable on the fly.

By-example texture synthesis algorithms form a specific fam-
ily of data-driven texture synthesis algorithms. Their particularity
is to infer the parameters from a sample image, called the exem-
plar. While by-example texture synthesis is now a mature field, the
synthesis of textures under the previous five constraints remains
highly challenging. Typically, the very large majority of methods,
like those based on optimization or neural networks, fail to address
these constraints.

Previously, by-example procedural noise was considered to be a
powerful tool for satisfying the aforementioned constraints. They
succeed at reproducing statistics estimated from the exemplar, no-
tably the first and second-order statistics through the preservation
of the power spectral density, which is linked to the autocovariance
function [GGM11]; however, these algorithms produce Gaussian
statistics that do not preserve the fine structural details like edges
and contours of exemplars lacking such statistics. In recent years,
tiling texture synthesis has gained growing interest, notably with
its recent “randomized tiling and blending” variation, as they con-
versely well satisfy the previous constraints altogether. Unlike pro-
cedural noise, they do not produce purely Gaussian patterns and are
able to preserve local structures; but also unlike procedural noise,
the preservation of specific statistics is more difficult. The preserva-
tion of first-order statistics have seen recent improvements [HN18].
Second-order statistics, on the other hand, have not been paid atten-
tion.

Our motivation is to unify these complementary features (local
structures, first and second-order moments) to improve aperiodic
tiling algorithms. We first generalize known aperiodic tiling mod-
els, whether they rely on blendings or not. We then show a simple
method to preserve the autocovariance function by replacing the
sampler with an importance sampler taking the second-order mo-
ment as probability density function. We show how the probability
density function can be manipulated for increased control over the
second-order moment of the generated output. Then, we use our

generalization to present an aperiodic tiling algorithm that requires
only two texture accesses for the computation of texel values, thus
making it faster than current tiling and blending algorithms. We
show that this approach is also well-suited for simulating cyclosta-
tionary processes.

2. Related work

This work is related to two families of textures synthesis, namely
procedural noises and tilings. Closely related synthesis algorithms
are illustrated in Figure 2.

2.1. By-example procedural noise

We define procedural noises as algorithms simulating stochastic
processes by implementing a random function. Procedural noise
modeling has a long history [LLC+10], but by-example procedu-
ral noise is more recent. Galerne et al. [GGM11] showed that ran-
dom phase noise, which consists in computing the inverse Fourier
transform of a spectrum with randomized phases [HWM06], and
Spot noise [vW91], which consists in computing the sparse convo-
lution of a spot, are both suitable for by-example noise synthesis:
the former by using the spectrum of an exemplar, and the latter
by using the exemplar itself as the spot. Sparse convolution noise
was also adapted to the by-example scheme by computing kernels
from the spectrum of an exemplar [LLDD09,LLD11,GDG12]. Lo-
cal random-phase noise [GSV+14] introduced local Fourier Series
to compute noises from exemplars with the additional possibility
to fix some selected phases. Texton noise [GLM17] consists in op-
timizing the frequency content of the spot of spot noise to hasten
power spectral density convergence of the result obtained by sum-
ming up about 30 spots, called textons, per texel on the GPU (it
subsequently requires also about 30 texture accesses).

Procedural noise algorithms exploit sparse convolution to create
more variety compared to other families of texture synthesis tech-
niques. This allows procedural noise to avoid repetition and align-
ment artifacts by construction. One of the major advantages is that
they preserve the second-order moment estimated from the exem-
plar, also by construction, since the latter is linked to the power

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

348

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14766 by C

ochrane France, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

N. Lutz, B. Sauvage & J-M. Dischler / Preserving the autocovariance of texture tilings using importance sampling

Figure 3: Illustrations of relevant synthesis algorithms: periodic tiling and Wang tiling [CSHD03] use a single square tiling; content ex-
change [VSLD13,LSLD19] uses a single irregular tiling; tiling and blending [HN18] blends three regular, hexagonal tilings. These techniques
use different samplers to fetch contents from the exemplar.

spectral density. For exemplars that can be expressed as the real-
ization of a stationary Gaussian process, this means that all statisti-
cal relationships are perfectly preserved, since stationary Gaussian
processes only require the preservation of the mean and autocovari-
ance function (first and second-order moments). However, when
the exemplar is not the realization of a Gaussian process, statistics
of first, second-order and beyond are lost in the output, despite the
preservation of the first and second-order moments. This loss is re-
lated to the sums applied either in spatial or spectral domain, these
sums enforcing the creation of Gaussian patterns as a consequence
of the central limit theorem.

Heitz and Neyret [HN18] showed that it is possible to preserve
first-order statistics of exemplars despite blending. This enables to
synthesize stationary procedural noises from exemplars that do not
necessarily have a normal histogram; however, it does not act on
higher-order statistics. Hence it does not preserves statistical rela-
tionships among multiple texels at arbitrary given scales.

Some recent works try to preserve local structures, i.e. correla-
tions in a neighborhood, in the context of procedural noises. Gilet
et al. [GSV+14] fix phases in Fourier series, but it makes the syn-
thesis tend towards periodic tiling and introduces both repetition
and alignment artifacts. Phasor noise [TEZ+19] produces stochas-
tic non-Gaussian patterns by separating a phase field and a highly
contrasted wave profile. Grenier et al. [GSDT22] use 2D transfer
functions indexed by a vector noise to produce structured stochas-
tic patterns. However, these last two works are not example-based,
thus making their practical usage difficult for non-experts.

Lutz et al. [LSD21] enhanced by-example procedural noise algo-
rithms to produce textures characterized by periodically-correlated
patterns, like brick walls. They introduce the mathematical model
of cyclostationary Gaussian noise. Corresponding textures are gen-
erated by modifying the usual uniform random sampler to blend

contents only at positions congruent to period vectors representing
the period of the pattern.

Our solution for preserving the second-order moment of exem-
plars is inspired from cyclostationary noise. Our model fetches con-
tents only at specific positions that optimize the output’s autoco-
variance function.

2.2. Offline tilings

Early works in the field of texture synthesis, which apply tiling with
or without blending, are able to preserve complex correlations. But
these methods are too slow and cannot be used for on-the-fly in-
finite texturing. Patch-Based Sampling [LLX+01] constructs tex-
tures offline by placing carefully-chosen tile contents side by side
with a small overlap. Carefully-chosen means that contents in over-
lapping regions are optimized so that they best match according to
some error measure. Blending is then applied on the overlap. Quilt-
ing [EF01] and Graphcut [KSE+03] avoid blending by computing
an optimal cut, but at the cost of even more important calculations.
Liu et al. [LCT04] use the autocovariance function to detect the
periods of a near-regular pattern and exploit a quilting method to
reorganize content while keeping the periodic global aspect of the
output. Our approach makes use of the autocovariance function to
preserve the global aspect as well.

2.3. Aperiodic tilings

Synthesizing high-resolution textures can be trivially done using
periodic tiling, which consists in repeating an identical and periodic
(also called “seamless”) texture sample over the surface (see Fig-
ure 2, left). While this guarantees a perfect preservation of higher
order statistics, the goal of synthesis is generally to avoid the result-
ing tartan-like repetition and perfect alignment artifacts. “Aperiodic
tiling” is the mathematical term used to designate a tiling that does

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

349

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14766 by C

ochrane France, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

N. Lutz, B. Sauvage & J-M. Dischler / Preserving the autocovariance of texture tilings using importance sampling

not contain arbitrarily large periodic regions. Designing an aperi-
odic tiling requires choosing the shapes and contents of the tiles,
how they are placed to tesselate the plane, and how potential dis-
continuities between connected tiles are hidden. We illustrate some
examples of aperiodic tiling algorithms in Figure 3 : each algorithm
has specific tile shapes and different ways of fetching contents (il-
lustrated by arrows).

Wang tiling is one of the most famous aperiodic tiling meth-
ods. It was first introduced to computer graphics by Stam [Sta97]:
square tiles of procedural noise are pre-computed with an identi-
fier on each border and stored in memory; during synthesis, a tile is
placed next to another so that the identifier on their common border
is the same. Later works propose algorithms to synthesize well-
connecting tile collections from an exemplar [CSHD03, ZK08].
Wei [Wei04] determines which tile can be put next to another on
the fly e.g. (without pre-computation), and how to pre-filter the
tiles to avoid aliasing, making it viable for real-time synthesis. The
issue with Wang tiling is that any increase of variety on the out-
put requires the creation of a greater tile collection. The growth
is unfortunately exponential, meaning that in practical uses, align-
ment artifacts are still visible, although toned down. Vanhoey et
al. [VSLD13] present content exchange to generate more varied
outputs in real time. A periodic exemplar is repeated, and pre-
computed alternative contents, chosen at random among a set, are
drawn from this exemplar in pre-computed, periodically-repeating
regions of the output. The advantage is that generating more va-
riety only requires increasing the number of contents, which boils
down to storing more 2D offsets. However, the more contents are
used, the less these contents are likely to match each other when
placed side by side, so that the number of visible seams might
also increase. These artifacts can be reduced by carefully chosen
irregular tile shapes [VSLD13], and by local blending on the bor-
der [LSLD19].

We call randomized tiling and blending, a class of synthesis al-
gorithms that blend together several tiles, each tile containing a ran-
dom region of the exemplar. Heitz and Neyret [HN18] present an
algorithm which blends 3 hexagonal tiles aligned on a regular grid.
Tiling and blending is at half way between aperiodic tiling (fast
computation but potential repetition/alignment/discontinuities arti-
facts) and procedural noise (higher variety and no such artifacts, but
heavily modified statistics). Because the synthesis picks tile con-
tents randomly using a uniform random number sampler [HN18],
there is no risk of alignment artifacts. Blending hides repetitions
as well as discontinuities, at the expense of ghosting or blurring
artifacts. Burley [Bur19] proposes to adjust the steepness of blend-
ing, in order to balance between these undesired artifacts. Since
the contents are picked uniformly, blending mathematically can-
not preserve possible correlations that might be present at different
scales.

Aperiodic tilings are a powerful tool for real-time synthesis
thanks to their speed and their preservation of details; but picking
uniform random tiles results in the loss of the second-order mo-
ment, taking the form of excessive randomness. In our work, we
enhance aperiodic tilings by picking contents with an importance
sampler to better preserve the second-order moment.

3. Textures and random fields

The following section presents our notation of a texture, and recalls
the mathematical theory of random fields, simplified to keep only
the notions we need for our algorithms.

3.1. Textures

We define a 2D texture as a function I : X → S, where X is an in-
dex set, and S a value set. X is bi-dimensional and either discrete
or continuous. In our case, we consider X to be R2, because dis-
crete indices can be interpolated. We note an element of X as x, or
(x0,x1) and refer to elements of X as “positions” for clarity. S is a
value set of any dimension d (for instance, d = 1 for heightmaps
and greyscale textures, and d = 3 for RGB) that can be either dis-
crete or continuous. In our case, we consider S to be Rd , because
blending works best on a continuous set of values.

3.2. Random fields

A random field is a stochastic process defined by its probability
space, a bi-dimensional index set X , and a value set S. We call
statistics given properties of its probability density function. A tex-
ture synthesis algorithm can be expressed as the simulation of a
random field, and a texture I is a realization of such a field. In by-
example texture synthesis, we are interested in simulating a hypo-
thetical random field that would have generated a given realization
E called the exemplar. To accomplish this, assumptions must be
made about this random process: the invariance of its statistics (for
instance, stationary or cyclostationary), and their estimability (i.e.
ergodicity). A random process is said to be stationary if its statistics
are invariant by any translation [LLC+10]; it is cyclostationary if
its statistics are periodic [LSD21].

In this work, all processes are assumed to be both mean-ergodic
and autocovariance-ergodic, meaning these statistics can be ro-
bustly estimated on a sufficiently large realization. We also focus
mainly on first and second-order statistics of the process, which
are relevant to the appearance of textures in pre-attentive human
vision [Jul81].

The first-order moment of a stationary process is the mean µ. It
can be estimated on a realization I of the simulated process as

µ̃I =
1
|X |

∫
X

I(x)dx. (1)

The second-order moment of a stationary process is its autoco-
variance function r (ACf for short). It can be estimated on a real-
ization I as

r̃I(τ) =
1
|X |

∫
X
(I(x)− µ̃I)⊙ (I(x+ τ)− µ̃I) dx (2)

where ⊙ represents the pointwise multiplication. The highest
peak of covariance is always found at τ = 0, and rI(0) is equal to
the variance of the stationary process. In our figures, we visualize
the normalized positive part max(0,rI(τ)/rI(0)). The goal of this
paper is to preserve the autocovariance function rE of an exemplar
E used in a texture tiling; we do this in section 5 with an importance
sampler using the ACf rE as pdf.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

350

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14766 by C

ochrane France, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

N. Lutz, B. Sauvage & J-M. Dischler / Preserving the autocovariance of texture tilings using importance sampling

4. Algorithmic theory of tilings

In the following subsection, we propose a generic formulation of
tiling algorithms. Our objective is to propose a formulation inde-
pendent of specific implementations, i.e. a formulation that unifies
the common aspects of all methods. Let E : X̄ → S be a texture
used as an exemplar and I : X → S a texture synthesized from E. X̄
refers to the set of valid positions in E without periodic extension
for seamless exemplars. In our context, without loss of generality
and to simplify the formulation, we assume E to be a periodic ex-
emplar that can be defined on X through its periodic extension.

4.1. Output formulation

Figure 4: A tiling and blending using 4 square tilings k0 to k3 illus-
trating a synthesis that can be instantiated from our generic model.
The blending functions w0 to w3 are proportional to the distance to
the closest edge, with 1 at the center of each tile. w0, which corre-
sponds to the blending weights of k0, is visualized on the right. The
sampler t takes random tiles in the exemplar.

In our generic model, the output I is expressed from E as the
weighted blending of n mean-centered contents:

I(x) =
n−1

∑
i=0

wi (x)(Ei (x)−µ(x)) +µ(x), (3)

where Ei represents the content of a tiling, defined by

Ei(x) = E (x+ t(ki (x))) .

ki are the tiling functions as defined in section 4.2, t is a sam-
pler as defined in section 4.3, and wi are blending weights as de-
scribed in section 4.4. The term µ(x) is the first-order moment of
the process simulated by the synthesis and is used as a “correction
factor” to preserve the variance [HN18]. It is constant for station-
ary processes where µ(x) = µE , spatially-varying and periodic for
cyclostationary processes [LSD21], and spatially-varying for our
autocovariance-preserving method as well (see section 5.2).

We illustrate our model in Figure 4 with a tiling and blending
model based on the blending of four square tilings, directly instan-
tiated from our generic model.

4.2. Tiling functions

For a given i < n, ki is a piecewise constant function ki : X → N
which associates a tile identifier (integer) to any position in the out-
put texture I. We refer to as the j-th tile of ki all indices x ∈ X such

that ki(x) = j. This function corresponds to any tiling of the Euclid-
ian plane, where a unique identifier is attributed to each tile. For in-
stance, in Figure 3, the periodic tiling has a unique (n = 1) constant
tiling function, since the tile is also unique; Wang-tiling uses like-
wise a unique regular square tiling, but with different identifiers
for each square; content exchange uses a unique irregular tiling,
where each periodically repeated irregular tile has a unique identi-
fier; the tiling and blending algorithm of Heitz and Neyret overlap
three (n = 3) regular hexagonal tilings.

4.3. Sampler

A sampler is a function t : N → X̄ , which associates an offset to
a given integer used as a seed. It can be combined with the tiling
function as t(ki(x)) to associate a unique offset to a given tile (rep-
resented by arrows in Figure 3). For instance, in the examples of
Figure 3, the sampler of the periodic tiling always yields 0; the sam-
pler of Wang tiling draws offsets congruent with the size of a tile
in an atlas of pre-computed tiles; the sampler of content exchange
draws an offset among a set of pre-selected candidates; the sampler
of tiling and blending chooses an offset randomly and uniformly
in the exemplar. Lutz et al. [LSD21] reproduce periodic correla-
tions by choosing only offsets congruent to exemplar-specific pe-
riod vectors. Our method for preserving the autocovariance func-
tion is based on a controlled modification of the sampler t.

4.4. Blending weights

Blending weights are relevant when several tilings overlap. A
blending weight function is a function wi : X → R, which asso-
ciates a blending weight to a position of the output texture I. The
goal of blendings is to introduce variety and avoid discontinuities
in I. For instance, Heitz and Neyret [HN18] use blending weights
that decrease from 1 at the center of each hexagon to 0 at the edge
of each hexagon, and Lutz et al. [LSLD19] blend on the borders of
the tiles of content exchange. Heitz and Neyret also noted that the
norm of the vector w(x) formed by all wi(x) should be constrained
so that ||w||2 = 1 for all x ∈ X to preserve the contrast of E in
blended areas and the stationary variance of the simulated process.

5. Autocovariance-preserving aperiodic tiling

The second-order moment is not well-preserved by randomized
tiling and blendings that use a uniform sampler. We first mathemat-
ically explain why this moment is not preserved; then, we introduce
our method to replace the sampler of equation 3 with an importance
sampler to preserve the second-order moment; finally, we discuss
our method, its results and its limits. Our method is illustrated in
Figure 5.

5.1. Loss of autocovariance function

We observe that, when t is a uniform sampler, the autocovariance
function rI(τ) is biased toward 0 for large values of τ. This can
be numerically observed by computing the output autocovariance,
such as in Figure 1: in the second view, rI(τ) almost vanishes ev-
erywhere except for small τ (top left corner).

To understand this, let us look at rI in Equation 2. In order to

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

351

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14766 by C

ochrane France, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

N. Lutz, B. Sauvage & J-M. Dischler / Preserving the autocovariance of texture tilings using importance sampling

Figure 5: Our autocovariance-preserving tilings. On a periodic exemplar (top left), we estimate the autocovariance function (ACf) (bottom
left, on a log scale for visualization). We use an importance sampler taking the ACf as pdf instead of a random uniform sampler to pick
contents whose covariances match better those of the exemplar. This enables a better preservation of the ACf (right).

Figure 6: Cutting low covariances in the pdf improves the match between the autocovariance function (ACf) of the output I and that of the
exemplar E, but may increase alignment artifacts in I. (a) is the generated output, (b) is the pdf used, (c) is the ACf of I, (d) is the spatially-
varying mean of I estimated using E and the pdf (b), and (e) is the similarity between the ACf of I and that of E (computed as 1.0 minus the
Euclidian distance), along with its Euclidian norm.

reproduce rI = rE , we need the pairs (x,x+ τ) to be correlated the
same way in I as in E. However, due to Equation 3, the randomness
of t nullifies this correlation for different tilings ki and k j (i ̸= j)
or different tiles (ki(x) ̸= ki(x + τ)). We provide a supplemental
material elaborating on these results in more detail, with equations.

Our idea is to modify the sampler t in order to reestablish similar
covariances between any pair of texels.

5.2. Proposed solution

Our goal is to preserve the autocovariance function of a periodic
exemplar E in I as best as possible while keeping the benefits of
aperiodic tilings. Ideally, rI should be equal to rE . As we have es-
tablished in section 5.1, covariances within one single tile are per-
fectly preserved. We therefore need to minimize the difference of

average products between E and I for all texels that are not on the
same tile in I, for each tiling composing the output. The problem
could theoretically be expressed as the search for an ideal sampler t
that draws contents which minimize the difference between the au-
tocovariance functions rI and rE . There are two issues with solving
such a problem: issue 1) the optimum is a periodic tiling, which is
not desirable; issue 2) an optimization involving surrounding tex-
els is in contradiction with the parallel computation that we want to
obtain, because in a parallel context, content-dependent cross de-
pendencies among multiple texels are too difficult to preserve.

We first show how to partially preserve the autocovariance func-
tion (ACf) by using an importance sampler taking the ACf as pdf;
then, how to compute the pdf from a multi-channel valued texture;

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

352

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14766 by C

ochrane France, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

N. Lutz, B. Sauvage & J-M. Dischler / Preserving the autocovariance of texture tilings using importance sampling

then, an improvement to control t to adjust the match of rI with rE ;
finally, how µ is computed differently than usual.

Importance sampling driven by the autocovariance function.
Our solution consists in using as sampler t in Equation 3 an im-
portance sampler [GI89] taking a probability density function (pdf)
proportional to the ACf of E (rE). Since a pdf must be positive and
integrate to 1, we cut out the negative values in rE (see related para-
graph in section 5.3) and normalize it by its integral. Our approach
is illustrated with the colored vectors in Figure 5 for both tiling and
blending [HN18] and content exchange [VSLD13].

The intuition for this solution is as follows: we conclude from
issue 1) that we have to settle for a sub-optimal solution that par-
tially preserves the autocovariance function; and from issue 2) that
we need some kind of guarantee that the content we draw will be
well-correlated with surrounding tiles before we draw it. To do this,
we use the exemplar E as a “guide” and try to maximize the cross-
covariance between I and E, independently for each tile of each
tiling:

ccI,E =
1
|X |

∫
X
(E(x)−µE) (E(x+ t(ki(x)))−µE) dx. (4)

This cross-covariance represents how well the tile ki(x) is corre-
lated with E, if shifted by τ = t(ki(x)). We remark that ccI,E has the
same expression as rE(τ) in Equation 2, but the shift τ = t(ki(x))
varies spatially. In conclusion, how high ccI,E is on average for a
tile is given by rE(t(ki(x)). Thus, our solution picks tiles with a
probability relative to how well it maximizes ccI,E .

This is our main compromise between a fully random uniform t
that does not keep the second-order moment at all, and an optimal
t that boils down to a periodic tiling and loses all variety.

Dealing with a multi-valued autocovariance function. The au-
tocovariance estimator of equation 2 yields values in the value
set of the simulated process, meaning that the estimation of the
ACf on multi-channel exemplars is a multi-channel autocovariance.
This is an issue for the importance sampler because explicit pdfs
are supposed to be scalar maps. One solution would be to pick
a different offset for each dimension according to their respective
ACf; however, this would result in lost cross-covariances and cross-
autocovariances between channels, an issue that was notably shown
in Galerne et al. [GGM11] when dealing with several color chan-
nels. In our case, only one offset should be picked for all dimen-
sions to preserve these cross-covariances.

We therefore choose to merge all dimensions of the ACf into
one. Since naively blending channels does not enable an optimal
preservation of the ACf for each individual dimension, we compute
a PCA of the texels of E and only consider the ACf of the principal
component. Our results and figures all use this particular ACf.

Dealing with negative correlations. When computed, the ACf
usually contains negative values, which represent offsets at which
texel values are, on average, negatively correlated. These offsets
can be included in the sampler, for instance by re-centering the
sampler’s pdf by +rE(0) before normalizing it. Picking these off-
sets enables a slightly higher variety, but increase the chances that

Figure 7: Periodic exemplar (column 1) compared to the tiling and
blending of Heitz and Neyret [HN18] with our autocovariance-
preserving method (column 2) and the same algorithm using a pdf
perturbated with additive white noise (column 3). Spot noise of the
exemplar for comparison (column 4), which preserves the autoco-
variance function without loss of randomness, but is computed sig-
nificantly slower and is only compatible with Gaussian inputs.

some blended contents do not match at all. We chose to cut them
out for this reason, but the user remains free to include them or not.

Adjusting the match with the ACf of the exemplar. Our ACf-
driven importance sampling is a compromise between two unde-
sired extremes: perfect match (periodic tiling) and no match (uni-
form sampling). Depending on the artistic intention, this compro-
mise may be not conservative enough, or, conversely, too repeti-
tive. We propose to tune the probability density function, so as to
increase or decrease the match between the ACf of the exemplar
and that of the output.

Increasing the match can be achieved by modifying the provided
pdf by increasing the relative weight of the highest covariances in
the ACf, for instance by exponentiating all values or cutting out the
lowest covariances. This comes at the expense of a reduced out-
put variety due to a lower amount of different offsets being poten-
tially picked and at usually smaller distances, which, in turn, may
increase alignment artifacts. We show in Figure 6 the results gen-
erated using different input pdfs: none, the ACf, and the ACf with
covariances lower than (respectively) 10% and 20% of the maxi-
mum cut.

Decreasing the match can be achieved by increasing the relative
weight of the lowest covariances in the ACf. We implemented this
in Figure 7 by pre-computing a realization of a low-amplitude white
noise and adding it to the ACf of E to create the pdf. It enables to
slightly increase the match with the autocovariance of E compared
to a simple uniform random sampler, but without losing too much
randomness.

Impact of the size of the tiles. The preservation of short- and
long-range correlations depends not only on the importance sam-
pler, but also on the tile size. Figure 8 shows the result for three tile
sizes. Small tiles do not preserve fine details (individual scales are
disrupted). Medium tiles preserve fine details but not larger patterns
(e.g., regular dark spots). Large tiles improve fidelity, but reduce
variety. Repetition artifacts may also appear.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

353

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14766 by C

ochrane France, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

N. Lutz, B. Sauvage & J-M. Dischler / Preserving the autocovariance of texture tilings using importance sampling

Figure 8: Impact of the size of the tiles. The same exemplar (left)
is used for the synthesis with small (×1/3), medium (default), and
large (×3) tiles. Larger tiles better preserve fine details, at the ex-
pense of some variety.

Figure 9: The modification of the sampler makes the spatial mean
µE an incorrect estimation of the mean µ of the simulated pro-
cess, resulting in an incorrect variance (here σ

2 is the variance of
the principal component). Our pdf-dependent estimation enables a
more accurate estimation of µ that better preserves the variance.
The pdf used is the ACf of E with covariances under 10% of the
variance cut.

Computing the first-order moment. In equation 3, µ(x) is an im-
portant term when blending tilings together in order to preserve the
variance [HN18], which is required to preserve the autocovariance.
The alteration of the sampler means that µ(x) is not accurately esti-
mated by the spatial mean µE of E, but rather by a spatially-varying
weighted mean where each texel E(x+ τ) is weighted by the prob-
ability p(τ) that this texel gets chosen to compute a texel I(x). We
therefore accurately estimate µ(x) as

µ(x) = 1
∑τ∈X̄ p(τ) ∑

τ∈X̄
p(τ)E(x+ τ), (5)

where p is the pdf used in the importance sampling.

For real time synthesis, µ must be pre-computed and accessed on
the fly, which can be done by pre-computing it on X̄ and periodi-
cally repeating µ on X , much like the exemplar E. Using the spatial
mean µE instead would save one texture access, but the contrast can
be visibly altered, as shown in Figure 9.

5.3. Discussion

We show how faithful the autocovariance function is reproduced in
Figure 6, with very little differences when low covariances are cut
from the pdf.

Periodic aspect of the output. Our method has the side effect
of altering the stationarity of the process and generating periodic
statistics in the output, present in the periodically-repeated exem-
plar, that would otherwise be broken by the stationary algorithm.
The periodic aspect of the output comes from the use of the pe-
riodic exemplar E as a “guide” for the ACf in section 5.2; if the
output I were optimized according to its own autocovariance rather
than the cross-covariance between I and E (which is not feasible in
parallel), this effect would randomly fade as X increases in size.

We know that it is possible to preserve the autocovariance
without creating this periodic effect because spot noise manages
it [GGM11], but it does it by blending many tiles together, break-
ing the major advantage of tiling algorithms to be fast to com-
pute and reduce ghosting artifacts compared to procedural noise.
In fact, when Gilet et al. [GSV+14] worked on random phase
noise [GGM11] to preserve fine details of the exemplar as well
as the power spectrum, they found that perfectly preserving these
also yields a periodic tiling. The approaches mirror each other:
[GSV+14] get a periodic tiling by optimizing procedural noise, and
we get a periodic tiling by optimizing randomized tiling.

Non-periodic exemplars. Our method, as presented, is only com-
patible with periodic exemplars. Using it on non-periodic exem-
plars requires to first construct a periodic (also called “seam-
less”) exemplar from a non-periodic one, which usually means los-
ing [MJH+17] or modifying [Moi11] some content of the original
exemplar. The main challenge stems from the fact that we use a
periodic tiling as a guide. There are other difficulties to overcome,
such as possible incompatibilities inherited from tiling algorithms,
obtaining a proper estimation of the spatially-varying mean on X
that is not periodic, and the estimation of the autocovariance func-
tion in E which gets significantly less accurate for larger vectors
τ.

6. Dual tiling and blending

In this section, we specialize the general model of section 4 to pro-
pose tiling and blending algorithms made of only two dual tiling
functions. We show our "dual tiling and blending" algorithm with
various tiling choices in Figure 10.

6.1. Construction

Our dual tiling and blending algorithm consists in instantiating the
model of equation 3 by using only two tiling functions k0 and k1,
as well as their respective blending functions w0 and w1, where k1
is the dual of k0. A dual is created from an arbitrary primal by re-
placing the center of each tile with a vertex, and joining the centers
of adjacent tiles. We construct the blending weights according to
the linear distance to the closest edge: 1 for the furthest point, and
0 at the edge (keeping the constraint of section 4.4 that ||w||2 = 1).
The blending weights can be exponentiated as in Burley [Bur19],
yielding different controllable results.

This model reduces the number of texture accesses to two, effec-
tively reducing the theoretical computation time by almost a third
if we compare it to the algorithm of Heitz and Neyret [HN18].
Blending only two tilings also reduces ghosting artifacts, which are

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

354

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14766 by C

ochrane France, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

N. Lutz, B. Sauvage & J-M. Dischler / Preserving the autocovariance of texture tilings using importance sampling

Figure 10: Various dual tilings of various sizes used for our by-example texture synthesis. Tilings use the distance to the closest edge as
blending weights. The leftmost texture is the exemplar.

known to appear when blending several patterns together due to a
Gaussianization of the output [GGM11]. It is directly compatible
with the histogram transfer of Heitz and Neyret [HN18], although
blendings only two contents makes the histogram transfer have a
less significant impact on the first-order statistics. As a downside,
the amount of potential repetition artifacts is increased, because re-
ducing the number of blending also reduces the variety.

6.2. Hiding vertex singularities

The disadvantage of having only two tiling functions is that they
cannot be superimposed without edge intersections where both
blend functions are equal to 0. We refer to these points as “ver-
tex singularities” and our model yields undefined values in these
areas.

Instead of modifying our model, we propose to solve this prob-
lem by a slight modification of the algorithm. This modification
should not add any access to the texture in order not to increase the
computation time. We therefore propose two possible approaches:
either we slightly amplify the mixing weights so that they never
both reach a zero value, or to add a third function w2 that weakly
mixes the (stationary) mean of the exemplar near these singulari-
ties. Using either modification requires to adjust ||w||2 accordingly
for the preservation of the variance (see section 4.4).

6.3. Cyclostationarity

Lutz et al. [LSD21] adapt stationary Gaussian synthesis to cyclosta-
tionary Gaussian synthesis. The class of cyclostationary stochastic
random fields enable the synthesis of exemplars with strictly peri-
odic statistics, such as brick walls, tilings, or any other periodically-
correlated patterns. Firstly, we note that the cyclostationarity model
can be encompassed within the tiling model of section 4 for tiling
algorithms. It boils down to using a sampler that picks tiles on posi-
tions congruent to period vectors and to take µ as the periodic mean
of the simulated cyclostationary process [LSD21].

Aligning patterns and tiling. Cyclostationary processes can be
used for the representation of man-made structures that can often
be expressed as tilings with random variations, much like how near-
regular textures were first introduced [LTL05]. A perspective of our
generic model is to correlate the tilings with the contents of the tiles

Figure 11: Exemplars (left) synthesized with our cyclostationary
synthesis, using various primal (red) and dual (green) sizes. (a)
is synthesized with a misaligned tiling, generating high variety but
unnatural-looking tiles (top row: lots of red tiles cut with blue ones;
bottom row: shift of line pattern in each element) (b) is synthesized
by aligning the singularities of the dual tiling with high frequency
corners of the patterns, generating high variety without breaking
tile appearance.

to better preserve the appearance of some elements in the pattern.
While this is hardly controllable for stationary patterns that have by
nature unpredictable patterns, some cyclostationary patterns have
periodic contents that can act as “natural singularities” for our dual
tiling and blending synthesis, such as intersections or edges be-
tween uncorrelated contents. Since the most abrupt transforms in I
happen near singularities, we chose to generate textures by align-
ing singularities with these points. We validate this enhancement
in Figure 11, where we enable high variety while avoiding the cre-
ation of otherwise unnatural patterns.

7. Results

In this section, we discuss the results of our work in terms of
computational time, memory consumption, and quality. Our sup-
plemental materials contain the source code of our GPU imple-

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

355

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14766 by C

ochrane France, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

N. Lutz, B. Sauvage & J-M. Dischler / Preserving the autocovariance of texture tilings using importance sampling

Figure 12: Exemplars and their autocovariance function used as a pdf for the sampler (left for each view); their synthesis using randomized
tiling and blending (middle), and their synthesis using our autocovariance-preserving tiling and blending (right). Our supplemental materials
include more results, with comparisons of the ACf.

mentations with pre-computed material, two shadertoy links of our
dual tiling and blending synthesis, and a sheet of results of the
autocovariance-preserving tiling and blending with comparisons of
the ACf. The code for computing these data along with a CPU ver-
sion of the synthesis algorithm are also available in the ASTex li-
brary [ast].

7.1. Autocovariance preservation

We discuss here the results of the autocovariance-preserving tilings
of section 5 in particular, with some relevant instances shown in
Figure 12.

Memory and computational time. As shown in section 5.2, the
adaptation of any tiling algorithm requires replacing the original
sampler with an importance sampler. For tiling and blending al-
gorithms, the proper estimation of the expectation of the output,
usually represented by the spatial mean, is spatially-varying on the
exemplar. In terms of memory consumption, this requires the stor-
age of the probability density function, and the spatially-varying
mean. In terms of computational time, this requires a search in the
probability density function for each tiling to pick an offset, and
one additional texture access on the spatially-varying mean to add
it after blending.

Implementation of the importance sampler. The importance
sampler on the 2D discrete pdf can be implemented by pre-
computing all conditional densities for one dimension according
to the other and then pre-computing the marginal density for the
other [PJH16]. At runtime, this requires searching on the marginal
density once, then searching on the corresponding conditional den-
sity for the final coordinates. Since the importance sampler is an er-
godic process, the probability density function can instead be con-
densed into a single but sufficiently large pre-computed realization

of the importance sampler. At runtime, fetching new offsets only
requires drawing one random uniform sample from this realization,
requiring only one array access.

Quality. We have shown that the contribution of section 5.2 sys-
tematically enables a better preservation of the stationary autoco-
variance function estimated from the exemplar, regardless of the
exemplar used. Our method has a greater impact for textures which
have highly characterized autocovariance functions. Preserving the
autocovariance function or the spectrum of the exemplar in the out-
put has often been considered a “sweet spot” for well reproducing
procedural noise patterns [LLC+10]. This makes our method es-
pecially efficient for reproducing procedural noise patterns with a
standard quality using tiling and blending. We would however like
to argue that the preservation of the autocovariance, in some cases,
is either not necessary, or not sufficient to achieve a satisfactory
appearance.

Preserving the autocovariance function is sometimes not neces-
sary because it comes at the cost of a lowered variety in the output.
This loss in variety can be seen in Figure 6, third column group,
where the subtle tone change in the sand texture is periodically
repeated throughout the entire domain (even if without verbatim
copy) since the autocovariance function is periodically preserved.
This repetitive effect may not always be pursued by artists. In Sec-
tion 5.2 we show how to tune this, and Figure 7 illustrates the result
with a realization of spot noise for reference.

Preserving the autocovariance function is sometimes not suffi-
cient because some textures have complex and spatially-varying
internal statistical relationships. Figure 13 shows three examples:
in (a) alignment rules and texture elements are not constant, in (b)
the pattern has a complex global coherency and in (c) there are dif-
ferent patterns at different scales. These textures are too difficult
to be well-synthesized with our model, regardless of the sampler

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

356

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14766 by C

ochrane France, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

N. Lutz, B. Sauvage & J-M. Dischler / Preserving the autocovariance of texture tilings using importance sampling

Figure 13: Typical failure cases: exemplars (top of each view) syn-
thesized with our method (using large tiles). They exhibit internal
statistical relations that are too complex to be well-reproduced by
simply preserving the ACf.

used. Such textures would require a higher degree of preservation
of statistics rather than only the second-order moment.

7.2. Dual tiling and blending

For discussing this part of our work, we focus on comparing the
method of section 6 with the tiling and blending algorithm of Heitz
and Neyret [HN18] (that we simply refer to as T&B in this section),
since it is a direct enhancement of the latter with both pros and cons.
We display raw results of our dual tiling and blending with a square
primal in Figure 14.

Computational time and memory. Both T&B and our dual tiling
and blending take the same amount of memory on a GPU (i.e. the
exemplar). Our method spares one texture fetch, diminishing the
computational time required. The impact on performances depend
on the GPU model, the viewing angle, the size of the exemplar and
the scene; in our additional materials, we used the OpenGL T&B
implementation of Deliot and Heitz [DH18], and compared it using
the same code, with a fragment shader of our method, provided in
additional materials.

Quality. The main feature of dual tiling and blending is that the
number of blended tiles is limited to two. Compared to T&B, this
helps to preserve fine details that get lost in blending, but lowers
variety in the output since lesser new content is produced. The
quality is also diminished due to the singularities generated which
create point discontinuities, although we attenuated this effect in
section 6.2. For the simulation of cyclostationary fields, we have
shown in section 6.3 that it is possible in some cases to hide singu-
larities in the corners of a pattern, making this synthesis especially
suited for these cases.

8. Conclusion

We have presented an importance sampling scheme dedicated to
texture tiling algorithms, which allows to control the autocovari-
ance of the result. We based our work on a mathematical model
(Equation 3) that encompasses several algorithms from the state of
the art. From this model we derived a new algorithm, that we called
dual tiling and blending, that only requires two texture accesses.

A first perspective is to explore non-stationary signals. A first
step into this direction has been made with cyclostationary pro-
cesses [LSD21]. Such signals are the realization of non-stationary
random processes, that are significantly more difficult to control. It
would imply to deal with a spatially-varying autocovariance, and
thus a spatially-varying sampler.

A second perspective is to deepen the control of statistics. In this
work we investigated the second-order moment, i.e. the autocovari-
ance. While it perfectly controls Gaussian patterns, it does not per-
fectly control non-Gaussian patterns –this is well-known for spot
noise [GGM11]. Controlling full second-order statistics remains a
challenge.

A third perspective is to further exploit the potential of the tiling
and blending model. In Equation 3 we controlled the sampler to
better reproduce the texture content. The tiling functions ki could
also be optimized to hide artifacts, for instance by adjusting the
shape of the tiles to the texture patterns, as we began to do in sec-
tion 6.3. Another opportunity is to adjust the blending weights wi
depending on the content of the texture, in order to reduce ghosting
artifacts.

Acknowledgments

This work has been funded by the project ReProcTex from the
Agence Nationale de la Recherche (ANR-19-CE33-0011-01). It
was also partially funded by the University of Sherbrooke and
Ubisoft Divertissement in the context of a Mitacs Accelerate Fel-
lowship. All textures are provided by https://textures.com.

References
[ast] github.com/ASTex-ICube/ASTex. 10

[Bur19] Brent Burley. On histogram-preserving blending for random-
ized texture tiling. Journal of Computer Graphics Techniques (JCGT),
8(4):31–53, November 2019. 4, 8

[CSHD03] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver
Deussen. Wang tiles for image and texture generation. ACM Transac-
tions on Graphics, 22(3):287–294, 2003. 2, 3, 4

[DH18] Thomas Deliot and Eric Heitz. Procedural stochastic textures by
tiling and blending. GPU Zen 2: Advanced Rendering Techniques, 2018.
11

[EF01] Alexei A. Efros and William T. Freeman. Image quilting for tex-
ture synthesis and transfer. In Proceedings of the 28th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH
’01, pages 341–346. ACM, 2001. 3

[GDG12] Guillaume Gilet, Jean-Michel Dischler, and Djamchid Ghazan-
farpour. Multiple kernels noise for improved procedural texturing. Vis.
Comput., 28(6-8):679–689, June 2012. 2

[GGM11] Bruno Galerne, Yann Gousseau, and Jean-Michel Morel. Ran-
dom phase textures: Theory and synthesis. IEEE Transactions on Image
Processing, 20(1):257 – 267, 2011. 2, 7, 8, 9, 11

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

357

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14766 by C

ochrane France, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://textures.com
github.com/ASTex-ICube/ASTex

N. Lutz, B. Sauvage & J-M. Dischler / Preserving the autocovariance of texture tilings using importance sampling

Figure 14: Exemplars (left of each view) synthesized with our dual tiling and blending. More results can be visualized with our GPU and
shadertoy code.

[GI89] Peter W. Glynn and Donald L. Iglehart. Importance sampling for
stochastic simulations. Management science, 35(11):1367–1392, 1989.
7

[GLM17] Bruno Galerne, Arthur Leclaire, and Lionel Moisan. Texton
noise. Computer Graphics Forum, 36(8):205–218, 2017. 2

[GSDT22] Charline Grenier, Basile Sauvage, Jean-Michel Dischler, and
Sylvain Thery. Color-mapped noise vector fields for generating proce-
dural micro-patterns. In Computer Graphics Forum, volume 40, 2022.
3

[GSV+14] Guillaume Gilet, Basile Sauvage, Kenneth Vanhoey, Jean-
Michel Dischler, and Djamchid Ghazanfarpour. Local random-phase
noise for procedural texturing. ACM Trans. Graph., 33(6):195:1–195:11,
November 2014. 2, 3, 8

[HN18] Eric Heitz and Fabrice Neyret. High-performance by-example
noise using a histogram-preserving blending operator. Eurographics
Symposium on High-Performance Graphics 2018, 2018. 1, 2, 3, 4, 5,
7, 8, 9, 11

[HWM06] Danny Holten, Jarke J Van Wijk, and Jean-Bernard Martens.
A perceptually based spectral model for isotropic textures. ACM Trans-
actions on Applied Perception (TAP), 3(4):376–398, 2006. 2

[Jul81] Bela Julesz. Textons, the elements of texture perception, and their
interactions. Nature, 290(5802):91–97, 1981. 4

[KSE+03] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron
Bobick. Graphcut textures: Image and video synthesis using graph cuts.
ACM Trans. Graph., 22(3):277–286, 2003. 3

[LCT04] Yanxi Liu, Robert T. Collins, and Yanghai Tsin. A computa-
tional model for periodic pattern perception based on frieze and wallpa-
per groups. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 26(3):354–371, 2004. 3

[LLC+10] Ares Lagae, Sylvain Lefebvre, Rob Cook, Tony DeRose,
George Drettakis, D.S. Ebert, J.P. Lewis, Ken Perlin, and Matthias
Zwicker. State of the art in procedural noise functions. In Helwig Hauser
and Erik Reinhard, editors, EG 2010 - State of the Art Reports. Euro-
graphics, Eurographics Association, May 2010. 2, 4, 10

[LLD11] Ares Lagae, Sylvain Lefebvre, and Philip Dutré. Improving ga-
bor noise. IEEE Transactions on Visualization and Computer Graphics,
2011. 2

[LLDD09] Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip
Dutré. Procedural noise using sparse gabor convolution. ACM Transac-
tions on Graphics (Proceedings of ACM SIGGRAPH 2009), 28(3):54–
64, July 2009. 2

[LLX+01] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-
Yeung Shum. Real-time texture synthesis by patch-based sampling.
ACM Trans. Graph., 20(3):127–150, 2001. 3

[LSD21] Nicolas Lutz, Basile Sauvage, and Jean-Michel Dischler. Cyclo-
stationary Gaussian noise: theory and synthesis. In Eurographics 2021,
Vienna, Austria, May 2021. 3, 4, 5, 9, 11

[LSLD19] Nicolas Lutz, Basile Sauvage, Frédéric Larue, and Jean-
Michel Dischler. Anisotropic filtering for on-the-fly patch-based tex-
turing. In Eurographics 2019, Genoa, Italy, May 2019. 2, 3, 4, 5

[LTL05] Yanxi Liu, Yanghai Tsin, and Wen-Chieh Lin. The promise and
perils of near-regular texture. International Journal of Computer Vision,
62(1-2):145–159, 2005. 9

[MJH+17] Joep Moritz, Stuart James, Tom S.F. Haines, Tobias Ritschel,
and Tim Weyrich. Texture stationarization: Turning photos into tileable
textures. Comput. Graph. Forum, 36(2):177–188, 2017. 8

[Moi11] Lionel Moisan. Periodic plus smooth image decomposition.
Journal of Mathematical Imaging and Vision, 39(2):161–179, 2011. 8

[PJH16] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically
based rendering: From theory to implementation: Third edition. 11 2016.
10

[Sta97] Jos Stam. Aperiodic texture mapping. 08 1997. 4

[TEZ+19] Thibault Tricard, Semyon Efremov, Cédric Zanni, Fabrice
Neyret, Jonàs Martínez, and Sylvain Lefebvre. Procedural phasor noise.
ACM Transactions on Graphics, 38(4):Article No. 57:1–13, July 2019.
3

[VSLD13] Kenneth Vanhoey, Basile Sauvage, Frédéric Larue, and Jean-
Michel Dischler. On-the-fly multi-scale infinite texturing from example.
Transactions on Graphics, 32(6):208:1–208:10, 2013. (Proceedings of
Siggraph Asia’13). 2, 3, 4, 7

[vW91] Jarke J. van Wijk. Spot noise texture synthesis for data visualiza-
tion. SIGGRAPH Comput. Graph., 25(4):309–318, 1991. 2

[Wei04] Li-Yi Wei. Tile-based texture mapping on graphics hardware. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, HWWS ’04, pages 55–63. ACM, 2004. 4

[ZK08] Xinyu Zhang and Young J Kim. Efficient texture synthesis using
strict wang tiles. Graphical Models, 70(3):43–56, 2008. 4

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

358

 14678659, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14766 by C

ochrane France, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

