
Telemetry-based Software Failure Prediction by
Concept-space Model Creation

Bahareh Afshinpour, Roland Groz, and Massih-Reza Amini
Univ. Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France

{bahareh.afshinpour, Roland.Groz, Massih-Reza.Amini}@univ-grenoble-alpes.fr

Abstract—Telemetry data (e.g.: CPU and memory usage) is
an essential source of information for a software system that
projects the system’s health. Anomalies in telemetry data warn
system administrators about an imminent failure or deterioration
of service quality. However, input events to the system (such as
service requests) are the cause of abnormal system behaviour
and, thus, anomalous telemetry data. By observing input events,
one might predict anomalies even before they appear in telemetry
data, thus giving the system administrator even earlier warning
before the failure. Finding a correlation between input events
and anomalies in telemetry data is challenging in many cases.
This paper proposes a machine learning approach to learn
the causality correlation between input event sequences and
telemetry data. To this aim, a Natural Language Processing(NLP)
approach is employed to create a concept space model to
distinguish between normal and abnormal test sequences. Based
on a vectorized representation of each input sequence, the concept
space indicates whether the sequence will cause a system failure.
Since the meaning of fault is not established in system status
Telemetry-based fault detection, the suggested technique first
detects periods of time when a software system status encounters
aberrant situations (Bug-Zones). An extensive study on a real-
world database acquired by a telecommunication operator and
an open-source microservice software demonstrates that our
approach achieves 71% and 90% accuracy as a Bug-Zones
predictor.

Keywords—anomaly prediction, incident diagnosis, log analy-
sis, machine learning, software testing, test automation.

I. INTRODUCTION

Many software systems in operation are monitored by sys-
tem administrators or supervisors to check whether the system
is running correctly and provides the expected service it has
been set up for. Thus, apart from the flow of normal inputs
and outputs that correspond to the delivery of the functions
expected from the system, additional measurements on the
software are collected regularly and typically sent to a distinct
(and possibly remote) supervision system, hence the name
“telemetry” [1] for such measurements. In many systems, all
such events are stored in software logs, thus enabling post-
production analysis. In this paper, we are dealing with systems
where both types of logs are collected and available:

• event logs or input logs: that record all inputs (and possi-
bly outputs) that correspond to the functional behaviour
of the system

• monitoring logs: that record the series of telemetry mea-
surements

Actually, such logs can also be collected during develop-
ment, at least when the system is complete, typically for

testing activities, such as system or regression testing. And
in a DevOps approach, there would often be processes to
investigate the logs. In testing or in post-failure analysis, logs
are the basic source of information to identify failures or faults
and to try to relate them to the events that may have caused
them.

There might be a large propagation delay between an
internal fault occurrence moment and the moment that its
effect appears on the output. Due to this propagation delay, the
computer system experiences a period of aberrant behaviour
and finally terminates in a system failure. Complex computer
systems, such as cell phones, network appliances and dis-
tributed operating systems are prone to such behaviour if we
want to name only a few. The delay between the fault and
the system failure makes it difficult to detect its root cause.
Yet, identifying the period of anomaly and finding its root
cause is a crucial task for several stakeholders in software
systems engineering. First, System administrators who need a
predictor to foresee a system failure by observing an aberrant
behaviour and second, software testers who are looking into
large log files for a failure’s root cause to solve a bug in the
source code.

In an operational mature software system, failures may
scarcely occur during normal operation or even during en-
durance testing. In this case, analyzing a large sequence of
input and output events might be impossible or impractical.
An alternative is to leverage the monitoring logging, in which
the system’s telemetry or status information (such as CPU
and memory usage time sequences) is recorded and later
will be analyzed to find abnormal behaviour. The analysis of
monitoring logs must be an automated job due to the long
sequences of data and rare anomalous periods[2]. In this sense,
unsupervised machine learning can be deployed to achieve
automated anomaly detection and an online system failure
prediction.

In this work, we deploy machine learning to create a model
from the monitoring logs and present some steps to correlate
input events with the detected anomalies in order to foresee
the coming system failure.

The proposed method is a scalable ML approach that can
adapt with unlimited status features and information sampling
rates into various monitoring logging applications. It has
two phases: Anomaly detection: where a bundle of anomaly
detection and outlier detection methods are tied to detect
time periods in which the software systems expose anomalous

behaviour. We call them “Bug-Zones” and use them in the
second phase to extract important events and train, classify
and correlate the events with the occurrence of Bug-Zones.

We can employ the results in two directions: First, the
important events and periods of time are clues to the software
developers to investigate the root causes of the system failure.
Second, the constructed model from the ML training can
be used to construct an online predictor which observes the
incoming events and triggers an alarm in case of an imminent
system failure.

The proposed method was deployed to process logs of
network appliances acquired by Orange (telecommunication
operator), a partner of our PHILAE project and also an
open-source microservice online software, called Train Ticket
benchmark [3]. In both cases, the logs were obtained in testing
phases with simulated usage (in the case of the telecom ap-
plication, over several months of intensive usage). Therefore,
our paper will often refer to the implications of the approach
on test logs. The results are presented in this paper. Based on
the work carried out for this project, a tool is published on
GitHub 1 repository issued by the ANR PHILAE project.

The rest of this paper is organized as follows. In the
following Section, we present our case studies: the Telecom
case study that motivated the introduction of the approach, and
the Train Ticket benchmark system to assess the applicability
on a classical benchmark. Section III describes the abstraction
of the problem we are addressing. In Section IV, we explain
our proposed method in detail. Section V explains our imple-
mentation and empirical results of our case studies. Section
VI overviews the work related to our study. We discuss threats
to validity in Section VII. Finally, we conclude the paper in
Section VIII.

II. THE CASE STUDIES

A. Telecom case study

The first motivation of this research was a telecom internet
appliance that provides home internet access. The log suite
was a large record of incoming events over six months and
the device’s status or monitoring information was recorded in
the meanwhile. A short description of the two log sets is as
follows:

• Monitoring Logs: includes a sequence of multivariate
samples of the appliance’s resource usages like
processor, memory, processes and network. Here
is a sample of the monitoring event: ”value”:
17384.0, ”node”: ”monitoring”, ”timestamp”: ”2019-01-
14T23:00:18+00:00”,”domain”: ”Multi-services”, ”target”:
”X1”,”metric”: ”stats->mem cached”,”bench”: ”X3”.

• Test (event) logs: Several clients (PCs) use the internet
access appliance to access different services on the Inter-
net including network activities such as Web surf, Digital
TV, VoIP, Wi-Fi, P2P, Etc. All the clients’ requests are
recorded on their storage and accumulated later into a

1https://github.com/PHILAE-PROJECT/Bug Zone Finder

large log file on a daily basis. Each log file is a long
sequence of input events with their timestamps. Here is
an example of the Test log file entry:
”timestamp”: ”2018-10-08T08:01:27+00:00”, ”metric”: ”load-
ing time”, ”bench”: ”XX1”, ”target”: ”http://fr.wikipedia.org”,
”status”: ”PASS”, ”value”: 1121.0, ”node”: ”client03”.

The challenge of analyzing the Telecom case study is more
linked to the large difference between the sampling intervals of
the monitoring information and the arrival time of the client’s
requests. While the client requests come in order of a few
seconds, the monitoring information is sampled in order of
minutes (e.g: 10 min). In other words, in the period between
two consecutive monitoring samples, hundreds of test events
are recorded in the test logs. Therefore, it is not feasible to
directly correlate single input events to the changes in the
status information, which in turn makes the anomaly cause
detection more complicated.

During the six months of log collection, there are some
reboots of the appliance due to either internal faults or inten-
tional resets from the administrators. The manufacturer of the
appliance was interested in identifying the cause of system
failure among the numerous test events. Moreover, telecom
operators would like to know if they can detect and anticipate
anomalies in the online system.

B. Train Ticket benchmark

We deployed the proposed approach to another software
architecture. This time, we chose an open source microservice
software. We studied a widely-used benchmark system for
railway ticketing called Train Ticket, which contains around
40 microservices. Train Ticket provides typical train ticket
booking functionalities such as ticket reservation, payment,
change, and user notification [3]. All the microservices are
related to business logic. A detailed description of the system
can be found in [4]. Following [3], it is possible to manually
inject various kinds of failures, so as to assess whether we can
find Bug-Zone and predict it based on the test and monitoring
logs collected from the benchmark system. In our study, we
implemented the injection of one type of failure. Just as in [3],
we created a simulated usage of the system (and monitored it)
by running Stress-ng in a Docker server. Stress-ng 2 has been
designed as a tool to test the ability of a computer system to
cope with many types of stress. However, we did not use it
for stress testing, but simply as a convenient way of creating
simulated traffic for the application. We injected it into the
food microservice and recorded CPU and memory usage. In
our experiment, we collected a test log in a period of three
hours in parallel we recorded the CPU and Memory usage in
a monitoring log every five seconds. So, the intervals of the
test events are one seconds and the intervals of the monitoring
log are five seconds. We replicated 5 status system fault cases
in the monitoring log.

2https://wiki.ubuntu.com/Kernel/Reference/stress-ng

Figure 1. A software system with input and monitoring events

III. PROBLEM DESCRIPTION

We formalize the problem by considering a software system
as a function that takes as input a series of events. Examples
of such events could be HTTP request, API calls, network
packets or database queries. In turn, it produces two types of
series: output events (in response to the input events) and status
information (the system is monitored for that). In our problem,
we are not interested in the detail of the function of the system,
so we just abstract the output events by assuming we can
observe at some points system failures. The failures could also
be observed on the monitoring log. Figure 1 illustrates such a
system .

Input events which we call test events in our application
context, are denoted by I=[I1, . . . ,IN], a sequence of N events.
In order to be able to predict the imminent arrival of anomalies,
we need time information. This is easily ensured by most
logging systems in software that record events along with a
timestamp. Therefore, a test event Ii is a couple made up of
an event type which is a member of all possible test events,
and a timestamp that records when the test event arrives or is
executed on the system. On the observation side, the system
status is recorded through monitoring logging. Observation
events Oj are recorded at a lower rate (frequency) than the
arrival of input events. So several input events would occur
before some Oj happens. Oj records system’s status infor-
mation (e.g.: memory, cpu usage, etc) in an array of values
or metrics, along with a timestamp. Therefore, a monitoring
event Oj is a couple consisting of an array of metric values
and a timestamp. With our abstraction, the system failures will
also be reported (and timestamped) into the monitoring log. In
general, we can assume that status sampling is periodic with
a period τ (Figure1).

IV. THE PROPOSED METHOD

The contribution of this paper is a continuation of the work
published in [5], in which we defined Bug-Zone Finder as
an anomaly indicator tool. In this work, we expand it to
have a Bug-Predictor which will be studied over different
representations, model construction scenarios and two case
studies. The output is a robust tool to anticipate imminent
possibility of a system failure.

A. Bug-Zone Finder

The first part of the proposed method makes a use of the
Bug-Zone Finder presented in [5]. As we presented in the
previous work, a Bug-Zone is a period of time when the
software system exposes an anomalous behaviour. Bug-Zones

Finder contains these steps: Anomaly Detection, Sliding Win-
dow, Standardization and Generating Outlier Density Curve
and finally, Bug-Zone Extraction.

1) Anomaly Detection: To find these periods, the first step
is to deploy outlier detection functions to preprocess the
telemetry data. We use two different outlier functions. Each
outlier detection function ODq must accept a multivariate
array of monitoring data; it outputs anomalous entries by a
Boolean array of outlier records:

Aq = ODq(M) (1)

In (1), M= (O1,. . . ,OJ) is the sampled multivariate mon-
itoring data, in which, each sample Oj contains an array of
metric values. Aq , the output of the outlier detection method
is an array of size J denoted by Aq= [a1,. . . ,aJ]. Each an is a
Boolean value coded by an integer 0 (for false) or 1 (for true)
that indicates whether Oj is an anomalous record according
to outlier detection ODq .

2) Sliding Window: As shown in Figure 2, each ODq

gives us one Boolean array Aq . Hence, after deploying outlier
detection functions, we have several Boolean arrays with the
same size (J). A sliding window can accumulate all Boolean
arrays into one array Aac. The sliding window simply counts
all “1” or “True” values in all Boolean arrays lying inside a
specific window (Figure 3) :

Aac[j] =
∑
∀Aq

j+(W/2)∑
k=j−(W/2)+1

Aq[k] (2)

j = {1, . . . , J}, Aq[x] = 0 for x < 1 & x > J

The sliding window has a size that is denoted by W . Aac[t]
is the number of all “1”s in a window by the size of W
centered at t. Counting ’1’ s in the sliding windows must be
repeated and accumulated for all the outlier detection output
arrays Aq . In Figure 2, we assumed that we have used three
outlier detection methods and we have A1, A2 and A3 Boolean
outlier arrays. The sliding window outputs higher values when
the number of outliers in that period of time increases.

3) Standardization and Generating Outlier Density Curve:
The properties of the output of the sliding window, Aac,
depends on several factors: number of recorded monitoring
features, number of deployed outlier detection functions and
the window size. To find Bug-Zones, one needs to set a thresh-
old on Aac. To have a constant threshold and simpler design
with fewer empirical values, we propose to standardize Aac

(the output of the sliding windows). Standardization removes
the mean value of Aac and alters its standard deviation to 1.
The output is what we call Outlier Density Curve (ODC), from
now on. ODC=standardization(Aac)

4) Bug-Zone Extraction: After standardization, Bug-Zones
are detectable from ODC. Bug-Zones are the moments when
the outlier density curve rises above the horizontal threshold
line (the bottom-right of Figure 2).

Each Bug-Zone is a pair of timestamps of the beginning and
the ending events of the Bug-Zone, denoted by BZ → TB and
BZ → TE .

Figure 2. An overview of the proposed method.

B. Learning Phase

The learning phase has three steps:
• Test event extraction
• Model construction
• Sequence representation by concept space creation

Each step will be covered in the following subsections.
1) Test event extraction: At this step, one needs to extract

test events in a time range before the Bug-Zone (Pre-Bug-
Zone). But we will also need to have some non Pre-Bug-Zone
inputs to compare with the Pre-Bug-Zone inputs. This can be
done by extracting random-time intervals from time ranges
outside the Pre-Bug-Zone periods.

The input extraction time range depends on the observations
that system developers make on the outlier density curve,
considering the root cause may happen how long before the
Bug-Zone. In our case, we extract test events in a range of 3τ
before the center of the Bug-Zone (BZi→TB+BZi→TE

2), where
τ is the sampling period of the monitoring log (Figure 1). This
range proved to exhibit the best results in our case, where
sampling is done at a relatively low rate; it can be adapted
to other rates of monitoring sampling w.r.t the flow of input
events.

Likewise, by creating random timestamps and verifying that
they don’t fall in the Pre-Bug-Zone periods, we would have a
set of random test sequences (Random-Zones):

PreBZ = {PreBZ1, . . . , P reBZZ} (3)
PreBZz = [Iz1, . . . , IzP] (4)

Rand = {RND1, . . . , RNDZ} (5)
RNDz = [Iz1, . . . , IzR] (6)

In (4) and (6), IzP and IzR are test inputs in the designated
Pre-Bug-Zone or Random-Zone sets. The number of the
Random-Zone sequences is equal to the number of the Bug-
Zones in order to have a balanced training set. The size of
Random-Zone periods was equally chosen to be 3τ .

2) Model construction: At this stage, the extracted Pre-
Bug-Zone test events are used to construct a model. Each
Random-Zone or Pre-Bug-Zone input array is treated as a
sequence. Likewise, each test event in that array is treated as
a one-hot-coding vector. We employed a contextual sequence
model proposed by [6] to learn the representation of each test
event. The model maps then each type of test events into a
vector. The array size is |ϕ|, in which, ϕ is a set of all possible
test event types, called vocabulary. Likewise, the dimension
of each vector in the array is |ϕ|.

NLPModel = NLPEngine(PBZ,Rand) (7)

Figure 3. A sliding windows over anomaly detection arrays

NLPModel = {V1, . . . , V|ϕ|} (8)
Vi = [f1, . . . , f|ϕ|], fiϵR (9)

Each NLPModel output vector V represents a word, and
in our case, a word is an input event type E. The distance
between two vectors determines how two words (input events)
are semantically close. From now on, we interchangeably use
“word” term for an NLP vector representing an input event
type and “sentence” term for an array of vectors representing
an array of input events (e.g. a Pre-Bug-Zone input events).

3) Sequence representation by concept space creation: The
created model gives vectors that represent the test events in
the vocabulary. Therefore, a Pre-Bug-Zone test array PreBZz

or Random-Zone test array Randz could be represented by
an array of vectors (a sequence) denoted by RandVz =
[IVz1, . . . , I

V
zP] and PreBZV

z = [IVz1, . . . , I
V
zR].

The representation above is an array of vectors. To create
a single-vector representation for each sequence, we need to
combine all the vectors of a sequence in a way that effectively
reflects the semantics of the sequence. Conventionally, to
create a vector from an array of vectors, simple averaging
the array has been the most straightforward way to go [7].
In contrast, our model creates a concept space from the test
events by clustering them into groups of similar events and
referring to each group as a concept based on a similar idea
expressed in [8]. Then, sequences of events are mapped in
the space induced by these clusters. The efficiency of simple
averaging and concept space representations will be compared
in an example in the Train Ticket benchmark subsection.

After creating the concepts, it is possible to determine the
conceptual presentation of a sequence by observing its events
and the concepts to which they belong. Hence, a Pre-Bug-
Zone sequence PreBZV

z is represented by a vector of C
dimensions:

PreBZConcept
z = [conz1, . . . , conzc] (10)

In which, conzc indicates how many events from a con-
cept Conceptc exist in the Pre-Bug-Zone sequence PreBZz .
Random sequences of events that are not in the Bug-zones are
represented in the same manner RandConcept

z .

C. Creating Universal Prediction Clusters

The final step of the learning phase is constructing the
Universal Prediction Clusters (UPC) from the sentences. These
clusters are essential to differentiate among Random-Zone and
Pre-Bug-Zone sentences for the prediction goal. They project
all possible topics in the input event sentences. Each input
sequence should belong to one of these universal clusters.
The distance between an input sentence and UPCs is used
to predict a Bug-Zone. This will be covered in the following
subsections. A clustering algorithm must be employed to
create the universal prediction clusters from all PreBZConcept

and RandConcept sentences. It must return a set of clusters
UPC = {upc1, . . . , upcU}, each of which is designated by
its center and its label. The center is simply an element-wise
average of the cluster members, and the label is the same as
the cluster members in the majority (either Random-Zone or

Figure 4. Universal Prediction Clusters (UPC) - Each dot is a sentence
processed in the learning phase (Red: Pre-Bug-Zone, Blue: Random-Zone)

Pre-Bug-Zone,):
UPC = {upc1, . . . , upcU}
= Cluster(PreBZConcept, RandConcept)

(11)

upci = (centeri, labeli),

labeliϵ{”nonBZ”, ”preBZ”}
(12)

Figure 4 illustrates an abstracted example drawn in two
dimensions. There are four UPCs, each of which has either
of Pre-Bug-Zone (red) or Random-Zone (blue) members in
the majority. The cluster label is the same as the label of
the majority members. Based on this abstraction image, we
describe the Bug-Zone prediction functionalities.

D. Online ML-based Bug-Zone Prediction

Online Bug-Zone prediction gives an advance warning to
system administrators about imminent anomalies and probable
system failure. To have an online predictor, we can simply train
a classifier with the PreBZConcept

z and RandConcept
z sets.

The classifier learns the classes of sequences that are likely
to be Pre-Bug-Zone and distinguishes them from the normal
(Random-Zone) sequence. But we propose a second approach
to use the created UPCs centers as indicators to determine if
a sequence of events may cause Bug-Zone.

To this aim, assume that the latest events (e.g: happened
in the period of 3τ , in which τ = the monitoring sampling
period) is denoted by LastInputs = {I1, . . . , I3τ}. The
conceptual vectorized version of the latest input events can be
calculated from the constructed model in the learning phase:
LastInputConcept=[coni1, . . . , coniC]. It must be noted that
the output vector has a dimension of C, regardless of the
number of input events. The closest UPC to this vector
determines the prediction verdict. For instance, we imagine
that the smallest cosine distance is between LastInputConcept

and a Pre-Bug-Zone UPC. Therefore, we predict a Bug-
Zone to happen soon. By a new input arrival, updating
LastInputConcept=[coni1, . . . , coniC] is not a complex task.
Assume that an input event I(3τ+1) arrives and I1(the oldest
event) must be excluded from the calculations. Then, based
on the concepts, to which I1 and I(3τ+1) belong, one concept

Figure 5. Outlier density curve and detected Bug-Zones in the Telecom case
study

value in LastInputConcept must be decremented, and another
one must be increased. The cosine distance must be calculated
again to find the closest UPC.

V. IMPLEMENTATION AND EVALUATION RESULTS

In this section, we evaluate the effectiveness of our method.
We target the following research questions:

Q1: Can our model distinguish Pre-Bug-Zone from
Random-Zone sequences accurately enough ?

Q2: How effective is the proposed approach in predicting
Bug-Zones?
Q3: What is the complexity of the proposed approach?

A. Experimental Setup

We used standard library implementation of classical ML
methods, and orchestrated the steps of the approach by devel-
oping a Python 3.x script. The first step is based on outlier
detection. We experimented two outlier detection methods,
Local Outlier Factor and Isolation Forest [9], [10]. These two
algorithms belong to the unsupervised outlier detection method
and play an important role as anomaly detection methods.
Isolation Forest is more efficient and more stable than the LOF.
However, the Isolation Forest shows some shortcomings in
some experiments. Many normal samples will affect the ability
to isolate abnormal points when there are a large number of
samples [11].

1) Telecom case study: In that case study, each monitoring
event is a collection of metrics. So we processed the mul-
tivariate information to identify outlier entries. Each log file
corresponds to a full day of monitoring, with samples taken
on 5-min periods. Therefore, we associate an array of 288
multivariate samples to each log (288×5 min = 24 hours). In
the illustration, we only show 5 metrics, but in reality each
sample contains 26 metrics.

Noticeably, we found how the two outlier detection methods
complement each other. Actually, we could add more outlier
detection methods in the first step, so as to accumulate all their
detection strengths.

Figure 5 illustrates the outlier density curve after applying
the sliding windows and standardization steps. Outliers de-
tected by LOF and IF methods are represented as scattered dots
in the upper part of the figure. Each row of dots belongs to one
of the multivariate series of status monitoring. In the middle
of the figure, we record the uptime curve of the system (which
is one of the recorded metrics): a drop in the line corresponds
to a reboot. The upper curve with variations (drawn in yellow)
shows the outlier density before standardization, and the lower
curve (drawn in green) shows the same after standardization.
The threshold for deciding on a Bug-Zone is represented by
the horizontal line, which was set at a level of 2. We can see
that the green curve overshoots the threshold around the reboot
events.

Although the correlation between reboots and Bug-zones
is high, it is not 100%. Actually 70% of the reboots are to
be found inside Bug-Zones. In fact, not all reboots are fault-
related. They might be triggered by power or network failure,
which would not be liable to our analysis based on 5-minute
sampling. And we also know that reboots are actually triggered
by the test team, from time to time, to restart test sessions
(and the the proportion is in line with our observations). The
high correlation observed, which lies between 70% and 100%
(although absence of further data prevented us from computing
a more accurate value) indicates that the Bug-Zone finder
is effective in finding anomalous behaviour and predicting
system failures through status monitoring. Some other detected
Bug-Zones were not near a reboot. Therefore, they may come
from transient periods of anomalous behaviour ended without
a total system failure.

Once we had identified Bug-Zones, we were able to ex-
tract the Pre-Bug-Zones from the input log, and to choose
Random-Zone sequences lying outside the Bug-Zones and Pre-
Bug-Zones. The input log sequences combine 175 different
elementary test events. Those events become vocabs for our
NLP based approach. We were able to identify 589 Pre-Bug-
Zone sequences, and picked 568 Random-Zone sequences.
In order to create the NLP Model, we implemented word
embedding techniques. The 175 vocabs do not correspond to
a real complexity in dimensionality, so we first use K-means
in combination with Elbow method [12], to create 20 concepts
from the 175 event types. Finally, the sequences for Pre-Bug-
Zones and Random-Zones are converted to their corresponding
concept-space vectors. The prediction is computed in the space
of these vectors. Figure 6(A) presents these sequence vectors
in 2D space. Each red cross represents a Pre-Bug-Zone test
sequence. Random-Zone test sequences are represented by
dark dots. We can see that some of the clusters are more
clearly associated to a single type of zone: the majority of
items (dots and crosses) are either red or dark. There are some
mixed clusters with no clear majority. The figures are drawn
in 2D, but actually those clusters may not be mixed in higher
dimensions. This can be evaluated by a classifier.

In the next step, we clustered, concept space vectors by
using K-means clustering method. We used Elbow method
[12] to find the number of clusters. The plotted image of

(A) (B)
Figure 6. (A) A projection of Pre-Bug-Zones and Random-Zones vectors in 2D from the telecom case study,(B) UPCs created from telecom case study

the UPCs in telecom case study are depicted in Figure 6(B).
In this figure, we can distinguish some UPC clusters in
which either red crosses or dark dots are in the majority.
The more imbalanced colors in each UPC are, the more
meaningful the cluster is. For instance, upc1 has a very high
number of Pre-Bug-Zone (red) cross densely located around
a circle. This cluster is a vivid Pre-Bug-Zone cluster, since
the probability of a cross being Pre-Bug-Zone inside this
cluster is relatively high. There are a few balanced UPCs,
ups2 and upc8 which both Random-Zone and Pre-Bug-Zone
sentences appear almost equally in these clusters. For the
sentences that fall inside these UPCs, the prediction won’t
be accurate. It must be noted that the red crosses are
plotted after the dark dots. Hence, there are some dark dots
covered by the red crosses that are not observable by the eyes.

2) Train Ticket benchmark: We studied the datasets in the
docker container version 20.10.8 deployed on a GPU server
with 125 GB memory. As mentioned in the previous section,
the tester triggered the injected bug five times during the test
period of three hours. Consequently, the anomaly detection
engines detected several anomalous values around the bug
events, as depicted in Figure 7 by red vertical bars.

The outlier density curve is depicted in Figure 8. By Bug-
Zone threshold of 1, the threshold line (in green) intersects the
outlier density curve in seven Bug-Zones during the testing
period. In Figure 8, the red dots are the detected outliers and
the blue and orange curves are the raw and standardized outlier

Figure 7. CPU and memory usage during the test period and five bug events
in the Train Ticket case study. Detected anomalies depicted by red bars.

density curves, respectively. While five detected Bug-Zones
correspond to the bug events, there are two false positive Bug-
Zones, which form a total of seven Bug-Zones.

Afterward, referring to the test log, seven Pre-Bug-Zone
test sequences (sentences) were extracted from the test log
file, as well as fifty Random-Zone test sequences outside the
Bug-Zone periods. We created a word embedding model from
the extracted test sequences and used the averaging and the
concept space methods to create a vector representation from
the extracted test sequences. Figure 9-A shows a projection
of the averaged sequence vectors in 2D space, while Figure
9-B shows the same for the concept space representation.
In each Figure, red and gray dots represent the Pre-Bug-
Zones and Random-Zones test sequences. The two sentence
vectorization methods created two main clusters (surrounded
by circles) with distinguishable distances on 2D. In both
figures, one cluster has five Pre-Bug-Zones test sequences,
and the remaining two fall into the other cluster. After the
investigation, we observed that the two red dots located
among the gray dots in the gray circle are the Bug-Zones
which were NOT caused by the bug (caused by anomalies
of the other tests). Therefore, their semantics are close to the
random test sequences. Consequently, we can state that the
sentence representation step can correct the false positives

Figure 8. Outlier density curve for the Train Ticket benchmark. The detected
outlier shows in red dots and the threshold line in green.

Figure 9. Averaging method vs Concept space method to sentence embedding
in the Train Ticket case study

on the Bug-Zone finder step. Also, this observation shows
how effectively the proposed method can distinguish between
the Bug-Zones based on their causes. Hence, the clusters
meaningfully differentiate among different root causes of Bug-
Zones.

All red dots must be separated from the gray ones in a circle.
Therefore, the gray dots in the wrong circles can base on an
estimation of the false positive rate of Bug-Zone prediction.
For instance, in Figure 9-B, 8 gray dots are in the red circle
(false positive), forming 16% of the population. We expect a
similar false positive rate from the Bug-Zone Predictor. One
noticeable difference in the concept space figure (Figure 9-B)
is the uniformity of the dots in the more significant cluster
and its clear distance from the smaller cluster. Apparently,
the concept space method better illustrates the two different
semantics of the test sequences (Pre-Bug-Zones and Random-
Zones). Finally, a Bug-Zone Predictor based on a Random
Forest predictor gave us 90.7% accuracy in predicting Bug-
Zones. A higher precision was expected in this case study due
to the lower noise and complexity of the system.

B. Q1: Can our model distinguish Pre-Bug-Zone from
Random-Zone sequences accurately enough ?

In our previous study [5], we employed three common
classifiers: Support Vector Machines (SVM with radial basis
function as the kernel function), Random Forest (RF) and
Multi-Layer Perceptron (MLP) from the Scikit-learn library
implementations. All three approaches belong to the category
of supervised algorithms.

AUC metric or Area Under Curve value [13] is one of
the most important metrics for evaluation any classification
models performance. It tells how much the model is capable
of distinguishing between classes. The AUC metric is a value
between 0 and 1. The worst AUC value of a classifier is
0.5 which means the model is not capable of separating the
classes. Hence, values near 1 or 0 are desirable. The results

TABLE I
AUC VALUES IN DIFFERENT DATASET

Dataset RF Prediction UPC Prediction
Telecom 71% 65%
Train Ticket 90.7% 95%

show that the Random Forest classifier outperforms the other
ones, since the AUC value for Random Forest is 0.75, while
the AUC value for SVM and MLP classifier is 0.62 and 0.64,
respectively.

C. Q2: How effective is the proposed approach in predicting
Bug-Zones?

The effectiveness of a predictor is generally evaluated by
its accuracy, and some metrics based on the ratio of its false
negatives and false positives. Namely, Precision, recall and
F1-score.

1) Accuracy: To train the Bug-Zone predictor, we randomly
divided our concept-space dataset (both Pre-Bug-Zone and
Random-Zone sequences) into 80% and 20% to train and test
the predictor, ensuring each set contains both label 0 (Pre-Bug-
Zone) and 1 (Random-Zone). We repeated the random splitting
process 30 times for cross-validation and took the average
as the results. We chose Random Forest for prediction as a
baseline in the previous study, since it was the most accurate
among the other classifier. Random Forest, after training,
succeeded in correctly classifying 71% of the test dataset in
telecom case study and 90.7% accuracy in predicting Bug-
Zones in Train Ticket dataset. These results imply that it can be
used to predict Bug-Zones based on a real-time incoming test
data. A higher value was expected in Train Ticket benchmark
due to the lower noise and complexity of the system.
Table I shows these results. By using UPC prediction method,
we achieved 65% and 95% accuracy in Telecom and Train
Ticket case studies respectively.

2) Precision, recall and F1-score: We computed common
classification metrics, namely, precision, recall, and F1-score
which are routinely used in similar work [14] [15] [16] [17]
for analyzing accuracy. Precision and Recall can be formally
defined as follows where TP, FP, FN are the number of
true positives, false positives, false negatives, respectively :
Precision=(TP

TP+FP), Recall=(TP
TP+FN). Precision is the per-

centage of correctly predicted Bug-Zones (True-Positive) over
all Bug-Zone prediction (True-Positive+False-Positive). It can
be considered as the measure of the exactness or correctness
of a classifier. A low precision value indicates a large number
of false positives [18]. Recall is the percentage of Bug-Zones
that are correctly predicted in advance among all the Bug-
Zones (True-Positive+False-Negative). We can call Recall as
the measure of the completeness of a classifier. A low Recall
value indicates many false negatives [18]. As presented in [16],
F1-score (2∗TP

2∗TP+FN+FP) is the most used singleton metric,
and it is the harmonic mean of precision and recall. From a

TABLE II
PERFORMANCE OF BUG-ZONE PREDICTION ON TELECOM AND TRAIN

TICKET CASE STUDIES BY USING RANDOM FOREST PREDICTION METHOD

Dataset Method Precision Recall F1-score
Telecom RF classifier 0.68 0.70 0.69
Telecom UPC Prediction 0.63 0.62 0.61
Train Ticket RF classifier 0.93 0.93 0.93
Train Ticket UPC Prediction 0.97 0.75 0.81

tester’s point of view, Recall metric might be more important,
since a lower False-Negative rate (or higher True-Positive)
indicates that we are not missing Bug-Zones information. For a
Bug-Zone predictor, both Recall and Precision are of interest.
A lower Recall value indicates that we are missing more Bug-
Zones and is linked to the cost and consequence of it. But a
lower Precision value means that we are having more False-
Positives, which in turn causes losing confidence in the system,
especially when the system takes an automatic measure on a
prediction that should not be taken.

3) Comparative Analysis: Table II shows the precision,
recall, and F1-score on the telecom and Ticket Train case
studies by using Random Forest classifier as a baseline and
UPC prediction as a proposed method in this paper. It shows
that UPC prediction can achieve to higher precision values
(e.g. 97% for Ticket Train). On the other hand, it has lower
recall values therefore, higher false negative ratio.

D. Q3: What is the complexity of the proposed approach?

We can distinguish the complexities of the learning phase
from the online prediction phase. The learning phase is less
critical since it is off-line and needs to be created only
once before online prediction. On the other hand, the online
prediction is the part that repeats by arriving each time that
a new input arrives. On the off-line phase, the complexity of
the Bug-Zone finder part is bounded by the outlier detection
algorithms, in which the local outlier factor algorithm has
the highest complexity in the order of O(J2), and J is the
number of monitoring samples. Likewise, the complexity of
the model creation step is O(N.logV) where N is the number
of test events in the Pre-Bug-Zone and Random sequences,
and V is the vocabulary size. For the online Prediction phase,
the complexity is O(U), where U is the number of universal
prediction centers. Alternatively, if we use random forest
instead of UPCs, the complexity is O(T × D), where T is
the size of RF and D is the maximum depth. Both parameters
depend on the number of test sequences in the learning phase
and are expected to be considerably larger than the number
of UPCs. Therefore, using UPCs is preferable due to lower
complexity in real-time systems.

VI. RELATED WORK

Automated log analysis has received a great deal of interest
since it is faster, less costly and more effective than manual
log analysis. However, our effort failed to find related works
with close assumptions to that of this paper with the aim to
be compared against the proposed method. Hence, one cannot
adopt them to solve the challenges introduced in the case
studies. For example, model extraction methods from log files
are not applicable in the monitoring logging domain due to
the different nature of the log outputs. Authors of [19] present
an approach to automate log file analysis and root cause
detection by creating a finite state automaton (FSA) model
from successful test sessions and comparing the developed
model against failed test sessions. This method and other
similar methods would not be effective on status monitoring

logs. Due to the huge number of events and their possible
combinations before each status record, the created model
will be significant and complex. However, FSA and similar
workflow abstraction methods are shown to offer limited
advantages for complex models [20].

Furthermore, in the majority of approaches, the definition
of fault is apparent [2] [21], while in our case, abnormal
behaviour of the software artifact is the only lead to diagnosing
the system’s internal unhealthy condition. Accordingly, su-
pervised approaches employed to analyze these software logs
based on their fail and pass labels, are not useful in our case.

Among limited published research on status monitoring
logs, authors of [1] find a relation between system events
and the changes in monitoring metrics by using statistical
correlation methods. However, the approach is limited to
incident diagnosis and how a single event affects monitoring
metrics. Applying machine learning helps to promote simple
and single-event diagnosis to mining events-metrics correlation
and have fault detection and prediction.

Different from other works, this paper is one of the few
works that exploit system status monitoring observation for
bug detection and prediction in software testing. The research
is applicable to logs that can come from long test runs on
mature software systems, or production logs. The goal of
this research was motivated by a telecommunication case
study, in which glass-box testing of the embedded third-party
software of a network appliance was neither possible nor
indeed desirable as it was supposed to have been carried out by
the software developers; and the software was mature enough
to exhibit faults only in the long run. The implementation of
the proposed method can be applied to many similar cases,
either in testing or production.

VII. THREATS TO VALIDITY

The approach has only been validated on two case studies,
with different contexts and scales. Obviously, it should be
assessed on more case studies. It would have been nice to have
a benchmark of representative case studies for fault detection
and prediction from monitoring logs, but we did not find one
that could correspond to our assumptions and context. The
Train Ticket benchmark was inspired from a previous study
[22] that already used it to that end; but it is smaller and less
complex than most of the surveyed real systems. Also, in that
case, we dealt with a simple type of fault. We would need to
inject other types of faults in the future. In the case of the
Telecom case study, due to human resources issues, we were
not able to get complete feedback from the test team to assess
the relevance of the detection and of the prediction. Assessing
the quality of the prediction would require using the system in
a real operational context. Another threat to the validity of our
study is the missing relevant papers. We searched the digital
libraries that are most likely to cover monitoring log analysis.
However, we can not rule out the possibility that we may have
missed some relevant studies.

VIII. CONCLUSION

System status information can be exploited for software
testing to find the root cause of system failures and predict
them in an online system. This paper presented the Bug-Zone
finder and Bug-Zone predictor, two approaches for detecting
and predicting anomalous periods in a software system. First,
by using different anomaly detection methods, the Bug-Zone
finder detects anomalous periods, enabling testers to only focus
on the test events near the Bug-Zones. Thus, this reduces
the testers’ efforts and provides valuable information on the
events and their causes. Second, by using an ML technique
to create a conceptual model from the semantics of the test
sequences, the online predictive model enables us to identify
sequences of tests that lead to a system failure. Thus, it
helps system administrators to foresee system failures in the
future. The effectiveness of the two proposed methods was
evaluated in two case studies, one from the Orange company
and the second one is Train Ticket, an open-source benchmark
microservice system. The detected Bug-Zones cover at least
70% of the systems reboots (failures) in the telecom case
study; Random Forest predictor, after training, succeeded in
correctly classifying 71% of the test dataset in the telecom
case study and 90.7% accuracy in predicting Bug-Zones in
Train Ticket dataset. By using the UPC prediction method,
we achieved 65% and 95% accuracy in Telecom and Ticket
Train, respectively. A higher value was expected in the Train
Ticket benchmark due to the lower noise and complexity of
the system. These results imply that our created model can be
used to predict Bug-Zones based on real-time incoming test
data by using RF or UPC predictor.

For the continuation of this work, we aim to employ the
created concept space and UPCs in finding the root causes of
anomalies among the input test events. The achievements of
this future work can help software developers to localize and
find the cause of system bugs.

ACKNOWLEDGMENT

This work was supported by the French National Research
Agency: PHILAE project (N° ANR-18-CE25-0013). The au-
thors are very grateful to Benoit Parreaux for providing a
wealth of data on the case study, as well as much advice on
the problem statement. We are also thankful to Yves Ledru
for his review and helpful discussions.

REFERENCES

[1] Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei
Zhang, and Zhe Wang. Correlating events with time series for incident
diagnosis. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1583–1592,
2014.

[2] Cheolmin Kim, Veena B Mendiratta, and Marina Thottan. Unsupervised
anomaly detection and root cause analysis in mobile networks. In 2020
International Conference on COMmunication Systems & NETworkS
(COMSNETS), pages 176–183. IEEE, 2020.

[3] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan
Ding. Fault analysis and debugging of microservice systems: Industrial
survey, benchmark system, and empirical study. IEEE Transactions on
Software Engineering, 47(2):243–260, 2018.

[4] Microservice system benchmark, trainticket. https://github.com/
FudanSELab/train-ticket/, 2018.

[5] Bahareh Afshinpour, Roland Groz, and Massih-Reza Amini. Correlating
test events with monitoring logs for test log reduction and anomaly pre-
diction. In The 6th International Workshop on Software Faults(IWSF).
IEEE, 2022.

[6] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[7] Bahareh Afshinpour, Roland Groz, Massih-Reza Amini, Yves Ledru,
and Catherine Oriat. Reducing regression test suites using the word2vec
natural language processing tool. In SEED/NLPaSE@ APSEC, pages
43–53, 2020.

[8] Jean-François Pessiot, Young-Min Kim, Massih R Amini, and Patrick
Gallinari. Improving document clustering in a learned concept space.
Information processing & management, 46(2):180–192, 2010.

[9] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg
Sander. Lof: identifying density-based local outliers. In Proceedings
of the 2000 ACM SIGMOD international conference on Management of
data, pages 93–104, 2000.

[10] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In
2008 eighth ieee international conference on data mining, pages 413–
422. IEEE, 2008.

[11] Linchang Fan, Jinqiang Ma, Junjing Tian, Tonghan Li, and Hao Wang.
Comparative study of isolation forest and lof algorithm in anomaly
detection of data mining. In 2021 International Conference on Big
Data, Artificial Intelligence and Risk Management (ICBAR), pages 1–5.
IEEE, 2021.

[12] Robert L. Thorndike. Who belongs in the family. Psychometrika, pages
267–276, 1953.

[13] Andrew P Bradley. The use of the area under the roc curve in
the evaluation of machine learning algorithms. Pattern recognition,
30(7):1145–1159, 1997.

[14] Tatsuaki Kimura, Akio Watanabe, Tsuyoshi Toyono, and Keisuke
Ishibashi. Proactive failure detection learning generation patterns of
large-scale network logs. IEICE Transactions on Communications,
102(2):306–316, 2019.

[15] J. Zhao, N. Chen et al. Real-time incident prediction for online service
systems. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 315–326, 2020.

[16] David MW Powers. Evaluation: from precision, recall and f-measure
to roc, informedness, markedness and correlation. arXiv preprint
arXiv:2010.16061, 2020.

[17] Yijun Lin and Yao-Yi Chiang. A semi-supervised approach for abnormal
event prediction on large operational network time-series data. arXiv
preprint arXiv:2110.07660, 2021.

[18] Amrit Pal and Manish Kumar. Dlme: distributed log mining using en-
semble learning for fault prediction. IEEE Systems Journal, 13(4):3639–
3650, 2019.

[19] Leonardo Mariani and Fabrizio Pastore. Automated identification of
failure causes in system logs. In 2008 19th International Symposium on
Software Reliability Engineering (ISSRE), pages 117–126. IEEE, 2008.

[20] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui Zhang, and
Guofei Jiang. Cloudseer: Workflow monitoring of cloud infrastructures
via interleaved logs. ACM SIGARCH Computer Architecture News,
44(2):489–502, 2016.

[21] Anunay Amar and Peter C Rigby. Mining historical test logs to predict
bugs and localize faults in the test logs. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pages 140–
151. IEEE, 2019.

[22] Lingzhi Wang, Nengwen Zhao, Junjie Chen, Pinnong Li, Wenchi Zhang,
and Kaixin Sui. Root-cause metric location for microservice systems via
log anomaly detection. In 2020 IEEE International Conference on Web
Services (ICWS), pages 142–150. IEEE, 2020.

https://github.com/FudanSELab/train-ticket/
https://github.com/FudanSELab/train-ticket/

	Introduction
	The case studies
	Telecom case study
	Train Ticket benchmark

	Problem description
	The Proposed Method
	Bug-Zone Finder
	Anomaly Detection
	Sliding Window
	Standardization and Generating Outlier Density Curve
	Bug-Zone Extraction

	Learning Phase
	Test event extraction
	Model construction
	Sequence representation by concept space creation

	Creating Universal Prediction Clusters
	Online ML-based Bug-Zone Prediction

	Implementation and Evaluation Results
	Experimental Setup
	Telecom case study
	Train Ticket benchmark

	Q1: Can our model distinguish Pre-Bug-Zone from Random-Zone sequences accurately enough ?
	Q2: How effective is the proposed approach in predicting Bug-Zones?
	Accuracy
	Precision, recall and F1-score
	Comparative Analysis

	Q3: What is the complexity of the proposed approach?

	Related Work
	Threats To Validity
	Conclusion
	References

