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We consider two insurance companies with wealth processes given by independent Brownian motions with controllable non-negative drift. The drift rates sum up to one. The companies aim at finding a strategy for the drift rates in order to maximize the probability that at least one of them survives forever. We prove that the strategy, where the company with higher wealth obtains the maximal drift rate, is optimal. Our result differs considerably from the numerical result of McKean and Shepp in [17].

Furthermore, we numerically obtain candidates for the optimal strategy if the common aim of the two companies is to maximize a convex combination of the probability that both firms survive and the probability that exactly one firm survives forever. Our numerical results indicate that in general it is optimal to assign the maximal drift rate to one company but whether it is the company with higher or less wealth depends on the size of both wealth processes.

Introduction

We consider two insurance companies whose wealth processes are given by independent Brownian motions with controllable non-negative drift, where the drift rates sum up to one. The controller aims at maximizing the probability that at least one of the firms survives forever, i.e. that the wealth process of at least one company never falls below zero.

We now present two different economic interpretations: In the first, given by McKean and Shepp in [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF], a government can influence the drift rates of the wealth processes by a certain tax policy which allows for a total drift of one. Here the aim of the government is that at least one firm should survive. In the second, two companies collaborate by transfer payments, which are assumed to be absolutely continuous with respect to the Lebesgue measure and to be bounded, and, thus, the companies can control the drift rates in order to maximize the probability that at least one of them survives (see [START_REF] Grandits | On the gain of collaboration in a two dimensional ruin problem[END_REF]Section 2] for more details). Collaboration of two companies was considered in Actuarial Mathematics recently with different objectives, e.g. to maximize
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expected discounted dividends until ruin, see e.g. [START_REF] Grandits | A two-dimensional dividend problem for collaborating companies and an optimal stopping problem[END_REF][START_REF] Gu | Optimal dividend strategies of two collaborating businesses in the diffusion approximation model[END_REF], or to maximize the joint survival probability, see e.g. [START_REF] Ankirchner | On the joint survival probability of two collaborating firms[END_REF][START_REF] Grandits | On the gain of collaboration in a two dimensional ruin problem[END_REF].

In order to maximize the probability that at least one company survives, we show that it is optimal to choose the strategy, where the company with higher wealth obtains the maximal drift rate. This strategy is called push-top strategy. Of course, since one firm should survive and nothing is gained if in addition also the other firm survives, it seems very reasonable that the push-top strategy is optimal, but we are not able to give a simple proof. If one could identify the value function of this control problem as in [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF] or [START_REF] Grandits | On the gain of collaboration in a two dimensional ruin problem[END_REF] then it would be easy to deduce the optimal strategy.

In our proof we show that the positive quadrant can be separated into two connected sets, where on the one set the drift is fully assigned to one company and on the other set the other company receives the maximal drift rate 1. These two sets are separated by a C 1 -curve, which turns out to be the first median because the control problem is symmetric in the initial wealth and the same drift rates are implementable for both firms. Moreover, identifying on which of these sets the first company obtains the maximal drift rate, we conclude that push-top is optimal.

To prove that the positive quadrant can be separated in this way we follow the ideas and arguments from [START_REF] Grandits | Some global topological properties of a free boundary problem appearing in a two dimensional controlled ruin problem[END_REF], where the maximal joint survival probability of two companies with wealth processes given by Brownian motions with different volatilities and controlled non-negative drift is analyzed. Maximizing the joint survival probability or equivalently minimizing the ruin probability is a more common objective than maximizing the probability that at least one firm survives. In particular, if the Brownian motions have the same volatility and the drift rates can take values in the same bounded interval, for maximizing the joint survival probability it is optimal to use the so-called push-bottom strategy, where the company with less wealth receives the maximal drift rate, see [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF]; and [START_REF] Grandits | On the gain of collaboration in a two dimensional ruin problem[END_REF] for the case where only transfer payments are admissible for which each company keeps a given minimal positive drift rate. Also if the Brownian motions are correlated the push-bottom strategy is optimal, see [START_REF] Grandits | Ruin probability in a two-dimensional model with correlated Brownian motions[END_REF]. If the volatility of one process is small compared to the other one, methods from singular perturbation theory allow to explicitly provide a function V which approximates the value function arbitrarily well. An admissible strategy with target functional V exploits the separation of the state space into two connected sets, where on each set exactly one firm has maximal drift rate, and the non-linear separating C 1 -curve can be stated explicitly, see [START_REF] Grandits | A singular perturbed ruin problem for a two dimensional Brownian motion in the positive quadrant[END_REF].

Furthermore, as in [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF], we consider a more general problem where we assign different weights to the probabilities that exactly one or both firms survive forever. More precisely, the two firms aim at choosing an optimal allocation of the available drift rate to maximize a convex combination of the probability that both firms survive forever and the probability that exactly one firm survives. Their target functional is given by α P[exactly one firm survives forever] + (1 -α)P[both firms survive forever]

(1.1)

for α ∈ 0, 1 2 .
Here we require that α ∈ 0, 1 2 because for α > 1 2 it is better if exactly one firm survives instead of both, which seems unnatural in our economic interpretation. Observe that the problem of maximizing the joint survival probability, the probability that at least one firm survives forever and maximizing the expected number of surviving firms are obtained from (1.1) up to a possible factor for α = 0, α = 1 2 and α = 1 3 , respectively. In [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF] McKean and Shepp show that the push-bottom strategy is optimal for α = 0 and for α = 1 2 we prove in this paper that push-top is optimal. Using policy iteration and successive over-relaxation we numerically derive candidates for the optimal strategies for different α ∈ 0, 1 2 . Our results suggest that except for α = 0 and α = 1 2 it is optimal to use push-top if both wealth processes are sufficiently small and to implement push-bottom whenever at least one wealth process is large enough. Here the notion of small and large depends on α. Nevertheless, we observe that the region where push-top seems to be optimal is increasing in α.

The paper is organized as follows. In Section 2 we introduce our model. Before proving that the push-top strategy is optimal in Section 3.3 we provide regularity results for the value function (Section 3.1) and show that the positive quadrant can be divided into two simply connected sets, where on one set the first company receives the maximal drift rate whereas the maximal drift rate is assigned to the second company on the complement (Section 3.2). Finally, in Section 4 we present candidates for an optimal strategy in a more general problem and explain how we derived them numerically.

Model

We consider the following two-dimensional controlled ruin problem. The wealth processes (X x;u t ) t∈[0,∞) and (Y y;u t ) t∈[0,∞) of two companies are described by the corresponding twodimensional stochastic process (Z x,y;u t

) t∈[0,∞) with Z x,y;u t = X x;u t Y y;u t =      x + B t + t 0 u (1) s ds y + B t + t 0 u (2) s ds      , t ∈ [0, ∞), (2.1) 
where x, y denote the initial wealth of the companies,

B t , B t t∈[0,∞) is a two-dimensional Brownian motion and (u s ) s∈[0,∞) with u s = u (1) s , u (2) s 
is the control process. Denote by G = (0, ∞) × (0, ∞) the positive quadrant and let A = {(x, 0) : x ≥ 0} and B = {(0, y) : y > 0} be the rays forming the boundary of G. We first define the ruin time of the first and second company when the control u is used, respectively; more precisely, let

τ X (x; u) = inf{t ∈ [0, ∞) : X x;u t ≤ 0} = inf{t ∈ [0, ∞) : Z x,y;u t ∈ B}, τ Y (y; u) = inf{t ∈ [0, ∞) : Y y;u t ≤ 0} = inf{t ∈ [0, ∞) : Z x,y;u t ∈ A},
where we use the convention that inf ∅ = ∞. Furthermore, let

τ (x, y; u) = τ X (x; u) ∧ τ Y (y; u) = inf {t ∈ [0, ∞) : Z x,y;u t / ∈ G} , ν(x, y; u) = τ X (x; u) ∨ τ Y (y; u)
be the first time at which one of the companies respectively both companies are ruined, where a ∧ b = min{a, b} and a ∨ b = max{a, b} for a, b ∈ R ∪ {∞}. To define the process (Z x,y;u t ) t∈[0,∞) for all times, we set

X x;u t = 0, on {t ≥ τ X (x; u)}, Y y;u t = 0, on {t ≥ τ Y (y; u)}, Z x,y;u t = 0, on {t ≥ ν(x, y; u)}.
Our set of admissible controls U x,y is given by

U x,y =                    u s = û (Z x,y;u s ) for a Borel measurable function û : G → [0, 1] 2 with • û(2) (x, y) = 1 -û(1) (x, y) for (x, y) ∈ G (u s ) s∈[0,∞) : • û(x, y) = (1, 0) for (x, y) ∈ A\{(0, 0)} • û(x, y) = (0, 1) for (x, y) ∈ B • û(0, 0) = (0, 0)                    .
In particular, for a strategy u ∈ U x,y it is sufficient to specify û(1) on G, which is done in the following without further mentioning. By [START_REF] Veretennikov | On the criteria for existence of a strong solution of a stochastic equation[END_REF] the stochastic differential equation (2.1) has a unique solution for all admissible strategies u ∈ U x,y . In addition, we only allow for strategies such that a total drift of 1 is divided between both companies as long as no company has been ruined, i.e. both wealth processes have been positive so far. If one company is ruined then the maximal drift rate 1 is assigned to the surviving company and if both companies are ruined, the drift is set to 0 afterwards.

Our aim is to maximize the probability that at least one company survives forever, i.e. our target functional is

J(x, y; u) = P[ν(x, y; u) = ∞]
and the value function is

V (x, y) = sup u∈ Ux,y J(x, y; u).
(2.

2)

The Hamilton-Jacobi-Bellman (HJB) equation and the boundary conditions for the optimal control problem (2.2) are given by

1 2 V xx + 1 2 V yy + max{V x , V y } (x, y) = 0, (x, y) ∈ G, (2.3) 
V (x, 0) = 1 -e -2 x , x ∈ [0, ∞), V (0, y) = 1 -e -2 y , y ∈ [0, ∞), lim x,y→∞ V (x, y) = 1. (2.4) 
Moreover, if V is sufficiently smooth we can deduce that an optimal strategy u * = u * , (1) , u * ,(2) ∈ U x,y for V (x, y) with (x, y) ∈ G is given by u * ,(1)

s = u * X x;u * s , Y y;u * s , u * ,(2) s = 1 -u * , (1) s 
,

where for (v, w) ∈ G u * (v, w) = 1 {Vx(v,w)-Vy(v,w) ≥ 0} . (2.5) 
In this paper we show that it is optimal to choose the strategy, where the company with higher wealth obtains the maximal drift rate. This we call the push-top strategy. More precisely, Theorem 2.1. The optimal strategy (u * s ) s∈[0,∞) for (2.2) is given by the push-top strategy, i.e.

u * ,(1)

s = û * X x;u * s , Y y;u * s = 1 {X x;u * s ≥ Y y;u * s } , u * ,(2) s = 1 -u * ,(1) s = 1 {X x;u * s < Y y;u * s } ,
where û * (x, y) = 1 {x≥y} .

We prove Theorem 2.1 in the following section with the help of several propositions and lemmas.

Remark 2.2. To prove Theorem 2.1 we show

(x, y) ∈ G : V x (x, y) -V y (x, y) > 0 = (x, y) ∈ G : x > y , (x, y) ∈ G : V x (x, y) -V y (x, y) < 0 = (x, y) ∈ G : x < y , (x, y) ∈ G : V x (x, y) -V y (x, y) = 0 = (x, y) ∈ G : x = y .
And hence, by (2.5) we conclude that u * (x, y) = 1 {x ≥ y} .

Remark 2.3. The function û * from Theorem 2.1 defining the optimal strategy u * is unique up to changes on the set G = := {(x, y) ∈ G : x = y}. Indeed, we can change the definition of û * on G = and obtain indistinguishable processes

(X * t , Y * t ), t ∈ [0, ∞), because with probability one the set {t ∈ [0, ∞) : X * t -Y * t = 0} has Lebesgue measure zero, for details see Appendix C in [4].
Remark 2.4. Observe that if we maximize the probability that both firms survive forever, i.e.

W (x, y) := sup v∈ Ux,y P[τ (x, y; v) = ∞], (2.6) 
then McKean and Shepp show in [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF] that

W (x, y) = 1 -e -2 min{x,y} -2 min{x, y} e -x-y
and it is optimal to implement the strategy, where the company with less wealth received the maximal drift rate 1, i.e.

v * , (1) s 
:= 1 -u * , (1) s 
= 1 {X x;u * s < Y y;u * s } , v * ,(2) s = 1 -v * ,(1) s = 1 {X x;u * s ≥ Y y;u * s } ,
is optimal in (2.6). The strategy (v * s ) s∈[0,∞) is called push-bottom strategy.

Remark 2.5. McKean and Shepp [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF] also consider the problem of finding an optimal strategy maximizing the probability that at least one company survives (α = 1 2 in their setting). Using numerical methods they obtain a region close to the origin where push-top is chosen and pushbottom is used if the wealth of at least one company is sufficiently large, see Figure 2 in [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF]. Note that their result contradicts our Theorem 2.1.

The optimal strategy for the drift rates

In this section we prove Theorem 2.1. Our main steps are:

• We show that V is the unique bounded solution of (2.3) with boundary conditions (2.4) and V ∈ C 2 G\{(0, 0)} , see Subsection 3.1.

• We prove that G is separated into two simply connected sets, where on the one set the maximal drift rate is assigned to one company and on the other set the other company obtains the maximal drift rate 1. These sets are separated by a C 1 -curve (Subsection 3.2).

• Finally, we conclude in Subsection 3.3 that using the push-top strategy is optimal in (2.2).

Section 3.1 and 3.2 follow the ideas and arguments from [START_REF] Grandits | A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant[END_REF] and [START_REF] Grandits | Some global topological properties of a free boundary problem appearing in a two dimensional controlled ruin problem[END_REF]. We state all the results needed but in the proofs we often only state the changes to be made in our setting.

Preliminary results

We derive as in Theorem 3. 

V satisfies V ∈ C 2 G \{(0, 0)} .
The proofs are quite similar to the proofs in [START_REF] Grandits | A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant[END_REF]: For proving Theorem 3.1 we follow the proof of Theorem 3.1 in [START_REF] Grandits | A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant[END_REF] with the only difference that we use the functions

w(x, y) = 1 -e -2x -e -2y , v(x, y) = 1 -e -x -e -y
and for the proof of Proposition 3.2 we apply the arguments of the proof of Proposition 3.2 in [START_REF] Grandits | A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant[END_REF] but in the second to last part we use lim x,y→∞ W (x, y) = 1 to obtain 1 {τ =∞} instead of 2 1 {τ =∞} . Proposition 3.3 can be proven exactly as Proposition 3.3 in [START_REF] Grandits | A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant[END_REF].

Separating G into two simply connected sets

In this section we show that G can be divided into two simply connected sets, where company one receives the maximal drift rate on one set and company two obtains the maximal drift rate on the complement. Here we follow the arguments from [START_REF] Grandits | Some global topological properties of a free boundary problem appearing in a two dimensional controlled ruin problem[END_REF] and provide all the statements adjusted to our setting.

First we introduce some sets and functions we need later on.

D(x, y)

:= V x (x, y) -V y (x, y), G * := G \{(0, 0)}, P := {(x, y) ∈ G * : D(x, y) > 0}, R := {(x, y) ∈ G * : D(x, y) ≥ 0}, N := {(x, y) ∈ G * : D(x, y) < 0}, S := {(x, y) ∈ G * : D(x, y) ≤ 0}, C := R ∩ N ,
where the closure of N is taken in G * . Note that it is not clear so far whether P = R or N = S and thus, whether C = {(x, y) ∈ G * : D(x, y) = 0} holds true. These sets have the following interpretations: On R ∩ G (N ∩ G) the first (second) company obtains the maximal drift rate. Here we choose R (N ) without loss of generality; it is also possible to take P (S), since on {(x, y) ∈ G : D(x, y) = 0} all non-negative drift rates which sum up to one can be chosen. On the set C ∩ G the strategy is changed which means that for any z ∈ C ∩ G both types of strategies can be found in the neighborhood of z.

In the following all topological notions are understood in the trace topology on G * with respect to R 2 unless otherwise stated.

Our main result (Theorem 2.1) is based on the next theorem. The proof of Theorem 3.4 follows from several lemmas. Most of them can be proven using the arguments from [START_REF] Grandits | Some global topological properties of a free boundary problem appearing in a two dimensional controlled ruin problem[END_REF] with some slight modifications. However, the proof of the next lemma requires a different line of arguments. Lemma 3.5. On the boundary of G * we have

{(0, y) : y > 0} ⊂ N, {(x, 0) : x > 0} ⊂ P.
Remark 3.6. By Lemma 3.5 the interpretation of the sets R ∩ G and N ∩ G given at the beginning of this section can be extended to R and N .

Proof of Lemma 3.5. Due to the symmetry of our problem (2.2) and of the value function V we only show V x (0, y) < V y (0, y) for all y > 0, i.e. the first relation.

Let y > 0. Since V (0, y) = 1 -e -2 y it holds that V y (0, y) = 2e -2 y . In the following we derive a function g such that for sufficiently small ε > 0 and any admissible strategy u ∈ U ε,y

J(ε, y; u) ≤ 1 -e -2 y + ε g(y) + o(ε). (3.1) 
In particular,

V (ε, y) ≤ 1 -e -2 y + ε g(y) + o(ε). (3.2) Using (3.2), V (0, y) = 1 -e -2 y and V ∈ C 2 G \{(0, 0)} implies V x (0, y) = lim ε↓0 V (ε, y) -V (0, y) ε ≤ g(y).
Finally we show that g(y) < 2e -2 y for all y > 0 and therefore, the claim follows.

To find g in (3.1) we use ideas and results from Section 4 in [START_REF] Grandits | A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant[END_REF]. Let y > ε > 0. For all admissible strategies u ∈ U ε,y it holds by Lemma 4.2 in [START_REF] Grandits | A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant[END_REF] that

E e -2 τ (ε,y;u) 1 {ν(ε,y;u) <∞} = e -2 ε-2 y .
Moreover,

e -2 ε-2 y = E e -2 τ (ε,y;u) 1 {ν(ε,y;u) <∞} = E e -2 τ (ε,y;u) ν(ε, y; u) < ∞ P [ν(ε, y; u) < ∞] .
Since for the distribution of τ (ε, y; u) it does not matter whether both companies are ruined or only one, we conclude that

E e -2 τ (ε,y;u) ν(ε, y; u) < ∞ = E e -2 τ (ε,y;u) τ (ε, y; u) < ∞ and hence, e -2 ε-2 y = E e -2 τ (ε,y;u) 1 {τ (ε,y;u)<∞} P [ν(ε, y; u) < ∞] P [τ (ε, y; u) < ∞] = E e -2 τ (ε,y;u) 1 {τ (ε,y;u)<∞} P [ν(ε, y; u) < ∞] 1 -P [τ (ε, y; u) = ∞] = E e -2 τ (ε,y;u) P [ν(ε, y; u) < ∞] 1 -P [τ (ε, y; u) = ∞]
.

Thus,

P [ν(ε, y; u) < ∞] = 1 -P [τ (ε, y; u) = ∞] E e -2 τ (ε,y;u) e -2 ε-2 y .
Therefore, we deduce that

J(ε, y; u) = P [ν(ε, y; u) = ∞] = 1 -P [ν(ε, y; u) < ∞] = 1 - 1 -P [τ (ε, y; u) = ∞] E e -2 τ (ε,y;u) e -2 ε-2 y ≤ 1 - 1 -sup u∈ Uε,y P [τ (ε, y; u) = ∞] E e -2 τ (ε,y;u) e -2 ε-2 y .
Now using the explicit formula for the value function of maximizing the probability that both firms survive forever from [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF] yields, since ε < y,

sup u∈ Uε,y P [τ (ε, y; u) = ∞] = W (x, y) = 1 -e -2 ε -2 ε e -ε-y .
Therefore, J(ε, y; u) ≤ 1 -e -2 ε + 2 ε e -ε-y E e -2 τ (ε,y;u) e -2 ε-2 y .

Moreover, let

τ = τ (ε, y) = inf t ∈ [0, ∞) : ε + B t ≤ 0 or y + B t ≤ 0 .
Then we have τ = τ ε, y; (0, 0) . Observe that v = (0, 0) is not an admissible strategy but it helps to construct the auxiliary stopping time τ . Since τ ≤ τ (ε, y; u) we have

E e -2 τ (ε,y;u) ≤ E e -2 τ .
From Equation (25) and the following equation in [START_REF] Grandits | A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant[END_REF] we conclude that

E e -2 τ = 1 -ε h(y) + o(ε),
where

h(y) = 8 π ∞ 0 1 √ t e -2 t 2 Φ y √ t -1 dt
and Φ denotes the cumulative distribution function of a standard normal distribution. To sum up, we have

J(ε, y; u) ≤ 1 - e -2 ε + 2 ε e -ε-y E [e -2 τ ] e -2 ε-2 y = 1 - e -2 ε + 2 ε e -ε-y 1 -ε h(y) + o(ε) e -2 ε-2 y .
Observe that

e -2 ε + 2 ε e -ε-y 1 -ε h(y) + o(ε) e -2 ε = 1 -4 ε + 2 ε e -y + o(ε) 1 + ε h(y) + o(ε) = 1 -4 ε + 2 ε e -y + ε h(y) + o(ε).
Hence, it follows that J(ε, y; u) ≤ 1 -e -2 y + ε 4 e -2 y -2e -3 y -h(y) e -2y + o(ε).

Now we conclude that (3.1) holds with g(y) = 4 e -2 y -2 e -3 y -h(y) e -2 y and thus, V x (0, y) ≤ 4 e -2 y -2 e -3 y -h(y) e -2 y .

To show V x (0, y) < V y (0, y) for all y > 0 it is sufficient to prove for all y > 0 that 4 e -2 y -2 e -3 y -h(y) e -2 y < 2 e -2 y or equivalently

2 -2e -y < h(y).
The latter inequality is derived in Lemma 5.1 in the appendix.

Next we characterize the behavior of D(x, y) for large values of x or y. Proof. Consider a sequence (x n , y n

) n∈N with (x n , y n ) → ∞ as n → ∞. If either • x n , y n → ∞ as n → ∞,
• lim n→∞ x n = ∞ and lim inf n→∞ y n = γ > 0 or

• lim n→∞ y n = ∞ and lim inf n→∞ x n = γ > 0 then the claim follows directly from Lemma 5.3 in the appendix. To show that

D(x n , y n ) → 0 as n → ∞ if • lim n→∞ x n = ∞ and lim inf n→∞ y n = 0 or • lim n→∞ y n = ∞ and lim inf n→∞ x n = 0
we combine arguments from the proof of Lemma 5.3 and Lemma 5.4. Due to the symmetry of V we assume without loss of generality that lim n→∞ x n = ∞ and lim inf n→∞ y n = 0. Moreover, we only show that V x (x n , y n ) → 0 as n → ∞. Similar arguments can be used to prove

V y (x n , y n ) → 0 as n → ∞. Let ε > 0. Let δ ∈ (0, 1 2 ) such that • δ ≤ min{ ε 6 , ε 18 C },
where C > 0 is the constant arising in (5.4) in the proof of Lemma 5.3 and

• P τ 1 < τ δ 2 ≤ ε 18 ,
where

τ 1 = inf{t ∈ [0, ∞) : 1 + B t = 0}, τ δ 2 = inf{t ∈ [0, ∞) : δ + t + B t = 0}.
Note that P τ 1 < τ δ 2 → 0 as δ → 0.

In addition, let K > max {-log(δ), 2}. Since x n → ∞ as n → ∞ there exists N ∈ N such that x n ≥ K for all n ∈ N. Moreover, we have

V x (x n , y n ) = 1 {yn> δ} V x (x n , y n ) + 1 {yn≤ δ} V x (x n , y n ). (3.3) 
Now let n ≥ N . For the first summand in (3.3) we use Estimate (5.4) from the proof of Lemma 5.3 to obtain

1 {yn> δ} V x (x n , y n ) ≤ 2 C δ e -2 xn+2(yn∧ 1 2 ) ,
where C > 0 is independent of δ, x n and y n .

For the second summand in (3.3) Equation (5.6) in the proof of Lemma 5.4 implies

1 {yn≤ δ} V x (x n , y n ) ≤ 6 P τ 1 < τ δ 2 + 2 e -xn .
Hence, for all n ≥ N we have

0 ≤ V x (x n , y n ) ≤ 2 C δ e -2 xn+2(yn∧ 1 2 ) + 6 P τ 1 < τ δ 2 + 2 e -xn ≤ 6 C δ e -2 K + ε 3 + 2 e -K ≤ 6 C δ + ε 3 + 2 δ ≤ ε.
We now present additional properties of the function D.

Lemma 3.8. Let M ⊂ G * be open in R 2 and connected. Then the function D is a distributional solution of

1 2 D xx + 1 2 D yy + 1 R D x + 1 N D y = 0 on M . Moreover, if M ⊂ G * is open in R 2 , connected and bounded then it holds that D ∈ W 2,p loc (M ), 1 < p < ∞.
Proof. Mimicking the proof of [START_REF] Grandits | Some global topological properties of a free boundary problem appearing in a two dimensional controlled ruin problem[END_REF]Lemma 4.3], where we set σ = 1 and replace ∆ (σ) by the Laplace operator ∆ = ∂ 2 ∂x 2 + ∂ 2 ∂y 2 , yields the claim. In the following we show that the sets N and P are pathwise connected. First observe that N and P are locally pathwise connected because they are strict sub-and superlevel sets of the continuous function D. Hence, their connected components and connected path components are the same, see e.g. [START_REF] Munkres | Topology[END_REF]Theorem 25.5]. Denote by N 1 and P 1 the connected component of N containing {(0, y) : y > 0} and of P containing {(x, 0) : x > 0}, respectively. Lemma 3.9. It holds that G * = P 1 ∪ N 1 ∪ {(x, y) ∈ G * : D(x, y) = 0}. In particular, we have N = N 1 and P = P 1 and thus, N and P are pathwise connected.

Proof. The proof of Lemma 4.4 in [START_REF] Grandits | Some global topological properties of a free boundary problem appearing in a two dimensional controlled ruin problem[END_REF] applies here if we replace ∆ (σ) by the Laplace operator ∆ and use our Lemma 3.7 to control the behavior of D for large values of either x or y. Now we can prove Theorem 3.4.

Proof of Theorem 3.4.

a) To show that N and P are simply connected one can proceed as in the proof of Proposition 4.1 in [START_REF] Grandits | Some global topological properties of a free boundary problem appearing in a two dimensional controlled ruin problem[END_REF] with the only difference that in the interior of the curve γ the partial differential equation of Lemma 3.8 holds.

b) Here the proof of Proposition 4.2 in [START_REF] Grandits | Some global topological properties of a free boundary problem appearing in a two dimensional controlled ruin problem[END_REF] can be used if the anisotropic Laplacian ∆ (σ) is replaced by the Laplace operator ∆. c) On can adopt the proof of Proposition 4.3 in [START_REF] Grandits | Some global topological properties of a free boundary problem appearing in a two dimensional controlled ruin problem[END_REF] with the only difference that the sets N and P have to be interchanged, because in our setting {(x, 0) : x > 0} ⊂ P, {(0, y) : y > 0} ⊂ N.

The push-top strategy is optimal

Lemma 3.10. We have C = {(x, x) : x > 0}.

Proof. The symmetry of the value function V implies that D(x, x) = 0 for all x > 0 and thus, by Theorem 3.4b)

{(x, x) : x > 0} ⊂ C.
Moreover, since N and P are simply connected by Theorem 3.4a) and using Lemma 3.5 we conclude that

D(x, y) ≥ 0 on G * > := {(x, y) ∈ G * : x > y}, D(x, y) ≤ 0 on G * < := {(x, y) ∈ G * :
x < y}. Assume that there exists (x 0 , y 0 ) ∈ C with x 0 ̸ = y 0 . Without loss of generality we assume that (x 0 , y 0 ) ∈ G * > . By Theorem 3.4c) in a sufficiently small ball around (x 0 , y 0 ) the set C is a C 1 -curve in G * > which does not intersect {(x, x) : x > 0}. But this contradicts the first part of Theorem 3.4b). Hence,

C = {(x, x) : x > 0}.
Finally, we can prove that the push-top strategy is optimal when maximizing the probability that at least one firm survives.

Proof of Theorem 2.1. The stated HJB Equation (2.3) for the control problem (2.2) is already the simplified version of the equation Also recall (2.5). From Lemma 3.10 we know that N = G * < and P = G * > and therefore, the push-top strategy is optimal.

1 2 V xx (x, y) + 1 2 V yy (x, y) + sup u∈[0,1] {u V x (x, y) + (1 -u)V y (x, y)} = 0, (x, y) ∈ G,

A more general problem

As in [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF] we now generalize the control problems (2.2) and (2.6) in the following way. Denote by Γ x,y;u the number of companies which never go bankrupt under strategy u with initial wealth (x, y). We want to maximize the weighted sum of the probabilities that exactly one and both companies survive forever. For this purpose let α ∈ 0, 1 2 and define

V α (x, y) = sup u∈Ux,y α P[Γ x,y;u = 1] + (1 -α)P[Γ x,y;u = 2] . (4.1) 
In particular, for the cases α = 0 and α = 1 2 we can already identify the optimal strategy for (4.1) and in the first case also the value function is known. More precisely,

• α = 0: V 0 (x, y) = 1-e -2 min{x,y} -2 min{x, y} e -x-y and push-bottom is optimal, see [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF].

• α = 1 2 : V 1 2 (x, y) = 1 2 V (x, y)
and push-top is optimal (see Theorem 2.1). Note that for α = 1 3 the generalized problem (4.1) corresponds to the problem of maximizing the expected number of surviving firms, see [START_REF] Grandits | A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant[END_REF] for more details.

Remark 4.1. In (4.1) we only allow for α ∈ 0, 1 2 because for α > 1 2 it is better if only one firm survives instead of both which does not really make sense in our economic interpretation.

The HJB equation associated to (4.1) is given by

1 2 V α xx + 1 2 V α yy + sup u∈[0,1] {u V α x + (1 -u)V α y } = 1 2 V α xx + 1 2 V α yy + max{V α x , V α y } = 0 on G, V α (x, 0) = α 1 -e -2x , x ∈ [0, ∞) V α (0, y) = α 1 -e -2y , y ∈ [0, ∞) lim x,y→∞ V α (x, y) = 1 -α. (4.2)
Also in this generalized setting an optimal strategy u α for V α is given by u α s = ûα (X x;u α s , Y y;u α s ), where ûα (x, y) = 1 {V α x (x,y)-V α y (x,y)≥ 0} , cf. Equation (2.5). Using numerical methods, which are explained in the next subsection, we obtain a candidate for the optimal strategy for V α . For α = 0 and α = 1 2 this strategy coincides with the theoretical optimal strategy, i.e. push-bottom and push-top, respectively, see Figure 1. These are the two special cases where only push-bottom respectively push-top is optimal.

For α ∈ 0, 1 2 we find that if the wealth of both companies is small (small depends on α) then the company with higher wealth should obtain the maximal drift rate (i.e. use push-top) whereas if the wealth process of at least one company is sufficiently large then the maximal drift rate 1 is assigned to the company with less wealth (i.e. use push-bottom). Hence, we can split our state space G into two regions, in one push-top is optimal and in the other push-bottom. Observe that the region where it is optimal to use push-top is increasing in α. This is due to the fact that if α increases the probability that exactly one firm survives is given more weight and the probability that none of the firms goes bankrupt has less influence.

Figures 3 and4 show our candidates for the optimal strategy for different α. In the white regions push-bottom is optimal and we use black for the regions where push-top is optimal. Remark 4.2. Note that also McKean and Shepp in [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF] obtain candidates for optimal strategies for V α . Since the description on how they obtain their results is a bit short, we provide a detailed explanation of our numerical method in the next subsection.

α = 0 α = 1 2 Figure 1:
The candidates for an optimal strategy for α = 0 and α = 1 2 with x max = 10 and N = 400. In the white regions push-bottom is optimal and we use black for the regions where push-top is optimal. Here we already know that push-bottom respectively pushtop is optimal. Observe that on the diagonal y = x both companies can be pushed. For large values of x and y numerical effects can effect our strategy, see Figure 2 for more details. For details on the numerical methods see Subsection 4.1.

Numerical method: policy iteration and successive over-relaxation

Here we describe the numerical method we use to obtain the candidate for the optimal strategy. We combine two methods:

• policy iteration

• successive over-relaxation

The idea of policy iteration used in reinforcement learning (cf. [START_REF] Bertsekas | Reinforcement Learning and Optimal Control[END_REF][START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] for more details) is to start with an initial strategy (Step 0), compute the value of this strategy (Step 1) and improve the strategy appropriately (Step 2). Step 1 and 2 are then repeated until a fixed point is found (or the value of the new strategy is very close to the value of the old strategy). In particular, a sequence of strategies with increasing values is constructed. For Step 1 observe that the value J(x, y; u) of a given strategy u = u(x, y) satisfies the linear partial differential equation (PDE)

1 2 J xx + 1 2 J yy + u J x + (1 -u) J y = 0 on G. (4.3) 
Note that the PDE for V α given in (4.2) is non-linear. In order to find J we restrict (4.3) to a bounded state space and impose additional boundary conditions, discretize the new state space and the derivatives and solve the corresponding linear system of equations using successive overrelaxation, which is a variant of the Gauss-Seidel method and often has an improved convergence rate (see e.g. [START_REF] Young | Iterative Solution of Large Linear Systems[END_REF]Chapter 6]). For improving a strategy u in Step 2, we use the optimality criterion from the HJB equation (4.2) and set u new (x, y) = 1 {Jx(x,y;u) ≥ Jy(x,y;u)} .

x max = 5, N = 200.

x max = 10, N = 400.

x max = 15, N = 600.

x max = 20, N = 800.

Figure 2: The candidates for an optimal strategy for α = 0.3 and for different x max and N such that ∆x = 0.025. In the white regions push-bottom is optimal and we use black for the regions where push-top is optimal. In the upper right corner numerical effects appear due to the imposed boundary conditions and the discretization. For increasing x max the region where these numerical effects happen move to the upper right corner. These effects do not influence the strategy in regions which are sufficiently far away. Now we describe our method in more detail: we restrict ourselves to the bounded state space S = [0, x max ]×[0, y max ], where x max and y max are chosen sufficiently large. Due to the symmetry of our problem (4.1) we set y max = x max . We then obtain an approximation V α S for V α on S as follows: for X x;u t , Y y;u t ∈ (0, x max ) × (0, x max ) divide a total drift of 1 among both companies in order to maximize the weighted probabilities in (4.1). If the wealth process of the first or second company exceeds x max , then we consider this firm to survive forever and the other firm obtains a drift rate of 1. In particular, for (x, y) ∈ S we set

V α S (x, x max ) = α e -2 x + (1 -α) 1 -e -2 x , V α S (x max , y) = α e -2 y + (1 -α) 1 -e -2 y ,
where we use that the probability that a Brownian motion with unit drift starting in x hits zero equals e -2 x , see Formula 1.2.4(1) in Part II, Chapter 2 in [START_REF] Borodin | Handbook of Brownian Motion -Facts and Formulae. Probability and its Applications[END_REF]. Moreover, let

V α S (x max , x max ) = α e -2 xmax + (1 -α) 1 -e -2 xmax .
Here we do not impose that V (x max , x max ) = 1 -α to guarantee a boundary condition that is continuous in (x max , x max ). But observe that the boundary condition is not continuous in (0, x max ) and (x max , 0). Note that V α S ≥ V α on S.

Step 0: To compute V α S we use policy iteration and thus, start with an initial guess u 0 for the optimal strategy for V α S .

Step 1: The value J(x, y; u 0 ) for this particular strategy satisfies (4.3) on (0, x max )×(0, x max ), where u is replaced by u 0 . We discretize our state space S using an equidistant grid with (N + 1) × (N + 1) grid points and mesh size ∆x = xmax N . For i, j ∈ {0, . . . , N } let J i,j = J(i∆x, j∆x; u 0 ), u 0 (i, j) = u 0 (i∆x, j∆x).

Then we have the following boundary conditions for J J 0,j = α 1 -e -2 j∆x , j = 0, . . . , N -1,

J i,0 = α 1 -e -2 i∆x , i = 0, . . . , N -1, J N,j = αe -2 j∆x + (1 -α) 1 -e -2 j∆x , j = 0, . . . , N, J i,N = αe -2 i∆x + (1 -α) 1 -e -2 i∆x , i = 0, . . . , N.
Using central finite difference quotients for (4.3) we observe that our approximation J satisfies

J i,j = c 1 J i+1,j + c 2 J i-1,j + c 3 J i,j+1 + c 4 J i,j-1
for i, j = 1, . . . , N -1, where

c 1 = 1 4 [1 + ∆x u 0 (i, j)] , c 2 = 1 4 [1 -∆x u 0 (i, j)] , c 3 = 1 4 1 + ∆x 1 -u 0 (i, j) , c 4 = 1 4 1 -∆x 1 -u 0 (i, j) .
In order to solve this system of (N -1) 2 linear equations we use successive over-relaxation (SOR): we start with an initial guess J (0) i,j , i, j = 1, . . . , N -1, and define iteratively

J (k+1) i,j = (1 -w) J (k) i,j + w c 1 J (k) i+1,j + c 2 J (k+1) i-1,j + c 3 J (k) i,j+1 + c 4 J (k+1) i,j-1
for i, j = 1, . . . , N -1 and k ∈ N, where w ∈ (0, 2) is the so-called relaxation parameter, see e.g. [START_REF] Young | Iterative Solution of Large Linear Systems[END_REF] for a detailed analysis of the SOR method and [START_REF] Greenbaum | Iterative Methods for Solving Linear Systems[END_REF][START_REF] Hackbusch | Iterative Solution of Large Sparse Systems of Equations[END_REF][START_REF] Iserles | A First Course in the Numerical Analysis of Differential Equations[END_REF] for an overview. For w = 1 one obtains the Gauss-Seidel method. We continue until ∥J (k+1) -J (k) ∥ ∞ ≤ ε for a given approximation error ε > 0 and then set J = J (k+1) . This is our approximation for the value J(., .; u 0 ) of the strategy u 0 on the grid (i ∆x, j ∆x) i,j=0,...,N .

Step 2: To improve strategy u 0 we use the discretized optimality condition from the HJB equation (4.2) for V α . More precisely, for i, j = 1, . . . , N -1 define u new (i, j) = 1, J i+1,j -J i-1,j ≥ J i,j+1 -J i,j-1 , 0, else and for the grid points on the boundary we use forward or backward difference quotients and set u new (i, j) = 1 if

(i, j) condition (i, j) condition (0, 0) J 1,0 -J 0,0 ≥ J 0,1 -J 0,0 (0, j) 2 J 1,j -J 0,j ≥ J 0,j+1 -J 0,j-1 (0, N ) J 1,N -J 0,N ≥ J 0,N -J 0,N -1 (i, 0) J i+1,0 -J i-1,0 ≥ 2 J i,1 -J i,0 (N, 0) J N,0 -J N -1,0 ≥ J N,1 -J N,0 (N, j) 2 J N,j -J N -1,j ≥ J N,j+1 -J N,j-1 (N, N ) J N,N -J N -1,N ≥ J N,N -J N,N -1 (i, N ) J i+1,N -J i-1,N ≥ 2 J i,N -J i,N -1
with i, j = 1, . . . , N -1. Otherwise we set u new (i, j) = 0. For i, j = 0, . . . , N define

u new (i∆x, j∆x) = u new (i, j).
We then continue with Step 1 and 2 for the new strategy u new and proceed until we obtain a policy u ℓ+1 with ∥J(., .; u ℓ+1 ) -J(., .; u ℓ )∥ ∞ ≤ δ for a given approximation error δ > 0. Finally, our approximation for V α S is given by J(., .; u ℓ+1 ) and u ℓ+1 is a candidate for the optimal strategy for V α .

Observe that we only construct a candidate for the optimal strategy on the grid (i∆x, j∆x) i,j=0,...,N .

Remark 4.3.

a) For every strategy u ℓ in the policy iteration procedure we have to compute its value and therefore, use successive over-relaxation for any of these strategies separately.

b) For deriving the value of the initial strategy u 0 we choose J

i,j = 0 for all i, j = 1, . . . , N -1 as initialization for the successive over-relaxation. For every updated strategy u ℓ afterwards we use the approximation for the value J(., .; u ℓ-1 ) of the old strategy u ℓ-1 as initial guess. c) In our setting different relaxation parameter w yield the same candidate for the optimal strategy (except for some differences on the set {x = y} which is not surprising because both companies can be pushed on this set). Nevertheless, the speed of convergence heavily depends on w.

Appendix

In this appendix we prove auxiliary statements for the results in Section 3.

Lemma 5.1. Let

h(y) = 8 π ∞ 0 1 √ t e -2 t 2 Φ y √ t -1 dt. Then h(y) > 2 -2 e -y . π ∞ 0 1 √ t e -2 t dt = 2 √ π Γ 1 2 = 2 (5.1)
and therefore,

h(y) = 2 -2 8 π ∞ 0 1 √ t e -2 t Φ - y √ t dt.
Hence, to prove h(y) > 2 -2 e -y we show that for all y > 0

j(y) := 8 π e y ∞ 0 1 √ t e -2 t Φ - y √ t dt < 1.
By (5.1) we conclude that j(0) = 1. In the following we find that j ′′ (y) > 0 for all y > 0 and lim y→∞ j ′ (y) = 0, which implies that j ′ (y) < 0 and thus, j(y) < 1 for all y > 0. For this purpose we claim that

j ′ (y) = j(y) - 2 π e y ∞ 0 1 t e -2 t-y 2 2t dt = j(y) - 4 π e y K 0 (2 y), (5.2) 
where K 0 denotes the modified Bessel function of the second kind of order 0. Indeed, for the first equality apply Theorem 24.5 in [START_REF] Aliprantis | Principles of Real Analysis[END_REF] to change differentiation and integration. Splitting up the integral in (5.2) as follows

∞ 0 1 t e -2 t-y 2 2t dt = y 2 0 1 t e -2 t-y 2 2t dt + ∞ y 2 1 t e -2 t-y 2 2t dt
and using the change of variables t = y 2 e -x and t = y 2 e x for the first and second integral respectively, results in

∞ 0 1 t e -2 t-y 2 2t dt = 2 ∞ 0 e -2 y cosh(x) dx.
Now the integral representation for K 0 from Formula 9.6.24 in [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] implies that (5.2) holds. In particular,

lim y→∞ j ′ (y) = lim y→∞ j(y) - 4 π e y K 0 (2 y) = 0,
where we use dominated convergence for the first summand and the asymptotic expansion for K 0 from Formula 9.7.2 in [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF]. Using K ′ 0 (y) = -K 1 (y) (see Formula 9.6.27 in [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF]), where K 1 denotes the modified Bessel function of the second kind of order 1, yields j ′′ (y) = j(y) + 8 π e y K 1 (2 y) -K 0 (2 y) .

Corollary 3 in [START_REF] Segura | Bounds for ratios of modified Bessel functions and associated Turán-type inequalities[END_REF] implies that K 0 ≤ K 1 and hence, j ′′ (y) > 0.

To sum up it holds that h(y) > 2 -2 e -y .

The following three auxiliary results describe the behavior of V and its derivatives for large x or y. Their proofs are based on the proofs of Lemma 4.2, Lemma 5.1 and Lemma 5.2 in [START_REF] Grandits | Some global topological properties of a free boundary problem appearing in a two dimensional controlled ruin problem[END_REF]. Since in our setting the proofs use similar ideas but are shorter we present them in detail.

The cases V x ≤ V y , U x ≤ U y and V x ≤ V y , U x ≥ U y can be treated similarly. Hence,

F x, y, V , D V , D 2 V -F x, y, U, DU, D 2 V ≤ 2 V x -U x + V y -U y
and therefore, Condition (F2) is fulfilled for K = 2.

Theorem 3.1 in [START_REF] Safonov | On the boundary value problems for fully nonlinear elliptic equations of second order[END_REF] now implies that for all α ∈ (0, α) for some α ∈ (0, 1) it holds that

V (0) 2,α;B ≤ C ε,
where ε is an upper bound for V on B, see (5.3), and C = C(α) > 0. For the definition of

∥ . ∥ (0) 
2,α;B see Section 2 in [START_REF] Safonov | On the boundary value problems for fully nonlinear elliptic equations of second order[END_REF]. In particular, this implies sup (x,y)∈B(x 0 ,y 0 ;

r 0 2 ) V x (x, y) ≤ 2 r 0 C ε, sup (x,y)∈B(x 0 ,y 0 ; r 0 2 ) V y (x, y) ≤ 2 r 0 C ε.
(5.4)

With V x = V x and V y = V y the claim follows.

Note that we cannot conclude that the convergence is uniformly in x 0 or y 0 because the right-hand side of (5.4) explodes e.g. for x 0 → 0 and y 0 sufficiently large. Proof. Due to the symmetry of the value function V we only consider the case where lim n→∞ x n = ∞ and lim n→∞ y n = 0. Moreover, we only show

lim n→∞ V x (x n , y n ) = 0
because similar arguments can be used for deriving lim n→∞ V y (x n , y n ) = 0.

Let δ, K > 0 and N ∈ N such that x n ≥ K and y n ≤ δ for all n ≥ N . Now let x ≥ K and y ∈ (0, δ]. Let ε ∈ 0, x 2 . As in the proof of Lemma 4.2 in [START_REF] Grandits | Some global topological properties of a free boundary problem appearing in a two dimensional controlled ruin problem[END_REF] let u * be a strategy that is optimal in (2.2) for starting in (x, y); in particular u * s = û * X x;u * s , Y y;u * s , s ∈ [0, ∞), for some Borel measurable û * . If no optimal strategy exists we use an η -optimal strategy for η > 0 and proceed similarly. We now define a strategy ũ for the process started in (x -ε, y) in such a way that the paths of the two processes X x;u * , Y y;u * and X x-ε;ũ , Y y;ũ move parallel having distance ε in the first component. Observe that using ũ the process started in (x -ε, y) is ruined not later than the optimally controlled process started in (x, y) and can be ruined earlier with positive probability. Hence, we modify ũ after the first ruin time τ (x -ε, y; ũ) in such a way that it becomes admissible, i.e. ũ ∈ U x-ε,y , which means that after the first ruin time the surviving process obtains the maximal drift rate until it hits zero. If both processes are ruined, then ũs is set to (0, 0) afterwards. To sum up, by the definition of strategy ũ it holds that X x;ũ s , Y y;ũ s = X x;u * s -ε, Y y;u * s on 0, τ (x -ε, y; ũ) .

Figure 5 depicts two different trajectories for our controlled process started in (x, y) and the corresponding shifted trajectories for the process started in (x -ε, y) until one firm is ruined when started in (x -ε, y). Now let τ = τ (x -ε, y; ũ) be the first time at which one company is ruined if the initial endowment is given by (x -ε, y) and strategy ũ is used. Then V (x -ε, y) ≥ J(x -ε, y; ũ) and the optimality of u * for V (x, y) yield V (x, y) -V (x -ε, y) ≤ P τ < ∞, X x-ε;ũ From Lemma 3.5 we know that V x (0, z) < V y (0, z) = 2 e -2 z for all z > 0 and hence,

lim ε↓0 V (ε, z) -V (0, z) ε = V x (0, z) ∈ 0, 2e -2 z .
In particular, V (ε, z) -V (0, z) ≤ 4 ε for all ε > 0 sufficiently small. Moreover, it holds that

P τ < ∞, X x-ε;ũ τ = 0 ≤ P [τ 1 < τ 2 ] ,
where

τ 1 = inf t ∈ [0, ∞) : x 2 + B t = 0 , τ 2 = inf t ∈ [0, ∞) : δ + t + B t = 0 .
Using Formula 1.2.4(1) in Part II, Chapter 2 in [START_REF] Borodin | Handbook of Brownian Motion -Facts and Formulae. Probability and its Applications[END_REF] for the second summand on the right-hand side of (5. Since P[τ 1 < τ 2 ] → 0 as δ ↓ 0 uniformly in x ≥ K we conclude that lim n→∞ V x (x n , y n ) = 0.
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 34 It holds that a) N and P are simply connected sets. b) (x, y) ∈ G * : D(x, y) = 0 ⊂ N ∩ P and therefore, C = (x, y) ∈ G * : D(x, y) = 0 . c) C is a C 1 -curve in G * , i.e. for each point z in C we can describe the set C locally by a C 1 -function, either c(x) or c(y).

Lemma 3 . 7 .

 37 We have lim (x,y)→∞ D(x, y) = 0, where (x, y) → ∞ stands for either x → ∞ or y → ∞.

which allows us to read off the optimal strategy u * with

  x, y) = 1 {Vx(x,y)-Vy(x,y)≥ 0} = 1 {D(x,y)≥ 0} = 1 P ∪C (x, y).

4 Figure 3 :

 43 Figure 3: The candidates for an optimal strategy for α ∈ 0.2, 0.25, 0.3, 1 3 , 0.35, 0.4 with x max = 5, N = 400 and w = 3 2 . Here we only plot the strategies on [0, 1] × [0, 1] to focus on the black regions where push-top is chosen.

Figure 4 :

 4 Figure 4: The candidates for an optimal strategy for α ∈ {0.45, 0.49, 0.499, 0.4999} with x max = 10, N = 800 and w = 3 2 . Here we only plot the strategies on the smaller set [0, 6]×[0, 6] to focus on the black regions where push-top is chosen.
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 54 If either • lim n→∞ x n = ∞ and lim n→∞ y n = 0 or • lim n→∞ y n = ∞ and lim n→∞ x n = 0 then lim n→∞ D(x n , y n ) = 0.

  For this purpose letũs = û * X x;u * s , Y y;u * s = û * X x-ε;ũ s + ε, Y y;ũ s .

τ = 0 V

 0 (ε, z) -V (0, z) dF ε (z) + P τ < ∞, Y y;ũ τ = 0 P inf t∈[0,∞) {B t + t} ∈ (-z, -z + ε] dG ε (z),(5.5)where dF ε denotes the conditional distribution ofY y;ũ τ = Y y;u * τ given τ < ∞, X x-ε;ũ τ = 0and dG ε denotes the conditional distribution of X x;u * τ conditioned on τ < ∞, Y y;ũ τ = 0 .

= 0 e 2 ε - 1 e - 2 z≤ e 2 ε≤ e 2 ε≤ lim ε↓0 4 PFigure 5 :

 122245 Figure 5: Two different trajectories for the controlled process started in (x, y) and the corresponding shifted trajectories for the process started in (x -ε, y) until one firm is ruined when started in (x -ε, y), see the proof of Lemma 5.4.

  1, Proposition 3.1 and Proposition 3.2 of [8] that the HJB Equation (2.3) with boundary conditions (2.4) has a bounded solution which coincides with the value function V of problem (2.2) and V is sufficiently smooth. More precisely,

Theorem 3.1. There exists a bounded solution W ∈ C G ∩ C 2 (G) of the HJB Equation (2.3) with boundary conditions (2.4). Proposition 3.2. The function W derived in Theorem 3.1 is the value function V of our problem (2.2). Proposition 3.3. The value function

Proof. First observe that by Formula 6.1.1 and 6.1.8 in [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] it follows that Lemma 5.2. It holds that

Proof. Due to the symmetry of the value function V we only show the first claim. Let x ≥ 0 and y > 0. Using the strategy ũ with ũ(1) ≡ 0 we obtain a lower bound for V . More precisely,

because the first company is ruined almost surely and the survival probability of a Brownian motion with unit drift starting in y > 0 equals 1 -e -2y . Since V ≤ 1, the claim follows.

Lemma 5.3. One has

for y > 0 and uniformly for y ≥ y for all y > 0. In addition,

for x > 0 and uniformly for x ≥ x for all x > 0.

Proof. Let V (x, y) = 1 -V (x, y). Then by Lemma 5.2 it follows that lim (x,y)→∞ V (x, y) = 0. Let (x 0 , y 0 ) ∈ G and denote by B = B x 0 , y 0 ; 1 2 ∧ x 0 ∧ y 0 the open ball around (x 0 , y 0 ) with radius r 0 := 1 2 ∧ x 0 ∧ y 0 . Let ε > 0. For ∥(x 0 , y 0 )∥ sufficiently large it holds that sup (x,y)∈B V (x, y) ≤ ε.

(5.3)

Observe that V satisfies

We now restrict V to B. To apply Theorem 3.1 in [START_REF] Safonov | On the boundary value problems for fully nonlinear elliptic equations of second order[END_REF] notice that one can easily check that Conditions (F0), (F1), (F3), (F4), and the first part of (F2) are fulfilled. It remains to show the Lipschitz property of F in V , D V . For this purpose observe that

Now we distinguish several cases: