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Highlights :

-We solve the Riemann problem for depressurization of water -For such a problem, the IAPWS equation of state (EOS) can be approximated by a stiffened gas EOS in the pure liquid and/or pure steam phase -A tabulated EOS can be efficiently used for the diphasic domain Abstract: We address the solution of the Riemann problem for water in the diphasic domain. We compare the solution obtained with the IAPWS equation of state (EOS) with the solution obtained with a modified stiffened gas EOS for pure liquid water, a tabulated EOS for the diphasic domain and a modified perfect gas EOS for pure steam. Since our interest is phase transition, we limit ourselves to temperatures below 623 K. We obtain convex isentropes which do not cross each other, so that the Riemann problem can be solved easily and its solution is unique. We analyze the effect of the EOS which has been selected.

We give examples which are useful to understand the depressurization process in a tube.

Introduction

For real materials, the Riemann Problem has been considered in the pioneering work by R. Menikoff & B. Plohr [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF]. In particular, they show that when the isentropes in the (߬, ) plane are convex, then the Riemann problem has a unique solution. As we shall see, for water in the temperature domain we consider, we get convex isentropes. Indeed, the entropy diagram for water (see e.g. https://demonstrations.wolfram.com/TemperatureEntropyDiagramForWater/ ) shows that, for water, when one follows a given isentrope, the saturation line can be crossed only once: from the liquid to the diphasic domain or from the steam to the diphasic domain. Since the sound speed is higher in the liquid domain than in the diphasic domain and also higher in the steam domain than in the diphasic domain, we shall deduce that for water, isentropes are convex in the (߬, ) plane.

In [START_REF] Muller | The Riemann Problem for the Euler Equations with Nonconvex and Non smooth Equation of State: Construction of Wave Curves[END_REF] Müller & Voss consider so called "retrograde fluids" like dodecane for which this is not the case. In the present paper, we restrict ourselves to water, for which very accurate EOS have been established like IAPWS97 [START_REF] Wagner | International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97[END_REF]. We shall consider temperatures below 623K, which is a bit smaller than the critical one (647K). As indicated in Fig 1, extracted from [START_REF] Wagner | International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97[END_REF], we shall need the EOS given by IAPWS for regions 1 (liquid domain), 2 (steam domain) & 4 (diphasic domain). The IAPWS97 EOS is very accurate, but somewhat costly as regards computing time. See more details in [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF]. People frequently use stiffened gas EOS for pure liquid water and another one for pure steam water. Then they apply thermodynamic laws to obtain an EOS in the diphasic domain, as explained in [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF][START_REF] Helluy | Simulation numérique des écoulements multiphasiques : de la théorie aux applications[END_REF]. This induces a computational cost, and this is the reason why people also build look-up tables as in [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF] or [START_REF] Saurel | A numerical study of cavitation in the wake of a hypervelocity underwater projectile[END_REF].

In the present paper, we use look-up tables for the diphasic domain only. We complement them by a modified stiffened gas EOS for the pure liquid domain (IAPWS region 1) and a modified perfect gas EOS for pure steam domain (IAPWS region 2). In §2 we show how to use our table to derive an EOS in the diphasic domain (IAPWS region 4). In §3, we show how to combine our diphasic EOS with a modified stiffened gas EOS (SG) in the pure liquid domain (IAPWS region 1). In §4, we show how to combine our diphasic EOS with a modified perfect gas EOS (PG) in the steam domain (IAPWS region 2). In §5 we address the solution of the Riemann problem with our combined EOS. We show that the isentropes we obtain in the (߬, ) plane are convex, which, according to [START_REF] Menikoff R | Applications of non-reactive compressible fluids[END_REF], proves that the Riemann problem has a unique solution.

Like in [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF] we use a graphical method for solving the Riemann problem. Finally, we give some specific examples in connection with depressurization.

Equation of state for diphasic water. Formalism

In what follows, the subscript ݂ (resp. )ݒ stands for liquid (resp. steam) For equilibrium diphasic mixtures (steam + liquid) we have extracted from IAPWS a table of 300 lines. For 1 ≤ ݅ ≤ 300, our table gives a value ܶ for the saturation temperature and the 7 values ሺܶ ሻ, ߬ ሺܶ ሻ, ߬ ௩ ሺܶ ሻ, ߝ ሺܶ ሻ, ߝ ௩ ሺܶ ሻ, ݏ ሺܶ ሻ, ݏ ௩ ሺܶ ሻ.

We have ܶ ଵ = 335 ܭ and ܶ ଷ = 634 ܭ which gives limits to our domain of validity. From our table, following Müller & Voss [START_REF] Muller | The Riemann Problem for the Euler Equations with Nonconvex and Non smooth Equation of State: Construction of Wave Curves[END_REF], we proceed in the following way:

Method A: to compute , ܶ and ,ݏ when ߬ and ߝ are given:

Let ݕ ఛ ሺܶሻ = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ ݕ ఌ ሺܶሻ = ൫ߝ -ߝ ௩ ሺܶሻ൯ ቀߝ ሺܶሻ -ߝ ௩ ሺܶሻቁ ൗ
To compute ܶ we just have to solve the equation ݕ ఛ ሺܶሻ = ݕ ఌ ሺܶሻ. This is a nonlinear equation with one unknown ܶ which can be easily solved by

• finding ݅ such that ݕ ఛ ሺܶ ሻ > ݕ ఌ ሺܶ ሻ and ݕ ఛ ሺܶ ାଵ ሻ < ݕ ఌ ሺܶ ାଵ ሻ
• solving a second-degree equation to find ߠ such that ܶ = ሺ1 -ߠሻܶ ାଵ + ߠܶ and ൫߬ -߬ ௩ ሺܶሻ൯ ቀߝ ሺܶሻ -ߝ ௩ ሺܶሻቁ = ൫ߝ -ߝ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ

• From the value of ߠ, compute ܶ = ሺ1 -ߠሻܶ ାଵ + ߠܶ and then  (which depends on ܶ).

• Let ݕ * denote the common value of ݕ ఛ ሺܶሻ and ݕ ఌ ሺܶሻ we let ݏ = ݕ * ݏ ሺܶ ሻ + ሺ1 -ݕ * ሻ ݏ ௩ ሺ ܶሻ∎ Method B: to compute , ܶ and ߝ, when ߬ and ݏ are given:

In the same way, we solve ݕ ఛ ሺܶሻ = ݕ ௦ ሺܶሻ = ݕ * where

ݕ ఛ ሺܶሻ = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ ݕ ௦ ሺܶሻ = ൫ݏ -ݏ ௩ ሺܶሻ൯ ቀݏ ሺܶሻ -ݏ ௩ ሺܶሻቁ ൗ
The details are left to the reader. ∎

Evaluation of isentropes.

With method B it is very easy to plot an isentrope.

With method A, we proceed by increment. We notice that the sound speed in a diphasic mixture is much lower than in the liquid phase, where it is of the order of 800 to 1500 m/s. This result is well known.

Equation of state for the liquid phase

For the pure liquid phase, we shall use a stiffened gas (SG) EOS. [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF]  = ߛ- ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬ (3) However, in the standard stiffened gas model, ݍ is a constant, whereas here we shall require that  = ߛ- ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬ ሺሻ on the saturation line , ߬ ሺሻ, ߝ ሺሻ, which means that we shall select

ݍ = ݍሺሻ = ߝ ሺሻ -ሺ + ߛ ஶ ሻ߬ ሺሻ/ሺߛ -1ሻ)
This is necessary to define a continuous (but not differentiable) value of ߝ across the saturation line. More precisely, for a given point in the pure liquid domain ሺ߬, ሻ, we first determine a point ሺ߬ ,  ሻ on the saturation line such that,

+ ஶ = ሺ +  ஶ ሻ ሺ߬ ߬ ⁄ ሻ ఊ (4) ߬ = ߬ ሺ ሻ Then we compute ݍ = ߝ ሺ ሻ -ሺ + ߛ ஶ ሻ߬ /ሺߛ -1ሻ
And finally, we compute ߝ = ݂ሺ߬, ሻ by using (4).

In table 1 we compare the specific internal energy obtained with our method, with ߛ = 2.79 and  ஶ = 186, and the one given by IAPWS97.

The results are given along an isochore line ߬ =1.4877 L/kg We note that the results are very close to each other. We also note that the parameter ݍ is almost constant Note that there are some points ሺ߬, ሻ in the liquid domain for which we shall not be able to find ሺ߬ ,  ሻ. Let ሺ߬ ,  ሻ denote the smallest point on the saturation line in our table this will be the case for the points on the left of the isentropic curve  +  ஶ = ሺ +  ஶ ሻ ሺ߬ ߬ ⁄ ሻ ఊ . For these

points we select ݍ = ݍ = ߝ ሺ ሻ -ሺ + ߛ ஶ ሻ߬ /ሺߛ -1ሻ
This gives an EOS which is incomplete in the sense of Menikoff-Plohr, but can be completed as indicated in [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF].

To evaluate an isentrope with such an EOS, we can proceed in the following way:

-We start from ሺ߬, ߝ, ሻ satisfying ߝ = ݂ሺ߬, ሻ -We introduce increments ሺ݀߬, ݀ߝ, ݀ሻ satisfying both -݀ߝ = ݂ ఛ ݀߬ + ݂ ݀ and -݀ߝ = ߬݀- We easily find a relation between ݀ and ݀߬, which allows to evaluate the isentropic curve by increment. More explicitly, we have To adjust the parameters ߛ and  ஶ of our SG EOS it is desirable to have a look at the sound speed as illustrated in Table 2 We also check that the isentropes do not cross each other in IAPWS region 1. We complement our isentrope in the two-phase mixture domain by using method B previously described in §2. We compare the IAPWS isentrope with the SG isentrope with ߛ = 2.79 and  ஶ = 186. Even though this is not supposed to be the optimal choice, according to Table 1, we see on Fig 4 that both isentropes are close to each other. Note that the IAPWS isentrope crosses the saturation line at P=10.97 MPa, ߬ = 1.4877 L/kg while the SG isentrope crosses it at P=10.92 MPa, ߬ = 1.4855 L/kg so that the accuracy is acceptable. Obviously, in both cases, our isentrope is continuous but there is a strong slope discontinuity between both domains. This corresponds to a strong discontinuity of the sound speed ܿ. Note that such an isentrope is convex. It has a slope discontinuity on the saturation line. But since the slope depends on ܿ ଶ and since ܿ decreases, the isentrope is globally convex.

ሺ +  ஶ ሻ ߬ ఊ = ሺ +  ஶ ሻ ሺ߬ ሻ ఊ ߝ = ݍ + ൫ሺߛ+ ஶ ሻ߬൯ ሺߛ -1ሻ ⁄ ߛሺ +  ஶ ሻ ߬ ఊିଵ ݀߬ + ߬ ఊ ݀ = ߛሺ +  ஶ ሻ ሺ߬ ሻ ఊିଵ ݀߬ + ሺ߬ ሻ ఊ ݀ (a) ݀߬ = ௗఛ ௗ బ ݀ (b) ݀ߝ = ݍ݀ + ൫ሺߛ+ ஶ ሻ ݀߬ + ߬ ݀൯ ሺߛ -1ሻ ⁄ (c) ݍ݀ = ௗఌ ௗ బ ݀ -൫ሺ + ߛ ஶ ሻ݀߬ + ߬ ݀ ൯/ሺߛ -1ሻ (d) ݀ߝ = ߬݀- ( 
Tsat (K) Psat (Mpa) ܿ IAPWS (m/s) ߛ  ஶ (Mpa) ܿ SG (m/

Equation of state for the steam phase

First, we recall that, for water, on both sides of the steam saturation line, the sound speed is always higher on the pure steam side. Here is what we get with IAPWS on Fig 5 .   . Fig. 5 sound speed ܿ on both sides of saturation line Since ܿ ଶ gives the slope of the isentrope in the ሺ߬, ሻ plane, this proves that the isentropes are convex. For the pure steam phase, we shall approximate the IAPWS EOS for region 2 by a perfect gas EOS. More precisely we still use (3), but with  ஶ = 0.

On Fig 6, we compare the sound speed along the saturation line but on the steam side with IAPWS. The results show that ߛ = 1.26 is better at low pressure, and ߛ = 1.28 at higher pressures. 

5: Solution of the Riemann problem

We shall consider the case where we have the same fluid with two different states separated by a diaphragm which is to be removed at time ݐ = 0.

We then have ݑ ோ = ݑ = 0 and we shall assume that  ோ >  . We anticipate that we shall have a 1-shock (propagating to the left) and a 3-rarefaction wave propagating to the right. For ݐ > 0 we shall have an intermediate constant state ݑ * ,  * , itself subdivided in 2 parts separated by a contact discontinuity. On the left (resp. on the right) of the contact discontinuity, we shall have

߬ = ߬ ଵ (resp. ߬ = ߬ ଶ ).
We have 4 unknowns ݑ * ,  * , ߬ ଶ , ߬ ଵ , and we need 4 scalar equations.

First, let ݃ሺ߬ሻ =  ܿ ோ ሺߪሻ ߪ ⁄ ݀ߪ ఛ ఛ బ
and ܿ ோ ሺ߬ሻ = ܿሺ߬, ݏ ோ ሻ, we shall use the fact that not only the entropy ݏ but also the Riemann invariant ܴ = ݑ -݃ሺ߬ሻ, is constant along a 3-rarefaction wave.

We refer the reader e.g. to [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF]. We now get our first two equations:

ݑ * -݃ሺ߬ ଶ ሻ -൫ݑ ோ -݃ሺ߬ ோ ሻ൯ = 0 (5)  * -݂ሺ߬ ଶ , ݏ ோ ሻ = 0 (6) where the latter gives the isentrope associated to the right state. uL, pL, τL uR, pR, τR

We have seen on Fig. 4 that we can replace the IAPWS isentrope by a SG isentrope with a good approximation. This is also true in the ሺ,ݑ ሻ plane as described by ( 5): see Fig. 9. 

Examples of Hugoniot curves

An example is shown in [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF] where the Hugoniot curves both in the ሼ߬, ሽ plane and the ሼ,ݑ ሽ plane are not convex. This is what we find in one case (see Fig. 13), in the ሼ߬, ሽ plane but not in the ሼ,ݑ ሽ plane.

We shall consider 3 cases: 1. Case 1, where the Hugoniot curve starts from ሼ 315 L/kg, 0.6 MPaሽ on the saturation curve and stays in the steam domain 2. Case 2, where the Hugoniot curve is crossing the saturation curve on the steam side, in ሼ 34.53 L/kg, 5.664 MPaሽ 3. Case 3, where the Hugoniot curve is crossing the saturation curve on the liquid side in ሼ 1.3083 L/kg, 5.664 MPaሽ.

On Fig 10 we compare the Hugoniot curve obtained with IAPWS and the same given by a perfect gas EOS with ߛ = 1.26 and ߛ = 1.28. The latter gives a slightly better approximation. It seems due to the fact that ߛ = 1.28 gives a better approximation to the sound speed for  < 3 MPa. We make a zoom on the pure steam domain on Fig 12. It shows that the parameter ߛ is sensitive on this case. The trend is correctly represented with = 1.28 ; not quite so with ߛ = 1.26. Note that for  <  ௦௧ , ߬ is decreasing w.r.t , whereas for  >  ௦௧ , ߬ is increasing. In other words two values of the pressure may correspond to the same value of ߬.

We found that we get a very good approximation of the Hugoniot curve in the liquid domain, (provided we remain in IAPWS Region 1) if we replace the IAPWS EOS by a SG EOS with ߛ = 2.79 and  ஶ = 186 MPa or even with ߛ = 3 and  ஶ = 277 MPa.

Note that the points ሼ߬, ሽ in the liquid domain should satisfy

ሺߝ -ߝ ሻ + 1 2 ሺ +  ሻሺ߬ -߬ ሻ = 0
with the SG approximation, we get

ߝ = ݍ + ሺ + ߛ ஶ ሻ߬/ሺߛ -1ሻ)
That is (after some easy calculations): On Fig 14, we plot the Hugoniot curve in ሼ,ݑ ሽ axes. We represent The IAPWS curve with circles (resp. triangles) in the liquid (resp. diphasic) domain.

 = ߝ -ݍ - ߛ ஶ ߬ ߛ -1 - 1 2  ሺ߬ -߬ ሻ ߬ ߛ -1 + 1 2 ሺ߬ -߬ ሻ

Graphical solution to the Riemann problem

To graphically solve the Riemann problem, we just have to find the intersection in the ሼ,ݑ ሽ plane of the isentropic curve starting from the state ሼ߬ ோ ,  ோ , ݑ ோ ሽ and the Hugoniot curve starting from the state ሼ߬ ,  , ݑ ሽ.

Here is an example: we take ሼ39 L kg ⁄ , 0.894 MPa, 0 m/sሽ on the left and ሼ1. We notice that the rarefaction wave is made of 2 parts: the first one propagates rapidly (900 m/s) to the right and decreases the pressure from 15 MPa to 10.97 MPa, that is the saturation pressure located on the same isentropic curve as ሼ߬ ோ , ܲ ோ ሽ. The second part is relatively slow (~68 m/s) and decreases from 10.97 MPa to 3.48 MPa. We can say that there is a fast depressurization, which hardly decreases the volumic mass, followed by a slow depressurization. In the present paper, we have selected a stiffened gas EOS in the liquid domain (IAPWS region 1), a tabulated EOS in the diphasic domain and a perfect gas EOS in the steam domain (IAPWS region 2). However, for the sake of accuracy, it is recommended to carefully select the parameters ߛ and  ஶ .

  If we start from ൫߬, ߝ, ሺ߬, ߝሻ൯ we move to ൫߬ + ݀߬, ߝ + ݀ߝ, ሺ߬ + ݀߬, ߝ + ݀ߝሻ൯ by choosing ݀ߝ = ߬݀- On Fig 2 we start from ߬ = 363.21 L/kg, with ݏ = 2.661 kJ kg K ⁄ ⁄ ; for method A we take ݀߬ = -3 L/kg and we check that at the end of the curve (߬ = 3.21 L/kg), we obtain ݏ = 2.653 kJ kg K ⁄ ⁄ that is a relative error of 0.3%. Of course, such an error decreases if we decrease ݀߬. We give both results on Fig 2.

Fig 2 .

 2 Fig 2. Isentropic curve starting from ߬ = 363.21 L/kg, with ݏ = 2.661 kJ kg K ⁄ ⁄ computed with methods A vs B

Fig 3

 3 Fig 3 Sound speed evaluated either with (1) or (2) as a function of the steam mass rate x

Proposition 1 :

 1 e) The unknowns are ݀߬, ,݀ ݀߬ , ݀ , ݀ߝ, ݍ݀ and we have 5 equations. If we prescribe ݀߬ we can evaluate ݀ like the 4 other unknowns. = ܾ -൫ሺ + ߛ ஶ ሻܽ + ߬ ൯/ሺߛ -1ሻ and ܤ = ߬ ሺߛ -1ሻ ⁄ . Using (c) +(d) +(e), we find that ܣ ݀ + ܤ ݀ = -ఊ ఊିଵ ሺ  +  ஶ ሻ ݀߬ On the other hand, let ܥ = ߛሺ +  ஶ ሻሺ߬ ሻ ఊିଵ ܽ + ሺ߬ ሻ ఊ and ܦ = -߬ ఊ using (a)+(b) we find that ܥ ݀ + ܦ ݀ = ߛሺ +  ஶ ሻ ߬ ఊିଵ ݀߬. When ݀߬ is prescribed ൬ ݀ ݀ ൰ is solution of a linear system whose matrix is ቀ ܣ ܤ ܥ ܦ ቁ. We find numerically that .ܣ ܦ -.ܤ ܥ ് 0. ∎ Along an isentrope, we have ݀ = ݀߬ = ݍ݀ = 0 Proof: (a) gives ߛሺ +  ஶ ሻ ߬ ఊିଵ ݀߬ + ߬ ఊ ݀ = 0 i-e ߛሺ +  ஶ ሻ ݀߬ + ݀߬ = 0 (c) + (e) give ߬݀- = ൫ሺߛ+ ஶ ሻ ݀߬ + ߬ ݀൯ ሺߛ -1ሻ ⁄ i-e ሺߛ -1ሻ߬݀ + ߛ+‪ሺ ஶ ሻ ݀߬ + ߬ ݀ = 0 which is equivalent. ∎ It follows that in the ሺ߬, ሻ plane, the isentropes for our EOS satisfy (4) It also follows that the sound speed can be computed by the well-known formula ܿ = ඥߛሺ+ ஶ ሻ߬

Fig 4 .

 4 Fig 4. IAPWS vs SG isentrope with ߛ = 2.79 and  ஶ = 186

Fig 6

 6 Fig 6 IAPWS vs PG sound speed along the saturation line (steam side) On Fig 7, we can check that, with the perfect gas (PG) EOS and ߛ = 1.26, we get a pretty good approximation to the IAPWS isentrope.

Fig 7 Fig 8

 78 Fig 7 Isentropes on the steam side and saturation line At ߬ = 34.535L/kg,  = 5.664 MPa the isentrope is shown on Fig.8.

Fig. 9 1 :

 91 Fig. 9 Rarefaction wave starting from  ோ = 15 MPa, ߬ ோ = 1.4746 L/kg, ݑ ோ = 0 Hugoniot curves. Now what happens along the 1-shock? Proceeding as DESPRÉS B. [4, p.155], we obtain: ሺߝ ଵ -ߝ ሻ + ଵ ଶ ሺ ଵ +  ሻሺ߬ ଵ -߬ ሻ = 0 (7) Since ߝ ଵ = ݂ሺ߬ ଵ ,  ଵ ሻ equation (7) defines a (so called Hugoniot) curve in the plane (߬, ሻ. This gives our third equation. We denote by  ଵ =  ுை ሺ߬ ଵ ሻ the relation we just obtained between  ଵ et ߬ ଵ . Remark 1: To obtain the Hugoniot curve in the ሺ,ݑ ሻ plane we simply use the relation between the jumps across the shock ሾሿሾ߬ሿ + ሾݑሿ ଶ = 0 . It gives our fourth equation.∎

Fig 10

 10 Fig 10 Hugoniot curve starting from the saturation line (case 1)

Fig 12 Case 2 :

 2 Fig 12 Case 2: Zoom on the Hugoniot curve in the pure steam domain

  Fig 14 Hugoniot curve in ሼ,ݑ ሽ axes for case 2.

  4746 L kg ⁄ , 15MPa, 0 m/sሽ on the right. Here is what we get on Fig 15. The intersection is obtained for  * ≅ 3.51 MPa and ݑ * ≅ -290.9 m/s. This corresponds to ߬ ଶ ≅ 13.3 L kg ⁄ on the isentrope and ߬ ଵ ≅ 5.2 L kg ⁄ on the Hugoniot.

Fig 15 :

 15 Fig 15: Graphical solution to the Riemann Problem in a ሼ,ݑ ሽ diagram On Fig 16 to 18, we give a plot of the solution of this Riemann problem at t = 2.5ms. We compare the IAPWS solution to the SG solution with ߛ = 2.39,  ஶ = 186 MPa. We notice a slight discrepancy. It comes when we replace the IAPWS rarefaction curve in dashed line on Fig 15 by the SG rarefaction curve appearing on Fig. 9.

Fig 17

 17 Fig 17 Solution to the Riemann Problem at t=2.5 ms. Specific volume (L/kg) wrt x (m).

Fig 18

 18 Fig 18 Solution to the Riemann Problem at t=2.5 ms. Velocity in m/s wrt x (m).

Table 1 IAPWS

 1 Specific energy vs SG specific energy for ߬ =1.4877 L/kg

	P	ߝ ூௐௌ	ߝ ௌீ	q
	10.979	1.433	1.433	0.993
	11.382	1.434	1.434	0.993
	11.784	1.436	1.435	0.994
	12.186	1.437	1.436	0.995
	12.588	1.439	1.438	0.996
	12.990	1.440	1.439	0.997
	13.392	1.441	1.440	0.997
	13.794	1.443	1.441	0.998
	14.196	1.444	1.442	0.999
	14.598	1.445	1.443	1.000
	15.000	1.447	1.444	1.000

Table 2 liquid

 2 domain sound speed IAPWS vs SG for different SG parameters
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