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We show that the measure of maximal entropy of every complex Hénon map is exponentially mixing of all orders for Hölder observables. As a consequence, the Central Limit Theorem holds for all Hölder observables.

Notation. The pairing •, • is used for the integral of a function with respect to a measure or more generally the value of a current at a test form. By (p, p)-currents we mean currents of bi-digree (p, p). Given k ≥ 1, we denote by ω FS the Fubini-Study form on P k = P k (C). The mass of a positive closed (p, p)-current R on P k is equal to R, ω k-p FS and is denoted by R . The notations and stand for inequalities up to a multiplicative constant. If R and S are two real currents of the same bi-degree, we write |R| ≤ S when S ± R ≥ 0. Observe that this forces S to be positive.

Introduction

Hénon maps are among the most studied dynamical systems that exhibit interesting chaotic behaviour. They were introduced by Michel Hénon in the real setting as a simplified model of the Poincaré section for the Lorenz model, see, e.g., [START_REF] Benedicks | The dynamics of the Hénon map[END_REF][START_REF] Hénon | A two-dimensional mapping with a strange attractor[END_REF]. Hénon maps are also actively studied in the complex setting, where complex analysis offers additional powerful tools. The reader can find in the work of Bedford, Fornaess, Lyubich, Sibony, Smillie, and the second author fundamental dynamical properties of these systems, see [START_REF] Bedford | Polynomial diffeomorphisms of C 2 . IV. The measure of maximal entropy and laminar currents[END_REF][START_REF] Bedford | Polynomial diffeomorphisms of C 2 : currents, equilibrium measure and hyperbolicity[END_REF][START_REF] Bedford | Polynomial diffeomorphisms of C 2 . III. Ergodicity, exponents and entropy of the equilibrium measure[END_REF][START_REF] Dinh | Rigidity of Julia sets for Hénon type maps[END_REF][START_REF] Fornaess | Dynamics in several complex variables[END_REF][START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF][START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF] and the references therein. It is shown in [START_REF] Bedford | Polynomial diffeomorphisms of C 2 . IV. The measure of maximal entropy and laminar currents[END_REF] that the measure of maximal entropy of such systems is Bernoulli. In particular, it is mixing of all orders. On the other hand, the control of the speed of mixing for general dynamical systems is a challenging problem, and usually one can obtain it only under strong hyperbolicity assumptions on the system. The main goal of this work is prove that the measure of maximal entropy of any complex Hénon map is exponentially mixing of all orders with respect to Hölder observables. As a consequence, we also solve a longstanding question proving the Central Limit Theorem for all Hölder observables with respect to the maximal entropy measures of complex Hénon maps.

Let us first recall the following general definition. Definition 1.1. Let (X, f ) be a dynamical system and ν an f -invariant measure. Let (E, • E ) be a normed space of real functions on X with • L p (ν)

• E for all 1 ≤ p < ∞. We say that ν is exponentially mixing of order κ ∈ N * for observables in E if there exist constants C κ > 0 and 0 < θ κ < 1 such that, for all g 0 , . . . , g κ in E and integers 0 =:

n 0 ≤ n 1 ≤ • • • ≤ n κ , we have ν, g 0 (g 1 • f n 1 ) . . . (g κ • f nκ ) - κ j=0 ν, g j ≤ C κ • κ j=0 g j E • θ min 0≤j≤κ-1 (n j+1 -n j ) κ .
We say that ν is exponentially mixing of all orders for observables in E if it is exponentially mixing of order κ for every κ ∈ N.

A recent major result by Dolgopyat, Kanigowski, and Rodriguez-Hertz [START_REF] Dolgopyat | Exponential mixing implies Bernoulli[END_REF] ensures that, under suitable assumptions on the system, the exponential mixing of order 1 implies that the system is Bernoulli. In particular, it implies the mixing of all orders. (with no control on the rate of decay of correlation). It is a main open question whether the exponential mixing of order 1 implies the exponential mixing of all orders, see for instance [START_REF] Dolgopyat | Exponential mixing implies Bernoulli[END_REF]Question 1.5].

Let now f be a complex Hénon map on C 2 . It is a polynomial diffeomorphism of C 2 . We can associate to f its unique measure of maximal entropy µ [START_REF] Bedford | Polynomial diffeomorphisms of C 2 . IV. The measure of maximal entropy and laminar currents[END_REF][START_REF] Bedford | Polynomial diffeomorphisms of C 2 : currents, equilibrium measure and hyperbolicity[END_REF][START_REF] Bedford | Polynomial diffeomorphisms of C 2 . III. Ergodicity, exponents and entropy of the equilibrium measure[END_REF][START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF], see Section 2 for details. It was established by the second author in [START_REF] Dinh | Decay of correlations for Hénon maps[END_REF] that such measure if exponential mixing of order 1 for Hölder observables, see also Vigny [START_REF] Vigny | Exponential decay of correlations for generic birational maps of P k[END_REF] and Wu [START_REF] Wu | Exponential mixing property for Hénon-Sibony maps of C k[END_REF]. Similar results were obtained by Liverani [START_REF] Liverani | Decay of correlations[END_REF] in the case of uniformly hyperbolic diffeomorphisms and Dolgopyat [START_REF] Dolgopyat | On Decay of Correlations in Anosov Flows[END_REF] for Anosov flows.

Theorem 1.2. Let f be a complex Hénon map and µ its measure of maximal entropy. Then, for every κ ∈ N * , µ is exponential mixing of order κ as in Definition 1.1 for

C γ observables (0 < γ ≤ 2), with θ κ = d -(γ/2) κ+1 /2 .
For endomorphisms of P k (C), the exponential mixing for all orders for the measure of maximal entropy and Hölder observables was established in [START_REF] Dinh | Exponential estimates for plurisubharmonic functions[END_REF]. We recently proved such property for a large class of invariant measures with strictly positive Lyapunov exponents [START_REF] Bianchi | Equilibrium states of endomorphisms of P k II: spectral stability and limit theorems[END_REF]. This was done by constructing a suitable (semi-)norm on functions that turns the so-called Ruelle-Perron-Frobenius operator (suitably normalized) into a contraction. As far as we know, the present paper gives the first instance where the exponential mixing of all orders is established for general dynamical systems with both positive and negative Lyapunov exponents.

The exponential mixing of all orders is one of the strongest properties in dynamics. It was recently shown to imply a number of statistical properties, see for instance [START_REF] Björklund | Central Limit Theorems for group actions which are exponentially mixing of all orders[END_REF][START_REF] Dolgopyat | Multiple Borel Cantelli Lemma in dynamics and MultiLog law for recurrence[END_REF]. As an example, a consequence of Theorem 1.2 is the following result. Take u ∈ L 1 (µ). As µ is ergodic, Birkhoff's ergodic theorem states that

n -1 S n (u) := n -1 u(x) + u • f (x) + • • • + u • f n-1 (x) → µ, u
for µ -a.e. x ∈ X.

We say that u satisfies the Central Limit Theorem (CLT) with variance σ 2 ≥ 0 with respect to µ if n -1/2 (S n (u) -n µ, u ) → N (0, σ 2 ) in law, where N (0, σ 2 ) denotes the (possibly degenerate, for σ = 0) Gaussian distribution with mean 0 and variance σ 2 , i.e., for any interval I ⊂ R we have

lim n→∞ ν S n (u) -n µ, u √ n ∈ I =    1 when I is of the form I = (-δ, δ) if σ 2 = 0, 1 √ 2πσ 2 I e -t 2 /(2σ 2 ) dt if σ 2 > 0.
By [START_REF] Björklund | Central Limit Theorems for group actions which are exponentially mixing of all orders[END_REF], the following is then a consequence of Theorem 1.2. We refer to [START_REF] Bianchi | Equilibrium states of endomorphisms of P k II: spectral stability and limit theorems[END_REF][START_REF] Denker | On the transfer operator for rational functions on the Riemann sphere[END_REF][START_REF] Dinh | Decay of correlations and the central limit theorem for meromorphic maps[END_REF][START_REF] Dupont | Bernoulli coding map and almost sure invariance principle for endomorphisms of P k[END_REF][START_REF] Przytycki | Statistical properties of topological Collet-Eckmann maps[END_REF][START_REF] Szostakiewicz | Stochastics and thermodynamics for equilibrium measures of holomorphic endomorphisms on complex projective spaces[END_REF][START_REF] Szostakiewicz | Fine inducing and equilibrium measures for rational functions of the Riemann sphere[END_REF] for other cases where the CLT for Hölder observables was established in holomorphic dynamics. As is the case for Theorem 1.2, this is the first time that this is done for systems with both positive and negative Lyapunov exponents.

Corollary 1.3. Let f be a complex Hénon map and µ its measure of maximal entropy. Then all Hölder observables u satisfy the Central Limit Theorem with respect to µ with

σ 2 = n∈Z µ, ũ(ũ • f n ) = lim n→∞ 1 n X (ũ + ũ • f + . . . + ũ • f n-1 ) 2 dµ,
where ũ := u -µ, u .

Theorem 1.2 and Corollary 1.3 in particular apply to any real Hénon map of maximal entropy [START_REF] Bedford | Real polynomial diffeomorphisms with maximal entropy: Tangencies[END_REF], i.e., complex Hénon maps with real coefficients and whose measure of maximal entropy is supported by R 2 . They hold also in the larger settings of regular automorphisms of C k in any dimension [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF], see Definition 2.1 and Remark 3.3, and invertible horizontal-like maps in any dimension [START_REF] Dinh | Dynamics of horizontal-like maps in higher dimension[END_REF][START_REF] Dinh | Geometry of currents, intersection theory and dynamics of horizontal-like maps[END_REF], see Remark 3.4. We postpone the case of automorphisms of compact Kähler manifolds to the forthcoming paper [START_REF] Bianchi | Exponential mixing of all orders and CLT for automorphisms of compact Kähler manifolds[END_REF], see Remark 3.5.

Our method to prove Theorem 1.2 relies on pluripotential theory and on the theory of positive closed currents. The idea is as follows. Using the classical theory of interpolation [START_REF] Triebel | Interpolation theory, Function Spaces, Differential Operators[END_REF], we can reduce the problem to the case γ = 2. For simplicity, assume that g j C 2 ≤ 1 for all j. The measure of maximal entropy µ of a Hénon map f of C 2 of algebraic degree d ≥ 2 is the intersection µ = T + ∧ T -of the two Green currents T + and T -of f [START_REF] Bedford | Polynomial diffeomorphisms of C 2 : currents, equilibrium measure and hyperbolicity[END_REF][START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. If we identify C 2 to an affine chart of P 2 in the standard way, these currents are the unique positive closed (1, 1)-currents of mass 1 on P 2 , without mass at infinity, satisfying f * T + = dT + and f * T -= dT -.

Consider the automorphism F of C 4 given by F := (f, f -1 ). Such automorphism also admits Green currents

T + = T + ⊗ T -and T -= T -⊗ T + . These currents satisfy (F n ) * T + = d 2 T + and (F n ) * T -= d 2 T -.
Under mild assumptions on their support, other positive closed (2, 2)-currents S of mass 1 of P 4 satisfy the estimate

(1.1) | d -2n (F n ) * (S) -T -, Φ | ≤ c S,Φ d -n
when Φ is a sufficiently smooth test form. Here, c S,Φ is a constant depending on S and Φ.

We show that proving the exponential mixing for κ + 1 observables g 0 , . . . , g κ with g j C 2 ≤ 1 can be reduced to proving the convergence (we assume that n 1 is even for simplicity)

(1.2) | d -n 1 (F n 1 /2 ) * [∆] -T -, Θ | d -min 0≤j≤κ-1 (n j+1 -n j )/2 ,
where [∆] denotes the current of integration on the diagonal ∆ of

C 2 × C 2 , (z, w) denote the coordinates on C 2 × C 2 and Θ := g 0 (w)g 1 (z)(g 2 • f n 2 -n 1 (z)) . . . (g κ • f nκ-n 1 (z))T + .
A crucial point here is that the estimate should not only be uniform in the g j 's, but also in the n j 's. Note also that the current [∆] is singular and the dependence of the constant c S,Φ in (1.1) from S makes it difficult to employ regularization techniques to deduce the convergence (1.2) from (1.1).

The key point here is to notice that, when dd c Φ ≥ 0 (on a suitable open set), one can also get the following variation of (1.1):

(1.3) d -2n (F n ) * (S) -T -, Φ ≤ c Φ d -n .
With respect to (1.1), only the bound from above is present, but the constant c Φ is now independent of S. This permits to regularize ∆ and work as if this current were smooth. Note also that, although Θ is not smooth, we can handle it using a similar regularization.

Working by induction, we show that it is possible to replace both Θ and -Θ in (1.2) with currents Θ ± satisfying dd c Θ ± ≥ 0. This permits to deduce the estimate (1.2) from two upper bounds given by (1.3) for Θ ± , completing the proof. Definition 2.1. We say that F is a regular automorphism of C k if I ± = ∅ and I + ∩ I -= ∅.

Given F a regular automorphism of C k , it is clear that F -1 is also regular. We denote by d + (F ) and d -(F ) the algebraic degrees of F and F -1 respectively. Observe that d

± (F ) ≥ 2, d + (F ) = d -(F -1 ) and d -(F ) = d + (F -1
). Later, we will drop the letter F and just write d ± instead of d ± (F ) for simplicity. We will recall here some basic properties of F and refer the reader to [START_REF] Bedford | Polynomial diffeomorphisms of C 2 : currents, equilibrium measure and hyperbolicity[END_REF][START_REF] Dinh | Rigidity of Julia sets for Hénon type maps[END_REF][START_REF] Fornaess | Dynamics in several complex variables[END_REF][START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF][START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF] for details. Proposition 2.2. Let F be a regular automorphism of C k as above.

(i) There exists an integer

1 ≤ p ≤ k -1 such that dim I + = k -p -1, dim I -= p -1, and d + (F ) p = d -(F ) k-p . (ii)
The analytic sets I ± are irreducible and we have The set I + (resp. I -) is attracting for F -1 (resp. F ). Let W ± be the basin of attraction of

F (H ∞ \ I + ) = F (I -) = I -and F -1 (H ∞ \ I -) = F -1 (I + ) = I + .
I ± . Set W ± := W ± ∩ C k . Then the sets K + := C k \ W -and K -:= C k \ W +
are the sets of points (in C k ) with bounded orbit for F and F -1 , respectively. We have K + = K + ∪ I + and K -= K -∪ I -where the closures are taken in P k . We also define

K := K + ∩ K -which is a compact subset of C k .
In the terminology of [START_REF] Dinh | Rigidity of Julia sets for Hénon type maps[END_REF], the set K + (resp. K -) is p-rigid (resp. (k -p)-rigid ): it supports a unique positive closed (p, p)-current (resp. (k -p, k -p)-current) of mass 1, that we denote by T + (resp. T -). The currents T ± have no mass on H ∞ and satisfy the invariance relations

F * (T + ) = d p + T + and F * (T -) = d k-p
-T - as currents on C k or P k . We call them the main Green currents of F . They can be obtained as intersections of positive closed (1, 1)-currents with local Hölder continuous potentials in C k . Therefore, the measure T + ∧ T -is well-defined and supported by the compact set K. This is the unique invariant probability measure of maximal entropy [START_REF] De Thélin | Sur les automorphismes réguliers de C k[END_REF][START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF], see also [START_REF] Bedford | Polynomial diffeomorphisms of C 2 . IV. The measure of maximal entropy and laminar currents[END_REF][START_REF] Bedford | Polynomial diffeomorphisms of C 2 : currents, equilibrium measure and hyperbolicity[END_REF][START_REF] Bedford | Polynomial diffeomorphisms of C 2 . III. Ergodicity, exponents and entropy of the equilibrium measure[END_REF][START_REF] Dujardin | Hénon-like mappings in C 2[END_REF] for the case of dimension k = 2.

Using the above description of the dynamics of F , we can fix neighbourhoods

U 1 , U 2 of K + and V 1 , V 2 of K -such that F -1 (U i ) U i , U 1 U 2 P k \ I -, F (V i ) V i , V 1 V 2 P k \ I + , and U 2 ∩ V 2 C k .
Let Ω be a real (p + 1, p + 1)-current with compact support in U 1 . Assume that there exists a positive closed (p + 1, p + 1)-current Ω with compact support in

U 1 such that |Ω| ≤ Ω . Define the norm Ω * ,U 1 of Ω as Ω * ,U 1 := inf{ Ω : |Ω| ≤ Ω }.
Observe that when Ω is a d-exact current we can write Ω = Ω -(Ω -Ω), which is the difference of two positive closed current in the same cohomology class in H p+1,p+1 (P k , R). Therefore, the norm • * ,U 1 is equivalent to the norm given by inf Ω ± , where Ω ± are positive closed currents with compact support in U 1 such that Ω = Ω + -Ω -. Note that Ω + and Ω -have the same mass as they belong to the same cohomology class.

The following property was obtained by the second author, see [12, Proposition 2.1].

Proposition 2.4. Let R be a positive closed (k-p, k-p)-current of mass 1 with compact support in V 1 and smooth on C k . Let Φ be a real-valued (p, p)-form of class C 2 with compact support in U 1 ∩ C k . Assume that dd c Φ ≥ 0 on V 2 . Then there exists a constant c > 0 independent of R and Φ such that

d -(k-p)n - (F n ) * (R) -T -, Φ ≤ c d -n -dd c Φ * ,U 1 for all n ≥ 0.
Note that in what follows, since T -is an intersection of positive closed (1, 1)-currents with local continuous potentials [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF], the intersections R ∧ T -and T + ∧ T -are well-defined and the former depends continuously on R. In particular, the pairing in the next statement is meaningful and depends continuously on R.

Corollary 2.5. Let R be a positive closed (k -p, k -p)-current of mass 1 supported in V 1 .
Let φ be a C 2 function with compact support on C k such that dd c φ ≥ 0 in a neighbourhood of K + ∩ V 2 . Then there exists a constant c > 0 independent of R and φ such that

(2.1) d -(k-p)n - (F n ) * (R) -T -, φT + ≤ c d -n -dd c φ ∧ T + * ,U 1 
for all n ≥ 0. Proof. As P k is homogeneous, we will use the group PGL(k + 1, C) of automorphisms of P k and suitable convolutions in order regularize the currents R and φT + and deduce the result from Proposition 2.4. Choose local coordinates centered at the identity id ∈ PGL(k + 1, C) so that a small neighbourhood of id in PGL(k + 1, C) is identified to the unit ball B of C k 2 +2k . Here, a point of coordinates represents an automorphism of P k that we denote by τ . Thus, τ 0 = id.

Consider a smooth non-negative function ρ with compact support on B and of integral 1 with respect to the Lebesgue measure and, for 0 < r ≤ 1, define ρ r ( ) := r -2k 2 -4k ρ(r -1 ), which is supported by {| | ≤ r} . This function allows us to define an approximation of the Dirac mass at 0 ∈ B when r → 0. We define Ψ := φT + and consider the following regularized currents

R r := ρ r ( )(τ ) * (R) and Ψ r := ρ r ( )(τ ) * (Ψ) = ρ r ( )(φ • τ )(τ ) * (T + ),
where the integrals are with respect to the Lebesgue measure on ∈ B.

When r is small enough and goes to 0, the current R r is smooth, positive, closed, with compact support in V 1 , and converges to R. Since the RHS of (2.1) depends continuously on R, we can replace R by R r and assume that R is smooth. When goes to 0, φ • τ converges uniformly to φ and (τ ) * (T + ) converges to T + . Using that R is smooth and T -is a product of (1, 1)-currents with continuous potentials, we deduce that the LHS of (2.1) is equal to

lim r→0 d -(k-p)n - (F n ) * (R) -T -, Ψ r .
Since T + is supported by K + and we have dd c φ ≥ 0 on a neighbourhood of K + ∩ V 2 , we deduce that dd c Ψ ≥ 0 on V 2 . By reducing slightly V 2 , we still have dd c Ψ r ≥ 0 on V 2 for r small enough. We will use the last limit and Proposition 2.4 for Ψ r instead of Φ and U 2 instead of U 1 . Observe that for small enough, since U 1 U 2 , we have (τ ) * (dd c Ψ) * ,U 2 ≤ dd c Ψ * ,U 1 . We deduce that the LHS of (2.1) is smaller than or equal to

lim r→0 c d -n -dd c Ψ r * ,U 2 ≤ c d -n -dd c Ψ * ,U 1 = c d -n -dd c φ ∧ T + * ,U 1 .
This completes the proof of the corollary.

In order to use the above corollary, we will need the following lemmas.

Lemma 2.6. Let κ ≥ 1 be an integer and g 0 , . . . , g κ compactly supported functions on C k with g j C 2 ≤ 1. Then there is a constant c κ > 0 independent of the g j 's such that for all 0 , . . . , κ ≥ 0 we have

dd c (g 0 • F 0 ) . . . (g κ • F κ ) ∧ T + * ,U 1 ≤ c κ .
Proof. Set gj := g j • f j for simplicity. We have As we have dd c g0 . . . gκ = 0 near H ∞ , its intersection with T + can be computed on C k . We deduce from the above inequalities and

d k-p - = d p + that (2.2) dd c (g 0 • F 0 ) . . . (g κ • F κ ) ∧ T + κ j=0 F j ) * (ω FS ∧ T + = κ j=0 (F j ) * (ω FS ) ∧ d -p j + (F j ) * T + = κ j=0 d -(k-p) j - (F j ) * ω FS ∧ T + .
We will use that the (p + 1, p + 1)-current ω FS ∧ T + is positive, closed, of mass 1, and its support is contained in

K + ⊂ U 1 . We have (F j ) * ω FS ∧ T + = (F j ) * ω FS ∧ T + , ω k-p-1 FS = ω FS ∧ T + , (F -j ) * (ω k-p-1 FS ) ,
where the last form is positive closed and smooth outside I -. The last pairing only depends on the cohomology classes of ω FS , T + , and (F -j ) * (ω k-p-1

FS

). Hence, it is equal to the mass of (F -j ) * (ω k-p-1

FS

), which is equal to d (k-p-1) j -, see [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. It follows that each term in the last sum in (2.2) is bounded by 1, which implies that the sum is bounded by κ + 1. The lemma follows.

Lemma 2.7. Let D D be two bounded domains in C k . Let g be a function with compact support in D and such that g C 2 ≤ 1. Then there are a constant A > 0 independent of g and functions g ± with compact supports in D and g ± C 2 ≤ 1 such that g = A(g + -g -),

i∂g + ∧ ∂g + ≤ dd c g + on D and i∂g -∧ ∂g -≤ dd c g -on D.

Proof. Let ρ be a smooth non-negative function, compactly supported on D and equal to 1 in a neighbourhood of D. Observe that ρg = g. We denote by z the coordinates of C k . Since g C 2 ≤ 1 and g has compact support in D, there exists a constant

A 1 > 0 independent of g such that |dd c g| ≤ A 1 dd c ( z 2 ). Set g + := A -1 ρ(g + 2A 1 z 2 ) and g -:= 2A -1 A 1 ρ z 2 for some constant A > 0. It is not difficult to check that we have dd c g ± ≥ A -1 A 1 dd c ( z 2 ) on D, i∂g ± ∧ ∂g ± ∞ = O(A -2 ) on D, g = A(g + -g -), and g ± C 2 = O(A -1
). Taking A large enough gives the lemma.

Exponential mixing of all orders for Hénon maps and further remarks

Throughout this section (except for Remarks 3.2, 3.3, and 3.4), f denotes a Hénon map on C 2 of algebraic degree

d = d + = d -≥ 2. Define F := (f, f -1 ). It is not difficult to check that F is a regular automorphism of C 4 = C 2 × C 2 .
We will use the notations and the results of Section 2 with k = 4 and p = 2. We denote in this section by T ± the Green (1, 1)-currents of f , and reserve the notation T ± for the main Green currents of F . Observe that [START_REF] Federer | Geometric measure theory[END_REF]Section 4.1.8] for the tensor (or cartesian) product of currents. We denote by K ± the sets of points of bounded orbit for f ±1 . The wedge product µ := T + ∧ T -is well defined, and is the measure of maximal entropy of f [START_REF] Bedford | Polynomial diffeomorphisms of C 2 . IV. The measure of maximal entropy and laminar currents[END_REF][START_REF] Bedford | Polynomial diffeomorphisms of C 2 : currents, equilibrium measure and hyperbolicity[END_REF][START_REF] Bedford | Polynomial diffeomorphisms of C 2 . III. Ergodicity, exponents and entropy of the equilibrium measure[END_REF][START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. Its support is contained in the compact set K = K + ∩ K -. We have K + = K + × K -and K -= K -× K + . Note also that the diagonal ∆ of C 2 × C 2 satisfies ∆ ∩ I + = ∅ and ∆ ∩ I -= ∅ in P 4 , see also [START_REF] Dinh | Decay of correlations for Hénon maps[END_REF].

T + = T + ⊗ T - and T -= T -⊗ T + , see
We now prove Theorem 1.2. By a standard interpolation [START_REF] Triebel | Interpolation theory, Function Spaces, Differential Operators[END_REF] (see for instance [12, pp. 262-263] and [START_REF] Dolgopyat | On Decay of Correlations in Anosov Flows[END_REF]Corollary 1] for similar occurrences) it is enough to prove the statement for γ = 2, i.e., in the case where all the functions g j are of class C 2 . The statement is clear for κ = 0, i.e., for one test function. By induction, we can assume that the statement holds for up to κ test functions and prove it for κ + 1 ≥ 1 test functions, i.e., show that µ, g 0 (g

1 • f n 1 ) . . . (g κ • f nκ ) - κ j=0 µ, g j κ j=0 g j C 2 • d -min 0≤j≤κ-1 (n j+1 -n j )/2 .
Recall that n 0 = 0. The induction assumption implies that we are allowed to modify each g j by adding a constant. Moreover, using the invariance of ν, the desired estimate does not change if we replace n j by n j -1 for 1 ≤ j ≤ κ and g 0 by g 0 • f -1 . Therefore, we can for convenience assume that n 1 is even.

We fix a large bounded domain

B ⊂ C 2 satisfying K ⊂ B, K -∩ B ⊂ f (B), and K + ∩ B ⊂ f -1 (B).
By induction, the inclusions above imply that

(3.1) K ⊂ B, K -∩ B ⊂ f n (B), and K + ∩ B ⊂ f -n (B) for all n ≥ 1.
Because of Lemma 2.7 and the fact that we are only interested in the values of the g j 's on the support of µ, we can assume that all the g j 's are compactly supported in C 2 and satisfy

(3.2) g j C 2 ≤ 1 on C 2 and i∂g j ∧ ∂g j ≤ dd c g j on B.
For simplicity, write

h := g 1 (g 2 • f n 2 -n 1 ) . . . (g κ • f nκ-n 1 ). We need to prove that | µ, g 0 (h • f n 1 ) -µ, g 0 • µ, h | d -min 0≤j≤κ-1 (n j+1 -n j )/2
since this estimate, together with the induction assumption applied to µ, h , would imply the desired statement. In order to obtain the result, we will prove separately the two estimates

(3.3) µ, g 0 (h • f n 1 ) -µ, g 0 • µ, h d -min 0≤j≤κ-1 (n j+1 -n j )/2 and (3.4) -µ, g 0 (h • f n 1 ) + µ, g 0 • µ, h d -min 0≤j≤κ-1 (n j+1 -n j )/2 .
Set M := 10κ and fix a smooth function χ with compact support in C 2 and equal to 1 in a neighbourhood of B. Consider the following four functions, which will later allow us to produce some p.s.h. test functions:

g + 0 := χ • (g 0 + M ) and h + := χ • (g 1 + M )(g 2 • f n 2 -n 1 + M ) . . . (g κ • f nκ-n 1 + M ) and g - 0 := χ•(M -g 0 ) and h -:= χ• (g 1 +M )(g 2 •f n 2 -n 1 +M ) . . . (g κ •f nκ-n 1 +M )-2(M +1) κ .
Recall that n 0 = 0. To prove (3.3) and (3.4), it is enough to show that (3.5) µ, g + 0 (h

+ • f n 1 ) -µ, g + 0 • µ, h + d -n 1 /2 and (3.6) µ, g - 0 (h -• f n 1 ) -µ, g - 0 • µ, h - d -n 1 /2 .
Indeed, we observe that χ does not play any role in (3.5) and (3.6). Hence, the difference between the LHS of (3.5) and the one of (3.3) (resp. of (3.6) and of (3.4)) is a finite combination of expressions involving no more than κ functions among g 0 , . . . , g κ , that we can estimate using the induction hypothesis on the mixing of order up to κ -1. It remains to prove the two inequalities (3.5) and (3.6).

Denote by (z, w) the coordinates on C 4 = C 2 × C 2 and define φ ± (z, w) := g ± 0 (w) h ± (z). We have the following lemma for a fixed domain U 1 as in Section 2.

Lemma 3.1. The functions φ ± satisfy (i) dd c φ ± ∧ T + ≥ 0 on B × B;

(ii) dd c φ ± ∧ T + * ,U 1 ≤ c κ , where c κ is a positive constant depending on κ, but not on the g j 's and the n j 's.

Proof. (i) For simplicity, we set 0 = 1 := 0 and j := n j -n 1 . Define also gj := g j • f j . In what follows g0 depends on w and gj depends on z when j ≥ 1. Observe that by the invariance property of K + ∩ B in (3.1) and the constraints in (3.2), the following inequalities hold in a neighbourhood of K + ∩ B:

(3.7) i∂g j ∧ ∂g j = (f j ) * (i∂g j ∧ ∂g j ) ≤ (f j ) * (dd c g j ) = dd c gj .
In particular, we have dd c gj ≥ 0 in a neighbourhood of K + ∩ B. Note that for g0 = g 0 the properties hold on B, which contains K -∩ B. Now, since T + is closed, positive, and supported by K + = K + × K -, in order to prove the first assertion it is enough to show that dd c φ ± ≥ 0 on a neighbourhood of (K + ∩ B) × (K -∩ B) in C 4 where χ = 1. In what follows, we only work on such a neighbourhood. We have

dd c φ + = κ j=0 dd c gj l =j (g l + M ) + 0≤j =l≤κ i∂g j ∧ ∂g l m =j,l (g m + M ),
where we recall that g0 is g0 (w) and the other gj 's are gj (z) for 1 ≤ j ≤ κ. For the first term in the RHS of the last expression, we have 

(g m + M ) ≤ (κ + 1)(M + 1) κ-1 κ j=0 i∂g j ∧ ∂g j ≤ (κ + 1)(M + 1) κ-1 κ j=0 dd c gj . It follows that dd c φ + ≥ (M -1) κ κ j=0 dd c gj -(κ + 1)(M + 1) κ-1 κ j=0 dd c gj = (M -1) κ 1 - (κ + 1) M + 1 1 + 2 M -1 κ κ j=0 dd c gj , which gives dd c φ + ≥ 0 since the choice M = 10κ implies that (1 + 2 M -1 κ < (1 + 1 κ κ < 3.
Similarly, in the same way, we also have

dd c φ -≥ (M -1) κ κ j=0 dd c gj -(M + 1) κ-1 0≤j =l≤κ i∂g j ∧ ∂g l ,
which gives dd c φ -≥ 0. This concludes the proof of the first assertion of the lemma.

(ii) The second assertion of the lemma is a consequence of Lemma 2.6.

End of the proof of Theorem 1.2. Recall that it remains to prove (3.5) and (3.6). Since µ is invariant and n 1 is even, we have

µ, g ± 0 • (h ± • f n 1 ) = µ, (g ± 0 • f -n 1 /2 )(h ± • f n 1 /2
) . We now transform the last integral on C 2 to an integral on C 4 in order to use the dynamical system F = (f, f -1 ) on C 4 introduced above. We are using the coordinates (z, w) on C 4 = C 2 × C 2 . We will also use the diagonal of C 2 × C 2 , which is given by ∆ = {(z, w) : z = w}.

Recall that we have µ = T + ∧ T -and that the currents T ± have local continuous potentials in C 2 . It follows that the intersections of T ± with positive closed currents on C 4 are meaningful. Moreover, the invariance of T ± implies that (F n 1 /2 ) * (T + ) = d -n 1 T + on C 4 . Thanks to the above identities, we have

(3.8) µ, g ± 0 • (h ± • f n 1 ) = T + ∧ T -, (g ± 0 • f -n 1 /2 )(h ± • f n 1 /2 ) = (T + ⊗ T -) ∧ [∆], (g ± 0 • f -n 1 /2 (w))(h ± • f n 1 /2 (z)) = T + ∧ [∆], (F n 1 /2 ) * (φ ± ) = d -n 1 T + ∧ (F n 1 /2 ) * [∆], φ ± = d -n 1 (F n 1 /2 ) * [∆], φ ± T + .
We apply Corollary 2.5 with the functions φ ± = g ± 0 (w) • h ± (z) instead of φ and the current [∆] instead of R. For this purpose, since ∆ ∩ I + = ∅, we can choose a suitable open set V 1 containing ∆. We also fix an open set V 2 as in Section 2. Since B is large enough, Lemma 3.1 implies that dd c φ ± ≥ 0 on a neighbourhood of K + ∩ V 2 . Thus, we obtain from Corollary 2.5 that d -n 1 (F n 1 /2 ) * [∆] -T -, φ ± T + d -n 1 /2 or equivalently (3.9)

d -n 1 (F n 1 /2 ) * [∆], φ ± T + -T -, φ ± T + d -n 1 /2 .
Together, (3.8), (3.9), and the fact that T -, φ ± T + = T + ∧ T -, φ ± = µ ⊗ µ, g ± 0 (w) • h ± (z) = µ, g ± 0 • µ, h ± give the desired estimates (3.5) and (3.6). The proof of Theorem 1.2 is complete. Remark 3.2. Friedland and Milnor [START_REF] Friedland | Dynamical properties of plane polynomial automorphisms[END_REF] proved that any polynomial automorphism of C 2 is either conjugate to an elementary automorphism which preserves a fibration by parallel complex lines or to a Hénon map as above. So, our results apply to all automorphisms of C 2 which are not conjugated to an elementary one. Remark 3.3. When f is a regular automorphism of C k with k even and p = k/2, the map (f, f -1 ) is regular on C 2k . The same proof as above gives us the exponential mixing of all orders and the CLT for f . The results still hold for every regular automorphism but the proof requires some extra technical arguments that we choose to do not present here for simplicity, see for instance de Thélin and Vigny [START_REF] De Thélin | Entropy of meromorphic maps and dynamics of birational maps[END_REF][START_REF] Vigny | Exponential decay of correlations for generic birational maps of P k[END_REF].

Remark 3.4. When f is a horizontal-like map such that the main dynamical degree is larger than the other dynamical degrees, the same strategy gives the exponential mixing of all orders and the CLT, see the papers [START_REF] Dinh | Dynamics of horizontal-like maps in higher dimension[END_REF][START_REF] Dinh | Geometry of currents, intersection theory and dynamics of horizontal-like maps[END_REF] by Nguyen, Sibony and the second author, and in particular [START_REF] Dinh | Dynamics of horizontal-like maps in higher dimension[END_REF] for the necessary estimates. In particular, these results hold for all Hénon-like maps in dimension 2, see also Dujardin [START_REF] Dujardin | Hénon-like mappings in C 2[END_REF].

Remark 3.5. In the companion paper [START_REF] Bianchi | Exponential mixing of all orders and CLT for automorphisms of compact Kähler manifolds[END_REF], we explain how to adapt our strategy to get the exponential mixing of all orders and the Central Limit Theorem for automorphisms of compact Kähler manifolds with simple action on cohomology. As the proof in that case requires the theory of super-potentials, which is not needed for Hénon maps, we choose to do not present it here.

(

  iii) For every n ≥ 1, both F n and F -n are regular automorphisms of C k , of algebraic degrees d + (F ) n and d -(F ) n , and indeterminacy sets I + and I -, respectively. Example 2.3. (Generalized) Hénon maps on C 2 correspond to the case k = 2 in Definition 2.1.In this case, we have p = k -p = 1 and d + = d -= d, the algebraic degree of the map, see[START_REF] Bedford | Polynomial diffeomorphisms of C 2 : currents, equilibrium measure and hyperbolicity[END_REF][START_REF] Friedland | Dynamical properties of plane polynomial automorphisms[END_REF][START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF].

  Since g j C 2 ≤ 1 we have |g j | ≤ 1. Denote by ω FS the Fubini-Study form on P k . Then κ j=0 dd c gj l =j gl κ j=0 (F j ) * ω FS and an application of Cauchy-Schwarz inequality gives ) * (i∂g j ∧ ∂g j ) κ j=0 (F j ) * (ω FS ).

  + M ) ≥ (M -1) κ κ j=0 dd c gj . For the second term, an application of Cauchy-Schwarz inequality and (3.7) give 0≤j =l≤κ i∂g j ∧ ∂g l m =j,l
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Regular automorphisms of C k and convergence towards Green currents

Let F be a polynomial automorphism of C k . We still denote by F its extension as a birational map of P k . Denote by H ∞ := P k \ C k the hyperplane at infinity and by I + , I -the indeterminacy sets of F and F -1 respectively. They are analytic sets strictly contained in H ∞ . If I + = ∅ or I -= ∅, then both of them are empty and F is given by a linear map and its dynamics is easy to describe. Hence, we assume that I ± = ∅. The following definition is due to Sibony [30].
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