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EVERY COMPLEX HÉNON MAP IS EXPONENTIALLY MIXING

OF ALL ORDERS AND SATISFIES THE CLT

FABRIZIO BIANCHI AND TIEN-CUONG DINH

Abstract. We show that the measure of maximal entropy of every complex Hénon map is
exponentially mixing of all orders for Hölder observables. As a consequence, the Central Limit
Theorem holds for all Hölder observables.

Notation. The pairing 〈·, ·〉 is used for the integral of a function with respect to a measure
or more generally the value of a current at a test form. By (p, p)-currents we mean currents of
bi-digree (p, p). Given k ≥ 1, we denote by ωFS the Fubini-Study form on Pk = Pk(C). The

mass of a positive closed (p, p)-current R on Pk is equal to 〈R,ωk−pFS 〉 and is denoted by ‖R‖.
The notations . and & stand for inequalities up to a multiplicative constant. If R and S are
two real currents of the same bi-degree, we write |R| ≤ S when S ± R ≥ 0. Observe that this
forces S to be positive.

1. Introduction

Hénon maps are among the most studied dynamical systems that exhibit interesting chaotic
behaviour. They were introduced by Michel Hénon in the real setting as a simplified model
of the Poincaré section for the Lorenz model, see, e.g., [5, 27]. Hénon maps are also actively
studied in the complex setting, where complex analysis offers additional powerful tools. The
reader can find in the work of Bedford, Fornaess, Lyubich, Sibony, Smillie, and the second
author fundamental dynamical properties of these systems, see [1, 2, 3, 17, 25, 26, 30] and the
references therein. It is shown in [1] that the measure of maximal entropy of such systems
is Bernoulli. In particular, it is mixing of all orders. On the other hand, the control of the
speed of mixing for general dynamical systems is a challenging problem, and usually one can
obtain it only under strong hyperbolicity assumptions on the system. The main goal of this
work is prove that the measure of maximal entropy of any complex Hénon map is exponentially
mixing of all orders with respect to Hölder observables. As a consequence, we also solve a long-
standing question proving the Central Limit Theorem for all Hölder observables with respect
to the maximal entropy measures of complex Hénon maps.

Let us first recall the following general definition.

Definition 1.1. Let (X, f) be a dynamical system and ν an f -invariant measure. Let (E, ‖·‖E)
be a normed space of real functions on X with ‖ · ‖Lp(ν) . ‖ · ‖E for all 1 ≤ p <∞. We say that
ν is exponentially mixing of order κ ∈ N∗ for observables in E if there exist constants Cκ > 0
and 0 < θκ < 1 such that, for all g0, . . . , gκ in E and integers 0 =: n0 ≤ n1 ≤ · · · ≤ nκ, we have∣∣∣〈ν, g0(g1 ◦ fn1) . . . (gκ ◦ fnκ)〉 −

κ∏
j=0

〈ν, gj〉
∣∣∣ ≤ Cκ · ( κ∏

j=0

‖gj‖E
)
· θmin0≤j≤κ−1(nj+1−nj)
κ .

We say that ν is exponentially mixing of all orders for observables in E if it is exponentially
mixing of order κ for every κ ∈ N.

A recent major result by Dolgopyat, Kanigowski, and Rodriguez-Hertz [20] ensures that,
under suitable assumptions on the system, the exponential mixing of order 1 implies that the
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Key words and phrases. Complex Hénon maps, Exponential mixing of all orders, Central Limit Theorem.

1



system is Bernoulli. In particular, it implies the mixing of all orders. (with no control on the
rate of decay of correlation). It is a main open question whether the exponential mixing of
order 1 implies the exponential mixing of all orders, see for instance [20, Question 1.5].

Let now f be a complex Hénon map on C2. It is a polynomial diffeomorphism of C2. We
can associate to f its unique measure of maximal entropy µ [1, 2, 3, 30], see Section 2 for
details. It was established by the second author in [12] that such measure if exponential mixing
of order 1 for Hölder observables, see also Vigny [34] and Wu [35]. Similar results were obtained
by Liverani [28] in the case of uniformly hyperbolic diffeomorphisms and Dolgopyat [18] for
Anosov flows.

Theorem 1.2. Let f be a complex Hénon map and µ its measure of maximal entropy. Then,
for every κ ∈ N∗, µ is exponential mixing of order κ as in Definition 1.1 for Cγ observables

(0 < γ ≤ 2), with θκ = d−(γ/2)κ+1/2.

For endomorphisms of Pk(C), the exponential mixing for all orders for the measure of maximal
entropy and Hölder observables was established in [14]. We recently proved such property for a
large class of invariant measures with strictly positive Lyapunov exponents [6]. This was done
by constructing a suitable (semi-)norm on functions that turns the so-called Ruelle-Perron-
Frobenius operator (suitably normalized) into a contraction. As far as we know, the present
paper gives the first instance where the exponential mixing of all orders is established for general
dynamical systems with both positive and negative Lyapunov exponents.

The exponential mixing of all orders is one of the strongest properties in dynamics. It was
recently shown to imply a number of statistical properties, see for instance [8, 19]. As an
example, a consequence of Theorem 1.2 is the following result. Take u ∈ L1(µ). As µ is ergodic,
Birkhoff’s ergodic theorem states that

n−1Sn(u) := n−1
(
u(x) + u ◦ f(x) + · · ·+ u ◦ fn−1(x)

)
→ 〈µ, u〉 for µ− a.e. x ∈ X.

We say that u satisfies the Central Limit Theorem (CLT) with variance σ2 ≥ 0 with respect to

µ if n−1/2(Sn(u)−n〈µ, u〉)→ N (0, σ2) in law, where N (0, σ2) denotes the (possibly degenerate,
for σ = 0) Gaussian distribution with mean 0 and variance σ2, i.e., for any interval I ⊂ R we
have

lim
n→∞

ν
{Sn(u)− n〈µ, u〉√

n
∈ I
}

=

1 when I is of the form I = (−δ, δ) if σ2 = 0,

1√
2πσ2

∫
I
e−t

2/(2σ2)dt if σ2 > 0.

By [8], the following is then a consequence of Theorem 1.2. We refer to [6, 11, 15, 22, 29, 31, 32]
for other cases where the CLT for Hölder observables was established in holomorphic dynamics.
As is the case for Theorem 1.2, this is the first time that this is done for systems with both
positive and negative Lyapunov exponents.

Corollary 1.3. Let f be a complex Hénon map and µ its measure of maximal entropy. Then
all Hölder observables u satisfy the Central Limit Theorem with respect to µ with

σ2 =
∑
n∈Z

〈µ, ũ(ũ ◦ fn)〉 = lim
n→∞

1

n

∫
X

(ũ+ ũ ◦ f + . . .+ ũ ◦ fn−1)2dµ,

where ũ := u− 〈µ, u〉.

Theorem 1.2 and Corollary 1.3 in particular apply to any real Hénon map of maximal entropy
[4], i.e., complex Hénon maps with real coefficients and whose measure of maximal entropy is
supported by R2. They hold also in the larger settings of regular automorphisms of Ck in any
dimension [30], see Definition 2.1 and Remark 3.3, and invertible horizontal-like maps in any
dimension [13, 16], see Remark 3.4. We postpone the case of automorphisms of compact Kähler
manifolds to the forthcoming paper [7], see Remark 3.5.
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Our method to prove Theorem 1.2 relies on pluripotential theory and on the theory of positive
closed currents. The idea is as follows. Using the classical theory of interpolation [33], we can
reduce the problem to the case γ = 2. For simplicity, assume that ‖gj‖C2 ≤ 1 for all j.
The measure of maximal entropy µ of a Hénon map f of C2 of algebraic degree d ≥ 2 is the
intersection µ = T+ ∧ T− of the two Green currents T+ and T− of f [2, 30]. If we identify
C2 to an affine chart of P2 in the standard way, these currents are the unique positive closed
(1, 1)-currents of mass 1 on P2, without mass at infinity, satisfying f∗T+ = dT+ and f∗T− = dT−.

Consider the automorphism F of C4 given by F := (f, f−1). Such automorphism also admits
Green currents T+ = T+ ⊗ T− and T− = T− ⊗ T+. These currents satisfy (Fn)∗T+ = d2T+ and
(Fn)∗T− = d2T−. Under mild assumptions on their support, other positive closed (2, 2)-currents
S of mass 1 of P4 satisfy the estimate

(1.1) |〈d−2n(Fn)∗(S)− T−,Φ〉| ≤ cS,Φd−n

when Φ is a sufficiently smooth test form. Here, cS,Φ is a constant depending on S and Φ.

We show that proving the exponential mixing for κ+1 observables g0, . . . , gκ with ‖gj‖C2 ≤ 1
can be reduced to proving the convergence (we assume that n1 is even for simplicity)

(1.2) |〈d−n1(Fn1/2)∗[∆]− T−,Θ〉| . d−min0≤j≤κ−1(nj+1−nj)/2,

where [∆] denotes the current of integration on the diagonal ∆ of C2 × C2, (z, w) denote the
coordinates on C2 × C2 and

Θ := g0(w)g1(z)(g2 ◦ fn2−n1(z)) . . . (gκ ◦ fnκ−n1(z))T+.

A crucial point here is that the estimate should not only be uniform in the gj ’s, but also in the
nj ’s. Note also that the current [∆] is singular and the dependence of the constant cS,Φ in (1.1)
from S makes it difficult to employ regularization techniques to deduce the convergence (1.2)
from (1.1).

The key point here is to notice that, when ddcΦ ≥ 0 (on a suitable open set), one can also
get the following variation of (1.1):

(1.3) 〈d−2n(Fn)∗(S)− T−,Φ〉 ≤ cΦd
−n.

With respect to (1.1), only the bound from above is present, but the constant cΦ is now
independent of S. This permits to regularize ∆ and work as if this current were smooth.
Note also that, although Θ is not smooth, we can handle it using a similar regularization.

Working by induction, we show that it is possible to replace both Θ and −Θ in (1.2) with
currents Θ± satisfying ddcΘ± ≥ 0. This permits to deduce the estimate (1.2) from two upper
bounds given by (1.3) for Θ±, completing the proof.

Acknowledgments. We would like to thank the National University of Singapore, the Institut
de Mathématiques de Jussieu-Paris Rive Gauche, and Xiaonan Ma for the warm welcome and
the excellent work conditions. We also thank Romain Dujardin, Livio Flaminio, and Giulio
Tiozzo for very useful remarks and discussions.

This project has received funding from the French government through the Programme
Investissement d’Avenir (LabEx CEMPI /ANR-11-LABX-0007-01, ANR QuaSiDy /ANR-21-
CE40-0016, ANR PADAWAN /ANR-21-CE40-0012-01) and the NUS and MOE through the
grants A-0004285-00-00 and MOE-T2EP20120-0010.

2. Regular automorphisms of Ck and convergence towards Green currents

Let F be a polynomial automorphism of Ck. We still denote by F its extension as a birational
map of Pk. Denote by H∞ := Pk \Ck the hyperplane at infinity and by I+, I− the indeterminacy
sets of F and F−1 respectively. They are analytic sets strictly contained in H∞. If I+ = ∅ or
I− = ∅, then both of them are empty and F is given by a linear map and its dynamics is easy
to describe. Hence, we assume that I± 6= ∅. The following definition is due to Sibony [30].
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Definition 2.1. We say that F is a regular automorphism of Ck if I± 6= ∅ and I+ ∩ I− = ∅.

Given F a regular automorphism of Ck, it is clear that F−1 is also regular. We denote by
d+(F ) and d−(F ) the algebraic degrees of F and F−1 respectively. Observe that d±(F ) ≥ 2,
d+(F ) = d−(F−1) and d−(F ) = d+(F−1). Later, we will drop the letter F and just write d±
instead of d±(F ) for simplicity. We will recall here some basic properties of F and refer the
reader to [2, 17, 25, 26, 30] for details.

Proposition 2.2. Let F be a regular automorphism of Ck as above.

(i) There exists an integer 1 ≤ p ≤ k− 1 such that dim I+ = k− p− 1, dim I− = p− 1, and
d+(F )p = d−(F )k−p.

(ii) The analytic sets I± are irreducible and we have

F (H∞ \ I+) = F (I−) = I− and F−1(H∞ \ I−) = F−1(I+) = I+.

(iii) For every n ≥ 1, both Fn and F−n are regular automorphisms of Ck, of algebraic
degrees d+(F )n and d−(F )n, and indeterminacy sets I+ and I−, respectively.

Example 2.3. (Generalized) Hénon maps on C2 correspond to the case k = 2 in Definition 2.1.
In this case, we have p = k − p = 1 and d+ = d− = d, the algebraic degree of the map, see
[2, 24, 30].

The set I+ (resp. I−) is attracting for F−1 (resp. F ). Let W̃± be the basin of attraction of

I±. Set W± := W̃± ∩ Ck. Then the sets K+ := Ck \W− and K− := Ck \W+ are the sets of

points (in Ck) with bounded orbit for F and F−1, respectively. We have K+ = K+ ∪ I+ and

K− = K− ∪ I− where the closures are taken in Pk. We also define K := K+ ∩ K− which is a
compact subset of Ck.

In the terminology of [17], the set K+ (resp. K−) is p-rigid (resp. (k− p)-rigid): it supports a
unique positive closed (p, p)-current (resp. (k − p, k − p)-current) of mass 1, that we denote by
T+ (resp. T−). The currents T± have no mass on H∞ and satisfy the invariance relations

F ∗(T+) = dp+T+ and F∗(T−) = dk−p− T−

as currents on Ck or Pk. We call them the main Green currents of F . They can be obtained
as intersections of positive closed (1, 1)-currents with local Hölder continuous potentials in Ck.
Therefore, the measure T+ ∧ T− is well-defined and supported by the compact set K. This is
the unique invariant probability measure of maximal entropy [9, 30], see also [1, 2, 3, 21] for
the case of dimension k = 2.

Using the above description of the dynamics of F , we can fix neighbourhoods U1, U2 of K+

and V1, V2 of K− such that F−1(Ui) b Ui, U1 b U2 b Pk \ I−, F (Vi) b Vi, V1 b V2 b Pk \ I+,
and U2 ∩ V2 b Ck. Let Ω be a real (p+ 1, p+ 1)-current with compact support in U1. Assume
that there exists a positive closed (p + 1, p + 1)-current Ω′ with compact support in U1 such
that |Ω| ≤ Ω′. Define the norm ‖Ω‖∗,U1 of Ω as

‖Ω‖∗,U1 := inf{‖Ω′‖ : |Ω| ≤ Ω′}.
Observe that when Ω is a d-exact current we can write Ω = Ω′−(Ω′−Ω), which is the difference
of two positive closed current in the same cohomology class in Hp+1,p+1(Pk,R). Therefore, the
norm ‖ ·‖∗,U1 is equivalent to the norm given by inf ‖Ω±‖, where Ω± are positive closed currents
with compact support in U1 such that Ω = Ω+ − Ω−. Note that Ω+ and Ω− have the same
mass as they belong to the same cohomology class.

The following property was obtained by the second author, see [12, Proposition 2.1].

Proposition 2.4. Let R be a positive closed (k−p, k−p)-current of mass 1 with compact support
in V1 and smooth on Ck. Let Φ be a real-valued (p, p)-form of class C2 with compact support in
U1 ∩ Ck. Assume that ddcΦ ≥ 0 on V2. Then there exists a constant c > 0 independent of R
and Φ such that〈

d
−(k−p)n
− (Fn)∗(R)− T−,Φ

〉
≤ c d−n− ‖ddcΦ‖∗,U1 for all n ≥ 0.
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Note that in what follows, since T− is an intersection of positive closed (1, 1)-currents with
local continuous potentials [30], the intersections R ∧ T− and T+ ∧ T− are well-defined and the
former depends continuously on R. In particular, the pairing in the next statement is meaningful
and depends continuously on R.

Corollary 2.5. Let R be a positive closed (k − p, k − p)-current of mass 1 supported in V1.
Let φ be a C2 function with compact support on Ck such that ddcφ ≥ 0 in a neighbourhood of
K+ ∩ V2. Then there exists a constant c > 0 independent of R and φ such that

(2.1)
〈
d
−(k−p)n
− (Fn)∗(R)− T−, φT+

〉
≤ c d−n− ‖ddcφ ∧ T+‖∗,U1 for all n ≥ 0.

Proof. As Pk is homogeneous, we will use the group PGL(k+ 1,C) of automorphisms of Pk and
suitable convolutions in order regularize the currents R and φT+ and deduce the result from
Proposition 2.4. Choose local coordinates centered at the identity id ∈ PGL(k + 1,C) so that

a small neighbourhood of id in PGL(k+ 1,C) is identified to the unit ball B of Ck
2+2k. Here, a

point of coordinates ε represents an automorphism of Pk that we denote by τε. Thus, τ0 = id.
Consider a smooth non-negative function ρ with compact support on B and of integral 1 with

respect to the Lebesgue measure and, for 0 < r ≤ 1, define ρr(ε) := r−2k2−4kρ(r−1ε), which is
supported by {|ε| ≤ r} . This function allows us to define an approximation of the Dirac mass
at 0 ∈ B when r → 0. We define Ψ := φT+ and consider the following regularized currents

Rr :=

∫
ρr(ε)(τε)

∗(R) and Ψr :=

∫
ρr(ε)(τε)

∗(Ψ) =

∫
ρr(ε)(φ ◦ τε)(τε)∗(T+),

where the integrals are with respect to the Lebesgue measure on ε ∈ B.
When r is small enough and goes to 0, the current Rr is smooth, positive, closed, with

compact support in V1, and converges to R. Since the RHS of (2.1) depends continuously on
R, we can replace R by Rr and assume that R is smooth. When ε goes to 0, φ ◦ τε converges
uniformly to φ and (τε)

∗(T+) converges to T+. Using that R is smooth and T− is a product of
(1, 1)-currents with continuous potentials, we deduce that the LHS of (2.1) is equal to

lim
r→0

〈
d
−(k−p)n
− (Fn)∗(R)− T−,Ψr

〉
.

Since T+ is supported by K+ and we have ddcφ ≥ 0 on a neighbourhood of K+ ∩ V2, we
deduce that ddcΨ ≥ 0 on V2. By reducing slightly V2, we still have ddcΨr ≥ 0 on V2 for r small
enough. We will use the last limit and Proposition 2.4 for Ψr instead of Φ and U2 instead of
U1. Observe that for ε small enough, since U1 b U2, we have ‖(τε)∗(ddcΨ)‖∗,U2 ≤ ‖ddcΨ‖∗,U1 .
We deduce that the LHS of (2.1) is smaller than or equal to

lim
r→0

c d−n− ‖ddcΨr‖∗,U2 ≤ c d−n− ‖ddcΨ‖∗,U1 = c d−n− ‖ddcφ ∧ T+‖∗,U1 .

This completes the proof of the corollary. �

In order to use the above corollary, we will need the following lemmas.

Lemma 2.6. Let κ ≥ 1 be an integer and g0, . . . , gκ compactly supported functions on Ck

with ‖gj‖C2 ≤ 1. Then there is a constant cκ > 0 independent of the gj’s such that for all
`0, . . . , `κ ≥ 0 we have

‖ddc
(
(g0 ◦ F `0) . . . (gκ ◦ F `κ)

)
∧ T+‖∗,U1 ≤ cκ.

Proof. Set g̃j := gj ◦ f `j for simplicity. We have

ddc
(
g̃0 . . . g̃κ

)
=

κ∑
j=0

ddcg̃j
∏
l 6=j

g̃l +
∑

0≤j 6=l≤κ
i∂g̃j ∧ ∂̄g̃l

∏
m6=j,l

g̃m.

Since ‖gj‖C2 ≤ 1 we have |gj | ≤ 1. Denote by ωFS the Fubini-Study form on Pk. Then∣∣∣ κ∑
j=0

ddcg̃j
∏
l 6=j

g̃l

∣∣∣ . κ∑
j=0

(F `j )∗ωFS
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and an application of Cauchy-Schwarz inequality gives∣∣∣ ∑
0≤j 6=l≤κ

i∂g̃j ∧ ∂g̃l
∏
m 6=j,l

g̃m

∣∣∣ . κ∑
j=0

i∂g̃j ∧ ∂g̃j

=

κ∑
j=0

(F `j )∗(i∂gj ∧ ∂gj)

.
κ∑
j=0

(F `j )∗(ωFS).

As we have ddc
(
g̃0 . . . g̃κ

)
= 0 near H∞, its intersection with T+ can be computed on Ck. We

deduce from the above inequalities and dk−p− = dp+ that

(2.2)

∣∣ddc((g0 ◦ F `0) . . . (gκ ◦ F `κ)
)
∧ T+

∣∣ . κ∑
j=0

(
F `j )∗(ωFS

)
∧ T+

=

κ∑
j=0

(F `j )∗(ωFS) ∧ d−p`j+ (F `j )∗T+

=
κ∑
j=0

d
−(k−p)`j
− (F `j )∗

(
ωFS ∧ T+

)
.

We will use that the (p + 1, p + 1)-current ωFS ∧ T+ is positive, closed, of mass 1, and its

support is contained in K+ ⊂ U1. We have

‖(F `j )∗
(
ωFS ∧ T+

)
‖ =

〈
(F `j )∗

(
ωFS ∧ T+

)
, ωk−p−1

FS

〉
=
〈
ωFS ∧ T+, (F

−`j )∗(ωk−p−1
FS )

〉
,

where the last form is positive closed and smooth outside I−. The last pairing only depends

on the cohomology classes of ωFS, T+, and (F−`j )∗(ωk−p−1
FS ). Hence, it is equal to the mass of

(F−`j )∗(ωk−p−1
FS ), which is equal to d

(k−p−1)`j
− , see [30]. It follows that each term in the last

sum in (2.2) is bounded by 1, which implies that the sum is bounded by κ + 1. The lemma
follows. �

Lemma 2.7. Let D b D′ be two bounded domains in Ck. Let g be a function with compact
support in D and such that ‖g‖C2 ≤ 1. Then there are a constant A > 0 independent of g and
functions g± with compact supports in D′ and ‖g±‖C2 ≤ 1 such that

g = A(g+ − g−), i∂g+ ∧ ∂g+ ≤ ddcg+ on D and i∂g− ∧ ∂g− ≤ ddcg− on D.

Proof. Let ρ be a smooth non-negative function, compactly supported on D′ and equal to 1 in
a neighbourhood of D. Observe that ρg = g. We denote by z the coordinates of Ck. Since
‖g‖C2 ≤ 1 and g has compact support in D, there exists a constant A1 > 0 independent of g
such that |ddcg| ≤ A1dd

c(‖z‖2). Set g+ := A−1ρ(g + 2A1‖z‖2) and g− := 2A−1A1ρ‖z‖2 for
some constant A > 0. It is not difficult to check that we have ddcg± ≥ A−1A1dd

c(‖z‖2) on
D, ‖i∂g± ∧ ∂g±‖∞ = O(A−2) on D, g = A(g+ − g−), and ‖g±‖C2 = O(A−1). Taking A large
enough gives the lemma. �

3. Exponential mixing of all orders for Hénon maps and further remarks

Throughout this section (except for Remarks 3.2, 3.3, and 3.4), f denotes a Hénon map on
C2 of algebraic degree d = d+ = d− ≥ 2. Define F := (f, f−1). It is not difficult to check that
F is a regular automorphism of C4 = C2 × C2. We will use the notations and the results of
Section 2 with k = 4 and p = 2. We denote in this section by T± the Green (1, 1)-currents of
f , and reserve the notation T± for the main Green currents of F . Observe that T+ = T+ ⊗ T−
and T− = T− ⊗ T+, see [23, Section 4.1.8] for the tensor (or cartesian) product of currents. We
denote by K± the sets of points of bounded orbit for f±1. The wedge product µ := T+ ∧ T− is
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well defined, and is the measure of maximal entropy of f [1, 2, 3, 30]. Its support is contained
in the compact set K = K+ ∩K−. We have K+ = K+ ×K− and K− = K− ×K+. Note also
that the diagonal ∆ of C2 × C2 satisfies ∆ ∩ I+ = ∅ and ∆ ∩ I− = ∅ in P4, see also [12].

We now prove Theorem 1.2. By a standard interpolation [33] (see for instance [12, pp. 262-
263] and [18, Corollary 1] for similar occurrences) it is enough to prove the statement for γ = 2,
i.e., in the case where all the functions gj are of class C2. The statement is clear for κ = 0, i.e.,
for one test function. By induction, we can assume that the statement holds for up to κ test
functions and prove it for κ+ 1 ≥ 1 test functions, i.e., show that∣∣∣〈µ, g0(g1 ◦ fn1) . . . (gκ ◦ fnκ)〉 −

κ∏
j=0

〈µ, gj〉
∣∣∣ . ( κ∏

j=0

‖gj‖C2
)
· d−min0≤j≤κ−1(nj+1−nj)/2.

Recall that n0 = 0. The induction assumption implies that we are allowed to modify each gj by
adding a constant. Moreover, using the invariance of ν, the desired estimate does not change if
we replace nj by nj − 1 for 1 ≤ j ≤ κ and g0 by g0 ◦ f−1. Therefore, we can for convenience
assume that n1 is even.

We fix a large bounded domain B ⊂ C2 satisfying

K ⊂ B, K− ∩B ⊂ f(B), and K+ ∩B ⊂ f−1(B).

By induction, the inclusions above imply that

(3.1) K ⊂ B, K− ∩B ⊂ fn(B), and K+ ∩B ⊂ f−n(B) for all n ≥ 1.

Because of Lemma 2.7 and the fact that we are only interested in the values of the gj ’s on the
support of µ, we can assume that all the gj ’s are compactly supported in C2 and satisfy

(3.2) ‖gj‖C2 ≤ 1 on C2 and i∂gj ∧ ∂gj ≤ ddcgj on B.

For simplicity, write h := g1(g2 ◦ fn2−n1) . . . (gκ ◦ fnκ−n1). We need to prove that

|〈µ, g0(h ◦ fn1)〉 − 〈µ, g0〉 · 〈µ, h〉| . d−min0≤j≤κ−1(nj+1−nj)/2

since this estimate, together with the induction assumption applied to 〈µ, h〉, would imply the
desired statement. In order to obtain the result, we will prove separately the two estimates

(3.3) 〈µ, g0(h ◦ fn1)〉 − 〈µ, g0〉 · 〈µ, h〉 . d−min0≤j≤κ−1(nj+1−nj)/2

and

(3.4) − 〈µ, g0(h ◦ fn1)〉+ 〈µ, g0〉 · 〈µ, h〉 . d−min0≤j≤κ−1(nj+1−nj)/2.

Set M := 10κ and fix a smooth function χ with compact support in C2 and equal to 1 in a
neighbourhood of B. Consider the following four functions, which will later allow us to produce
some p.s.h. test functions:

g+
0 := χ · (g0 +M) and h+ := χ · (g1 +M)(g2 ◦ fn2−n1 +M) . . . (gκ ◦ fnκ−n1 +M)

and

g−0 := χ·(M−g0) and h− := χ·
(
(g1+M)(g2◦fn2−n1 +M) . . . (gκ◦fnκ−n1 +M)−2(M+1)κ

)
.

Recall that n0 = 0. To prove (3.3) and (3.4), it is enough to show that

(3.5) 〈µ, g+
0 (h+ ◦ fn1)〉 − 〈µ, g+

0 〉 · 〈µ, h
+〉 . d−n1/2

and

(3.6) 〈µ, g−0 (h− ◦ fn1)〉 − 〈µ, g−0 〉 · 〈µ, h
−〉 . d−n1/2.

Indeed, we observe that χ does not play any role in (3.5) and (3.6). Hence, the difference between
the LHS of (3.5) and the one of (3.3) (resp. of (3.6) and of (3.4)) is a finite combination of
expressions involving no more than κ functions among g0, . . . , gκ, that we can estimate using the
induction hypothesis on the mixing of order up to κ−1. It remains to prove the two inequalities
(3.5) and (3.6).
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Denote by (z, w) the coordinates on C4 = C2 × C2 and define

φ±(z, w) := g±0 (w)h±(z).

We have the following lemma for a fixed domain U1 as in Section 2.

Lemma 3.1. The functions φ± satisfy

(i) ddcφ± ∧ T+ ≥ 0 on B ×B;
(ii) ‖ddcφ± ∧ T+‖∗,U1 ≤ cκ,

where cκ is a positive constant depending on κ, but not on the gj’s and the nj’s.

Proof. (i) For simplicity, we set `0 = `1 := 0 and `j := nj − n1. Define also g̃j := gj ◦ f `j . In
what follows g̃0 depends on w and g̃j depends on z when j ≥ 1. Observe that by the invariance
property of K+ ∩ B in (3.1) and the constraints in (3.2), the following inequalities hold in a
neighbourhood of K+ ∩B:

(3.7) i∂g̃j ∧ ∂g̃j = (f `j )∗(i∂gj ∧ ∂gj) ≤ (f `j )∗(ddcgj) = ddcg̃j .

In particular, we have ddcg̃j ≥ 0 in a neighbourhood of K+ ∩ B. Note that for g̃0 = g0 the
properties hold on B, which contains K− ∩B.

Now, since T+ is closed, positive, and supported by K+ = K+ ×K−, in order to prove the
first assertion it is enough to show that ddcφ± ≥ 0 on a neighbourhood of (K+∩B)× (K−∩B)
in C4 where χ = 1. In what follows, we only work on such a neighbourhood. We have

ddcφ+ =

κ∑
j=0

ddcg̃j
∏
l 6=j

(g̃l +M) +
∑

0≤j 6=l≤κ
i∂g̃j ∧ ∂g̃l

∏
m6=j,l

(g̃m +M),

where we recall that g̃0 is g̃0(w) and the other g̃j ’s are g̃j(z) for 1 ≤ j ≤ κ. For the first term
in the RHS of the last expression, we have

κ∑
j=0

ddcg̃j
∏
l 6=j

(g̃l +M) ≥ (M − 1)κ
κ∑
j=0

ddcg̃j .

For the second term, an application of Cauchy-Schwarz inequality and (3.7) give∣∣ ∑
0≤j 6=l≤κ

i∂g̃j ∧ ∂g̃l
∏
m 6=j,l

(g̃m +M)
∣∣ ≤ (κ+ 1)(M + 1)κ−1

κ∑
j=0

i∂g̃j ∧ ∂g̃j

≤ (κ+ 1)(M + 1)κ−1
κ∑
j=0

ddcg̃j .

It follows that

ddcφ+ ≥ (M − 1)κ
κ∑
j=0

ddcg̃j − (κ+ 1)(M + 1)κ−1
κ∑
j=0

ddcg̃j

= (M − 1)κ
[
1− (κ+ 1)

M + 1

(
1 +

2

M − 1

)κ] κ∑
j=0

ddcg̃j ,

which gives ddcφ+ ≥ 0 since the choice M = 10κ implies that (1 + 2
M−1

)κ
< (1 + 1

κ

)κ
< 3.

Similarly, in the same way, we also have

ddcφ− ≥ (M − 1)κ
κ∑
j=0

ddcg̃j − (M + 1)κ−1
∑

0≤j 6=l≤κ

∣∣i∂g̃j ∧ ∂g̃l∣∣,
which gives ddcφ− ≥ 0. This concludes the proof of the first assertion of the lemma.

(ii) The second assertion of the lemma is a consequence of Lemma 2.6. �
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End of the proof of Theorem 1.2. Recall that it remains to prove (3.5) and (3.6). Since µ is
invariant and n1 is even, we have

〈µ, g±0 · (h
± ◦ fn1)〉 =

〈
µ, (g±0 ◦ f

−n1/2)(h± ◦ fn1/2)
〉
.

We now transform the last integral on C2 to an integral on C4 in order to use the dynamical
system F = (f, f−1) on C4 introduced above. We are using the coordinates (z, w) on C4 =
C2 × C2. We will also use the diagonal of C2 × C2, which is given by ∆ = {(z, w) : z = w}.

Recall that we have µ = T+ ∧ T− and that the currents T± have local continuous potentials
in C2. It follows that the intersections of T± with positive closed currents on C4 are meaningful.
Moreover, the invariance of T± implies that (Fn1/2)∗(T+) = d−n1T+ on C4. Thanks to the
above identities, we have

(3.8)

〈µ, g±0 · (h
± ◦ fn1)〉 =

〈
T+ ∧ T−, (g±0 ◦ f

−n1/2)(h± ◦ fn1/2)
〉

=
〈
(T+ ⊗ T−) ∧ [∆], (g±0 ◦ f

−n1/2(w))(h± ◦ fn1/2(z))
〉

=
〈
T+ ∧ [∆], (Fn1/2)∗(φ±)

〉
=
〈
d−n1T+ ∧ (Fn1/2)∗[∆], φ±

〉
=
〈
d−n1(Fn1/2)∗[∆], φ±T+

〉
.

We apply Corollary 2.5 with the functions φ± = g±0 (w) · h±(z) instead of φ and the current

[∆] instead of R. For this purpose, since ∆ ∩ I+ = ∅, we can choose a suitable open set V1

containing ∆. We also fix an open set V2 as in Section 2. Since B is large enough, Lemma 3.1
implies that ddcφ± ≥ 0 on a neighbourhood of K+ ∩ V2. Thus, we obtain from Corollary 2.5
that

〈d−n1(Fn1/2)∗[∆]− T−, φ
±T+〉 . d−n1/2

or equivalently

(3.9) 〈d−n1(Fn1/2)∗[∆], φ±T+〉 − 〈T−, φ±T+〉 . d−n1/2.

Together, (3.8), (3.9), and the fact that

〈T−, φ±T+〉 = 〈T+ ∧ T−, φ
±〉 = 〈µ⊗ µ, g±0 (w) · h±(z)〉 = 〈µ, g±0 〉 · 〈µ, h

±〉
give the desired estimates (3.5) and (3.6). The proof of Theorem 1.2 is complete. �

Remark 3.2. Friedland and Milnor [24] proved that any polynomial automorphism of C2 is either
conjugate to an elementary automorphism which preserves a fibration by parallel complex lines
or to a Hénon map as above. So, our results apply to all automorphisms of C2 which are not
conjugated to an elementary one.

Remark 3.3. When f is a regular automorphism of Ck with k even and p = k/2, the map
(f, f−1) is regular on C2k. The same proof as above gives us the exponential mixing of all
orders and the CLT for f . The results still hold for every regular automorphism but the proof
requires some extra technical arguments that we choose to do not present here for simplicity,
see for instance de Thélin and Vigny [10, 34].

Remark 3.4. When f is a horizontal-like map such that the main dynamical degree is larger than
the other dynamical degrees, the same strategy gives the exponential mixing of all orders and
the CLT, see the papers [13, 16] by Nguyen, Sibony and the second author, and in particular
[13] for the necessary estimates. In particular, these results hold for all Hénon-like maps in
dimension 2, see also Dujardin [21].

Remark 3.5. In the companion paper [7], we explain how to adapt our strategy to get the
exponential mixing of all orders and the Central Limit Theorem for automorphisms of compact
Kähler manifolds with simple action on cohomology. As the proof in that case requires the
theory of super-potentials, which is not needed for Hénon maps, we choose to do not present it
here.
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73-169.

[6] Bianchi, F. and Dinh, T.-C., Equilibrium states of endomorphisms of Pk II: spectral stability and limit
theorems, preprint (2022). arXiv:2204.02856.

[7] Bianchi, F. and Dinh, T.-C., Exponential mixing of all orders and CLT for automorphisms of compact Kähler
manifolds, preprint (2023).

[8] Björklund, M. and Gorodnik, A., Central Limit Theorems for group actions which are exponentially mixing
of all orders Journal d’Analyse Mathématique 141 (2020), 457-482.
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