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EVERY COMPLEX HÉNON MAP SATISFIES THE CENTRAL LIMIT

THEOREM

FABRIZIO BIANCHI AND TIEN-CUONG DINH

Abstract. We consider a measurable dynamical system preserving a probability measure ν.
If the system is exponentially mixing of all orders for suitable observables, we prove that these
observables satisfy the Central Limit Theorem (CLT) with respect to ν. We show that the
measure of maximal entropy of every complex Hénon map is exponentially mixing of all orders
for Hölder observables. It follows that the CLT holds for all complex Hénon maps and Hölder
observables.
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Notation. The pairing 〈·, ·〉 is used for the integral of a function with respect to a measure
or more generally the value of a current at a test form. By (p, p)-currents we mean currents of
bi-digree (p, p). Given k ≥ 1, we denote by ωFS the Fubini-Study form on Pk = Pk(C). The

mass of a positive closed (p, p)-current R on Pk is equal to 〈R,ωk−pFS 〉 and is denoted by ‖R‖.
The notations . and & stand for inequalities up to a multiplicative constant. If R and S are
two real currents of the same bi-degree, we write |R| ≤ S when S ± R ≥ 0. Observe that this
forces S to be positive.

1. Introduction

Hénon maps are among the most studied dynamical systems that exhibit interesting chaotic
behaviour. They were introduced by Michel Hénon in the real setting as a simplified model
of the Poincaré section for the Lorenz model, see, e.g., [7, 39]. Hénon maps are also actively
studied in the complex setting, where complex analysis offers additional powerful tools. The
reader can find in [3, 4, 5, 27, 33, 34, 52] and the references therein fundamental dynamical
properties of these systems. The main goal of this work is to solve a long-standing question
proving the Central Limit Theorem (CLT) for the maximal entropy measures of complex Hénon
maps. More precisely, we first provide a general criterion to ensure the validity of the CLT in
an abstract setting, and apply it to show that every complex Hénon map satisfies such property
for all Hölder observables, without any extra assumption on the map.

Let (X, ν) be a probability space and f : X → X a measurable map preserving ν (i.e., such
that ν(f−1(A)) = ν(A) for every measurable set A ⊆ X). We denote by fn the iterate of order
n of f . Given an observable u : X → R, we denote by Sn(u) the sum

Sn(u) := u+ u ◦ f + · · ·+ u ◦ fn−1.
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A fundamental question in dynamics is to study the orbits of points via the sequence Sn(u),
seen as a sequence of random variables on the probability space (X, ν). By the invariance of
ν, all the random variables u ◦ fn have the same distribution. On the other hand, precisely
because they arise from a deterministic system, they are not independent. A central problem
in dynamics is to show that the functions u ◦ fn behave as close as possible to i.i.d. random
variables, for suitable observables u.

At the first order, such property is true and given by Birkhoff’s ergodic theorem. For ν
ergodic (in particular, for ν mixing) and any u ∈ L1(ν), this result asserts that

n−1Sn(u)(x)→ 〈ν, u〉 for ν − almost every x ∈ X.
For i.i.d. random variables, the Central Limit Theorem describes the rate of the above convergence.
The following is a translation of that property in the setting of dynamical systems.

Definition 1.1. Let (X, f, ν) be a dynamical system as above. Let u be a ν-integrable real
function. We say that u satisfies the Central Limit Theorem (CLT) with variance σ2 ≥ 0 with

respect to ν if n−1/2(Sn(u)− n〈ν, u〉)→ N (0, σ2) in law, where N (0, σ2) denotes the (possibly
degenerate, for σ = 0) Gaussian distribution with mean 0 and variance σ2, i.e., for any interval
I ⊂ R we have

lim
n→∞

ν
{Sn(u)− n〈ν, u〉√

n
∈ I
}

=

1 when I is of the form I = (−δ, δ) if σ2 = 0,

1√
2πσ2

∫
I
e−t

2/(2σ2)dt if σ2 > 0.

The CLT has been proved for several families of real dynamical systems, see, e.g., [13, 14,
41, 42, 49, 51, 58] for the case of dimension 1 and [2, 8, 15, 16, 17, 18, 37, 43, 59, 60] for higher
dimensional cases with assumptions on the hyperbolicity. Among the approaches used in these
works, Gordin-Liverani martingale method [21, 35, 40, 44] and Nagaev method based on spectral
properties of the Perron-Frobenius operator [1, 36, 46], have also been used in complex dynamics.
They allow to prove the CLT for some equilibrium measures of holomorphic endomorphisms of
Pk and other systems with positive Lyapounov exponents [10, 22, 25, 30, 48, 53, 54]. It is still
an open interesting and challenging question to know if these approaches can be adapted in the
setting of general complex Hénon maps and other non-uniformly hyperbolic systems with both
positive and negative Lyapunov exponents.

In this paper, we introduce a new criterion to prove the CLT for general dynamical systems.
For the system (X, f, ν) above, we will consider observables in some normed functional space
(E, ‖ · ‖E) satisfying the following property:

(e1) for all 1 ≤ p <∞ we have E ⊂ Lp(ν) and ‖ · ‖Lp(ν) ≤ cp‖ · ‖E for some constant cp > 0.

Our criterion for the CLT is based on the following definition.

Definition 1.2. Let (X, f, ν) be a dynamical system as above. Let (E, ‖ · ‖E) be a normed
space of real functions on X satisfying Property (e1). We say that ν is exponentially mixing of
order κ ∈ N∗ for observables in E if there exist constants Cκ > 0 and 0 < θκ < 1 such that, for
all g0, . . . , gκ in E and integers 0 =: n0 ≤ n1 ≤ · · · ≤ nκ, we have∣∣∣〈ν, g0(g1 ◦ fn1) . . . (gκ ◦ fnκ)〉 −

κ∏
j=0

〈ν, gj〉
∣∣∣ ≤ Cκ · ( κ∏

j=0

‖gj‖E
)
· θmin0≤j≤κ−1(nj+1−nj)
κ .

We say that ν is exponentially mixing of all orders for observables in E if it is exponentially
mixing of order κ for every κ ∈ N.

Note that Property (e1) implies that the integrals in the above definition are meaningful.

We also consider the following further natural property for (E, ‖ · ‖E):

(e2) there is a constant c > 0 such that gh ∈ E and ‖gh‖E ≤ c‖g‖E · ‖h‖E for all g, h ∈ E.
Our first main result is the following.
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Theorem 1.3. Let (X, f, ν) be a dynamical system as above and (E, ‖ · ‖E) a normed space
of real functions on X satisfying Properties (e1) and (e2). Assume also that the operator f∗

(i.e., the operator u 7→ u ◦ f) preserves E and is bounded with respect to ‖ · ‖E, and that ν is
exponentially mixing of all orders for observables in E. Then all observables u ∈ E satisfy the
Central Limit Theorem with respect to ν as in Definition 1.1, with

(1.1) σ2 =
∑
n∈Z

〈ν, ũ(ũ ◦ f |n|)〉 = lim
n→∞

1

n

∫
X

(ũ+ ũ ◦ f + · · ·+ ũ ◦ fn−1)2dν,

where ũ := u− 〈ν, u〉.

Observe that if X is a metric space, the support supp(ν) of ν has bounded diameter, and f is
Lipschitz continuous on supp(ν), then the operator f∗ is bounded on the space of γ-Hölder real
functions on supp(ν) for any 0 < γ ≤ 1. This is the case for Hénon maps that we will consider
later.

The fact that a sufficiently strong mixing condition on ν implies the CLT is natural. The
problem of establishing suitable conditions on a sequence of non-independent random variables
to ensure the validity of the CLT dates back to at least a century, since the works of Markov on
Markov partitions and Bernstein [9], see also [38, 45, 47, 50] to cite a few further developments.
But such criteria do not seem to apply in the setting of general dynamical systems without at
least some hyperbolicity condition.

In order to prove Theorem 1.3, we use the method of moments, and prove that all the
moments of the limit distribution of n−1/2(Sn(u)−n〈ν, u〉) coincide with those of the Gaussian
distribution. Namely, we show that (assuming 〈ν, u〉 = 0 for simplicity)

lim
n→∞

n−κ/2〈ν, Sn(u)κ〉 =

{
0 if κ is odd

(κ− 1)!!σκ if κ is even.

Up to some combinatorial arguments, this boils down to the problem of computing (sums of)
integrals of the form

〈ν, (u ◦ f s1) . . . (u ◦ fsκ)〉,
where we assume for simplicity that 0 ≤ s1 ≤ . . . ≤ sκ ≤ n−1. Such terms are controlled thanks
to the exponential mixing of all orders. In particular, a key point is to notice that terms for
which at least two consecutive gaps among s2−s1, s3−s2, . . . , sκ−sκ−1 are large in comparison
with the other gaps, will be negligible in the limit thanks to the exponential mixing of all order,
see Lemma 2.8.

This remark permits to deduce that, in the limit, only the sum of terms with s1 ∼ s2 �
s3 ∼ s4 � . . . � sκ−1 ∼ sκ can bring a contribution. Such terms are present only for κ even.
Moreover, thanks to the mixing of order κ/2−1 applied to the κ/2 observables (u◦fsj )(u◦f sj+1)
with odd j, we see that each of these terms is equal, up to a small (controlled) error, to the
product 〈

ν, (u ◦ fs1)(u ◦ fs2)
〉
. . .
〈
ν, (u ◦ f sκ−1)(u ◦ fsκ)

〉
.

By the invariance of ν, such product reduces to a product of κ/2 terms of the form 〈ν, u·(u◦f |m|)〉,
for m ∈ Z. Summing over such terms, and taking into account the combinatorial coefficients
and the formula (1.1) for σ2, we get the desired result of (κ− 1)!!σκ.

Let now f be a complex Hénon map on C2. It is a polynomial diffeomorphism of C2. We can
associate to f its unique measure of maximal entropy µ [3, 4, 5, 52], see Section 3 for details.
The following result ensures that every such system satisfies the conditions of Theorem 1.3. The
case of two observables was established by the second author in [23], see also [56, 57]. Similar
results were obtained by Liverani [43] in the case of uniformly hyperbolic diffeomorphisms and
Dolgopyat [28] for Anosov flows.
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Theorem 1.4. Let f be a complex Hénon map and µ its measure of maximal entropy. Then,
for every κ ∈ N∗, µ is exponential mixing of order κ as in Definition 1.2 for Cγ observables

(0 < γ ≤ 2), with θκ = d−(γ/2)κ+1/2.

The following is then a consequence of Theorems 1.3 and 1.4, and is the main result of this
paper.

Corollary 1.5. Let f be a complex Hénon map and µ its measure of maximal entropy. Then
all Hölder observables satisfy the Central Limit Theorem with respect to µ.

Theorem 1.4 and Corollary 1.5 in particular apply to any real Hénon map of maximal entropy
[6], i.e., complex Hénon maps with real coefficients and whose measure of maximal entropy is
contained in R2. They hold also in the larger settings of regular automorphisms of Ck in any
dimension [52], see Definition 3.1 and Remark 4.3, and invertible horizontal-like maps in any
dimension [24, 26], see Remark 4.4. We postpone the proof in the case of compact Kähler
manifolds to the forthcoming paper [11], see Remark 4.5.

Our method to prove Theorem 1.4 relies on pluripotential theory and on the theory of positive
closed currents. The idea is as follows. Using the classical theory of interpolation [55], we can
reduce the problem to the case γ = 2. For simplicity, assume that ‖gj‖C2 ≤ 1 for all j.
The measure of maximal entropy µ of a Hénon map f of C2 of algebraic degree d ≥ 2 is the
intersection µ = T+ ∧ T− of the two Green currents T+ and T− of f [4, 52]. If we identify
C2 to an affine chart of P2 in the standard way, these currents are the unique positive closed
(1, 1)-currents of mass 1 on P2, without mass at infinity, satisfying f∗T+ = dT+ and f∗T− = dT−.

Consider the automorphism F of C4 given by F := (f, f−1). Such automorphism also admits
Green currents T+ = T+ ⊗ T− and T− = T− ⊗ T+. These currents satisfy (Fn)∗T+ = d2T+ and
(Fn)∗T− = d2T−. Under mild assumptions on their support, other positive closed (2, 2)-currents
S of mass 1 of P4 satisfy the estimate

(1.2) |〈d−2n(Fn)∗(S)− T−,Φ〉| ≤ cS,Φd−n

when Φ is a sufficiently smooth test form. Here, cS,Φ is a constant depending on S and Φ.

We show that proving the exponential mixing for κ + 1 observables g0, . . . , gκ ∈ C2 can be
reduced to proving the convergence (we assume that n1 is even for simplicity)

(1.3) |〈d−n1(Fn1/2)∗[∆]− T−,Θ〉| . d−min0≤j≤κ−1(nj+1−nj)/2,

where [∆] denotes the current of integration on the diagonal ∆ of C2 × C2, (z, w) denote the
coordinates on C2 × C2 and

Θ := g0(w)g1(z)(g2 ◦ fn2−n1(z)) . . . (gκ ◦ fnκ−n1(z))T+.

Note that the current [∆] is singular and the dependence of the constant cS,Φ in (1.2) from
S makes it difficult to employ regularization techniques to deduce the convergence (1.3) from
(1.2).

The key point here is to notice that, when ddcΦ ≥ 0 (on a suitable open set), one can also
get the following variation of (1.2):

(1.4) 〈d−2n(Fn)∗(S)− T−,Φ〉 ≤ cΦd
−n.

With respect to (1.2), only the bound from above is present, but the constant cΦ is now
independent of S. This permits to regularize ∆ and work as if this current were smooth.
Note also that, although Θ is not smooth, we can handle it using a similar regularization.

Working by induction, we show that it is possible to replace both Θ and −Θ in (1.3) with
currents Θ± satisfying ddcΘ± ≥ 0. This permits to deduce the estimate (1.3) from two upper
bounds given by (1.4) for Θ±, completing the proof.
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2. The exponential mixing of all orders implies the CLT

Throughout this section, (X, f, ν) is a dynamical system and E a functional space as in
Theorem 1.3. In particular, observables in E satisfy Properties (e1), (e2), and the exponential
mixing of all orders as in Definition 1.2.

Define E′ := E + R, where R is identified with the set of constant functions. If R ⊂ E, we
have E′ = E and we define ‖ · ‖E′ := ‖ · ‖E . Otherwise, for h ∈ E′ we can write in a unique way
h = g + c with g ∈ E and c ∈ R and we define

‖h‖E′ := ‖g‖E + |c|.

Lemma 2.1. We have the following properties:

(i) the vector space (E′, ‖ · ‖E′) satisfies Properties (e1) and (e2);
(ii) the operator f∗ preserves E′ and is bounded with respect to ‖ · ‖E′;
(iii) all observables in E′ satisfy the exponential mixing of all orders as in Definition 1.2.

Proof. The lemma is clear when E′ = E. Assume now that E′ 6= E. For h, h′ ∈ E′ write
h = g+ c and h′ = g′+ c′ with g, g′ ∈ E and c, c′ ∈ R. We also assume that ‖h‖E′ = ‖h′‖E′ = 1.
It follows that ‖g‖E , ‖g′‖E , |c|, and |c′| are bounded by 1.

(i) It is easy to deduce from the above that ‖h‖Lp(ν) and ‖hh′‖E′ are bounded. The assertion
(i) follows.

(ii) We have f∗(h) = f∗(g) + c. Since f∗ preserves E and is bounded with respect to ‖ · ‖E ,
we see that f∗(g) belongs to E and has a bounded norm. It is now clear that ‖f∗(h)‖E′ is
bounded and (ii) follows.

(iii) Fix κ ∈ N∗ and consider κ+ 1 observables hj ∈ E′ with ‖hj‖E′ = 1 for 0 ≤ j ≤ κ. Write
each of them (in a unique way) as hj = gj + cj , with gj ∈ E and cj ∈ R. As above, we have
that ‖gj‖E and |cj | are bounded by 1.

For all 0 =: n0 ≤ n1 ≤ · · · ≤ nκ ∈ N, set m := min0≤j≤κ−1(nj+1 − nj). We also define
θ := max1≤j≤κ θj and C := max1≤j≤κCj , see Definition 1.2. We have to bound the difference
between〈

ν, h0(h1 ◦ fn1) . . . (hκ ◦ fnκ)
〉

=
〈
ν, (c0 + g0)(c1 + g1 ◦ fn1) . . . (cκ + gκ ◦ fnκ)

〉
=

∑
(JR,JE)

( ∏
j∈JR

cj
)〈
ν,
∏
j∈JE

gj ◦ fnj
〉

and
κ∏
j=0

〈ν, hj〉 =
∑

(JR,JE)

( ∏
j∈JR

cj
) ∏
j∈JE

〈ν, gj〉,

where the sums are over all partitions (JR, JE) of {0, . . . , κ}.
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Fix one such partition, assuming for now that JE is non empty. By the assumption of the
exponential mixing for observables in E, we see that∣∣∣( ∏

j∈JR

cj
)〈
ν,
∏
j∈JE

gj ◦ fnj
〉
−
( ∏
j∈JR

cj
) ∏
j∈JE

〈ν, gj〉
∣∣∣

=
∣∣∣ ∏
j∈JR

cj

∣∣∣ · ∣∣∣〈ν, ∏
j∈JE

gj ◦ fnj
〉
−
∏
j∈JE

〈ν, gj〉
∣∣∣

≤
∣∣∣ ∏
j∈JR

cj

∣∣∣ · C · ( ∏
j∈JE

‖gj‖E
)
· θm

≤ C θm.
The computation above becomes trivial when JE is empty, as the first line vanishes. As the
number of partitions (JR, JE) of {0, . . . , κ} only depends on κ, we obtain the exponential mixing
of order κ for the observables hj . The proof is complete. �

According to Lemma 2.1, from now on, we can and we do replace E by E′ in order to assume
for simplicity that constant functions belong to E. We fix an observable u ∈ E and we show
that it satisfies the CLT. Using the invariance of ν, we can add to u any constant and this
does not modify the validity of the CLT for u. So, for simplicity, we assume from now on that
〈ν, u〉 = 0. We have used here that E contains constant functions.

Lemma 2.2. We have

(2.1) lim
n→∞

n−1〈ν, Sn(u)2〉 =
∑
j∈Z

〈ν, u · (u ◦ f |j|)〉,

and both sides are finite and non-negative.

Lemma 2.2 allows us to define

σ2 := lim
n→∞

n−1〈ν, Sn(u)2〉 =
∑
j∈Z

〈ν, u · (u ◦ f |j|)〉.

We will prove Theorem 1.3 for this value of σ2.

Proof. It is clear that the LHS of (2.1) is non-negative. Therefore, we only need to show that
the RHS of this identity converges absolutely and that the limit in the LHS exists and is equal
to the RHS.

By the exponential mixing of order 1, and with the notations of Definition 1.2, for all j ∈ Z
we have

|〈ν, u · (u ◦ f |j|)〉| ≤ C1 · ‖u‖2E · θ
|j|
1 .

We have used here that 〈ν, u〉 = 0. It follows that the RHS of (2.1) converges absolutely.
Consider the measure m on Z which is the sum of all Dirac masses on Z, and the function

U : Z→ R given by U(j) := 〈ν, u · (u ◦ f |j|〉. With these notations, the RHS of (2.1) is equal to
the integral 〈m,U〉 and the function U is integrable with respect to m. We now express the LHS
of (2.1) in terms of some integrals with respect to m.

For n ∈ N, define a function Mn : Z→ R as

Mn(j) :=

{
n− |j| for |j| ≤ n− 1

0 for |j| ≥ n.

Observe that Mn(j) is the number of pairs (m, l) ∈ N2 such that 0 ≤ m, l ≤ n−1 and m− l = j.
Using the invariance of ν we get, for every n ∈ N,

n−1〈ν, Sn(u)2〉 =
1

n

∑
0≤m,l≤n−1

〈ν, (u ◦ fm)(u ◦ f l)〉 =
1

n

∑
0≤m,l≤n−1

〈ν, u · (u ◦ f |m−l|)〉

=
1

n

∑
j∈Z

Mn(j)〈ν, u · (u ◦ f |j|)〉 = 〈m, n−1Mn · U〉.

6



The sequence of functions n−1Mn · U tends to U pointwise on Z when n goes to infinity.
Moreover, we have |n−1Mn · U| ≤ |U| and the function U is integrable with respect to m. By
Lebesgue’s dominated convergence theorem, we obtain

〈m, n−1Mn · U〉 → 〈m,U〉 for n→∞.
The lemma follows. �

We will use the following lemma for v := u.

Lemma 2.3. Let v ∈ L1(ν) satisfy 〈ν, v〉 = 0. Assume that there exists σ ≥ 0 such that, for all
κ ∈ N∗,

(2.2) lim
n→∞

n−κ/2〈ν, Sn(v)κ〉 =

{
0 if κ is odd

(κ− 1)!!σκ if κ is even.

Then v satisfies the CLT with variance σ2 with respect to ν, see Definition 1.1.

Proof. Recall thatN (0, σ2) denotes the (possibly degenerate, when σ = 0) Gaussian distribution
of mean 0 and variance σ2. A standard computation gives that the moments of N (0, σ2) are
given by

1√
2πσ2

∫
R
xκe−x

2/(2σ2)dx =

{
0 if κ is odd

(κ− 1)!!σκ if κ is even

when σ 6= 0. When σ = 0, the Gaussian in the integral should be replaced by the Dirac mass
at 0, hence the integral vanishes for all κ ∈ N∗.

By using 2κ instead of κ, we see that the sequence n−κ〈ν, Sn(v)2κ〉 is bounded and therefore

ν
{
|n−1/2Sn(v)| ≥M

}
≤ cκ
M2κ

for every M ≥ 1,

where cκ is a constant. This and the assumption on v imply that any limit (in law) for n→∞
of the random variables n−1/2Sn(v) and N (0, σ2) have the same moment of order κ. As the
normal distribution is uniquely characterized by its moments [12, Theorem 30.1 and Example

30.1], this implies that n−1/2Sn(v)→ N (0, σ2) in law, as required. �

The goal of this section is then to prove that the condition (2.2) in Lemma 2.3 is satisfied
when the function v is replaced by our observable u. Note that the case κ = 1 is trivial because
〈ν, u〉 = 0 and the case κ = 2 is given by Lemma 2.2.

We fix κ ≥ 3 in what follows and denote θ := max1≤j≤κ θj and C := max1≤j≤κCj , see
Definition 1.2. Choose a constant L > 1 which is larger than the norm of the operator f∗ : E →
E. This norm is finite by hypothesis. Fix a constant B > 1 such that Lκ

2
θB < 1 and choose

another constant 0 < η < 1 such that Lκ
2
θB < ηB, or equivalently Lκ

2/Bθ < η. Finally, define
A := | log η|−1(κ+ 1) and D := ABκ.

Set
J0, n− 1K := {0, 1, . . . , n− 1}

and consider an element s = (s1, . . . , sκ) ∈ J0, n− 1Kκ. We also set

Is := 〈ν, us1 . . . usκ〉 and us := u ◦ f s for s ∈ N.

Observe that
〈ν, Sn(u)κ〉 =

∑
s∈J0,n−1Kκ

Is.

For Z ⊂ J0, n− 1Kκ define

S(Z) :=
∑
s∈Z
Is and S?(Z) :=

∑
s∈Z
|Is|.

Define also Sn := S(J0, n − 1Kκ), so that the LHS of (2.2) is equal to n−κ/2Sn (recall that in
that equation we replace v by u). To study this quantity, the idea is to cover J0, n − 1Kκ by

7



subsets where our sums S and S? can be evaluated using combinatorial arguments and/or the
mixing of order ≤ κ.

Denote by E1,n ⊂ J0, n−1Kκ the set of all s such that up to a permutation of the components
of s we have s1 ≤ s2 ≤ . . . ≤ sκ and sj+1−sj ≤ D log n for more than κ/2 indexes 1 ≤ j ≤ κ−1,
where the constant D was defined above. We will use that, for each such index j, when the
value of sj is fixed there are at most D log n+ 1 choices for sj+1.

Lemma 2.4. We have
lim
n→∞

n−κ/2S?(E1,n) = 0.

Proof. Set κ0 := κ/2 + 1 if κ is even and κ0 := (κ+ 1)/2 is κ is odd. By the Hölder inequality,
for each s ∈ J0, n− 1Kκ we have

|Is| = |〈ν, us1 . . . usκ〉| ≤ ‖u ◦ fs1‖Lκ(ν) . . . ‖u ◦ f sκ‖Lκ(ν) = ‖u‖κLκ(ν) . ‖u‖
κ
E ,

where we used Property (e1) and the fact that ‖u ◦ f‖Lκ(ν) = ‖u‖Lκ(ν) (which follows from the
invariance of ν).

Observe that the sum S?(E1,n) contains at most κ!
(
κ
κ0

)
(D log n+1)κ0nκ−κ0 terms, where κ! is

the number of the permutations of the components of (s1, . . . , sκ),
(
κ
κ0

)
is the number of choices

of κ0 indexes j as in the definition of E1,n and nκ−κ0 is the number of choices of sl with l 6= j+1
for any j as in the definition of E1,n. We deduce that

n−κ/2S?(E1,n) . n−κ/2(D log n)κ0nκ−κ0‖u‖κE = n−κ0+κ/2(D log n)κ0‖u‖κE .
The assertion follows since, by definition, we have κ0 > κ/2 . �

We will denote in what follows by 0 ≤ δ1, . . . , δκ−1 ≤ n−1 some integers with the property that

∆κ−1 ≤ n− 1, where we set ∆j :=
∑j

l=1 δl for all 1 ≤ j ≤ κ− 1. We also set δ := (δ1, . . . , δκ−1)
and recall that us := u ◦ f s for s ∈ N.

We will need to study integrals of the form

(2.3) Jδ := Jδ1,...,δκ−1 := 〈ν, u u∆1 . . . u∆κ−1〉.

Definition 2.5. Let D+ 6= ∅ and D− be two disjoint subsets of {δj}1≤j≤κ−1 with D+ ∪ D− =
{δj}1≤j≤κ−1. We say that (D−,D+) is a good partition of {δj}1≤j≤κ−1 if

δl ≥ 1 and δl ≥ Bδj for all δl ∈ D+ and δj ∈ D−,
where the constant B has been introduced earlier. We admit here the case where D− is empty,
and in this case we just mean that δl ≥ 1 for all δl ∈ D+. We set max(D−) := max{δj , δj ∈ D−}
when D− 6= ∅ and max(D−) := 0 otherwise. We also set min(D+) := min{δj , δj ∈ D+}.

Given a good partition (D−,D+) of {δj}1≤j≤κ−1 as above, write D+ = {δj1 , . . . , δjm}, with
j1 < · · · < jm. For simplicity, define j0 := 0, jm+1 := κ, and δκ := 0. Write

(2.4) uu∆1 . . . u∆κ−1 = U0 (U1 ◦ f∆j1 ) . . . (Um ◦ f∆jm ),

where

Ur :=

{
u if jr + 1 = jr+1

uuδjr+1
uδjr+1+δjr+2

. . . uδjr+1+···+δjr+1−1
otherwise.

Note that in the last product all indexes δjr+1, . . . , δjr+1−1 belong to D−. In a particular case
that we will consider later, we will have jr+1 = jr+2 and then Ur = uuδjr+1, which is a product
of two functions.

Given the decomposition as in (2.4), we will compare the integral (2.3) with the following
quantity

JD−,D+ := 〈ν, U0〉〈ν, U1 ◦ f∆j1 〉 . . . 〈ν, Um ◦ f∆jm 〉 = 〈ν, U0〉〈ν, U1〉 . . . 〈ν, Um〉,
where the second equality is a consequence of the invariance of ν.

We have the following lemma.
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Lemma 2.6. Assume that {δj}1≤j≤κ−1 admits a good partition (D−,D+). Then we have, for
some constant c > 0 independent of δ1, . . . , δκ−1,

|Jδ1,...,δκ−1 − JD−,D+ | ≤ c ηmin(D+).

Proof. Recall that u, κ are fixed and that m ≤ κ−1. The inequality follows from the exponential
mixing of order ≤ κ− 1 of ν, applied to the m+ 1 observables U0, . . . , Um. More precisely, with
the notations of Definition 1.2, we have

|Jδ1,...,δκ−1 − JD−,D+ | ≤ C ·
( m∏
r=0

‖Ur‖E
)
· θmin(D+).

By the definitions of the Ur’s and L and Property (e2), we also have

‖Ur‖E . L(1+···+(jr+1−jr)) max (D−) · ‖u‖jr+1−jr
E ≤ Lκ(jr+1−jr) max (D−) · ‖u‖jr+1−jr

E for all r.

Hence, we have

|Jδ1,...,δκ−1 − JD−,D+ | . ‖u‖κE Lκ
2 max(D−)θmin(D+) . Lκ

2 max(D−)θmin(D+).

Since (D−,D+) is a good partition, we have max(D−) ≤ B−1 min(D+). The lemma is then a

consequence of the choices of η and B, which imply that and Lκ
2/Bθ ≤ η. �

The following is a consequence of Lemma 2.6. Recall that we are assuming that 〈ν, u〉 = 0.

Corollary 2.7. Assume that {δj}1≤j≤κ−1 admits a good partition (D−,D+). Assume also that
at least one of the following conditions holds:

(h1) δ1 ∈ D+, or
(h2) δκ−1 ∈ D+, or
(h3) there exists j? such that both δj? and δj?+1 belong to D+, or
(h4) |D+| > κ/2− 1.

Then, for some constant c > 0 independent of δ1, . . . , δκ−1, we have

|Jδ1,...,δκ−1 | ≤ c ηmin(D+).

Proof. In each of the cases in the statement, it follows from the definition of the Ur’s that
there exists at least one r? with Ur? = u. Indeed, we can take r? = 0 in the first case (where
j1 = 1), r? = m in the second case (where jm = κ− 1), and r? = j? in the third case. Observe
that the fourth condition implies that one among the first three holds, hence we can choose r?

accordingly.

We deduce from the definition of JD−,D+ and the invariance of ν that

JD−,D+ = 〈ν, Ur?〉 ·
∏
r 6=r?
〈ν, Ur〉 = 〈ν, u〉 ·

∏
r 6=r?
〈ν, Ur〉.

Since by assumption we have 〈ν, u〉 = 0, we deduce that JD−,D+ = 0. The assertion follows
from Lemma 2.6. �

Denote by E2,n ⊂ J0, n−1Kκ the set of all s such that, up to a permutation of the components
of s, we have s1 ≤ s2 ≤ . . . ≤ sκ and δ := (δ1, . . . , δκ−1) with δj := sj+1 − sj is such that
{δj}1≤j≤κ−1 admits a good partition (D−,D+) with min(D+) ≥ A log n and such that at least
one among conditions (h1)-(h4) in Corollary 2.7 holds.

Lemma 2.8. We have

lim
n→∞

n−κ/2S?(E2,n) = 0.

Proof. Note that |E2,n| ≤ nκ because E2,n ⊂ J0, n− 1Kκ. So, it is enough to show that

|〈ν, us1 . . . usκ〉| . n−κ for all s ∈ E2,n.
9



The last integral does not change if we permute the components of s. Therefore, we can assume
that s1 ≤ s2 ≤ · · · ≤ sκ. With the above notation, this integral is equal to Jδ1,...,δκ−1 because ν
is invariant.

By the definition of E2,n, Corollary 2.7, and the choice of the constant A, we have

|Jδ1,...,δκ−1 | . ηmin(D+) ≤ ηA logn = n−(κ+1).

This ends the proof of the lemma. �

We continue the proof of (2.2) for κ ≥ 3 fixed and for v := u. We treat the two cases of κ
odd and even in the next two propositions.

Proposition 2.9. Assume that κ is odd. Then

lim
n→∞

n−κ/2Sn = 0.

Proof. We claim that, since κ is odd, J0, n− 1Kκ is covered by E1,n and E2,n. The proposition
then follows from Lemmas 2.4 and 2.8.

Take s ∈ J0, n − 1Kκ. Since the definitions of E1,n and E2,n do not depend on permutations
of the components of s, we can assume that s1 ≤ . . . ≤ sκ. Define δ := (δ1, . . . , δκ−1) with
δj := sj+1 − sj . If δ is such that at least (κ + 1)/2 components δj are less than or equal to
D log n, we have s ∈ E1,n. Hence, we can assume that δ admits at most (κ−1)/2 components δj
which are less than or equal to D log n and at least (κ− 1)/2 components which are larger than
D log n. Recall that D = ABκ > A. We need to show that s ∈ E2,n. It suffices to construct a
good partition (D−,D+) of {δj}1≤j≤κ−1 satisfying the properties in the definition of E2,n.

Observe that the κ + 1 points (ABj log n)0≤j≤κ divide R+ in κ + 1 bounded intervals and
the half line {x > ABκ log n}. Since we only have κ − 1 components δj , one of the κ intervals

[ABl log n,ABl+1 log n), 0 ≤ l ≤ κ − 1, does not contain any δj . We fix such an integer l and

denote by D− (resp. D+) the family of all δj which are smaller than ABl log n (resp. larger

than or equal to ABl+1 log n). It is clear that (D−,D+) is a good partition of {δ1, . . . , δκ−1}.
By construction, we also have |D+| > κ/2−1, which is the condition (h4) of Corollary 2.7, and
min(D+) ≥ A log n. It follows that s ∈ E2,n. �

From now on, we assume that κ is even.

Proposition 2.10. Let κ be even. Then

lim
n→∞

n−κ/2Sn = (κ− 1)!!σκ.

Denote by Pn ⊂ J0, n− 1Kκ the family of all s such that we can divide the set {s1, . . . , sκ} of
the components of s into κ/2 disjoint pairs pm = {sim , sjm}, 1 ≤ m ≤ κ/2, with im < jm and
such that for some integer 0 ≤ l ≤ κ− 1 we have

(2.5) max pm −min pm ≤ ABl log n and min pm+1 −max pm ≥ ABl+1 log n for every m.

Note that, as B > 1, for every s ∈ Pn and 1 ≤ i ≤ κ, there is a unique 1 ≤ j ≤ κ with j 6= i and
such that |si − sj | ≤ ABl log n. So, the choice of the indexes im and jm is uniquely determined
by the above conditions.

Lemma 2.11. We have
lim
n→∞

n−κ/2Sn − n−κ/2S(Pn) = 0.

Proof. We claim that J0, n− 1Kκ \Pn is covered by E1,n and E2,n. The result then follows from
Lemmas 2.4 and 2.8.

We proceed as in Proposition 2.9. Take s ∈ J0, n − 1Kκ. We can assume that s1 ≤ . . . ≤ sκ.
Define δ := (δ1, . . . , δκ−1) with δj := sj+1−sj . If there are at least κ/2+1 components δj which
are smaller than or equal to D log n, we have s ∈ E1,n. So, we can assume that δj ≤ D log n for at
most κ/2 indexes j and δj > D log n for at least κ/2−1 indexes j. We can choose 0 ≤ l ≤ κ−1

such that the interval [ABl log n,ABl+1 log n) does not contain any δj . Then, as above, we
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consider the good partition (D−,D+) of {δj}1≤j≤κ−1, where D− (resp. D+) is the family of all

the δj ’s which are smaller than ABl log n (resp. larger than or equal to ABl+1 log n). We have
|D+| ≥ κ/2 − 1 and min(D+) ≥ A log n. If |D+| ≥ κ/2, then Condition (h4) in Corollary 2.7
holds and we have s ∈ E2,n. Hence, we can assume that |D+| = κ/2 − 1, which implies that
|D−| = κ/2.

If one of the conditions (h1),(h2),(h3) in Corollary 2.7 is satisfied, then s ∈ E2,n. We can
suppose that this is not the case. Using that |D+| = κ/2− 1 and |D−| = κ/2, we deduce that

D− = {δ1, δ3, . . . , δκ−1} and D+ = {δ2, δ4, . . . , δκ−2}.
Consider pm := {s2m−1, s2m} for 1 ≤ m ≤ κ/2. We have, by the construction of D±,

max pm −min pm = s2m − s2m−1 = δ2m−1 < ABl log n

and
min pm+1 −max pm = s2m+1 − s2m = δ2m ≥ ABl+1 log n.

It follows that s belongs to Pn. This completes the proof. �

Denote by P ′n ⊂ Pn the set of all s ∈ Pn such that pm = {s2m−1, s2m}, where the pm are as in
the definition of Pn. Note that we do not require that s2m−1 is larger than s2m nor conversely.
So, in general, we have s1 < s3 < · · · < sκ−1, but the sequence (s1, s2, . . . , sκ) is not increasing.
We can define a map π : Pn → P ′n sending each s to the unique element in P ′n obtained from s
by applying the permutation

(s1, . . . , sκ) 7→ (si1 , sj1 , si2 , sj2 , . . . , siκ/2 , sjκ/2).

It is not difficult to see that each fibre of π is of cardinality (κ−1)!! (κ/2)!. Note that (κ−1)!! is
the number of possibilities to divide {1, . . . , κ} into κ/2 disjoint pairs and (κ/2)! is the number
of possibilities to order these κ/2 pairs. Since the value of Is does not change if we permute
the components of s, we deduce that

(2.6) S(Pn) = (κ− 1)!! (κ/2)!S(P ′n).

Therefore, by Lemma 2.11, in order to establish Proposition 2.10, we need to check that
n−κ/2(κ/2)!S(P ′n)→ σκ as n→∞.

Recall that κ is assumed to be even. For ε = (ε1, . . . , εκ/2) ∈ Zκ/2, let Nn(ε) be the number
of elements s ∈ P ′n such that s2m − s2m−1 = εm for all m.

Lemma 2.12. We have

0 ≤ n−κ/2(κ/2)!Nn(ε) ≤ 1 and lim
n→∞

n−κ/2(κ/2)!Nn(ε) = 1.

Proof. We prove the first part of this lemma where only the second inequality is non trivial.
Denote by P ′n(ε) the set of the elements of P ′n such that s2m−s2m−1 = εm for allm. ThenNn(ε) is
the cardinality of P ′n(ε). Observe that an element s ∈ P ′n(ε) is determined by its κ/2 components

of odd index, i.e., by (s1, s3, . . . , sκ−1) ∈ J0, n− 1Kκ/2. Here, we have s1 < s3 < · · · < sκ−1.

Let Qn denote the set of all elements in J0, n−1Kκ/2 whose components are pairwise distinct.
Let Q′n ⊂ Qn be the set of such elements whose components are in increasing order. Consider
the map τ : Qn → Q′n which assigns to each element of Qn the unique element in Q′n obtained
from the first element by permuting its components. Since each fibre of this map contains
exactly (κ/2)! elements, we deduce that

(κ/2)! |Q′n| = |Qn| ≤ #J0, n− 1Kκ/2 = nκ/2.

Finally, since Nn(ε) = |P ′n(ε)| ≤ |Q′n|, we obtain the desired inequality n−κ/2(κ/2)!Nn(ε) ≤ 1.

It remains to prove the second part of the lemma. We fix ε and only consider n big enough.
In particular, we have |εm| � log n for every m. Denote by Rn ⊂ Qn the set of all elements
(s1, s3, . . . , sκ−1) such that |s2m−1 − s2j−1| ≥ 3ABκ log n for all m 6= j. It is not difficult to see
that if (s1, s3, . . . , sκ−1) is an element of Rn and if we define

(s′1, s
′
3, . . . , s

′
κ−1) := τ(s1, s3, . . . , sκ−1) and s′2m := s′2m−1 + εm,
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then

max(s′2m−1, s
′
2m)−min(s′2m−1, s

′
2m) = |εm| ≤ ABκ−1 log n

and

min(s′2m+1, s
′
2m+2)−max(s′2m−1, s

′
2m) ≥ |s′2m+1 − s′2m−1| − |s′2m+1 − s′2m+2| − |s′2m−1 − s′2m|
≥ 3ABκ log n− 2ABκ−1 log n ≥ ABκ log n.

It follows that s′ = (s′1, . . . , s
′
κ−1) belongs to P ′n(ε). By observing that Rn is a union of fibres of

τ , we conclude that |Rn| ≤ (κ/2)! |P ′n(ε)|.
Now, we bound |Rn| from below. We first have n choices for s1 ∈ J0, n− 1K. Given a choice

for s1, we have at least n− 7ABκ log n choices for s3 such that |s1− s3| ≥ 3ABκ log n. When s1

and s3 are fixed, there are at least n − 14ABκ log n choices for s5 with |s1 − s5| ≥ 3ABκ log n
and |s3 − s5| ≥ 3ABκ log n. Arguing by induction, we get that

|Rn| ≥ n(n− 7ABκ log n)(n− 14ABκ log n) . . . (n− 7(κ/2− 1)ABκ log n).

Thus,

lim inf
n→∞

n−κ/2(κ/2)!Nn(ε) = lim inf
n→∞

n−κ/2(κ/2)! |P ′n(ε)| ≥ lim inf
n→∞

n−κ/2|Rn| ≥ 1.

This and the first part of the lemma imply the result. �

Recall that κ is even and fixed. For ε = (ε1, . . . , εκ/2) ∈ Zκ/2 define

Kε :=

κ/2∏
m=1

〈ν, u · u|εm|〉.

We need the following estimate.

Lemma 2.13. Given s ∈ P ′n, define εm := s2m − s2m−1. Then we have, for some constant
c > 0 independent of s,

|Is −Kε| ≤ c n−κ.

Proof. Observe that the value of Is does not change if we permute the components of s and
the value of Kε does not change if we change the sign of some components of ε. So, we can
assume for simplicity that s1 ≤ s2 ≤ · · · ≤ sκ and therefore that εm ≥ 0 for all m. Define also
δ := (δ1, . . . , δκ−1) with δj := sj+1 − sj for 1 ≤ j ≤ κ − 1. Observe that εm = δ2m−1. Define
D− = {δ1, δ3, . . . , δκ−1} and D+ = {δ2, δ4, . . . , δκ−2}.

Since s ∈ P ′n, the pair (D−,D+) is a good partition of {δ1, . . . , δκ−1} and we also have
min(D+) ≥ A log n. By Lemma 2.6 and the choice of A, we have

|Jδ1,...,δκ−1 − JD−,D+ | . ηmin(D+) ≤ ηA logn = n−(κ+1).

On the other hand, it is easy to see that Is = Jδ1,...δκ−1 and JD−,D+ = Kε. The lemma
follows. �

Lemma 2.14. We have

lim
n→∞

(
n−κ/2(κ/2)!S(P ′n)−

∑
ε∈Zκ/2

n−κ/2(κ/2)!Nn(ε)Kε
)

= 0.
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Proof. For this proof, we use the notation in the statement of Lemma 2.13. Recall that, given
ξ ∈ Zκ/2, the number of the elements s ∈ P ′n such that ε = ξ is equal to Nn(ξ). So, we have

S(P ′n)−
∑

ξ∈Zκ/2

Nn(ξ)Kξ =
∑
s∈P ′n

Is −
∑

ξ∈Zκ/2

Nn(ξ)Kξ

=
∑

ξ∈Zκ/2

∑
s∈P ′n : ε=ξ

Is −
∑

ξ∈Zκ/2

Nn(ξ)Kξ

=
∑

ξ∈Zκ/2

∑
s∈P ′n : ε=ξ

(
Is −Kξ

)
=

∑
s∈P ′n

(
Is −Kε

)
.

By Lemma 2.13, we have |Is −Kε| . n−κ for all s ∈ P ′n. It follows that∣∣∣S(P ′n)−
∑

ξ∈Zκ/2

Nn(ξ)Kξ
∣∣∣ . |P ′n|n−κ.

As |P ′n| ≤ nκ (since P ′n ⊂ Pn ⊂ J0, n− 1Kκ), we easily get the result from the last estimate. �

Consider now the space X := Zκ/2 endowed with the positive measure m which is the sum of
all Dirac masses on X . Then Kε defines a function on X that we denote by K.

Lemma 2.15. The function K is integrable with respect to m and we have

〈m,K〉 = σκ.

Proof. By the exponential mixing of order 1, we have that

|〈ν, u · u|ε|〉| . θ|ε| for every ε ∈ Z.

It follows from this inequality and the definition of K that

〈m, |K|〉 =
∑

ε∈Zκ/2

|Kε| =
∑

ε∈Zκ/2

κ/2∏
m=1

|〈ν, u · u|εm|〉| .
∑

ε∈Zκ/2

κ/2∏
m=1

θ|εm| =
(∑
ε∈Z

θ|ε|
)κ/2

.

The last series is convergent since 0 < θ < 1. The integrability of K with respect to m follows.

As K is integrable, we can apply Fubini’s theorem and deduce that

〈m,K〉 =
(∑
ε∈Z

〈ν, u · u|ε|〉
)κ/2

= σκ,

where we have used Lemma 2.2. �

End of the proofs of Proposition 2.10 and Theorem 1.3. Define the function Kn on X by setting

Kn(ε) := n−κ/2(κ/2)!Nn(ε)Kε.

According to Lemma 2.12, we have |Kn| ≤ K and Kn converges pointwise to K. By Lebesgue’s
dominated convergence theorem and the fact that K is integrable, we deduce that

lim
n→∞

〈m,Kn〉 = 〈m,K〉 = σκ.

Proposition 2.10 then follows from Lemmas 2.11, 2.14, and (2.6). As Theorem 1.3 is a consequence
of Propositions 2.9, 2.10, and Lemma 2.3, the proof of that theorem is complete. �
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3. Regular automorphisms of Ck and convergence towards Green currents

Let F be a polynomial automorphism of Ck. We still denote by F its extension as a birational
map of Pk. Denote by H∞ := Pk \Ck the hyperplane at infinity and by I+, I− the indeterminacy
sets of F and F−1 respectively. They are analytic sets strictly contained in H∞. If I+ = ∅ or
I− = ∅, then both of them are empty and F is given by a linear map and its dynamics is easy
to describe. Hence, we assume that I± 6= ∅. The following definition is due to Sibony [52].

Definition 3.1. We say that F is a regular automorphism of Ck if I± 6= ∅ and I+ ∩ I− = ∅.

Given F a regular automorphism of Ck, it is clear that F−1 is also regular. We denote by
d+(F ) and d−(F ) the algebraic degrees of F and F−1 respectively. Observe that d±(F ) ≥ 2,
d+(F ) = d−(F−1) and d−(F ) = d+(F−1). Later, we will drop the letter F and just write d±
instead of d±(F ) for simplicity. We will recall here some basic properties of F and refer the
reader to [4, 27, 33, 34, 52] for details.

Proposition 3.2. Let F be a regular automorphism of Ck as above.

(i) There exists an integer 1 ≤ p ≤ k− 1 such that dim I+ = k− p− 1, dim I− = p− 1, and
d+(F )p = d−(F )k−p.

(ii) The analytic sets I± are irreducible and we have

F (H∞ \ I+) = F (I−) = I− and F−1(H∞ \ I−) = F−1(I+) = I+.

(iii) For every n ≥ 1, both Fn and F−n are regular automorphisms of Ck, of algebraic
degrees d+(F )n and d−(F )n, and indeterminacy sets I+ and I−, respectively.

Example 3.3. (Generalized) Hénon maps on C2 correspond to the case k = 2 in Definition 3.1.
In this case, we have p = k − p = 1 and d+ = d− = d, the algebraic degree of the map, see
[4, 32, 52].

The set I+ (resp. I−) is attracting for F−1 (resp. F ). Let W̃± be the basin of attraction of

I±. Set W± := W̃± ∩ Ck. Then the sets K+ := Ck \W− and K− := Ck \W+ are the sets of

points (in Ck) with bounded orbit for F and F−1, respectively. We have K+ = K+ ∪ I+ and

K− = K− ∪ I− where the closures are taken in Pk. We also define K := K+ ∩ K− which is a
compact subset of Ck.

In the terminology of [27], the set K+ (resp. K−) is p-rigid (resp. (k− p)-rigid): it supports a
unique positive closed (p, p)-current (resp. (k − p, k − p)-current) of mass 1, that we denote by
T+ (resp. T−). The currents T± have no mass on H∞ and satisfy the invariance relations

F ∗(T+) = dp+T+ and F∗(T−) = dk−p− T−

as currents on Ck or Pk. We call them the main Green currents of F . They can be obtained
as intersections of positive closed (1, 1)-currents with local Hölder continuous potentials in Ck.
Therefore, the measure T+ ∧ T− is well-defined and supported by the compact set K. This is
the unique invariant probability measure of maximal entropy [19, 52], see also [3, 4, 5, 29] for
the case of dimension k = 2.

Using the above description of the dynamics of F , we can fix neighbourhoods U1, U2 of K+

and V1, V2 of K− such that F−1(Ui) b Ui, U1 b U2 b Pk \ I−, F (Vi) b Vi, V1 b V2 b Pk \ I+,
and U2 ∩ V2 b Ck. Let Ω be a real (p+ 1, p+ 1)-current with compact support in U1. Assume
that there exists a positive closed (p + 1, p + 1)-current Ω′ with compact support in U1 such
that |Ω| ≤ Ω′. Define the norm ‖Ω‖∗,U1 of Ω as

‖Ω‖∗,U1 := inf{‖Ω′‖ : |Ω| ≤ Ω′}.

Observe that when Ω is a d-exact current we can write Ω = Ω′−(Ω′−Ω), which is the difference
of two positive closed current in the same cohomology class in Hp+1,p+1(Pk,R). Therefore, the
norm ‖ ·‖∗,U1 is equivalent to the norm given by inf ‖Ω±‖, where Ω± are positive closed currents
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with compact support in U1 such that Ω = Ω+ − Ω−. Note that Ω+ and Ω− have the same
mass as they belong to the same cohomology class.

The following property was obtained by the second author, see [23, Proposition 2.1].

Proposition 3.4. Let R be a positive closed (k−p, k−p)-current of mass 1 with compact support
in V1 and smooth on Ck. Let Φ be a real-valued (p, p)-form of class C2 with compact support in
U1 ∩ Ck. Assume that ddcΦ ≥ 0 on V2. Then there exists a constant c > 0 independent of R
and Φ such that〈

d
−(k−p)n
− (Fn)∗(R)− T−,Φ

〉
≤ c d−n− ‖ddcΦ‖∗,U1 for all n ≥ 0.

Note that in what follows, since T− is an intersection of positive closed (1, 1)-currents with
local continuous potentials [52], the intersections R ∧ T− and T+ ∧ T− are well-defined and the
former depends continuously on R. In particular, the pairing in the next statement is meaningful
and depends continuously on R.

Corollary 3.5. Let R be a positive closed (k − p, k − p)-current of mass 1 supported in V1.
Let φ be a C2 function with compact support on Ck such that ddcφ ≥ 0 in a neighbourhood of
K+ ∩ V2. Then there exists a constant c > 0 independent of R and φ such that

(3.1)
〈
d
−(k−p)n
− (Fn)∗(R)− T−, φT+

〉
≤ c d−n− ‖ddcφ ∧ T+‖∗,U1 for all n ≥ 0.

Proof. As Pk is homogeneous, we will use the group PGL(k+ 1,C) of automorphisms of Pk and
suitable convolutions in order regularize the currents R and φT+ and deduce the result from
Proposition 3.4. Choose local coordinates centered at the identity id ∈ PGL(k + 1,C) so that

a small neighbourhood of id in PGL(k+ 1,C) is identified to the unit ball B of Ck
2+2k. Here, a

point of coordinates ε represents an automorphism of Pk that we denote by τε. Thus, τ0 = id.
Consider a smooth non-negative function ρ with compact support on B and of integral 1 with

respect to the Lebesgue measure and, for 0 < r ≤ 1, define ρr(ε) := r−2k2−4kρ(r−1ε), which is
supported by {|ε| ≤ r} . This function allows us to define an approximation of the Dirac mass
at 0 ∈ B when r → 0. We define Ψ := φT+ and consider the following regularized currents

Rr :=

∫
ρr(ε)(τε)

∗(R) and Ψr :=

∫
ρr(ε)(τε)

∗(Ψ) =

∫
ρr(ε)(φ ◦ τε)(τε)∗(T+),

where the integrals are with respect to the Lebesgue measure on ε ∈ B.
When r is small enough and goes to 0, the current Rr is smooth, positive, closed, with

compact support in V1, and converges to R. Since the RHS of (3.1) depends continuously on
R, we can replace R by Rr and assume that R is smooth. When ε goes to 0, φ ◦ τε converges
uniformly to φ and (τε)

∗(T+) converges to T+. Using that R is smooth and T− is a product of
(1, 1)-currents with continuous potentials, we deduce that the LHS of (3.1) is equal to

lim
r→0

〈
d
−(k−p)n
− (Fn)∗(R)− T−,Ψr

〉
.

Since T+ is supported by K+ and we have ddcφ ≥ 0 on a neighbourhood of K+ ∩ V2, we
deduce that ddcΨ ≥ 0 on V2. By reducing slightly V2, we still have ddcΨr ≥ 0 on V2 for r small
enough. We will use the last limit and Proposition 3.4 for Ψr instead of Φ and U2 instead of
U1. Observe that for ε small enough, since U1 b U2, we have ‖(τε)∗(ddcΨ)‖∗,U2 ≤ ‖ddcΨ‖∗,U1 .
We deduce that the LHS of (3.1) is smaller than or equal to

lim
r→0

c d−n− ‖ddcΨr‖∗,U2 ≤ c d−n− ‖ddcΨ‖∗,U1 = c d−n− ‖ddcφ ∧ T+‖∗,U1 .

This completes the proof of the corollary. �

In order to use the above corollary, we will need the following lemmas.

Lemma 3.6. Let κ ≥ 1 be an integer and g0, . . . , gκ compactly supported functions on Ck

with ‖gj‖C2 ≤ 1. Then there is a constant cκ > 0 independent of the gj’s such that for all
`0, . . . , `κ ≥ 0 we have

‖ddc
(
(g0 ◦ F `0) . . . (gκ ◦ F `κ)

)
∧ T+‖∗,U1 ≤ cκ.
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Proof. Set g̃j := gj ◦ f `j for simplicity. We have

ddc
(
g̃0 . . . g̃κ

)
=

κ∑
j=0

ddcg̃j
∏
l 6=j

g̃l +
∑

0≤j,l≤κ
i∂g̃j ∧ ∂̄g̃l

∏
m6=j,l

g̃m.

Since ‖gj‖C2 ≤ 1 we have |gj | ≤ 1. Denote by ωFS the Fubini-Study form on Pk. Then∣∣∣ κ∑
j=0

ddcg̃j
∏
l 6=j

g̃l

∣∣∣ . κ∑
j=0

(F `j )∗ωFS

and an application of Cauchy-Schwarz inequality gives∣∣∣ ∑
0≤j,l≤κ

i∂g̃j ∧ ∂g̃l
∏
m6=j,l

g̃m

∣∣∣ . κ∑
j=0

i∂g̃j ∧ ∂g̃j

=
κ∑
j=0

(F `j )∗(i∂gj ∧ ∂gj)

.
κ∑
j=0

(F `j )∗(ωFS).

As we have ddc
(
g̃0 . . . g̃κ

)
= 0 near H∞, its intersection with T+ can be computed on Ck. We

deduce from the above inequalities and dk−p− = dp+ that

(3.2)

∣∣ddc((g0 ◦ F `0) . . . (gκ ◦ F `κ)
)
∧ T+

∣∣ . κ∑
j=0

(
F `j )∗(ωFS

)
∧ T+

=

κ∑
j=0

(F `j )∗(ωFS) ∧ d−p`j+ (F `j )∗T+

=
κ∑
j=0

d
−(k−p)`j
− (F `j )∗

(
ωFS ∧ T+

)
.

We will use that the (p + 1, p + 1)-current ωFS ∧ T+ is positive, closed, of mass 1, and its

support is contained in K+ ⊂ U1. We have

‖(F `j )∗
(
ωFS ∧ T+

)
‖ =

〈
(F `j )∗

(
ωFS ∧ T+

)
, ωk−p−1

FS

〉
=
〈
ωFS ∧ T+, (F

−`j )∗(ωk−p−1
FS )

〉
,

where the last form is positive closed and smooth outside I−. The last pairing only depends

on the cohomology classes of ωFS, T+, and (F−`j )∗(ωk−p−1
FS ). Hence, it is equal to the mass of

(F−`j )∗(ωk−p−1
FS ), which is equal to d

(k−p−1)`j
− , see [52]. It follows that each term in the last

sum in (3.2) is bounded by 1, which implies that the sum is bounded by κ + 1. The lemma
follows. �

Lemma 3.7. Let D b D′ be two bounded domains in Ck. Let g be a function with compact
support in D and such that ‖g‖C2 ≤ 1. Then there are a constant A > 0 independent of g and
functions g± with compact supports in D′ and ‖g±‖C2 ≤ 1 such that

g = A(g+ − g−), i∂g+ ∧ ∂g+ ≤ ddcg+ on D and i∂g− ∧ ∂g− ≤ ddcg− on D.

Proof. Let ρ be a smooth non-negative function, compactly supported on D′ and equal to 1 in
a neighbourhood of D. Observe that ρg = g. We denote by z the coordinates of Ck. Since
‖g‖C2 ≤ 1 and g has compact support in D, there exists a constant A1 > 0 independent of g
such that |ddcg| ≤ A1dd

c(‖z‖2). Set g+ := A−1ρ(g + 2A1‖z‖2) and g− := 2A−1A1ρ‖z‖2 for
some constant A > 0. It is not difficult to check that we have ddcg± ≥ A−1A1dd

c(‖z‖2) on
D, ‖i∂g± ∧ ∂g±‖∞ = O(A−2) on D, g = A(g+ − g−), and ‖g±‖C2 = O(A−1). Taking A large
enough gives the lemma. �
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4. Exponential mixing of all orders for Hénon maps and further remarks

Throughout this section (except for Remarks 4.2, 4.3, and 4.4), f denotes a Hénon map on
C2 of algebraic degree d = d+ = d− ≥ 2. Define F := (f, f−1). It is not difficult to check that
F is a regular automorphism of C4 = C2 × C2. We will use the notations and the results of
Section 3 with k = 4 and p = 2. We denote in this section by T± the Green (1, 1)-currents of
f , and reserve the notation T± for the main Green currents of F . Observe that T+ = T+ ⊗ T−
and T− = T− ⊗ T+, see [31, Section 4.1.8] for the tensor (or cartesian) product of currents. We
denote by K± the sets of points of bounded orbit for f±1. The wedge product µ := T+ ∧ T− is
well defined, and is the measure of maximal entropy of f [3, 4, 5, 52]. Its support is contained
in the compact set K = K+ ∩K−. We have K+ = K+ ×K− and K− = K− ×K+. Note also
that the diagonal ∆ of C2 × C2 satisfies ∆ ∩ I+ = ∅ and ∆ ∩ I− = ∅ in P4, see also [23].

We now prove Theorem 1.4. By a standard interpolation [55] (see for instance [23, pp. 262-
263] and [28, Corollary 1] for similar occurrences) it is enough to prove the statement for γ = 2,
i.e., in the case where all the functions gj are of class C2. The statement is clear for κ = 0, i.e.,
for one test function. By induction, we can assume that the statement holds for up to κ test
functions and prove it for κ+ 1 ≥ 1 test functions, i.e., show that∣∣∣〈µ, g0(g1 ◦ fn1) . . . (gκ ◦ fnκ)〉 −

κ∏
j=0

〈µ, gj〉
∣∣∣ . ( κ∏

j=0

‖gj‖C2
)
· d−min0≤j≤κ−1(nj+1−nj)/2.

Recall that n0 = 0. The induction assumption implies that we are allowed to modify each gj by
adding a constant. Moreover, using the invariance of ν, the desired estimate does not change if
we replace nj by nj − 1 for 1 ≤ j ≤ κ and g0 by g0 ◦ f−1. Therefore, we can for convenience
assume that n1 is even.

We fix a large bounded domain B ⊂ C2 satisfying

K ⊂ B, K− ∩B ⊂ f(B), and K+ ∩B ⊂ f−1(B).

By induction, the inclusions above imply that

(4.1) K ⊂ B, K− ∩B ⊂ fn(B), and K+ ∩B ⊂ f−n(B) for all n ≥ 1.

Because of Lemma 3.7 and the fact that we are only interested in the values of the gj ’s on the
support of µ, we can assume that all the gj ’s are compactly supported in C2 and satisfy

(4.2) ‖gj‖C2 ≤ 1 on C2 and i∂gj ∧ ∂gj ≤ ddcgj on B.

For simplicity, write h := g1(g2 ◦ fn2−n1) . . . (gκ ◦ fnκ−n1). We need to prove that

|〈µ, g0(h ◦ fn1)〉 − 〈µ, g0〉 · 〈µ, h〉| . d−min0≤j≤κ−1(nj+1−nj)/2

since this estimate, together with the induction assumption applied to 〈µ, h〉, would imply the
desired statement. In order to obtain the result, we will prove separately the two estimates

(4.3) 〈µ, g0(h ◦ fn1)〉 − 〈µ, g0〉 · 〈µ, h〉 . d−min0≤j≤κ−1(nj+1−nj)/2

and

(4.4) − 〈µ, g0(h ◦ fn1)〉+ 〈µ, g0〉 · 〈µ, h〉 . d−min0≤j≤κ−1(nj+1−nj)/2.

Set M := 10κ and fix a smooth function χ with compact support in C2 and equal to 1 in a
neighbourhood of B. Consider the following four functions, which will later allow us to produce
some p.s.h. test functions:

g+
0 := χ · (g0 +M) and h+ := χ · (g1 +M)(g2 ◦ fn2−n1 +M) . . . (gκ ◦ fnκ−n1 +M)

and

g−0 := χ·(M−g0) and h− := χ·
(
(g1+M)(g2◦fn2−n1 +M) . . . (gκ◦fnκ−n1 +M)−2(M+1)κ

)
.

Recall that n0 = 0. To prove (4.3) and (4.4), it is enough to show that

(4.5) 〈µ, g+
0 (h+ ◦ fn1)〉 − 〈µ, g+

0 〉 · 〈µ, h
+〉 . d−n1/2
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and

(4.6) 〈µ, g−0 (h− ◦ fn1)〉 − 〈µ, g−0 〉 · 〈µ, h
−〉 . d−n1/2.

Indeed, we observe that χ does not play any role in (4.5) and (4.6). Hence, the difference between
the LHS of (4.5) and the one of (4.3) (resp. of (4.6) and of (4.4)) is a finite combination of
expressions involving no more than κ functions among g0, . . . , gκ, that we can estimate using the
induction hypothesis on the mixing of order up to κ−1. It remains to prove the two inequalities
(4.5) and (4.6).

Denote by (z, w) the coordinates on C4 = C2 × C2 and define

φ±(z, w) := g±0 (w)h±(z).

We have the following lemma for a fixed domain U1 as in Section 3.

Lemma 4.1. The functions φ± satisfy

(i) ddcφ± ∧ T+ ≥ 0 on B ×B;
(ii) ‖ddcφ± ∧ T+‖∗,U1 ≤ cκ,

where cκ is a positive constant depending on κ, but not on the gj’s and the nj’s.

Proof. (i) For simplicity, we set `0 = `1 := 0 and `j := nj − n1. Define also g̃j := gj ◦ f `j . In
what follows g̃0 depends on w and g̃j depends on z when j ≥ 1. Observe that by the invariance
property of K+ ∩ B in (4.1) and the constraints in (4.2), the following inequalities hold in a
neighbourhood of K+ ∩B:

(4.7) i∂g̃j ∧ ∂g̃j = (f `j )∗(i∂gj ∧ ∂gj) ≤ (f `j )∗(ddcgj) = ddcg̃j .

In particular, we have ddcg̃j ≥ 0 in a neighbourhood of K+ ∩ B. Note that for g̃0 = g0 the
properties hold on B, which contains K− ∩B.

Now, since T+ is closed, positive, and supported by K+ = K+ ×K−, in order to prove the
first assertion it is enough to show that ddcφ± ≥ 0 on a neighbourhood of (K+∩B)× (K−∩B)
in C4 where χ = 1. In what follows, we only work on such a neighbourhood. We have

ddcφ+ =

κ∑
j=0

ddcg̃j
∏
l 6=j

(g̃l +M) +
∑

0≤j,l≤κ
i∂g̃j ∧ ∂g̃l

∏
m6=j,l

(g̃m +M),

where we recall that g̃0 is g̃0(w) and the other g̃j ’s are g̃j(z) for 1 ≤ j ≤ κ. For the first term
in the RHS of the last expression, we have

κ∑
j=0

ddcg̃j
∏
l 6=j

(g̃l +M) ≥ (M − 1)κ
κ∑
j=0

ddcg̃j .

For the second term, an application of Cauchy-Schwarz inequality and (4.7) give∣∣ ∑
0≤j,l≤κ

i∂g̃j ∧ ∂g̃l
∏
m 6=j,l

(g̃m +M)
∣∣ ≤ (κ+ 1)(M + 1)κ−1

κ∑
j=0

i∂g̃j ∧ ∂g̃j

≤ (κ+ 1)(M + 1)κ−1
κ∑
j=0

ddcg̃j .

It follows that

ddcφ+ ≥ (M − 1)κ
κ∑
j=0

ddcg̃j − (κ+ 1)(M + 1)κ−1
κ∑
j=0

ddcg̃j

= (M − 1)κ
[
1− (κ+ 1)

M + 1

(
1 +

2

M − 1

)κ] κ∑
j=0

ddcg̃j ,
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which gives ddcφ+ ≥ 0 since the choice M = 10κ implies that (1 + 2
M−1

)κ
< (1 + 1

κ

)κ
< 3.

Similarly, in the same way, we also have

ddcφ− ≥ (M − 1)κ
κ∑
j=0

ddcg̃j − (M + 1)κ−1
∑

0≤j,l≤κ

∣∣i∂g̃j ∧ ∂g̃l∣∣,
which gives ddcφ− ≥ 0. This concludes the proof of the first assertion of the lemma.

(ii) The second assertion of the lemma is a consequence of Lemma 3.6. �

End of the proof of Theorem 1.4. Recall that it remains to prove (4.5) and (4.6). Since µ is
invariant and n1 is even, we have

〈µ, g±0 · (h
± ◦ fn1)〉 =

〈
µ, (g±0 ◦ f

−n1/2)(h± ◦ fn1/2)
〉
.

We now transform the last integral on C2 to an integral on C4 in order to use the dynamical
system F = (f, f−1) on C4 introduced above. We are using the coordinates (z, w) on C4 =
C2 × C2. We will also use the diagonal of C2 × C2, which is given by ∆ = {(z, w) : z = w}.

Recall that we have µ = T+ ∧ T− and that the currents T± have local continuous potentials
in C2. It follows that the intersections of T± with positive closed currents on C4 are meaningful.
Moreover, the invariance of T± implies that (Fn1/2)∗(T+) = d−n1T+ on C4. Thanks to the
above identities, we have

(4.8)

〈µ, g±0 · (h
± ◦ fn1)〉 =

〈
T+ ∧ T−, (g±0 ◦ f

−n1/2)(h± ◦ fn1/2)
〉

=
〈
(T+ ⊗ T−) ∧ [∆], (g±0 ◦ f

−n1/2(w))(h± ◦ fn1/2(z))
〉

=
〈
T+ ∧ [∆], (Fn1/2)∗(φ±)

〉
=
〈
d−n1T+ ∧ (Fn1/2)∗[∆], φ±

〉
=
〈
d−n1(Fn1/2)∗[∆], φ±T+

〉
.

We apply Corollary 3.5 with the functions φ± = g±0 (w) · h±(z) instead of φ and the current

[∆] instead of R. For this purpose, since ∆ ∩ I+ = ∅, we can choose a suitable open set V1

containing ∆. We also fix an open set V2 as in Section 3. Since B is large enough, Lemma 4.1
implies that ddcφ± ≥ 0 on a neighbourhood of K+ ∩ V2. Thus, we obtain from Corollary 3.5
that

〈d−n1(Fn1/2)∗[∆]− T−, φ
±T+〉 . d−n1/2

or equivalently

(4.9) 〈d−n1(Fn1/2)∗[∆], φ±T+〉 − 〈T−, φ±T+〉 . d−n1/2.

Together, (4.8), (4.9), and the fact that

〈T−, φ±T+〉 = 〈T+ ∧ T−, φ
±〉 = 〈µ⊗ µ, g±0 (w) · h±(z)〉 = 〈µ, g±0 〉 · 〈µ, h

±〉
give the desired estimates (4.5) and (4.6). The proof of Theorem 1.4 is complete. �

Proof of Corollary 1.5. Fix 0 < γ < 1 and consider the normed space (E, ‖ · ‖E), where E
consists of all γ-Hölder continuous functions on suppµ, and ‖ · ‖E = ‖ · ‖Cγ(suppµ). This norm
satisfies Properties (e1) and (e2). In order to apply Theorem 1.3, we need to verify that µ is
exponentially mixing of all orders for all observables in E.

Take g ∈ E and H := ‖g‖E . It is easy to check that the function g̃ : P2 → R defined as

g̃(x) := inf
y∈suppµ

{g(y) +H dist(x, y)γ}

is γ-Hölder continuous on P2 and satisfies g̃ = g on suppµ and ‖g̃‖Cγ(P2) . ‖g‖E , where the
implicit constant does not depend on g.

Fix now κ ∈ N∗ and g0, . . . , gκ ∈ E. By the previous paragraph, we can construct functions
g̃0, . . . , g̃κ : P2 → R with g̃j = gj on suppµ and ‖g̃j‖Cγ(P2) . ‖gj‖E . The exponential mixing of
order κ of µ is then a consequence of Theorem 1.4. The assertion follows from Theorem 1.3. �
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Remark 4.2. Friedland and Milnor [32] proved that any polynomial automorphism of C2 is either
conjugate to an elementary automorphism which preserves a fibration by parallel complex lines
or to a Hénon map as above. So, our results apply to all automorphisms of C2 which are not
elementary.

Remark 4.3. When f is a regular automorphism of Ck with k even and p = k/2, the map
(f, f−1) is regular on C2k. The same proof as above gives us the exponential mixing of all
orders and the CLT for f . The results still hold for every regular automorphism but the proof
requires some extra technical arguments that we choose to do not present here for simplicity,
see for instance [20, 56].

Remark 4.4. When f is a horizontal-like map [24, 26] such that the main dynamical degree is
larger than the other dynamical degrees, the same strategy gives the exponential mixing of all
orders and the CLT, see [24] for the necessary estimates. In particular, these results hold for
all Hénon-like maps in dimension 2, see also [29].

Remark 4.5. In the companion paper [11], we explain how to adapt our strategy to get the
exponential mixing of all orders and the Central Limit Theorem for automorphisms of compact
Kähler manifolds with simple action on cohomology. As the proof in that case requires the
theory of super-potentials, which is not needed for Hénon maps, we choose to do not present it
here.
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[39] Hénon, M., A two-dimensional mapping with a strange attractor, Communications in Mathematical Physics

50 (1976), 69-77.
[40] Ibragimov, I.A., Some limit theorems for stationary processes, Theory of Probability and its Applications 7

(1962), no. 4, 349-382.
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