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Abstract

Population-wise matching of the cortical folds is necessary to compute statistics, a required

step for e.g. identifying biomarkers of neurological or psychiatric disorders. The difficulty

arises from the massive inter-individual variations in the morphology and spatial organiza-

tion of the folds. The task is challenging both methodologically and conceptually. In the

widely used registration-based techniques, these variations are considered as noise and

the matching of folds is only implicit. Alternative approaches are based on the extraction and

explicit identification of the cortical folds. In particular, representing cortical folding patterns

as graphs of sulcal basins—termed sulcal graphs—enables to formalize the task as a

graph-matching problem. In this paper, we propose to address the problem of sulcal graph

matching directly at the population level using multi-graph matching techniques. First, we

motivate the relevance of the multi-graph matching framework in this context. We then pres-

ent a procedure for generating populations of artificial sulcal graphs, which allows us to

benchmark several state-of-the-art multi-graph matching methods. Our results on both artifi-

cial and real data demonstrate the effectiveness of multi-graph matching techniques in

obtaining a population-wise consistent labeling of cortical folds at the sulcal basin level.

1 Introduction

1.1 Quantitative comparison across brains is a crucial but open question

Comparing features extracted from brain MRI across individuals is necessary for estimating

population statistics and ultimately discover markers of diseases. However, this task presents

several challenges at both the methodological and conceptual levels. Indeed, the features

extracted from two different individual brains are defined in two different spaces. Comparing

such features thus requires to address the methodological problem of transferring them into a

common space. The task of transferring information from different brains to a common space

consists in defining spatial correspondences across these objects by compensating for the vari-

ations in their respective geometry. The challenge arises from the massive inter-individual var-

iations in the geometry of the cortical surface, which make the identification of such spatial

correspondences an ill-posed problem. Consequently, any solution to this problem inevitably

requires the introduction of additional constraints based on assumptions about the biological
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validity of the resulting spatial correspondences, which constitutes a challenge at the concep-
tual level. Indeed, the assumptions and constraints introduced in the definition of the spatial

correspondences actually influence the derived statistics measured on the population of inter-

est, and could therefore be considered as a source of bias in population-wise analyses [1].

One widely used type of approach to tackle this problem—termed here as the registration-

based approach—consists in defining a mapping between each individual brain and an atlas

serving as the common space by estimating a spatial transformation. See for instance [2–5] for

examples of such approaches. As pointed above, the process of building the atlas and defining

the associated projection operator which minimizes the error induced by the transformation

remains an open research question. As a consequence, several registration techniques and

atlases co-exist in the field [6, 7]. The variety of atlases, projection mechanisms and descriptors

illustrate the ongoing exploration of putative biologically relevant features used to define these

correspondences across individuals. One of the most widely used registration-based

approaches [3] defines a mapping between cortical surfaces by imposing the alignment of a

combination of curvature and convexity features estimated from a 2D mesh representing the

geometry of the cortex. The cortical surface of a given subject is projected onto the atlas by

matching its curvature and convexity, under the assumption that aligning these features

induces biologically relevant anatomo-functional correspondences. In this process, as in any

registration-based approach, variations across individuals are considered as noise or con-

founding perturbations to be minimized, including variations in the topology and number of

folds (sulci). More generally, the registration-based approach could be seen as an oversimplifi-

cation of the problem, as it does not take into account potentially relevant geometric

information.

Alternative approaches consist in characterizing the geometry and organization of the corti-

cal folds in each individual and then compare these features across the population.

1.2 Characterizing cortical folding patterns using graphs

Several approaches have been proposed to characterize cortical folding patterns, such as gyrifi-

cation index, fractal dimension and curvature [8–10]. Although these measures capture rele-

vant morphological features, they do not explicitly reflect the topology, i.e the spatial

relationships between sulci. [11] introduced an analysis framework based on the automatic

extraction and labeling of the sulci allowing the characterization of their shape in terms of e.g.

sulcus area, depth and length, but also their spatial pattern. This representation of the cortical

geometry has been used for instance to characterize populations of healthy subjects [12], to

quantify potential deviations from normal populations in various conditions such as schizo-

phrenia [9] and autism spectrum disorder [13], or to estimate the heritability of the folding

patterns [14]. Pursuing on this line of research, the sulcal pits were introduced as a concept

allowing to decompose the sulci into smaller pieces and thus access finer scale geometrical

information. As described in details in [15, 16], each fold is divided into sulcal basins that are

defined as concavities in the white matter surface bounded by convex ridges, and the deepest

point in each basin defines the associated sulcal pit. More recently, [17, 18] represented the

geometrical relationships between sulcal basins as a sulcal graph. A sulcal graph is constructed

by considering each sulcal basin (or associated pit) as a node, while the edges connect only

adjacent basins and thus represent their spatial organization. Various geometrical features of a

sulcal basin can then be attributed to graph nodes (such as the depth of the pit, its 3d coor-

dinates. . .), while the spatial organization of the basins is encoded in the topology of the graph.

Fig 1 illustrates this decomposition of the cortical folds into sulcal basins allowing to represent

this complex geometry as a sulcal graph.
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These sulcal graphs constitute particularly relevant representations because: 1) variations

across individuals are preserved and are manifested as changes in both the topology of the

graph and the value of the attributes attached to the nodes and edges; 2) the design of tools for

the quantitative characterization of these variations can benefit from the extensive body of

methods from the graph processing literature.

1.3 Problem statement and contributions

In the present work, we focus on the task of matching together a set of sulcal graphs in order to

define correspondences across a population of subjects, under the specific constraint of explicitly

taking into account the variations in folding patterns. Before moving to the formalization, we

more precisely situate this problem with respect to the conceptual question of defining corre-

spondences across sulcal graphs from different individuals, and with respect to the methodo-

logical problem of graph matching.

1.3.1 Unsupervised comparison and matching of sulcal graphs. The use of sulcal graphs

to define correspondences across brains is highly relevant because all the geometrical informa-

tion about the macroscopic cortical folding can be encoded in such graphs. However, several

challenges need to be addressed in this context: 1) the large inter-individual variations in brain

anatomy induce complex variations across sulcal graphs, including in their topology; 2) sulcal

graphs can be contaminated by noise resulting from the imperfect segmentation of the individ-

ual cortical surface and corresponding sulcal basins; 3) there is no consensus on a nomencla-

ture or atlas at the scale of sulcal basins covering the whole brain, that is a prerequisite to tackle

the matching problem as a supervised learning task. Indeed, few studies investigated the

matching of cortical folds across individuals as a supervised task [19–21]. All these works

focused on the scale of sulci, i.e. considering large folds consisting of several of our sulcal

basins. To our knowledge, only [22] attempted to tackle this problem at finer scale, probably

because of the massive amount of efforts needed to gather sufficient amount of manually

labeled data [23]. Indeed, ambiguities due to variations across individuals in the folding pat-

terns become overwhelming at finer scale than sulci. This is illustrated by the tedious works

advancing the definition of a fined-grained nomenclature of folds [24] and their relationship

with underlying function [25]. The lack of widely accepted fined-grained nomenclature is also

blatant in the related field of brain parcellation: more than 20 different fine-grained atlases co-

exist [26], and even the most advanced multi-modal atlas [27] was validated only on a small

portion of the cortex.

Matching sulcal graphs across individuals is thus a very challenging problem. Instead of

relying on the few existing labeled data-sets that clearly deserve further validation, we decided

to approach this question as an unsupervised learning task.

Fig 1. Example of sulcal graphs from three individual brains, superimposed with the underlying decomposition of

the cortical surface in sulcal basins. Sulcal basins are shown in different colours, and their corresponding node in the

graph are represented as spherical dots in the lower panel. The color of each node in the graph illustrates the value of a

given attribute such as for instance the area or depth of corresponding sulcal basin.

https://doi.org/10.1371/journal.pone.0293886.g001
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We now describe the few studies that have attempted to tackle the question of unsupervised

labeling of sulcal graphs. The first approach was proposed by [15] and corresponds to the base-

line in brain imaging field. Indeed graph matching is not the main approach to match sulcal

patterns. As mentioned in sec.1.1, spherical registration techniques such as [3] implemented in

Freesurfer are traditionally applied to warp cortical surface and indirectly match sulcal pat-

terns. The approach from [15] consists in relying on such spherical registration to compute a

map of the spatial density of sulcal pits across a population of subjects. The density map is

computed by accumulating the pits from the different individuals in each vertex of an average

surface. Thanks to the alignment of folds resulting from the registration, the density map

shows spatial patterns following the major cortical folds that were consistently matched across

individuals, with regions of higher density in deeper, more stable sulci. A watershed algorithm

is then applied to this density map in order to separate the main clusters of sulcal pits, empiri-

cally defined as the regions of high density. An arbitrary label is then associated to each cluster,

hereby defining an ad-hoc labeling of the pits across individuals, depending on the cluster to

which they contributed in the density map. This procedure implicitly defines a matching of

sulcal pits and corresponding basins across individuals. Exemplar applications of this method

can be found in e.g. [15, 16, 28], with illustrations of density maps and induced labeling for

various populations. We refer in the following to this category of methods as Auzias et al.

since we used the open source implementation from that paper. The main limitation of this

approach is that the labeling is driven only by the coordinates of the sulcal pit.

[29] introduced an alternative procedure for labeling the sulcal basins, hereby considering

the geometry of the basin surrounding each sulcal pit in addition to its spatial location. We

refer to this method as Kaltenmark et al. in the following. The authors of [29] also raised the

question of the consistency of the labeling, a notion that we will develop further below. In this

method, an explicit constraint is imposed to restrict the labeling to only one node per subject

for each label. In addition, the nodes for which the labeling is ambiguous—i.e. for which sev-

eral labels are equally plausible—remain unlabelled, which is often denoted as partial matching
in the literature on graph processing. Importantly, the spatial relationship between adjacent

sulcal basins and pits is not taken into account in any of these methods, since the different

pits/basins from each subject are considered independently. In contrast, in the present work

our aim is to exploit the spatial organization of the adjacent basins stored in the sulcal graph

representation.

Few publications investigated the potential of graph matching in the context of sulcal

graphs. In [17], the spectral graph matching technique [30] was applied to a set of 48 monozy-

gotic twins, comparing a pair at a time. This study showed that the similarity of the sulcal

graphs across pairs of twins are higher than for unrelated pairs, demonstrating the genetic

influence on sulcal patterns, and the relevance of graph matching techniques in this context.

This approach was used in follow-up papers from the same group, e.g for comparing brain

lobes in [31] or for matching individuals onto an atlas in [32].

In [33], a population of 677 neonates was analyzed based on a sulcal graph comparison

method similar to the one form [17]. The authors proposed to use different features of the sulcal

basins such as the pit position, the pit depth, the basin area, the basin boundary and the local

connectivity of the graph to construct different similarity matrices, one per feature. The similar-

ity matrices were then merged using a matrix fusion technique [34]. A clustering algorithm was

then applied to the fused similarity matrix to identify sub-populations of sulcal graphs, associ-

ated to specific folding patterns in the central, cingulate and superior temporal regions.

Critically, all these studies relied only on pairwise graph matching techniques. Comparing a

population of graphs by pairs, in the presence of noise and large inter-individual variations, is

clearly sub-optimal.
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1.3.2 Multi-graph matching: A relevant framework for population studies. Given the

large variations across subjects and imperfect sulcal basin extraction, examining jointly a

group of sulcal graphs is key to reveal meaningful information not accessible by considering

only pairs of subjects. This is the translation to sulcal graphs of the basic idea behind general

population studies, that allowed researchers to uncover some of the mechanisms underlying

the anatomo-functional organization of the brain. We follow this principle by investigating for

the first time the potential of multi-graph matching techniques in the context of sulcal graphs.

By considering several brains together, the geometrical information that is shared by the

majority of individuals should help to regularize the matching problem and allow to identify

putative noisy graph nodes in a more robust way than with pairwise matching. The multi-

graph matching framework has the potential to uncover population-wise invariant patterns in

sulcal graphs without imposing a priori, potentially biasing, assumptions.

1.3.3 Contributions. In our previous work [35], we introduced a framework to generate a

set of synthetic sulcal graphs representative of a population, and used it to benchmark state of

the art pairwise matching techniques in this context. In [36], we provided a proof of concept of

the relevance of multi-graph matching techniques. In the present study, we extend these pre-

liminary studies in several directions.

First, we introduce an improved simulation framework to generate populations of artificial

sulcal graphs and demonstrate their biological plausibility through a quantitative comparison

with real data. Second, we benchmark a selection of recently published multi-graph matching

techniques against the best pairwise technique for this task (identified in from [35]), and report

variations in performance that would clearly impact potential real-world applications, e.g in a

clinical context. Third, we compare qualitatively and quantitatively the different graph match-

ing techniques, as well as the previously published approaches Auzias et al. and Kaltenmark

et al, on a real data-set of 137 subjects. Finally, we report an exemplar application of the multi-

graph matching framework by assessing potential statistical differences in the depth of

matched sulcal basins between a group of men and a group of women. Overall, our experi-

ments demonstrate the feasibility of comparing a large population of sulcal graphs based on

multi-graph matching techniques, in fully acceptable computing time.

2 Formal problem and state of the art

In this section, we define formally the problem of matching sulcal graphs, as well as the multi-

graph framework. We then give an overview of the different methods proposed in the litera-

ture and provide a more detailed description of the multi-graph matching methods included

in our experiments.

2.1 Undirected attributed sulcal graphs

We consider a population of N sulcal graphs, noted G1 . . . GN , representing the cortical folding

pattern of an hemisphere from N different individuals. The sulcal graph from a given subject q is

an undirected attributed graph formally defined as a quadruplet Gq ¼ ðVq; Eq;AV
q ;A

E
qÞ, where

Vq ¼ fv1; v2; . . . ; vnqg are the nodes in the graph and jGqj ¼ nq is the number of nodes. Eq� Vq

×Vq defines the set of eq edges. AV
q ¼ fa

V
v1
; aV

v2
; . . . ; aV

vnq
g is the set of attributes associated to each

node in Vq, and AE
q ¼ fa

E
e1
; aE

e2
; . . . ; aE

eeq
g is the set of attributes associated with each edge in Eq.

Note that the number of nodes nq and edges eq and corresponding attributes varies across graphs.

As illustrated on Fig 2, the sulcal graph from each subject is then mapped onto the same common

spherical domain using the surface inflation and registration tools from freesurfer v.5.1.0 (https://

surfer.nmr.mgh.harvard.edu/, see [3] for details). The matching is computed in this common
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spherical domain. In this work, we consider as attributes of the nodes the 3D coordinates of the

sulcal pits on the sphere. Regarding the attributes of the edges, we compute the length of the edge

on the sphere as an approximation of the geodesic distance between neighboring pits.

2.2 Generalities and overview of pairwise graph matching methods

Pairwise graph matching refers to the problem of finding correspondences between the nodes

of two graphs G1 and G2. This problem can be formulated as a Quadratic Assignment Problem

(QAP) [37]. Although different forms of QAP exist, the vast majority of the literature has

focused on Lawler’s QAP [38]. Given two graphs G1 and G2 with number of nodes jG1j ¼ n1

and jG2j ¼ n2 respectively, the Lawler’s QAP consists in searching for the assignment matrix
X12 2 f0; 1g

n1�n2 such that X12[i, j] = 1 indicates that υi 2 V1 corresponds to υj 2 V2 and X12[i,
j] = 0 otherwise, resulting from the following optimization problem:

max JðX12Þ ¼ vecðX12Þ
>
F12 vecðX12Þ ;

subject to X121n2
¼ 1n1

;X>
12
1n1
� 1n2

;X12 2 f0; 1g
n1�n2 ;

ð1Þ

where vec(X12) denotes the column wise vectorization of X12; 1n1
and 1n2

denote the column vec-

tors of all ones of size n1 and n2; andF12 2 ½0; 1�
n1n2�n1n2 is the affinity matrix that is given as an

input. The diagonal entries ofF12 encode the similarity across nodes whereas non-diagonal

entries encode the similarity across edges between the two graphs. The computation of the affinity

matrix is context-dependent, and we detail the approach used in the present work in section 4.1.

The computation and storage in memory of the very large matrix F12 impedes the scalabil-

ity of the matching problem based on this formulation. A solution to tackle this limitation is to

reformulate the matching as a Koopmans-Beckmann’s problem [39] that is a special case of

Lawler’s QAP:

max JðX12Þ ¼ trðC>
12
X12Þ þ trðA1X12A2X

>

12
Þ ;

subject to X121n2
¼ 1n1

;X>
12

1n1
� 1n2

;X12 2 f0; 1g
n1�n2 ;

ð2Þ

whereC12 2 ½0; 1�
n1�n2 denotes the affinity matrix across nodes, and A1 2 R

n1�n1 and A2 2

Rn2�n2 are the weighted adjacency matrices of two graphs respectively such that A[i, j] = wij if

edge (vi, vj) exists with weight wij encoding the attributes on edges and A[i, j] = 0 otherwise.

Fig 2. The sulcal graph from each subject is transferred onto a common sphere using the inflation and spherical registration tools from

freesurfer. The sulcal graphs from every subjects can then be mapped onto either the common sphere or onto an average surface for visualization. Note

that the spatial dispersion of the nodes of the graphs on the common spaces is heterogeneous, with dense clusters in cortical regions where the

variations across individuals are lower.

https://doi.org/10.1371/journal.pone.0293886.g002
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Koopmans-Beckmann’s formulation is a special case of Lawler’s where the edges can only be

weighted by a scalar value (i.e. cannot support a vector of attributes on edges). Under this con-

straint, we can decompose the large matrix F12 into three smaller matrices C12, A1 and A2,

which provides better scalability than Lawler’s QAP.

These two formulations are combinatorial QAPs and are known to be NP-hard problems.

Most methods therefore relax the hard constraints given in Eqs 1 and 2 and provide approxi-

mate solutions. Various approaches have been proposed to relax these problems, leading to a

variety of graph matching methods. Exhaustive reviewing of these methods is beyond the

scope of this work but we refer interested readers to the review [40].

Going back to our specific context, we reported in [35] a benchmark of the pairwise meth-

ods SMAC (Spectral Matching with Affine Constraints) [41], IPFP (Integer Projected Fixed

Point algorithm) [42], RRWM (Reweighted Random Walks for graph Matching) [43], and

KerGM (Kernelized Graph Matching) [44]. We observed that KerGM clearly outperforms the

others in our context. Indeed, KerGM is well suited for sulcal graphs for several reasons. First,

KerGM relies on Koopmans-Beckmann’s formulation which enables the use of attributes on

both nodes and edges while limiting the memory usage. In addition, this method relies on

Frank-Wolfe optimization that allows to follow an optimisation path that respects the con-

straint on each step, which induces a robustness to the presence of noise in graphs that is cru-

cial in our context. In the present work, we included only KerGM as a representative of

pairwise approaches in our benchmark because its performance was much higher than the

other pairwise techniques. Note that KerGM also served to provide the initialization to all the

multi-graph methods that are introduced in next section. The performance of KerGM in the

multi-graph matching experiments thus represent the baseline to which the other techniques

will be compared. Finally, note that since KerGM exploits both the attributes on nodes and

edges, the information related to the topology of our sulcal graphs is implicitly taken into

account in all the multi-graph matching techniques included in our study.

2.3 The multi-graph matching problem

We now focus on the problem of jointly matching a population of N graphs fG1; . . . ;GNg,

starting from pairwise assignment matrices Xij between graphs Gi and Gj (computed with

KerGM in this work). The key concept behind multi-graph matching in our context is the

cycle consistency. This concept states that a matching between two graphs Gi and Gj should be

the same if we go through an intermediate graph Gk to create a new mapping. Formally, a per-

fectly consistent, bijective mapping (every node is matched to one and only one other node)

would satisfy:

Xik ¼ XijXjk ; ð3Þ

for any i, j and k with i 6¼ j 6¼ k. A common way to estimate consistency at the population level

is to compute the full bulk assignment matrix X 2 f0; 1gm�m with m ¼
PN

q¼1
jGqj, that is

obtained by assembling all individual pairwise matrices:

X ¼

X11 X12 � � � X1N

X21 X22 � � � X2N

..

. ..
. . .

. ..
.

XN1 XN2 � � � XNN

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5
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Intuitively, enforcing the consistency constraint will induce a reduction of the rank of this

bulk matrix.

The first category of approaches explicitly aim at minimizing the rank of the bulk matrix

using various approaches [45–48]. For instance, [49] solves a global optimization problem by

using a projected power iterative method, and we detailed further [50].

The second category of techniques does not explicitly minimize the rank of the bulk matrix

but rely on other types of formalization aiming at increasing the consistency across all graphs

[51–54].

Finally, the third category corresponds to deep learning approaches that show promising

performance in supervised tasks compared to previous methods, but are not suited for unsu-

pervised tasks [55–62].

Some other interesting methods exploit the concept of consistency in order to solve the

problem of jointly matching multiple images [63–66]. However, the extraction of the attributes

on nodes is integrated and specific to images or videos (e.g. optical flow, SIFT. . .) in these

methods. Application to sulcal graphs would require major modifications of the implementa-

tion that fall beyond the topic of current work.

2.4 Selection of the methods included in our benchmark

We used the following criteria to select the methods included in our benchmark: (i) Availabil-
ity of code. We included only methods for which the authors have made their code openly

available in order to avoid reimplementation issues and to ensure the full reproducibility of

our results. (ii) Scalability. Since we are interested in performing population studies over large

sets of individuals, we excluded methods that do not provide acceptable scalability. (iii) Unsu-
pervised methods. Finally, as motivated in the introduction, we focus on unsupervised methods

in the present study.

The methods that satisfy these selection criteria are mALS [50], mSync [45], CAO [51] and

MatchEig [67]. We also identified the following methods for being relevant in our context, but

they did not meet our inclusion criteria: HiPPI [49] was not included because the code was not

provided; we never managed to run GAMGM [61] on our graphs despite our efforts (we sus-

pect some well known stability issues with Sinkhorn’s algorithm [68] but investigating such

limitation was out of the scope of this article); we were not able to get interpretable results

from LPMP [69], due to the sensitive tuning of many parameters; and IRGCL [70] did not

scale with the memory requirement from our experiments, contrary to the other methods

tested. We provide a detailed description of each of the methods included in our evaluation

framework below.

In our experiments, these multigraph graph-matching techniques will be compared with

the pairwise approach KerGM, and with the two methods from the literature specifically

designed for labeling sulcal graphs already described in Sec. 1.3.1: Auzias et al. [16] and Kal-

tenmark et al. [29]. All the computations from this work were executed on a computing server

with 32 physical cores of Intel XEON CPUs and 96 GB of RAM. All of the graph matching

methods presented in this study were applied using the code provided by the authors, except

for MatchEIG for which a very straightforward Matlab pseudo code was provided in their

paper, allowing for re-implementation in just a few lines of code (available in our repository).

2.5 Description of the selected multi-graph matching methods

As described in section 2.3, the general objective of multi-graph matching methods is to match

the nodes across several graphs together by enforcing consistency.
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The authors of CAO [51] propose to maximize the affinity information and impose consis-

tency at the same time instead of considering them separately. They assume that enforcing

consistency acts as a regularizer in the affinity objective function, particularly when the match-

ing is ambiguous due to noise. The approach is based on the search of an intermediate graph

Gq that allows to optimize the affinity score while progressively inducing consistency. They

introduce the unitary consistency across a set of N pairwise matching solutions X for a graph

Gq as:

CuðGq;XÞ ¼ 1 �

PN� 1

i¼1

PN
j¼iþ1
kXij � XiqXqjkF=2

nqNðN � 1Þ=2
; ð4Þ

where k.kF is the Frobenius norm. The authors propose several approaches to balance between

consistency and affinity, leading to different variants of CAO. In particular, their best algo-

rithm is able to elicit outlier nodes during the optimization, which is highly relevant in our

context. However, the use of affinity information along with consistency and outlier elicitation

increase the computational complexity of the method to O(N4). As a consequence, only the

least resource-demanding algorithm CAOcst did scale with the memory requirements imposed

by the size of our graphs and number of subjects in our populations. We thus refer to that par-

ticular version in the rest of this article. This version of CAO enforces consistency through Eq

4, but ignores the affinity information.

The approach mSync [45] consists in estimating a mapping of each Xij to a common uni-
verse of assignment matrices, of size d:

max
fUi ;Ujg2P

XN

i¼1

XN

j¼1

hUiUj;Xiji ; ð5Þ

with P ¼ fU 2 f0; 1gnq�d j U1d ¼ 1nq
g: ð6Þ

Since solving Eq 5 is intractable in most applications, the authors relax the problem into a

generalized Rayleigh problem. They further propose to use a reference graph in order to esti-

mate the mapping to the universe. In the implementation provided by the authors, the first

graph in the collection G1 is selected as the reference graph.

In contrast with mSync, MatchEig does not rely on a reference graph but uses the same

building blocks. MatchEig uses a singular value decomposition to reduce the rank of the bulk

matrix and applies the Hungarian method on the cross-correlation of corresponding singular

vectors to compute the permutation matrix. As a result the consistency in not guaranteed, but

in [67] the authors reported experimental results showing that MatchEig is robust to approxi-

mated estimation of the rank, and thus efficient in real conditions.

In mALS [50], the authors formalize the multi-graph matching as the following low rank

matrix recovery problem:

f ðXÞ ¼ �
XN

i¼1

XN

j¼1

hCij;Xiji þ ah1;Xi þ lkXk∗ ;

¼ � hK � a1;Xi þ lkXk∗ ;

ð7Þ

where, h., .i is the inner product, α controls the weight on sparsity, andK ¼ fCijg
N
i;j¼1

is the set

of affinity matrices given as input. The cycle consistency is induced by the nuclear norm kXk∗
that controls for the rank of X while h1;Xi favors bijective matchings across graphs.
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Importantly, X is treated as a real matrix such thatX 2 ½0; 1� The matrix is binarized at the

end of the optimization process using a threshold value t that is set by default as to t = 0.5. In,

addition, the authors leverage the work by [71, 72] for decomposing X which allows to solve

the problem in a lower dimension space using the ADMM method [73].

3 Generation of a population of synthetic sulcal graphs

A primary objective of our work is to investigate and evaluate different multi-graph matching

techniques in the context of sulcal graphs. However, as mentioned in the introduction, there is

no ground truth matching available for such graphs. We tackle this problem by designing a

procedure allowing to generate a population of artificial sulcal graphs with correspondences

defined by construction. Such populations of artificial graphs will constitute a ground truth

against which the different matching methods can then be benchmarked. Generating artificial

sulcal graphs for the purpose of a benchmark study induces the two following constraints: 1)

The artificial graphs should be biologically plausible, i.e. they should respect as much as possi-

ble the intrinsic properties of a population of real sulcal graphs. 2) The generation of the artifi-

cial graphs should be as simple and straightforward as possible in order to facilitate the

comparison of the performance obtained in the benchmark study and the interpretation of the

differences, i.e. the generation procedure should rely only on a limited number of parameters,

and potential biases should be avoided. As detailed below, these two contradictory constraints

are balanced in the design of our generation procedure.

The procedure is summarized in Algo. 1 and consists in two main steps. First, we generate a

set of points on the common spherical domain, that will serve as reference nodes. Then, we

impose several types of perturbations to this set of reference nodes in order to generate a corre-

sponding population of artificial sulcal graphs, while preserving the correspondences across

graphs, i.e. the ground-truth matching. Such procedure provides the ground truth matching

across the population, while controlling for the nature and amount of variations across artifi-

cial sulcal graphs (corresponding to different subjects in real data). We have implement this

complete pipeline in python and the code is openly accessible in the repository provided in

section 1.3.3.

Algorithm 1 Procedure to generate a population of artificial sulcal grahs
Require: N, nref, κ, μpert, σpert, p
Step1: create reference nodes ⊳ See Sec.3.1
for j = 1..10000 do
Sample nref points on the sphere
Compute the minimum geodesic distance

end for
Choose the set of points with the largest min distance.
Step 2: generate a population of sulcal graphs ⊳ See Sec.3.2
for i = 1..N do
Perturb location of the reference nodes ⊳ See Sec.3.2.1
Add outliers and suppress some nodes ⊳ See Sec.3.2.2
Compute the edges of the graph ⊳ See Sec.3.2.3

end for

3.1 Generation of a set of reference nodes

The first step consists in generating a set of reference nodes on the spherical domain while

controlling for two specific distinct parameters: the number of nodes noted nref, that is typically

set to match the average number of nodes across a real population, and the minimum distance
between the nodes. Indeed, the nodes of the real sulcal graphs cannot be closer to each other

than a minimum distance since they correspond to depth maxima that are not located in the
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immediate proximity of the boundary of sulcal basins (see [16] for further description of the

extraction of sulcal pits and basins). As a consequence the spatial distribution of the nodes on

the sphere cannot be fully random. In order to generate this set of nref points on a sphere with

pseudo-random spatial distribution, we adopted a simple brute force approach: we sample a

set of nref points over the surface of the sphere 10000 times; and we select the set that has the

largest minimum geodesic distance between neighbouring points. As we will show in sec.4.3.1,

10000 times is sufficient to get a set of reference nodes with a minimum distance between

points that is realistic. Technically, the uniform sampling of points on the sphere is achieved

by generating random rotations of the unit vector as described in [74, 75].

At this stage, we have defined on purpose a set of reference nodes that matches a real popula-

tion in terms of size and of minimal distance between nodes. The next step consists in perturb-

ing the reference nodes in order to generate the population of synthetic sulcal graphs.

3.2 Generation of an individual sulcal graphs

We now add perturbations of different natures to this set of reference nodes in order to obtain

a population of artificial sulcal graphs, that corresponds to different subjects. These perturba-

tions aim at mimicking the inter-individual variations that are observed in a healthy popula-

tion, by affecting the features of the nodes and edges, but also the topology of the graphs. In

order to generate a population of N artificial sulcal graphs, these operations are repeated N
times independently.

3.2.1 Perturbation of the location of the reference nodes. The first step consists in add-

ing random noise to the coordinates of the reference nodes on the sphere, in order to model

the inter-individual variability that exists in the location of the sulcal pits. We used the von

Mises-Fisher (vMF) distribution that is an approximation of Gaussian distribution on a sphere

[76]. The two parameters of the vMF distribution μ and κ can be seen as the equivalent of the

mean and of the inverse of the standard deviation (κ/ 1/σ) for a Gaussian distribution. There-

fore, we iterate across the reference nodes, and for each reference node, we produce a noisy

one by sampling from the distribution vMF(μ, κ), where μ is the coordinates of this reference

node. We control for the amount of noise on the coordinates of the perturbed nodes through

the value of the parameter κ, that is common to all nodes from the reference set. Smaller values

for κ will induce larger variations across the artificial sulcal graphs within the population.

Importantly, note that since we perturb each node of the reference set independently, we keep

the correspondence between each noisy node and its reference node, which will allow defining

our ground truth matching at the population level.

3.2.2 Addition of outliers and suppression of nodes. Next, we simulate the inter-individ-

ual variations in the number of nodes across the sulcal graphs, which is of crucial importance

for generating biologically plausible artificial populations. The aim is to model both false posi-

tive and false negative matchings, i.e. respectively nodes that are present in the reference set

but not in a given graph, and nodes that are present in the graph but not in the reference set.

This is achieved by randomly adding a certain number no of nodes on top of the perturbed

nodes—hereafter called outlier nodes, and by deleting ns nodes amongst the perturbed nodes—

hereafter called suppressed nodes. In order to randomly draw no and ns, we use the β-binomial

distribution B(ν, α, β), which is a distribution of non-negative integers. The parameter ν
denotes the size of the support of the distribution, i.e the maximal value that can be sampled.

The parameters α and β can be set so that B(ν, α, β) approximates a Gaussian distribution. We

describe the setting of these parameters and precise their link with μ and σ of a Gaussian in the

S1 and S2 Figs. Since we want the average number of nodes across the population of perturbed

graphs μsimu to match the number of nodes in the reference set nref, we set μo = μs = μpert and
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also σo = σs = σpert. This formulation allows us to control the standard deviation of the number

of nodes across the population of artificial graphs with the two parameters μpert and σpert.
3.2.3 Construction of the edges. The last step consists in constructing each artificial sulcal

graph with the sets of perturbed nodes as follows. We first compute the three-dimensional

convex hull of each set of perturbed nodes located on the sphere. This yields a triangulation

where only neighboring nodes on the sphere are connected, which is a simple way to simulate

the region adjacency graph that is constructed from the sulcal basins in the real data. However,

the average node degree in such triangulations is higher than for real sulcal graphs. Therefore,

we finally delete a small percentage p of the edges in these triangulations, in order to obtain

artificial graphs which match the average degree of real sulcal graphs.

Note that since the construction of the edges occurs after the previous perturbation steps

(perturbations of the location, addition of outlier nodes and suppression of nodes), the result-

ing artificial sulcal graphs can show variations in their topology across individuals of a popula-

tion, as we observe in real data, making them biologically-plausible in that respect.

4 Experiments and results

4.1 Computation of the affinity matrices

As described in Sec.2.2, we initialize all the multigraph matching methods using the pairwise

results obtain from KerGM, which relies on the formalization of Eq 2. We thus need to com-

pute the affinity matrices Cij, Ai, Aj that store the similarity between nodes and edges across

every pairs of graphs in the population.

In the present work, we compute these affinity matrices using Gaussian kernels applied to

the attributes. For two nodes v 2 G and v0 2 G0 the affinity value is computed using the kernel

defined as exp ð� gVkaV
v � aV

v0 k
2

2
Þ and for two edges e 2 G and e0 2 G0 the kernel is defined as

exp ð� gEkaE
e � aE

e0 k
2

2
Þ. To estimate appropriate values for γV and γE we use a heuristic proposed

in [18] that consists in using a cross-validation scheme to compute the inverse of the median

of the distribution across all possible pairs of nodes/edges, independently for each attribute

(3D coordinates on the sphere for the nodes and the geodesic distance for the edges).

4.2 Dummy nodes

Most graph matching methods assume a constant number of nodes across the graphs to be

matched, which is not the case in our case (both synthetic and real graphs). We use the classical

approach from the graph matching literature which consists in adding dummy nodes to smaller

graphs so that all the graphs get the same number of nodes as the largest graph in the popula-

tion. For each of these dummy nodes, we assign to 0 the corresponding values in the node and

edge affinity matrices. This makes the optimization problem defined in Eq 2 independent

from dummy nodes.

4.3 Benchmark on synthetic sulcal graphs

4.3.1 Description of synthetic data sets. We first tuned empirically the parameters to the

values μpert = 12, σpert = 4 and p = 10% to obtain variations in our synthetic graph populations

that are in line with what is observed in real data. The distribution for number of nodes in the

real data population is 88.27 ± 4.72 likewise in our simulated population for a randomly cho-

sen κ value the distribution for number of nodes is 88.15 ± 4.45 for the selected value of μpert
and σpert and is consistent across all κ values across all trials. We further provide in S3–S5 Figs

additional materials showing the matching distributions between our simulated graphs and

real data.
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Furthermore, we varied the value of κ 2 [100, 200, 400, 1000], which controls the amount

of variations across synthetic graphs within a population. Note that κ controls the spread of

nodes coordinates around the reference nodes, which in turn induces variations in the topol-

ogy and attributes of synthetic graphs.

For each value of κ, we generate 10 populations of N = 137 synthetic graphs (which corre-

sponds to the number of subjects in our real population; see below) and report the average and

standard deviation of the metrics described below. As illustrated on Fig 3, our populations of

synthetic graphs show variations that are qualitatively very close to those observed across real

graphs.

4.3.2 Evaluation metrics for synthetic data sets. In order to evaluate the different match-

ing methods on simulated graphs, we use the classical precision, recall and F1-score:

Precision ¼
True Positives

True Positives þ False Positives
2 ½0; 1� ð8Þ

Recall ¼
True Positives

True Positives þ False Negatives
2 ½0; 1� ð9Þ

F1 ¼ 2
ðprecision� recallÞ
precisionþ recall

2 ½0; 1� ð10Þ

Thus, Precision is a ratio between the True positives(number of correct matches predicted by
the algorithms) and all the positives(number of matches by the algorithms). Whereas, Recall is a

ratio between True positives and True positives along with False negatives(number of correct
matches not predicted by the algorithms). Finally, the F1 score provides a balance between Preci-
sion and Recall. A F1-score of 1 reflects the ability of the algorithm to obtain a perfect matching

Fig 3. a) Real sulcal graphs from three randomly chosen individuals, and projected on the average surface. b)

Simulated graphs randomly chosen for κ = 1000, showing the ground-truth correspondence across graphs in color.

Nodes in black represent the outlier nodes that have no correspondence. c) Illustration of the impact of κ on the spatial

dispersion of nodes: the nodes of six simulated graphs are shown on the average surface for κ = 1000 (left) and, κ = 200

(right). The spread across the nodes for each cluster varies according to κ, while outlier nodes in black have random

locations.

https://doi.org/10.1371/journal.pone.0293886.g003
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of inlier nodes and accurate identification of outlier nodes. These metrics are relevant in our

context to detect matching with outliers alongside the incorrect matches.

4.3.3 Results on synthetic data sets. We report in Fig 4 the mean and standard deviation

of Precision, Recall and F1-score, computed across the 10 synthetic populations for each value

of κ.

First, we find that three multi-graph matching methods, mALS, MatchEig and mSync,

vastly and consistently outperform KerGM, which has been identified as the best pairwise

matching method for this task in [35]. This confirms our main hypothesis: considering the

matching problem on the whole population using multi-graph matching allows an important

gain in performance compared to only considering pairs of graphs.

Then, we observe a gradual decline in the performance of all methods as the noise increases

(decrease of κ), as expected. The performance of the multigraph approaches mALS,MatchEig

and mSync resist much more to this increase in variability than the pairwise approach. The

performance of mSync is limited more specifically by the lower precision at any level of noise.

This suggests that the difference in performance between mSync, mALS and MatchEig is

mainly due to the hard constraint on the consistency in mSync that seems too restrictive. The

higher performance of MatchEig compared to mSync while the two methods are based on the

same building blocks supports this interpretation.

The performance of mSync, MatchEig and mALS are very similar when looking at the

recall measure. However, the precision of mALS is higher that all the other methods, for all

noise levels. Overall, mALS shows the best F1-score for every κ values, thanks to a very high

precision combined with very good recall. Indeed, the F1-score for mALS is above 0.7 even for

κ = 200 which corresponds to a configuration where the noise is quite strong.

Finally, the performance of CAO is very low, even lower than the pairwise technique

KerGM. Such poor performance is likely a consequence of the optimization that considers

only the consistency but ignores the affinity of nodes. As already mentioned in Sec.2.5, the

other versions of CAO proposed in [51] could show much higher performance but did not

scale with the size of our data.

4.4 Application to real data

4.4.1 Preprocessing of real data. For the evaluation on real data, we use the sulcal graphs

from 137 young healthy adults (69 females and 68 males) selected from the publicly available

database OASIS [77]. The preprocessing of these data (brain tissues segmentation, mesh

extraction and sulcal graphs construction) has been detailed in [16, 18]. Across this population,

Fig 4. F1-score, precision and recall for κ 2 [1000, 400, 200, 100]. For each method, we plot the average across the 10 simulated populations as a line

and the standard deviation as the shaded region of the same color.

https://doi.org/10.1371/journal.pone.0293886.g004
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the number of nodes is 88±4, with a maximum size of 101 nodes/pits. Dummy nodes are thus

added to all other graphs to get a constant size of 101, as explained above.

4.4.2 Evaluation metrics used with real data. In absence of ground truth matching for

real data, we cannot compute the same scores as for the simulation experiments. We therefore

combine a set of quantitative metrics with some qualitative assessments, which we describe

below.

Consistency. According to [51], we compute the node consistency as follows: Given Gk 2

fGqg
N
q¼1

and the bulk matrixX, for node vk 2 Gk, with index iðvkÞ 2 f1; . . . ; jGkjg, its consis-
tency is defined by:

Cðvk;XÞ ¼ 1 �

PN� 1

i¼1

PN
j¼iþ1
jjYðvk; :ÞjjF=2

NðN � 1Þ=2
;2 ð0; 1�; ð11Þ

where ||�||F is the Frobenius norm, Y = Xkj − XkiXij and Y(vk,:) is the i(vk)-th row of matrix Y.

Note that it is different from Eq 4 which estimates the consistency at the graph level. This con-

sistency measure is computed for each node of each graph, including dummy nodes. A value

of 1 corresponds to the ideal case where each graph only contains nodes that have been

matched in a consistent manner. This consistency measure cannot distinguish the matches of

real nodes to dummy nodes from valid matches across real nodes. For methods imposing an

explicit constraint on the consistency, a value of 1 is expected (and not informative), but for

the other methods this measure is relevant and allows to assess the spatial pattern of the consis-

tency across clusters.

Qualitative and quantitative assessment of the labeling induced by the matching. In terms of

potential applications of the graph matching to sulcal graphs, a major outcome is the labeling

of graph nodes that is induced. As already mentioned in the introduction, the assessment of

the quality of the labeling and thus of the biological relevance of the matching across individu-

als is an ill-posed problem. The first problem is to retrieve a labeling from the assignment

matrix resulting from the matching. In the case of a perfectly consistent matching where each

node of each graph would be matched to one and only one node from every other graph in the

population, the labeling would be trivial and would consist in simply associating a label to each

row or column of the assignment matrix. This situation is however impossible since the num-

ber of nodes varies across individuals within our population of interest. Therefore, in the pres-

ent work we take the largest graph as a reference, and we associate an arbitrary label to each of

its nodes and then propagate these labels to every other graphs based on the assignment matrix

resulting from each method.

Once the labeling of the nodes is retrieved, the nodes that share the same label across sub-

jects are grouped together into what we will designate as clusters, that are different depending

on the matching method. We then compute the coordinates of the centroid of each cluster,

which enables to evaluate qualitatively the spatial distribution of the different clusters across

the cortical surface.

This qualitative assessment is complemented with a quantitative measure of the compact-

ness of the clusters. For this, we compute the silhouette coefficient of each node from each

graph. As proposed in [78], the silhouette of a node corresponds to the ratio between the aver-

age Euclidean distance to the other nodes in the cluster and its distance to other nearby clus-

ters. Since the distances are computed on the spherical domain, the use of Euclidean distance

is sub-optimal but the errors induced are very low and independent from the matching

method. The silhouette coefficient of a cluster is then obtained by averaging the silhouette val-

ues from corresponding nodes.
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4.4.3 Results on real data. We first report in Table 1 the quantitative measures that allow

us to compare the different techniques at the whole brain level: the number of clusters (thus of

labels) obtained with each method, the silhouette measure averaged across all nodes and

graphs, the percentage of nodes remaining unlabeled, the consistency measure averaged across

all nodes and graphs, and the computing time.

The number of clusters and percentage of unmatched nodes indicate that the two methods

that allow partial matching mALS and Kaltenmark et al. result in a lower number of clusters,

suggesting that the ambiguous nodes remain unlabeled instead of enforcing their matching

into potentially unreliable clusters. The methods MatchEig, mSync, CAO and KerGM enforce

the matching of every nodes, and result in a number of clusters equal to the size of the largest

graph in the set, i.e. 101. The method Auzias et al. results in more clusters than the size of the

largest graph, suggesting that some clusters correspond to highly variable nodes that cannot be

matched consistently across individuals. This is confirmed by the consistency measure which

is lower than for mALS. The consistency of Auzias et al. is still much higher than the value of

0.30 obtained with the pairwise technique KerGM. The performance of MatchEig lies between

mSync and Auzias et al.. Note that the methods mSync and CAO explicitly enforce a perfect

consistency, but this is possible only when considering the dummy nodes as pointed in section

4.4.2. Also note that the method Kaltenmark et al. also gets a perfect consistency. This is a

consequence of the explicit constraint imposed in this technique by allowing one and only one

node per subject to be matched for any given cluster.

The silhouette measures illustrate that a high consistency can be associated with a low com-

pactness of the clusters as e.g. for CAO and mSync that get values close to the one of the pair-

wise technique KerGM. MatchEig get higher silhouette values than these techniques. The

methods Auzias et al. and Kaltenmark et al. get much higher silhouette values which is

expected since these techniques enforce the matching of nodes based essentially on their spatial

proximity on the surface. The silhouette value of mALS is higher than these two techniques.

Overall, mALS results in high silhouette and consistency values, at the cost of a high number

of unmatched nodes (28.4%) compared to Kaltenmark et al. and Auzias et al., indicating that

this method was much more conservative in the matching, leaving more ambiguous nodes

unmatched.

We then illustrate the matching across nodes from the different graphs (subjects), obtained

for each method on Fig 5. We do not show the results from CAO to save space, since the per-

formance of this method on both simulations and real data were worse than the pairwise tech-

nique kerGM. The number and location of the different centroids (larger circles) is

informative of the spatial distribution of the clusters of nodes across the cortical surface, for

each method. On the first column (mALS and Kaltenmark et al.) some nodes remain unla-

belled and are represented in black. The clusters seem more compact than for the methods

Table 1. Quantitative measures computed at the whole brain scale.

Method Num. clusters silhouette Perc. unmatched consistency cpu time (min)

mALS 82 0.55 ± 0.22 28.4 0.91 ± 0.08 783

Kaltenmark et al 94 0.44 ± 0.23 17.0 1.0 ± 0.0 *180

Auzias et al 104 0.49 ± 0.18 0 0.82 ± 0.15 *30

MatchEig 101 0.18 ± 0.40 0 0.68 ± 0.02 13

mSync 101 0.08 ± 0.49 0 1.0 ± 0.0 31

CAO 101 −0.12 ± 0.45 0 1.0 ± 0.0 3255

KerGM 101 −0.04 ± 0.34 0 0.30 ± 0.17 1362

https://doi.org/10.1371/journal.pone.0293886.t001
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Auzias et al., MatchEig and mSync that do not allow any node to remain unlabeled. With

kerGM, the matching looks noisy, with clusters overlapping between each other in almost

every cortical location, which illustrates the poor anatomical relevance of the matching.

For further evaluation of the performance of the different techniques, we show on Fig 6 the

silhouette values of every nodes across all graphs as well as the centroids of each cluster as a

larger circle. The high silhouette values of the centroids for the methods mALS, Auzias et al.

and Kaltenmark et al. are visible with mostly red and orange centroids. In contrast, we

observe more centroids in green and blue for KerGM. Together with Table 1, this figure illus-

trates the poor performance of pairwise matching approach with high spatial dispersion of

nodes corresponding to each cluster for KerGM, associated to very low silhouette coefficients.

The method mSync results in higher silhouette coefficients for some nodes, but lower value

for others (nodes and centroids in blue on Fig 6), indicating that the matching was enforced

also for ambiguous nodes located in highly variable regions. This is a consequence of the hard

consistency constraint in mSync imposing a matching that is consistent across all graphs by

construction, even in highly variable regions. The results from MatchEig are slighly better,

with less centroids in blue than for mSync. For Auzias et al., we observe that the clusters are

organized around regions of high nodes density, but the nodes located relatively far from the

centroids have a lower silhouette value (nodes in green on Fig 6). These observations are con-

sistent with the algorithm that is based on a watershed applied to the sulcal pits density map as

described in Sec.1.3.1. For both mSync and MatchEig, we observe some clusters with low sil-

houette value located close to each other, suggesting that the number of clusters is too high.

The techniques mALS and Kaltenmark et al. result in much higher silhouette values,

which is expected since they do not force the matching of highly variable nodes that are left

unlabeled. The unlabeled nodes have a very low silhouette value (in violet on Fig 6), but since

they do not belong to any cluster, this does not reduce the silhouette values of clusters. Note

Fig 5. Labeling and corresponding cluster centroids (larger circles) for each method. Dots in black in the first column (for mALS and Kaltenmark

et al.) correspond to unmatched nodes. See text for further description.

https://doi.org/10.1371/journal.pone.0293886.g005
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that even for these methods, the clusters get closer with lower silhouette values in highly vari-

able regions such as the anterior frontal and occipital lobes.

Across the different methods, we observe that the clusters showing a higher silhouette value

relative to other clusters are located systematically in the same regions that are known to be

less variable across individuals, such as the central sulcus, and the insula. For these clusters, the

silhouette values are close across methods, confirming the lower ambiguity in the matching in

these regions. In highly variable regions, the different methods produce different matchings.

For instance in the occipital lobe, the clusters produced by Kaltenmark et al. show lower sil-

houette values compared to mALS, but we observe the opposite effect in the anterior frontal

lobe.

On Fig 7, we show the consistency for every nodes and centroids, for the four methods that

do not explicitly enforce a perfect consistency. Clearly, the pairwise technique KerGM results

in inconsistent matching for every clusters, including the regions where the variations across

individuals are known to be low (no centroid in green, even in the central sulcus and the

Fig 7. Node consistency computed for each node of each graph with respect to the remaining graphs, and then averaged across graphs. We

adapted the colorbar to visualize the differences between the three methods, with the pariwise technique KerGM showing much lower values.

https://doi.org/10.1371/journal.pone.0293886.g007

Fig 6. For each method, we show the silhouette coefficient of each node from every graphs, as well as corresponding centroids as larger circles.

Each centroid (larger circles) is colored according to the average of the silhouette coefficient of corresponding nodes.

https://doi.org/10.1371/journal.pone.0293886.g006
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insula). For mALS and Auzias et al., we can observe the spatial variations of the consistency

across cortical regions. Again, higher consistency is obtained in less variable regions (central

sulcus, insula) for both techniques, and relatively lower values are visible in the frontal and

occipital regions. With MatchEig, the clusters with lower consistency (in grey, close to .5) cor-

responds to the clusters with lower silhouette value on Fig 6. These clusters are located in

highly variable regions such as the top of gyri. The consistency is higher for mALS than Auzias

et al. for every clusters. Note that the spatial pattern of the consistency measure for mALS is

anatomically relevant, with a consistent matching in the insula, the central and pre-central

regions, and less consistent in the peri-sylvian regions. At a more local scale, we observe a clus-

ter in the superior temporal sulcus that is more consistent than those located anteriorly or pos-

teriorly, which is in line with previous studies describing variations and stabilities across

individuals in this region [79].

4.4.4 Exemplar application: Group statistics. We report an exemplar application of the

multi-graph matching framework in the context of a statistical comparison between two

groups of subjects, which is a classical task in the literature. In this experiment, we divide our

population of 137 subjects into two groups depending on their sex: a group of 69 females and a

group of 68 males. We then use the matching across graphs resulting from our previous exper-

iment to define correspondences across the sulcal basins from all the 137 individuals from the

two groups. Thanks to this matching, comparing the two population is trivial and one can sim-

ply compute a t-test between the two groups in order to assess statistically potential differences

related to their sex in any of the features stored in the graphs as attributes of nodes. On Fig 8,

we report the t-value from the t-test computed to assess potential difference in the depth of sul-

cal basins between males and females.

As we can observe on this figure, the group statistics are strongly influenced by variations

in the matching resulting from the different techniques. More specifically, few regions show a

Fig 8. For each method, the clusters are colored following t-values obtained from the t-test comparing the depth of sulcal basins between males

and females, with t> 0 M> F. To facilitate the comparison across the different methods, we applied two thresholds to the t-values: t-values superior to

1.98 or inferior to -1.98 correspond to p< .05 (two-sided test with a dof 135), and t-values superior to 2.61 or inferior to -2.61 correspond to p< .01,

and t-values closer to 0 corresponding to a non-significant difference are colored in white.

https://doi.org/10.1371/journal.pone.0293886.g008
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weak statistical difference (p< .05) between the two groups with the matching from kerGM.

The sulcal graph matching techniques from previous literature Auzias et al. and Kaltenmark

et al. result in very different statistics. With Auzias et al., we observe one cluster with a lower

depth in males (p< .01) in the basal temporal lobe while the most significant cluster with Kal-

tenmark et al. is located in the posterior temporal cortex and corresponds to a higher depth in

males (p< .01). We also observe a region with higher depth (p< .05) in males with the two

methods in the anterior temporal lobe. Across the three graph matching techniques mALS,

mathEIG and mSync, the most significant cluster (p< .01) is consistently located in the poste-

rior insula and corresponds to a lower depth in males. Therefore, this experiment confirms

that the matching is key to enable statistical comparisons, and the choice of the method has a

strong influence on the resulting statistics. Further interpretation of these group statistics fall

beyond the scope of the current methodological work, but we refer readers interested in such

statistical analysis at the scale of sulcal basins to e.g. [16] where the authors reported an experi-

ment on the asymmetry across left and right hemispheres, [80] for a statistical analysis of the

relationship between basins frequency and IQ, or [81–83] for applications to psychiatric disor-

ders. Note that a strong influence of the sulcal basins matching technique on the resulting sta-

tistics as we observed in Fig 8 is expected for all these publications. Finally, we emphasize that

extending the analysis to other features stored as attributes of nodes is straightforward. Many

other features of interest can be easily extracted and stored as attributes of nodes such as for

instance cortical thickness, curvature or an estimation of the cortical myelin [27].

5 Discussion

In this work, we explored the potential of graph matching methods applied to a population of

sulcal graphs to uncover correspondences across individuals driven by the local patterns of

folds. Indeed, these graph matching methods can use the characteristics of individual sulcal

basins as well as their topological organization to construct the correspondences. Our results

on both simulations and real data support the biological relevance of the correspondences

across individual resulting from multi-graph matching techniques.

5.1 Relevance of simulated graphs relative to real data for evaluating

matching techniques

To overcome the lack of ground truth for real data, we proposed a procedure allowing to gen-

erate artificial graphs that approximate the features of real sulcal graphs while controlling the

variations across graphs. This simulation procedure enabled to benchmark various pairwise

and multi-graph matching techniques. The evaluation of the performance of the different

methods and their robustness to controlled variations in the simulated graphs was informative

for probing their effectiveness in this context. The performance of the pairwise approach

KerGM was limited even when the level of perturbations was minimal. Note that we reported

in [35] that alternative pairwise techniques perform even worse on this task. Amongst the dif-

ferent multi-graph matching techniques tested, mALS showed better performance than the

others in all conditions, and a good robustness to increasing noise levels. These observations

were confirmed by our application on real data. Overall, our set of experiments confirmed the

intuition that multi-graph matching techniques are highly relevant in our context, while pair-

wise techniques show limited performance and might thus be restricted to initialization

purpose.

Of note, our aim was not to push the biological plausibility of our simulated graphs. Keep-

ing the simulations simple enables straightforward interpretation of the variations in the per-

formance across the different approaches. This trade-off is visible in the procedure in
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particular when we sample the reference nodes uniformly on the sphere. Indeed, our simula-

tion procedure cannot produce realistic non-uniform spatial distribution of nodes across the

population. While this could be achieved by adapting the sampling of the reference points, this

would induce variations in the performance of the matching techniques depending on the

location on the sphere, which in turn would make the comparison across methods much more

difficult.

Beyond the present work, our procedure for simulating sulcal graphs could be instrumental

to assess future improvements in graph matching techniques.

5.2 Potential methodological improvements and considerations relative to

deep-learning approaches

As already mentioned in section 2.3, many other graph matching techniques can be found in

the literature but were not included in the present work. More specifically, deep learning

approaches outperform traditional approaches in supervised learning task [84]. Recent works

such as e.g. [85, 86] showed that the structural information can be learnt by a Graph Neural

Network(GNN), providing that manually labelled ground-truth data is available.

In addition, the rise of semi-supervised learning approaches represents an opportunity in

the context of graphs with partial matching ground-truth. Such approaches are worth consid-

ering in our context, since we observed marked variations across cortical regions in the ambi-

guity of the matching. The work by [87] considers a semi-supervised framework for handling

the matching problem where the ground-truth correspondence are only given for a small sub-

set of nodes. In addition, their approach imposes an explicit inductive bias to find correspon-

dences across graphs, based on neighbourhood consensus that does not allow adjacent nodes

from being mapped to different regions in other graphs. This is appealing in the case of sulcal

graph matching where we would like to enforce the matching of nodes located in some specific

regions more than in others. Such a framework could benefit from the recent work [22] on

context-aware data augmentation, which could be instrumental to overcome the bottleneck of

the lack of ground-truth labeling data.

Another avenue for potential gains in performance consists in improving the definition

and integration of the attributes on nodes and edges. Many other geometrical features could

be considered to enrich the attributes on nodes, such as e.g. shape index and curvedness [88],

or the local gyrification index [89]. Note however that the complementarity of the different

attributes on nodes is crucial to improve the mathcing performance.

On the other hand, the attributes on edges are most often reduced to a scalar value (i.e. a

simple weight), due to technical limitations of the graph matching methods. Indeed, sulcal

graphs can be enriched with various types of attributes on edges, which would greatly help the

matching algorithm. For instance, in [80] the authors proposed to use as an attribute on edges

the depth of the shallower point separating two neighboring sulcal basins, denoted as ‘ridges’.

The depth of the ridge between two basins is a good descriptor of the local cortical geometry

since the two basins can appear almost as separated as two different sulci if the ridge is very

superficial, while in other cases, sulcal basins can constitute a long continuous sulci with no

interruption when the ridge is deep. Other highly relevant attributes on edges would be theses

related to the connectivity across cortical areas, such as the structural connectivity extracted

from diffusion weighted MRI [90] or the functional connectivity extracted from resting state

functional MRI [91]. Note however that here also, an appropriate assessment of the comple-

mentarity of the information carried by the different attributes is missing. Such analysis would

in addition face the problem of the lack of methods in the literature attacking the problem of

learning edge representations [92]. In particular, the methods included in the present work
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cannot handle vectors of attributes on edges. Some recent deep learning methods such as [58]

can exploit such vectors of attributes, but their scalability is limited by the size of the affinity

matrices. We proposed in [93] to overcome this limitation by leveraging the recent matrix fac-

torization method from [44]. We also identified very recent works that are particularly relevant

in this context. [94] introduced innovative strategies to address noisy matching at both node

and edge levels. [95] leverages representation learning techniques to acquire universal points

for partial matching. These approaches offer various possibilities for potential improvement in

current context, which might be assessed in future studies.

5.3 Data-driven nomenclature of sulcal basins

The present work extends previously reported experimental results illustrating the major

impact of the matching strategy on the induced correspondences and data-driven nomencla-

ture. In [29], the number of clusters obtained at the group level varied from 90 to 114 for the

right hemisphere using either the approach proposed in [16, 29] respectively, on the same pop-

ulation of subjects. We provide a much more detailed comparison. We show on Fig 9 the

superimposition of the centroids from different methods on the same average surface. This

visualization shows that the location of some of the centroids are very consistent across meth-

ods (indicated by arrows), corresponding to cortical regions where variations across individu-

als are known to be low, such as the central sulcus, the insula, the inferior precentral or

superior temporal sulcus. Other clusters differ across methods. The clusters indicated by

squares are those resulting from Auzias et al. and mSync (resp.) that do not match clusters

from Kaltenmark et al. (see also Table 1). These are located either in highly variable regions

such as the frontal lobe, or on the top of gyri such as the superior temporal gyrus and the infe-

rior frontal gyrus. While mALS and Kaltenmark et al. result in centroids that are highly simi-

lar (crosses and rings are often superimposed on the panel on the left), the two methods do not

result in the same matching in highly variable regions such as the inferior frontal and parietal

regions (indicated by diamonds). In conjunction with our results on synthetic (Sec.4.3.3) and

real data (Sec.4.4.3), these observations confirm that the conceptual differences between the

approaches yield different matching. Our experiment on group statistics in Sec.4.4.4 confirms

that different correspondences across individuals induce strong variations in the subsequent

statistical analysis. Indeed, graph-matching techniques are able to take into account the

Fig 9. Superimposition of the centroids from mALS, Auzias et al., and mSync shown as crosses with those of Kaltenmark et al. shown as green

rings. mSync is representative of the methods kerGM, MatchEig and CAO that also result in 101 clusters. The arrows point to centroids that are robust

across methods. The squares indicate centroids corresponding to small clusters located on gyri. Diamonds indicate centroids that differ between mALS

and Kaltenmark et al..

https://doi.org/10.1371/journal.pone.0293886.g009
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topological information encoded in the graphs, i.e the spatial organization of neighbouring

folds, while Kaltenmark et al. relies only on the geometry of sulcal basins, considering differ-

ent folds separately.

The next step will be to assess the biological relevance of the induced correspondences

across subjects by visualizing the matching on the cortical surface of the individuals. Given the

variations across methods in the location of clusters observed on Fig 9, we expect to observe

important differences between the techniques at the individual level, especially in highly vari-

able regions such as the parietal lobe. More specifically, our expectation is that graph matching

techniques should allow solving potential anatomical ambiguities in a much more relevant

way than Auzias et al. and Kaltenmark et al., by exploiting the topological information of the

neighbouring folding pattern. Furthermore, we also aim to validate our findings in larger,

multi-modal databases like HCP [96], thereby confirming the reproducibility of the acquired

nomenclature and to gain a understanding on its relevance with respect to the functional orga-

nisation of the brain.

6 Conclusion

In this study, we explored the potential of several graph matching methods selected from the

literature to define population-wise correspondences across individual cortical geometries. In

the absence of a ground-truth labeling for real data, we first proposed a procedure to generate

simulated sulcal graphs that follow the intrinsic structure and properties of real sulcal graphs.

We then compared the approaches on our simulated sulcal graphs with ground truth corre-

spondences defined by construction.

We also evaluated the methods on 137 real graphs, and compared the results with two other

methods from the literature. We computed the silhouette value of each node of the graph that

measures the degree of compactness of each cluster, giving us insights on the matching across

graphs produced by the different methods. The consistency measure gave us an insight into

the variability across the population for each cluster. Finally, we demonstrated the influence of

the matching on the statistical analysis that depend on the induced correspondences across

individuals. Overall, our experiments on both artificial and real data showed the high relevance

of multi-graph methods for sulcal graph matching. We observed that mALS, MatchEig and

mSync outperform CAO and the pairwise approach KerGM. While mALS proved to be very

robust to noise compared to other methods, the much lower complexity of mSync and match-

eEIG makes them also relevant candidates for further studies and extensions to larger

populations.

Supporting information

S1 Fig. Beta-binomial effect. Effect on β-binomial mass function for different values of ν fix-

ing α = 7.15 and β = 28.62.

(PNG)

S2 Fig. Beta-binomial distribution. β-binomial distributions for identical mean: μ, μ1 = 12

but different standard deviations: σ = 3, σ1 = 5. The dotted lines signifies the mean of the distri-

bution where as the shaded area is the standard deviation across 5 trials.

(PNG)

S3 Fig. Distribution for number of nodes. Distribution for number of node in the simulated

population corresponding to different κ value with the distribution for number of nodes in the

real sulcal graphs.

(PNG)
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S4 Fig. Distribution for geodesic distance. Distribution for geodesic distance in the simulated

and real population of 137 graphs. The shaded region corresponds to standard deviations

across graphs in the population.

(PNG)

S5 Fig. Distribution for node degrees. Degree distribution in the simulated and real popula-

tion of 137 graphs. The shaded region corresponds to standard deviations across graphs in the

population.

(PNG)
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