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Abstract

Population-wise matching of the cortical fold is necessary to identify biomarkers
of neurological or psychiatric disorders. The difficulty comes from the massive inter-
individual variations in the morphology and spatial organization of the folds. This
task is challenging at both methodological and conceptual levels. In the widely used
registration-based techniques, these variations are considered as noise and the match-
ing of folds is only implicit. Alternative approaches are based on the extraction and
explicit identification of the cortical folds. In particular, representing cortical folding
patterns as graphs of sulcal basins – termed sulcal graphs – enables to formalize the
task as a graph-matching problem. In this paper, we propose to address the problem
of sulcal graph matching directly at the population level using multi-graph matching
techniques. First, we motivate the relevance of multi-graph matching framework in
this context. We then introduce a procedure to generate populations of artificial sulcal
graphs, which allows us benchmarking several state of the art multi-graph matching
methods. Our results on both artificial and real data demonstrate the effectiveness of
multi-graph matching techniques to obtain a population-wise consistent labeling of
cortical folds at the sulcal basins level.

Keywords: brain, sulcal graphs, multi-graph matching, sulcal pits, MRI.

1 Introduction

1.1 Quantitative comparison across brains is a crucial but open question

Comparing features extracted from brain MRI across individuals is necessary for estimat-
ing population statistics and ultimately discover markers of diseases. However, this task
presents several challenges at both the methodological and conceptual levels. Indeed, the
features extracted from two different individual brains are defined in two different mathe-
matical spaces. Comparing such features thus requires to address the methodological prob-
lem of transferring them into a common space. The task of transferring information from
one brain to another or to a common space consists in defining spatial correspondences
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across these objects by compensating for their variations in their respective geometry. The
challenge lies in the massive inter-individual variations of the morphology of the brain
and in particular the geometry of the cortical surface, which make the identification of
such spatial correspondences an ill-posed problem. As a consequence, any solution to this
problem inevitably requires to introduce additional constraints based on assumptions on
the biological validity of the resulting spatial correspondences, which constitutes a chal-
lenge at the conceptual level. Indeed, the assumptions and constraints introduced in the
definition of the spatial correspondences actually influence the derived statistics measured
on the population of interest, and could thus be considered as a source of bias in the anal-
ysis Van Essen, Glasser, Dierker, Harwell, and Coalson (2012).

One widely used approach to tackle this problem – termed here as the registration-
based approach – consists in defining a mapping between each individual brain and an
atlas serving as the common space by estimating a spatial transformation. As pointed
above, the process of building the atlas and defining the associated projection operator
which minimizes the error induced by the transformation remains an open research ques-
tion. As a consequence, several registration techniques and atlases co-exist in the field,
and tools to enable comparison across atlases are then required (Devlin & Poldrack, 2007;
Van Essen & Dierker, 2007). The variety of atlases, projection mechanisms and descriptors
illustrate the ongoing exploration of putative biologically relevant features used to define
these correspondences across individuals. One of the most widely used registration-based
approach (Fischl, Sereno, Tootell, & Dale, 1999) defines a mapping between cortical sur-
faces by imposing the alignment of a combination of curvature and convexity features es-
timated from a 2D mesh representing the geometry of the cortex. The cortical surface of a
given subject is projected onto the atlas by matching its curvature and convexity, under the
assumption that aligning these features induces biologically relevant anatomo-functional
correspondences. In this process, as in any registration-based approach, variations across
individuals are considered as noise or confounding perturbations to be minimized, includ-
ing variations in the topology and number of folds (sulci). More generally, the registration-
based approach might be seen as an over simplification of the problem since potentially
relevant geometrical information is not taken into account.

Alternative approaches consist in characterizing the geometry and organization of the
cortical folds in each individual and then compare these features across the population.

1.2 Characterizing cortical folding patterns using graphs

Several approaches have been proposed to characterize cortical folding patterns, such as
gyrification index, fractal dimension and curvature (Armstrong, Schleicher, Omran, Cur-
tis, & Zilles, 1995; Cachia et al., 2008; Im et al., 2006). Although these measures capture
relevant morphological features, they do not explicitly reflect the topology, i.e the spatial
relationships between sulci. Mangin et al. (2004) introduced an analysis framework based
on the automatic extraction and labeling of the sulci allowing to characterize their shape,
size and pattern in terms of e.g. sulcus area, depth and length. This representation of the
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cortical geometry has been used for instance to characterize populations of healthy sub-
jects (Duchesnay et al., 2007), to quantify potential deviations from normal populations in
various conditions such as schizophrenia (Cachia et al., 2008) and autism spectrum disor-
der (Auzias et al., 2014), or to estimate the heritability of the folding patterns (Pizzagalli
et al., 2020). Pursuing on this line of research, the sulcal pits were introduced as a concept
allowing to decompose the sulci into smaller pieces and thus access finer scale geometrical
information. As described in details in Auzias, Brun, Deruelle, and Coulon (2015); Im et
al. (2010), each fold is divided into sulcal basins that are defined as concavities in the white
matter surface bounded by convex ridges, and the deepest point in each basin defines the
associated sulcal pit. More recently, Im et al. (2011); Takerkart, Auzias, Brun, and Coulon
(2017) represented the geometrical relationships between sulcal basins as a sulcal graph. A
sulcal graph is constructed by considering each sulcal basin (or associated pit) as a node,
while the edges connect only adjacent basins and thus represent their spatial organization.
Various geometrical features of a sulcal basin can then be attributed to graph nodes (such
as the depth of the pit, its 3d coordinates...), while the spatial organization of the basins is
encoded in the topology of the graph. Figure 1 illustrates this decomposition of the cortical
folds into sulcal basins allowing to represent this complex geometry as a sulcal graph.

Figure 1: Example of sulcal graphs from three individual brains, superimposed with the
underlying decomposition of the cortical surface in sulcal basins. Sulcal basins are shown
in different colours, and their corresponding node in the graph are represented as spherical
dots in the lower panel. The color of each node in the graph illustrates the value of a given
attribute such as for instance the area or depth of corresponding sulcal basin.

These sulcal graphs constitute particularly relevant representations because: 1) varia-
tions across individuals are preserved and are manifested as changes in both the topology
of the graph and the value of the attributes attached to the nodes and edges; 2) the de-
sign of tools for the quantitative characterization of these variations can benefit from the
extensive body of methods from the graph processing literature.

1.3 Problem statement and contributions

In the present work, we focus on the task of matching together a set of sulcal graphs in or-
der to define biologically relevant correspondences across a population of subjects, under the
specific constraint of explicitly taking into account the variations in folding patterns. Before
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moving to the formalization, we more precisely situate this problem with respect to the
conceptual question of defining correspondences across individuals, and with respect to
the methodological problem of graph matching.

1.3.1 Unsupervised comparison and matching of sulcal graphs

Comparing brains using sulcal graphs is highly relevant because all the geometrical infor-
mation about the macroscopic cortical folding can be encoded into such graphs. However,
several challenges need to be addressed in this context: 1) the large inter-individual varia-
tions in brain anatomy induce complex variations across sulcal graphs, including in their
topology; 2) sulcal graphs can be contaminated by noise resulting from the imperfect seg-
mentation of the individual cortical surface and corresponding sulcal basins; 3) there is
no consensus on a nomenclature or atlas at the scale of sulcal basins covering the whole
brain, that is a prerequisite to tackle the matching problem as a supervised learning task.
Indeed, few studies investigated the matching of cortical folds across individuals as a su-
pervised task (Behnke et al., 2003; Borne, Rivière, Mancip, & Mangin, 2020; Rivière et al.,
2002). All these works focused at the scale of sulci, i.e. considering large folds consist-
ing of several of our sulcal basins. To our knowledge, only Lyu et al. (2021) attempted
to tackle this problem at finer scale, probably because of the massive amount of efforts
needed to gather sufficient amount of manually labeled data Voorhies, Miller, Yao, Bunge,
and Weiner (2021). Indeed, ambiguities due to variations across individuals in the folding
patterns become overwhelming at finer scale than sulci. This is illustrated by the tedious
works advancing the definition of a fined-grained nomenclature of folds Sprung-Much
and Petrides (2020) and their relationship with underlying function Willbrand et al. (2022).
The lack of widely accepted fined-grained nomenclature is also blatant in the related field
of brain parcellation: more than 20 different fine-grained atlases co-exist (Eickhoff, Yeo,
& Genon, 2018), and even the most advanced multi-modal atlas (Glasser et al., 2016) was
validated only on a small portion of the cortex.

Matching sulcal graphs across individuals is thus a very challenging problem. Instead
of relying on the few existing labeled data-sets that clearly deserve further validation, we
decided to approach this question as an unsupervised learning task.

We now describe the few studies that have attempted to tackle the question of unsu-
pervised labeling of sulcal graphs. The first approach was proposed by Im et al. (2010)
and consisted in computing a map of the spatial density of sulcal pits across a population
of subjects. This density map was computed by accumulating the pits from the different
individuals in each vertex of an average surface after aligning the folds using a registra-
tion technique. A watershed algorithm was then applied to this density map in order to
separate the main clusters of sulcal pits, empirically defined as the regions of high density.
An arbitrary label was then associated to each cluster, hereby defining an ad-hoc labeling
of the pits across individuals, depending on the cluster to which they contributed in the
density map. This procedure implicitly defines a matching of sulcal pits and correspond-
ing basins across individuals. Exemplar applications of this method can be found in e.g.
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Auzias et al. (2015); Im et al. (2010); Le Guen et al. (2017), with illustrations of density maps
and induced labeling for various populations. We refer in the following to this category of
methods as Auzias et al. since we used the open source implementation from this paper.
The main limitation of this approach is that the labeling is driven only by the coordinates
of the sulcal pit.

Kaltenmark et al. (2020) introduced an alternative procedure for labeling the sulcal
basins, hereby considering the geometry of the basin surrounding each sulcal pit in addi-
tion to its spatial location. We refer to this method as Kaltenmark et al. in the following.
The authors of (Kaltenmark et al., 2020) also raised the question of the consistency of the
labeling, a notion that we will develop further below. In this method, an explicit constraint
is imposed to restrict the labeling to only one node per subject for each label. In addition,
the nodes for which the labeling is ambiguous – i.e. for which several labels are equally
plausible – remain unlabelled, which is often denoted as partial matching in the literature on
graph processing. Importantly, the spatial relationships between adjacent sulcal basins and
pits are never taken into account in any of these methods, since the different pits/basins
from each subject are considered independently. In contrast, in the present work our aim
is to exploit the spatial organization of the adjacent basins stored in the sulcal graph rep-
resentation.

Few publications investigated the potential of graph matching in the context of sulcal
graphs. In Im et al. (2011), the spectral graph matching technique (Leordeanu & Hebert,
2005) was applied to a set of 48 monozygotic twins, comparing a pair at a time. This study
showed that the similarity of the sulcal graphs across pairs of twins are higher than for
unrelated pairs, demonstrating the genetic influence on sulcal patterns, and the relevance
of graph matching techniques in this context. This approach was used in follow-up papers
from the same group, e.g for comparing brain lobes in Morton et al. (2019) or for matching
individuals onto an atlas in Im et al. (2017).

In the work by Meng et al. (2018), a population of 677 neonates was analyzed based
on a sulcal graph comparison method similar to the one of Im et al. (2011). The authors
proposed to use different features of the sulcal pits such as the pit position, the pit depth,
the basin area, the basin boundary and the pit local connectivity to construct different
similarity matrices, one per feature, and merge them into a single one using a matrix fusion
technique (B. Wang et al., 2014). A clustering algorithm was then applied to the fused
similarity matrix to identify sub-populations of sulcal graphs, associated to specific folding
patterns in the central, cingulate and superior temporal regions.

Critically, all these previous studies relied only on pairwise graph matching techniques.
Comparing pairs of graphs independently, in the presence of noise and large inter-individual
variations, is clearly sub-optimal.

1.3.2 Multi-graph matching: a relevant framework for population studies

Given the large variations across subjects and imperfect sulcal basins extraction, examining
jointly a group of sulcal graphs is key to reveal meaningful information not accessible by
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considering only pairs of subjects. This is the translation to sulcal graphs of the basic
idea behind general population studies, that allowed researchers to uncover some of the
mechanisms underlying the anatomo-functional organization of the brain. We follow this
principle by investigating for the first time the potential of multi-graph matching techniques
in the context of sulcal graphs. By considering several brains together, the geometrical
information that is shared by the majority of individuals should help to regularize the
matching problem and allow to identify putative noisy graph nodes in a more robust way
than with pairwise matching. The multi-graph matching framework has the potential to
uncover population-wise invariant patterns in sulcal graphs without imposing a priori,
potentially biasing, assumptions.

1.3.3 Contributions

In our previous work (Buskulic, Dupé, Takerkart, & Auzias, 2021), we introduced a frame-
work to generate a set of synthetic sulcal graphs representative of a population, and used it
to benchmark state of the art pairwise matching techniques in the context of sulcal graphs.
In Yadav, Dupé, Takerkart, and Auzias (2022), we provided a proof of concept of the rele-
vance of multi-graph matching techniques in this context. In the present study, we extend
these preliminary studies in several directions.

First, we introduce an improved simulation framework to generate populations of arti-
ficial sulcal graphs and demonstrate their biological plausibility through a quantitative
comparison with real data. Secondly, we benchmark a selection of recently published
multi-graph matching techniques against the best pairwise technique for this task (iden-
tified in from Buskulic et al. (2021)), and report variations in performances that would
clearly impact potential real-world applications, e.g in a clinical context. Finally, we com-
pare qualitatively and quantitatively the different graph matching techniques, as well as
the previously published approaches Auzias et al. and Kaltenmark et al, on a real data-
set of 137 subjects. In addition, our experiments demonstrate the feasibility of comparing
a large population of sulcal graphs based on multi-graph matching techniques, in fully
acceptable computing times. All the source code and data will be shared openly upon
publication at https://www.github.com/gauzias/sulcal graphs matching.

2 Formal problem and state of the art

In this section, we define formally the problem of matching sulcal graphs, as well as the
multi-graph framework. We then give an overview of the different methods proposed in
the literature and provide a more detailed description of the multi-graph matching meth-
ods included in our experiments.

2.1 Undirected attributed Sulcal graphs

We consider a population of N sulcal graphs, noted G1 . . . GN , representing the cortical
folding pattern of an hemisphere from N different individuals. The sulcal graph from a
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given subject q is an undirected attributed graph formally defined as a quadruplet Gq =

(Vq, Eq, A
V
q , A

E
q ), where Vq = {v1, v2, . . . , vnq} are the nodes in the graph and |Gq| = nq is

the number of nodes. Eq ⊆ Vq × Vq defines the set of eq edges. AV
q = {aVv1 , a

V
v2 , . . . , a

V
vnq
} is

the set of attributes associated to each node in Vq, and AE
q = {aEe1 , a

E
e2 , . . . , a

E
eeq
} is the set

of attributes associated with each edge in Eq. Note that the number of nodes nq and edges
eq and corresponding attributes varies across graphs. As illustrated on Fig.2, the sulcal
graph from each subject is then mapped onto the same common spherical domain using
the surface inflation and registration tools from freesurfer v.5.1.0 (https://surfer.nmr
.mgh.harvard.edu/, see Fischl et al. (1999) for details). The matching is computed in
this common spherical domain. In this work, we consider as attributes of the nodes the
3D coordinates of the sulcal pits on the sphere. Regarding the attributes of the edges, we
compute the length of the edge on the sphere as an approximation of the geodesic distance
between neighboring pits.

Figure 2: The sulcal graph from each subject is transferred onto a common sphere using
the inflation and spherical registration tools from freesurfer. The sulcal graphs from every
subjects can then be mapped onto either the common sphere or onto an average surface for
visualization. Note that the spatial dispersion of the nodes of the graphs on the common
spaces is heterogeneous, with dense clusters in cortical regions where the variations across
individuals are lower.

2.2 Generalities and overview of pairwise graph matching methods

Pairwise graph matching refers to the problem of finding correspondences between the
nodes of two graphs G1 and G2. This problem is usually divided into two categories: exact
and partial matching. Exact matching methods consider graph matching to be a special
case of the graph isomorphism problem. It aims at finding the bijection between two
graphs, which implies that both the nodes and edges of the different graphs are strictly
matched. This requirement is too strict for most real-world tasks and in particular in our
context where the number of nodes and edges varies across graphs. Therefore, we focus on
the partial matching problem. This problem can be formulated as a Quadratic Assignment
Problem (QAP) (Loiola, Silva, & Galati, 2007). Although different forms of QAP exist,
the vast majority of the literature has focused on Lawler’s QAP (Lawler, 1963). Given
two graphs G1 and G2 with number of nodes |G1| = n1 and |G2| = n2 respectively, the
Lawler’s QAP consists in searching for the assignment matrix X12 ∈ {0, 1}n1×n2 such that
X12[i, j] = 1 indicates that υi ∈ V1 corresponds to υj ∈ V2 and X12[i, j] = 0 otherwise,
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resulting from the following optimization problem:

max J(X12) = vec(X12)
>Φ12 vec(X12) , (1)

subject to X121n2 = 1n1 ,X
>
121n1 ≤ 1n2 ,X12 ∈ {0, 1}n1×n2 ,

where vec(X12) denotes the column wise vectorization of X12; 1n1 and 1n2 denote the
column vectors of all ones of size n1 and n2; and Φ12 ∈ [0, 1]n1n2×n1n2 is the affinity matrix
that is given as an input. The diagonal entries of Φ12 encode the similarity across nodes
whereas non-diagonal entries encode the similarity across edges between the two graphs.
The computation of the affinity matrix is context-dependent, and we detail the approach
used in the present work in section 4.1.

The computation and storage in memory of the very large matrix Φ12 impedes the
scalability of the matching problem based on this formulation. A solution to tackle this
limitation is to reformulate the matching as a Koopmans-Beckmann’s problem (F. Zhou &
De la Torre, 2015) that is a special case of Lawler’s QAP:

max J(X12) = tr(Ψ>12X12) + tr(A1X12A2X
>
12) , (2)

subject to X121n2 = 1n1 ,X
>
121n1 ≤ 1n2 ,X12 ∈ {0, 1}n1×n2 ,

where Ψ12 ∈ [0, 1]n1×n2 denotes the affinity matrix across nodes, and A1 ∈ Rn1×n1 and
A2 ∈ Rn2×n2 are the weighted adjacency matrices of two graphs respectively such that
A[i, j] = wij if edge (vi, vj) exists with weight wij and A[i, j] = 0 otherwise. Koopmans-
Beckmann’s formulation is a special case of Lawler’s where the edges can only be weighted
by a scalar value (i.e. cannot support a vector of attributes on edges). Under this constraint,
we can decompose the large matrix Φ12 into three smaller matrices Ψ12,A1 and A2, which
provides better scalability than Lawler’s QAP.

These two formulations are combinatorial QAPs and are known to be NP-hard prob-
lems. Most methods therefore relax the hard constraints given in Eq.(1) and (2) and provide
approximate solutions. Various approaches have been proposed to relax these problems,
leading to a variety of graph matching methods. Discussing these methods is beyond the
scope of this work but we refer interested readers to the review Yan, Yin, et al. (2016).

Going back to our specific context, we reported in Buskulic et al. (2021) a benchmark
of the pairwise methods SMAC (Spectral Matching with Affine Constraints) (Cour, Srini-
vasan, & Shi, 2007), IPFP (Integer Projected Fixed Point algorithm) (Leordeanu, Hebert, &
Sukthankar, 2009), RRWM (Reweighted Random Walks for graph Matching) (Hutchison et
al., 2010), and KerGM (Kernelized Graph Matching) (Zhang, Xiang, Wu, Xue, & Nehorai,
2019). We observed that KerGM clearly outperforms the others in our context. Conceptu-
ally, KerGM well suits sulcal graphs as it relies on Frank-Wolfe optimization that allows
to follow an optimisation path that respects the constraint on each step. This induces a
robustness to the presence of noise in graphs that is crucial in our context. In the present
work, KerGM is included in our benchmark as a representative of pairwise approaches. It
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is also used to define the initialization of all the multi-graph methods that are introduced
in next section.

2.3 The multi-graph matching problem

We now focus on the problem of jointly matching a population of N graphs {G1, . . . ,GN},
starting from pairwise assignment matrices Xij between graphs Gi and Gj (computed with
KerGM in this work). The key concept behind multi-graph matching is the cycle consis-
tency. This concept states that a matching between two graphs Gi and Gj should be the
same if we go through an intermediate graph Gk to create a new mapping. Formally, a
perfectly consistent, bijective mapping (every node is matched to one and only one other
node) would satisfy :

Xik = XijXjk , (3)

for any i, j and k with i 6= j 6= k. A common way to estimate consistency at the population
level is to compute the full bulk assignment matrix X ∈ {0, 1}m×m with m =

∑N
q=1 |Gq|,

that is obtained by assembling all individual pairwise matrices:

X =


X11 X12 · · · X1N

X21 X22 · · · X2N

...
...

. . .
...

XN1 XN2 · · · XNN


Intuitively, enforcing the consistency constraint will induce a reduction of the rank of this
bulk matrix. Multi-graph matching techniques can be divided into three categories as
follows.

The first category of approaches explicitly aim at minimizing the rank of the bulk
matrix using various approaches (Chen, Guibas, & Huang, 2014; Hu, Huang, Thibert, &
Guibas, 2018; Pachauri, Kondor, & Singh, 2013; Q. Wang, Zhou, & Daniilidis, 2018). For
instance, (Bernard, Thunberg, Swoboda, & Theobalt, 2019) solves a global optimization
problem by using a projected power iterative method, and we detailed further (X. Zhou,
Zhu, & Daniilidis, 2015).

The second category of techniques does not explicitly minimize the rank of the bulk
matrix but rely on other types of formalization aiming at increasing the consistency across
all graphs (Yan, Cho, Zha, Yang, & Chu, 2016; Yan, Cho, et al., 2016; Yan et al., 2014, 2013;
Yan, Wang, Zha, Yang, & Chu, 2015).

Finally, the third category corresponds to deep learning approaches that show promis-
ing performances in supervised tasks compared to previous methods, but are not suited
for unsupervised tasks (Rolı́nek et al., 2020; R. Wang, Yan, & Yang, 2019, 2020a, 2020b, 2021;
Yu, Wang, Yan, & Li, 2019, 2021; Zanfir & Sminchisescu, 2018).

Some other interesting methods exploit the concept of consistency in order to solve
the problem of jointly matching multiple images (Faktor & Irani, 2013; Rubinstein, Joulin,
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Kopf, & Liu, 2013; Tron, Zhou, Esteves, & Daniilidis, 2017; T. Zhou, Jae Lee, Yu, & Efros,
2015). However, these do not take into account the connectivity of the graphs.

2.4 Selection of the methods included in our benchmark

We used the following criteria to select the methods included in our benchmark: (i) Avail-
ability of code. We included only methods for which the authors have made their code
openly available in order to avoid reimplementation issues and to ensure the full repro-
ducibility of our results. (ii) Methods exploiting graph topology. We selected the methods that
take into account the topology of the graph, which is crucial to exploit the spatial adja-
cency information encoded in the sulcal graphs. (iii) Scalability. Since we are interested in
performing population studies over large sets of individuals, we excluded methods that
do not provide acceptable scalability. (iv) Unsupervised methods. Finally, as motivated in
the introduction, we focus on unsupervised methods in the present study.

The method that satisfy these selection criteria are mALS (X. Zhou et al., 2015), mSync
(Pachauri et al., 2013) and CAO (Yan, Cho, et al., 2016). We provide a detailed description
of each of these methods below. In our experiments, these multigraph graph-matching
techniques will be compared with the pariwise approach KerGM, and with the two meth-
ods from the literature specifically designed for labeling sulcal graphs already described
in Sec. 1.3.1: Auzias et al. (Auzias et al., 2015) and Kaltenmark et al. (Kaltenmark et al.,
2020).

2.5 Description of the selected multi-graph matching methods

As described in section 2.3, the general objective of multi-graph matching methods is to
match the nodes across several graphs together by enforcing consistency.

The authors of CAO (Yan, Cho, et al., 2016) propose to maximize the affinity infor-
mation and impose consistency at the same time instead of considering them separately.
They assume that enforcing consistency acts as a regularizer in the affinity objective func-
tion, particularly when the matching is ambiguous due to noise. The approach is based
on the search of an intermediate graph Gq that allows to optimize the affinity score while
progressively inducing consistency. They introduce the unitary consistency across a set of
N pairwise matching solutions X for a graph Gq as:

Cu(Gq,X) = 1−
∑N−1

i=1

∑N
j=i+1

∥∥Xij −XiqXqj

∥∥
F
/2

nqN(N − 1)/2
, (4)

where‖.‖F is the Frobenius norm. The authors propose several approaches to balance be-
tween consistency and affinity, leading to different variants of CAO. In particular, their
best algorithm is able to elicit outlier nodes during the optimization, which is highly rel-
evant in our context. However, the use of affinity information along with consistency
and outlier elicitation increase the computational complexity of the method to O(N4). As
a consequence, only the least resource-demanding algorithm CAOcst did scale with the
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memory requirements imposed by the size of our graphs and number of subjects in our
populations. We thus refer to that particular version in the rest of this article. This version
of CAO enforces consistency through Eq.4, but ignores the affinity information.

The approach mSync (Pachauri et al., 2013) consists in estimating a mapping of each
Xij to a common universe of assignment matrices, of size d:

max
{Ui,Uj}∈P

N∑
i=1

N∑
j=1

〈UiUj ,Xij〉 , (5)

with P = {U ∈ {0, 1}nq×d | U1d = 1nq}. (6)

Since solving eq.5 is intractable in most applications, the authors relax the problem into
a generalized Rayleigh problem. They further propose to use a reference graph in order to
estimate the mapping to the universe. In the implementation provided by the authors, the
first graph in the collection G1 is selected as the reference graph.

In mALS X. Zhou et al. (2015), the authors formalize the multi-graph matching as the
following low rank matrix recovery problem:

f(X) = −
N∑
i=1

N∑
j=1

〈Ψij ,Xij〉+ α〈1,X〉+ λ‖X‖∗ ,

= −〈K− α1,X〉+ λ‖X‖∗ ,

(7)

where, 〈., .〉 is the inner product, α controls the weight on sparsity, and K = {Ψij}Ni,j=1 is
the set of affinity matrices given as input. The cycle consistency is induced by the nuclear
norm ‖X‖∗ that controls for the rank of X while 〈1,X〉 favors bijective matchings across
graphs. Importantly, X is treated as a real matrix such that X ∈ [0, 1] The matrix is binarized
at the end of the optimization process using a threshold value t that is set by default as
to t = 0.5. In, addition, the authors leverage the work by Hastie, Mazumder, Lee, and
Zadeh (2015) and Cabral, De la Torre, Costeira, and Bernardino (2013) for decomposing X
which allows to solve the problem in a lower dimension space using the ADMM method
(Eckstein & Bertsekas, 1992).

3 Generation of a population of synthetic sulcal graphs

A primary objective of our work is to investigate and evaluate different multi-graph match-
ing techniques in the context of sulcal graphs. However, as mentioned in the introduction,
there is no ground truth matching available for such graphs. We tackle this problem by
designing a procedure allowing to generate a population of artificial sulcal graphs with
correspondences defined by construction. Such populations of artificial graphs will con-
stitute a ground truth against which the different matching methods can then be bench-
marked. Generating artificial sulcal graphs for the purpose of a benchmark study induces
the two following constraints: 1) The artificial graphs should be biologically plausible, i.e.
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they should respect as much as possible the intrinsic properties of a population of real
sulcal graphs. 2) The generation of the artificial graphs should be as simple and straight-
forward as possible in order to facilitate the comparison of the performances obtained in
the benchmark study and the interpretation of the differences, i.e. the generation proce-
dure should rely only on a limited number of parameters, and potential biases should be
avoided. As detailed below, these two contradictory constraints are balanced in the design
of our generation procedure.

The procedure is summarized in Algo. 1 and consists in two main steps. First, we
generate a set of points on the common spherical domain, that will serve as reference nodes.
Then, we impose several types of perturbations to this set of reference nodes in order
to generate a corresponding population of artificial sulcal graphs, while preserving the
correspondences across graphs, i.e. the ground-truth matching. Such procedure provides
the ground truth matching across the population, while controlling for the nature and
amount of variations across artificial sulcal graphs (corresponding to different subjects in
real data).

Algorithm 1 Procedure to generate a population of artificial sulcal grahs

Require: N,nref , κ, µpert, σpert, p
Step1: create reference nodes . See Sec.3.1
for j = 1..10000 do

Sample nref points on the sphere
Compute the minimum geodesic distance

end for
Choose the set of points with the largest min distance.
Step 2: generate a population of sulcal graphs . See Sec.3.2
for i = 1..N do

Perturb location of the reference nodes . See Sec.3.2.1
Add outliers and suppress some nodes . See Sec.3.2.2
Compute the edges of the graph . See Sec.3.2.3

end for

3.1 Generation of a set of reference nodes

The first step consists in generating a set of reference nodes on the spherical domain while
controlling for two specific distinct parameters : the number of nodes noted nref , that is
typically set to match the average number of nodes across a real population, and the mini-
mum distance between the nodes. Indeed, the nodes of the real sulcal graphs cannot be closer
to each other than a minimum distance since they correspond to depth maxima that are
not located in the immediate proximity of the boundary of sulcal basins (see Auzias et al.
(2015) for further description of the extraction of sulcal pits and basins). As a consequence
the spatial distribution of the nodes on the sphere cannot be fully random. In order to
generate this set of nref points on a sphere with pseudo-random spatial distribution, we
adopted a simple brute force approach: we sample a set of nref points over the surface of
the sphere 10000 times; and we select the set that has the largest minimum geodesic dis-
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tance between neighbouring points. As we will show in sec.4.3.1, 10000 times is sufficient
to get a set of reference nodes with a minimum distance between points that is realistic.
Technically, the uniform sampling of points on the sphere is achieved by generating ran-
dom rotations of the unit vector as described in Blaser, Fryzlewicz, Blaser, and Fryzlewicz
(2016); Lefèvre et al. (2018).

At this stage, we have defined on purpose a set of reference nodes that matches a real
population in terms of size and of minimal distance between nodes. The next step consists
in perturbing the reference nodes in order to generate the population of synthetic sulcal
graphs.

3.2 Generation of an individual sulcal graphs

We now add perturbations of different natures to this set of reference nodes in order
to obtain a population of artificial sulcal graphs, that corresponds to different subjects.
These perturbations aim at mimicking the inter-individual variations that are observed in
a healthy population, by affecting the features of the nodes and edges, but also the topol-
ogy of the graphs. In order to generate a population of N artificial sulcal graphs, these
operations are repeated N times independently.

3.2.1 Perturbation of the location of the reference nodes

The first step consists in adding random noise to the coordinates of the reference nodes on
the sphere, in order to model the inter-individual variability that exists in the location of
the sulcal pits. We used the von Mises-Fisher (vMF ) distribution that is an approximation
of Gaussian distribution on a sphere (Von Mises, 1964). The two parameters of the vMF

distribution µ and κ can be seen as the equivalent of the mean and of the inverse of the
standard deviation (κ ∝ 1/σ) for a Gaussian distribution. Therefore, we iterate across the
reference nodes, and for each reference node, we produce a noisy one by sampling from
the distribution vMF (µ, κ), where µ is the coordinates of this reference node. We control
for the amount of noise on the coordinates of the perturbed nodes through the value of
the parameter κ, that is common to all nodes from the reference set. Smaller values for
κ will induce larger variations across the artificial sulcal graphs within the population.
Importantly, note that since we perturb each node of the reference set independently, we
keep the correspondence between each noisy node and its reference node, which will allow
defining our ground truth matching at the population level.

3.2.2 Addition of outliers and suppression of nodes

Next, we simulate the inter-individual variations in the number of nodes across the sulcal
graphs, which is of crucial importance for generating biologically plausible artificial pop-
ulations. The aim is to model both false positive and false negative matchings, i.e. respec-
tively nodes that are present in the reference set but not in a given graph, and nodes that
are present in the graph but not in the reference set. This is achieved by randomly adding

xiii



a certain number no of nodes on top of the perturbed nodes – hereafter called outlier nodes,
and by deleting ns nodes amongst the perturbed nodes – hereafter called suppressed nodes.
In order to randomly draw no and ns, we use the β-binomial distribution B(ν, α, β), which
is a distribution of non-negative integers. The parameter ν denotes the size of the support
of the distribution, i.e the maximal value that can be sampled. The parameters α and β can
be set so that B(ν, α, β) approximates a Gaussian distribution. We describe the setting of
these parameters and precise their link with µ and σ of a Gaussian in Appendix A. Since
we want the average number of nodes across the population of perturbed graphs µsimu

to match the number of nodes in the reference set nref , we set µo = µs = µpert and also
σo = σs = σpert. This formulation allows us to control the standard deviation of the num-
ber of nodes across the population of artificial graphs with the two parameters µpert and
σpert.

3.2.3 Construction of the edges

The last step consists in constructing each artificial sulcal graph with the sets of perturbed
nodes as follows. We first compute the three-dimensional convex hull of each set of per-
turbed nodes located on the sphere. This yields a triangulation where only neighboring
nodes on the sphere are connected, which is a simple way to simulate the region adjacency
graph that is constructed from the sulcal basins in the real data. However, the average
node degree in such triangulations is higher than for real sulcal graphs. Therefore, we
finally delete a small percentage p of the edges in these triangulations, in order to obtain
artificial graphs which match the average degree of real sulcal graphs.

Note that since the construction of the edges occurs after the previous perturbation
steps (perturbations of the location, addition of outlier nodes and suppression of nodes),
the resulting artificial sulcal graphs can show variations in their topology across individu-
als of a population, as we observe in real data, making them biologically-plausible in that
respect.

4 Experiments and results

4.1 Computation of the affinity matrices

As described in Sec.2.2, we initialize all the multigraph matching methods using the pair-
wise results obtain from KerGM, which relies on the formalization of Eq. 2. We thus need
to compute the affinity matrices Ψij ,Ai,Aj that store the similarity between nodes and
edges across every pairs of graphs in the population.

In the present work, we compute these affinity matrices using Gaussian kernels applied
to the attributes. For two nodes v ∈ G and v′ ∈ G ′ the affinity value is computed using the

kernel defined as exp (−γV
∥∥∥aVv − aVv′∥∥∥2

2
) and for two edges e ∈ G and e′ ∈ G ′ the kernel

is defined as exp (−γE
∥∥∥aEe − aEe′∥∥∥2

2
). To estimate appropriate values for γV and γE we

use a heuristic proposed in Takerkart et al. (2017) that consists in using a cross-validation
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scheme to compute the inverse of the median of the distribution across all possible pairs
of nodes/edges, independently for each attribute (3D coordinates on the sphere for the
nodes and the geodesic distance for the edges).

4.2 Dummy nodes

Most graph matching methods assume a constant number of nodes across the graphs to
be matched, which is not the case in our case (both synthetic and real graphs). We use
the classical approach from the graph matching literature which consists in adding dummy
nodes to smaller graphs so that all the graphs get the same number of nodes as the largest
graph in the population. For each of these dummy nodes, we assign to 0 the correspond-
ing values in the node and edge affinity matrices. This makes the optimization problem
defined in Eq.2 independent from dummy nodes.

4.3 Benchmark on synthetic sulcal graphs

4.3.1 Description of synthetic data sets

We first tuned empirically the parameters to the values µpert = 12, σpert = 4 and p = 10% to
obtain variations in our synthetic graph populations that are in line with what is observed
in real data. The distribution for number of nodes in the real data population is 88.27±4.72
likewise in our simulated population for a randomly chosen κ value the distribution for
number of nodes is 88.15 ± 4.45 for the selected value of µpert and σpert and is consistent
across all κ values across all trials. We further provide in Appendix B additional materials
showing the matching distributions between our simulated graphs and real data.

Furthermore, we varied the value of κ ∈ [100, 200, 400, 1000], which controls the amount
of variations across synthetic graphs within a population. Note that κ controls the spread
of nodes coordinates around the reference nodes, which in turn induces variations in the
topology and attributes of synthetic graphs.

For each value of κ, we generate 10 populations of N = 137 synthetic graphs (which
corresponds to the number of subjects in our real population; see below) and report the
average and standard deviation of the metrics described below. As illustrated on Fig.3,
our populations of synthetic graphs show variations that are qualitatively very close to
those observed across real graphs.

4.3.2 Evaluation metrics for synthetic data sets

In order to evaluate the different matching methods on simulated graphs, we use the clas-
sical precision, recall and F1-score:

Precision =
True Positives

True Positives + False Positives
∈ [0, 1] (8)
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Figure 3: a) Real sulcal graphs from three randomly chosen individuals, and projected
on the average surface. b) Simulated graphs randomly chosen for κ = 1000, showing
the ground-truth correspondence across graphs in color. Nodes in black represent the
outlier nodes that have no correspondence. c) Illustration of the impact of κ on the spatial
dispersion of nodes: the nodes of six simulated graphs are shown on the average surface
for κ = 1000 (left) and , κ = 200 (right). The spread across the nodes for each cluster varies
according to κ, while outlier nodes in black have random locations.

Recall =
True Positives

True Positives + False Negatives
∈ [0, 1] (9)

F1 = 2
(precision× recall)
precision+ recall

∈ [0, 1] (10)

Thus, Precision is a ratio between the True positives(number of correct matches predicted
by the algorithms) and all the positives(number of matches by the algorithms). Whereas, Recall
is a ratio between True positives and True positives along with False negatives(number
of correct matches not predicted by the algorithms). Finally, the F1 score provides a balance
between Precision and Recall. A F1-score of 1 reflects the ability of the algorithm to obtain a
perfect matching of inlier nodes and accurate identification of outlier nodes. These metrics
are relevant in our context to detect matching with outliers alongside the incorrect matches.

xvi



4.3.3 Results on synthetic data sets

We report of Fig 4 the mean and standard deviation of Precision, Recall and F1-score, com-
puted across the 10 synthetic populations for each value of κ.

First, we find that two multi-graph matching methods, mALS and mSync, vastly and
consistently outperform KerGM, which has been identified as the best pairwise matching
method for this task in Buskulic et al. (2021). This confirms our main hypothesis: consid-
ering the matching problem on the whole population using multi-graph matching allows
an important gain in performance compared to only considering pairs of graphs.

Then, we observe a gradual decline in the performances of all methods as the noise
increases (decrease of κ), as expected. The performances of the multigraph approaches
mALS and mSync resist much more to this increase in variability than the pairwise ap-
proach. The performances of mSync are limited more specifically by the lower precision
at any level of noise. This suggests that the difference in performances between the two
methods are mainly due to the hard constraint on the consistency in mSync that seems too
restrictive. On the other hand, the recall indicates that mSync is more robust to increasing
noise than mALS, with very close value when κ = 100. However, mALS performs better
for lower noise values. Overall, mALS shows the best F1-score for every κ values, thanks
to a very high precision combined with very good recall. Indeed, the F1-score for mALS is
above 0.7 even for κ = 200 which corresponds to a configuration where the noise is quite
strong.

Finally, the performances of CAO are very low, even lower than the pairwise technique
KerGM. Such poor performances are likely a consequence of the optimization that consid-
ers only the consistency but ignores the affinity of nodes. As already mentioned in Sec.2.5,
the other versions of CAO proposed in Yan, Cho, et al. (2016) could show much higher
performances but did not scale with the size of our data.

Figure 4: F1-score, Precision and recall for κ ∈ [1000, 400, 200, 100]. For each method, we
plot the average across the 10 simulated populations as a line and the standard deviation
as the shaded region of the same color.

4.4 Application to real data

4.4.1 Preprocessing of real data

For the evaluation on real data, we use the sulcal graphs from 137 young healthy adults
taken from the publicly available database OASIS (Marcus et al., 2007). The preprocessing
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of these data (brain tissues segmentation, mesh extraction and sulcal graphs construction)
has been detailed in Auzias et al. (2015); Takerkart et al. (2017). Across this population, the
number of nodes is 88 ± 4, with a maximum size of 101 nodes/pits. Dummy nodes are
thus added to all other graphs to get a constant size of 101, as explained above.

4.4.2 Evaluation metrics used with real data

In absence of ground truth matching for real data, we cannot compute the same scores as
for the simulation experiments. We therefore combine a set of quantitative metrics with
some qualitative assessments, which we describe below.

Consistency
According to Yan, Cho, et al. (2016), we compute the node consistency as follows: Given

Gk ∈ {Gq}Nq=1 and the bulk matrix X, for node vk ∈ Gk, with index i(vk) ∈ {1, . . . , |Gk|}, its
consistency is defined by:

C(vk,X) = 1−
∑N−1

i=1

∑N
j=i+1 ||Y(vk, :)||F /2
N(N − 1)/2

,∈ (0, 1], (11)

where || · ||F is the Frobenius norm, Y = Xkj −XkiXij and Y(vk, :) is the i(vk)-th row of matrix
Y. Note that it is different from Eq. 4 which estimates the consistency at the graph level.
This consistency measure is computed for each node of each graph, including dummy
nodes. A value of 1 corresponds to the ideal case where each graph only contains nodes
that have been matched in a consistent manner. This consistency measure cannot distin-
guish the matches of real nodes to dummy nodes from valid matches across real nodes.
For methods imposing an explicit constraint on the consistency, a value of 1 is expected
(and not informative), but for the other methods this measure is relevant and allows to
assess the spatial pattern of the consistency across clusters.

Qualitative and quantitative assessment of the labeling induced by the matching
In terms of potential applications of the graph matching to sulcal graphs, a major out-

come is the labeling of graph nodes that is induced. As already mentioned in the introduc-
tion, the assessment of the quality of the labeling and thus of the biological relevance of
the matching across individuals is an ill-posed problem. The first problem is to retrieve a
labeling from the assignment matrix resulting from the matching. In the case of a perfectly
consistent matching where each node of each graph would be matched to one and only one
node from every other graph in the population, the labeling would be trivial and would
consist in simply associating a label to each row or column of the assignment matrix. This
situation is however impossible since the number of nodes varies across individuals within
our population of interest. Therefore, in the present work we take the largest graph as a
reference, and we associate an arbitrary label to each of its nodes and then propagate these
labels to every other graphs based on the assignment matrix resulting from each method.

Once the labeling of the nodes is retrieved, the nodes that share the same label across
subjects are grouped together into what we will designate as clusters, that are different
depending on the matching method. We then compute the coordinates of the centroid of
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each cluster, which enables to evaluate qualitatively the spatial distribution of the different
clusters across the cortical surface.

This qualitative assessment is complemented with a quantitative measure of the com-
pactness of the clusters. For this, we compute the silhouette coefficient of each node from
each graph. As proposed in Rousseeuw (1987), the silhouette of a node corresponds to the
ratio between the average Euclidean distance to the other nodes in the cluster and its dis-
tance to other nearby clusters. Since the distances are computed on the spherical domain,
the use of Euclidean distance is sub-optimal but the errors induced are very low and inde-
pendent from the matching method. The silhouette coefficient of a cluster is then obtained
by averaging the silhouette values from corresponding nodes.

4.4.3 Results on real data

We first report in Table 1 the quantitative measures that allow us to compare the different
techniques at the whole brain level: the number of clusters (thus of labels) obtained with
each method, the silhouette measure averaged across all nodes and graphs, the percent-
age of nodes remaining unlabeled, the consistency measure averaged across all nodes and
graphs, and the computing time.

Table 1: Quantitative measures computed at the whole brain scale.

Method Num. silhouette Perc. consistency cpu time
clusters unmatched (min)

mALS 82 0.55± 0.22 28.4 0.91± 0.08 783
Kaltenmark et al 94 0.44± 0.23 17.0 1.0± 0.0 ∼ 180

Auzias et al 104 0.49± 0.18 0 0.82± 0.15 ∼ 30
mSync 101 0.08± 0.49 0 1.0± 0.0 31
CAO 101 −0.12± 0.45 0 1.0± 0.0 3255

KerGM 101 −0.04± 0.34 0 0.30± 0.17 1362

The number of clusters and percentage of unmatched nodes indicate that the two meth-
ods that allow partial matching mALS and Kaltenmark et al. result in a lower number
of clusters, suggesting that the ambiguous nodes remain unlabeled instead of enforcing
their matching into potentially unreliable clusters. The three methods mSync, CAO and
KerGM enforce the matching of every nodes, and result in a number of clusters equal
to the size of the largest graph in the set, i.e. 101. The method Auzias et al. results in
more clusters than the size of the largest graph, suggesting that some clusters correspond
to highly variable nodes that cannot be matched consistently across individuals. This is
confirmed by the consistency measure which is lower than for mALS. The consistency
of Auzias et al. is still much higher than the value of 0.30 obtained with the pairwise
technique KerGM. Note that the methods mSync and CAO explicitly enforce a perfect
consistency, but this is possible only when considering the dummy nodes as pointed in
section 4.4.2. Also note that the method Kaltenmark et al. also gets a perfect consistency.
This is a consequence of the explicit constraint imposed in this technique by allowing one
and only one node per subject to be matched for any given cluster.
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The silhouette measures illustrate that a high consistency can be associated with a low
compactness of the clusters as e.g. for CAO and mSync that get values close to the one
of the pairwise technique KerGM. The methods Auzias et al. and Kaltenmark et al. get
much higher silhouette values which is expected since these techniques enforce the match-
ing of nodes based essentially on their spatial proximity on the surface. The silhouette
value of mALS is higher than these two techniques. Overall, mALS results in high sil-
houette and consistency values, at the cost of a high number of unmatched nodes (28.4%)
compared to Kaltenmark et al. and Auzias et al., indicating that this method was much
more conservative in the matching, leaving more ambiguous nodes unmatched.

We then illustrate the matching across nodes from the different graphs (subjects), ob-
tained for each method on Fig. 5. The number and location of the different centroids (larger
circles) is informative of the spatial distribution of the clusters of nodes across the cortical
surface, for each method. On the first column (mALS and Kaltenmark et al.) some nodes
remain unlabelled and are represented in black. The clusters seem more compact than for
the methods of the second column (Auzias et al. and mSync) that do not allow any node to
remain unlabeled. On the third column (CAO and kerGM) the matching looks noisy, with
clusters overlapping between eachother in almost every cortical location, which illustrates
the poor anatomical relevance of the matching.

Figure 5: Labeling and corresponding cluster centroids (larger circles) for each method.
Dots in black in the first column (for mALS and Kaltenmark et al.) correspond to un-
matched nodes. See text for further description.

For further evaluation of the performances of the different techniques, we show on
Fig. 6 the silhouette values of every nodes across all graphs as well as the centroids of
each cluster as a larger circle. The high silhouette values of the centroids for the methods
mALS, Auzias et al. and Kaltenmark et al. are visible with mostly red and orange cen-
troids. In contrast, we observe more centroids in green and blue for CAO and KerGM.
Together with Table 1, this figure illustrates the poor performances of pairwise matching
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approach with high spatial dispersion of nodes corresponding to each cluster for KerGM,
associated to very low silhouette coefficients. The method mSync results in higher silhou-
ette coefficients for some nodes, but lower value for others (nodes and centroids in blue
on Fig. 6), indicating that the matching was enforced also for ambiguous nodes located in
highly variable regions. This is a consequence of the hard consistency constraint in mSync
imposing a matching that is consistent across all graphs by construction, even in highly
variable regions. For Auzias et al., we observe that the clusters are organized around re-
gions of high nodes density, but the nodes located relatively far from the centroids have a
lower silhouette value (nodes in green on Fig. 6). These observations are consistent with
the algorithm that is based on a watershed applied to the sulcal pits density map as de-
scribed in Sec.1.3.1. For both mSync and Auzias et al., we observe some clusters with low
silhouette value located close to each other, suggesting that the number of clusters is too
high.

The techniques mALS and Kaltenmark et al. result in much higher silhouette values,
which is expected since they do not force the matching of highly variable nodes that are
left unlabeled. The unlabeled nodes have a very low silhouette value (in violet on Fig. 6),
but since they do not belong to any cluster, this does not reduce the silhouette values of
clusters. Note that even for these methods, the clusters get closer with lower silhouette
values in highly variable regions such as the anterior frontal and occipital lobes.

Across the different methods, we observe that the clusters showing a higher silhou-
ette value relative to other clusters are located systematically in the same regions that are
known to be less variable across individuals, such as the central sulcus, and the insula. For
these clusters, the silhouette values are close across methods, confirming the lower ambi-
guity in the matching in these regions. In highly variable regions, the different methods
produce different matchings. For instance in the occipital lobe, the clusters produced by
Kaltenmark et al. show lower silhouette values compared to mALS, but we observe the
opposite effect in the anterior frontal lobe.

On Fig. 7, we show the consistency for every nodes and centroids, for the three methods
that do not explicitly enforce a perfect consistency. Clearly, the pairwise technique KerGM
results in inconsistent matching for every clusters, including the regions where the vari-
ations across individuals are known to be low (no centroid in green, even in the central
sulcus and the insula). For mALS and Auzias et al., we can observe the spatial variations
of the consistency across cortical regions. Again, higher consistency is obtained in less
variable regions (central sulcus, insula) for both techniques, and relatively lower values
are visible in the frontal and occipital regions. The consistency is higher for mALS than
Auzias et al. for every clusters. Note that the spatial pattern of the consistency measure for
mALS is anatomically relevant, with a consistent matching in the insula, the central and
pre-central regions, and less consistent in the peri-sylvian regions. At a more local scale,
we observe a cluster in the superior temporal sulcus that is more consistent than those lo-
cated anteriorly or posteriorly, which is in line with previous studies describing variations
and stabilities across individuals in this region Leroy et al. (2015).
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Figure 6: For each method, we show the silhouette coefficient of each node from every
graphs, as well as corresponding centroids as larger circles. Each centroid (larger circles)
is colored according to the average of the silhouette coefficient of corresponding nodes.

Figure 7: Node consistency computed for each node of each graph with respect to the
remaining graphs, and then averaged across graphs. We adapted the colorbar to visualize
the differences between the three methods, with the pariwise technique KerGM showing
much lower values.

5 Discussion

In this work, we explored the potential of graph matching methods applied to a popula-
tion of sulcal graphs to uncover correspondences across individuals driven by the local
patterns of folds. Indeed, these graph matching methods take into account the charac-
teristics of individual sulcal basins as well as their topological organization to construct
the correspondences. Our results on both simulations and real data support the biological
relevance of the correspondences across individual resulting from multi-graph matching
techniques.
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5.1 Relevance of simulated graphs relative to real data for evaluating matching
techniques

To overcome the lack of ground truth for real data, we proposed a procedure allowing to
generate artificial graphs that approximate the features of real sulcal graphs while control-
ling the variations across graphs. This simulation procedure enabled to benchmark various
pairwise and multi-graph matching techniques. The evaluation of the performances of the
different methods and their robustness to controlled variations in the simulated graphs
was informative for probing their effectiveness in this context. The performances of the
pairwise approach KerGM were limited even when the level of perturbations was mini-
mal. Note that we reported in Buskulic et al. (2021) that alternative pairwise techniques
perform even worse on this task. Amongst the different multi-graph matching techniques
that were tested, mALS showed better performances than the others in all conditions, and
a good robustness to increasing noise levels. These observations were confirmed by our
application on real data. Overall, our set of experiments confirmed the intuition that multi-
graph matching techniques are highly relevant in our context, while pairwise techniques
show limited performances and might thus be restricted to initialization purpose.

Of note, our aim was not to push the biological plausibility of our simulated graphs.
Keeping the simulations simple enables straightforward interpretation of the variations in
the performances across the different approaches. This trade-off is visible in the procedure
in particular when we sample the reference nodes uniformly on the sphere. Indeed, our
simulation procedure cannot produce realistic non-uniform spatial distribution of nodes
across the population. While this could be achieved by adapting the sampling of the refer-
ence points, this would induce variations in the performances of the matching techniques
depending on the location on the sphere, which in turn would make the comparison across
methods much more difficult.

Beyond the present work, our procedure for simulating sulcal graphs could be instru-
mental to assess future improvements in graph matching techniques.

5.2 Considerations relative to deep-learning approaches and potential method-
ological improvements

As already mentioned in section 2.3, many other graph matching techniques can be found
in the literature but were not included in the present work. More specifically, deep learning
approaches outperform traditional approaches in supervised learning task (LeCun, Ben-
gio, & Hinton, 2015). Recent works such as e.g. (Scarselli, Gori, Tsoi, Hagenbuchner, &
Monfardini, 2009; Xu, Hu, Leskovec, & Jegelka, 2019) showed that the structural informa-
tion can be learnt by a Graph Neural Network(GNN), providing that manually labelled
ground-truth data is available.

In addition, the rise of semi-supervised learning approaches represents an opportu-
nity in the context of graphs with partial matching ground-truth. Such approaches are
worth considering in our context, since we observed marked variations across cortical re-
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gions in the ambiguity of the matching. The work by Fey, Lenssen, Morris, Masci, and
Kriege (2020) considers a semi-supervised framework for handling the matching problem
where the ground-truth correspondence are only given for a small subset of nodes. In
addition, their approach imposes an explicit inductive bias to find correspondences across
graphs, based on neighbourhood consensus that does not allow adjacent nodes from being
mapped to different regions in other graphs. This is appealing in the case of sulcal graph
matching where we would like to enforce the matching of nodes located in some specific
regions more than in others. Such a framework could benefit from the recent work Lyu et
al. (2021) on context-aware data augmentation, which could be instrumental to overcome
the bottleneck of the lack of ground-truth labeling data.

Another avenue for potential gains in performance consists in improving the defini-
tion and integration of the attributes on nodes and edges. Many other geometrical fea-
tures could be considered to enrich the attributes on nodes, such as e.g. shape index and
curvedness Awate, Yushkevich, Song, Licht, and Gee (2010), or the local gyrification index
Rabiei, Richard, Coulon, and Lefèvre (2017). On the other hand, the literature on learning
edge representations is very scarce Hsu, Shen, and Cremers (2022), and the attributes on
edges are most often reduced to a scalar value (i.e. a simple weight). In particular, the
methods included in the present work cannot handle vectors of attributes on edges. Some
recent deep learning methods such as (R. Wang et al., 2021) can exploit such vectors of at-
tributes, but their scalability is limited by the size of the affinity matrices. We proposed in
Dupé, Yadav, Auzias, and Takerkart (2022) to overcome this limitation by leveraging the
recent matrix factorization method from Zhang et al. (2019). We will further investigate
the potential of these methods in our future studies.

5.3 Data-driven nomenclature of sulcal basins

The present work extends previously reported experimental results illustrating the major
impact of the labeling strategy on the induced correspondences and data-driven nomencla-
ture. In Kaltenmark et al. (2020), the number of clusters obtained at the group level varied
from 90 to 114 for the right hemisphere using either the approach proposed in Kaltenmark
et al. (2020) or Auzias et al. (2015) respectively, on the same population of subjects. We
provide a much more detailed comparison. We show on Fig. 8 the superimposition of the
centroids from different methods on the same average surface. This visualization shows
that the location of some of the centroids are very consistent across methods (indicated by
arrows), corresponding to cortical regions where variations across individuals are known
to be low, such as the central sulcus, the insula, the inferior precentral or superior tem-
poral sulcus. Other clusters differ across methods. The clusters indicated by squares are
those resulting from Auzias et al. and mSync (resp.) that do not match clusters from
Kaltenmark et al. (see also Table 1). These are located either in highly variable regions
such as the frontal lobe, or on the top of gyri such as the superior temporal gyrus and
the inferior frontal gyrus. While mALS and Kaltenmark et al. result in centroids that are
highly similar (crosses and rings are often superimposed on the panel on the left), the two
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methods do not result in the same matching in highly variable regions such as the inferior
frontal and parietal regions (indicated by diamonds). In conjunction with our results on
synthetic (Sec.4.3.3) and real data (Sec.4.4.3), these observations confirm that the concep-
tual differences between the approaches yield different matchings and thus different cor-
respondences across individuals. Indeed, graph-matching techniques such as mALS are
able to take into account the topological information encoded in the graphs, i.e the spatial
organization of neighbouring folds, while Kaltenmark et al. relies only on the geometry
of sulcal basins, considering different folds separately.

Figure 8: Superimposition of the centroids from mALS, Auzias et al., and mSync shown
as crosses with those of Kaltenmark et al. shown as green rings. mSync is representative
of the methods kerGM and CAO that also result in 101 clusters. The arrows point to
centroids that are robust across methods. The squares indicate centroids corresponding to
small clusters located on gyri. Diamonds indicate centroids that differ between mALS and
Kaltenmark et al..

The next step will be to assess the biological relevance of the induced correspondences
across subjects by visualizing the matching on the cortical surface of the individuals. Given
the variations across methods in the location of clusters observed on Fig.8, we expect to
observe important differences between the techniques at the individual level, especially
in highly variable regions such as the parietal lobe. More specifically, our expectation is
that graph matching techniques should allow solving potential anatomical ambiguities in
a much more relevant way than Auzias et al. and Kaltenmark et al., by exploiting the
topological information of the neighbouring folding pattern.

6 Conclusion

In this study, we explored the potential of several graph matching methods chosen from
the literature to define population-wise correspondences across individual cortical geome-
tries. In the absence of a ground-truth labeling for real data, we first proposed a procedure
to generate simulated sulcal graphs that follow the intrinsic structure and properties of
real sulcal graph. We then compared the approaches on our simulated sulcal graphs with
ground-truth correspondences defined by construction.

We also evaluated the methods on real data. We computed the silhouette value of
each node of the graph that measures the degree of compactness of each cluster, giving
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us insights on the matching across graphs produced by the different methods. We also
computed a consistency measure that gave us an insight on the variability across the pop-
ulation for each cluster. The results obtained on real data were compared with two other
methods from the literature.

Overall, our experiments on both artificial and real data showed the high relevance
of multi-graph methods for sulcal graph matching. We observed that mALS and mSync
outperform CAO and the pairwise approach KerGM. While mALS proved to be very
robust to noise compared to other methods, the much lower complexity of mSync makes
it also a relevant candidate for further studies and extensions to larger populations.
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Dupé, F.-X., Yadav, R., Auzias, G., & Takerkart, S. (2022). Kernelized multi-graph match-

ing. In Acml 2022.
Eckstein, J., & Bertsekas, D. P. (1992). On the douglas—rachford splitting method and the

proximal point algorithm for maximal monotone operators. Mathematical Program-
ming, 55(1), 293–318.

Eickhoff, S. B., Yeo, B. T. T., & Genon, S. (2018). Imaging-based parcellations of the human
brain. , 19(11), 672–686. (Number: 11 Publisher: Nature Publishing Group) doi:
10.1038/s41583-018-0071-7

Faktor, A., & Irani, M. (2013). “clustering by composition”—unsupervised discovery of
image categories. IEEE transactions on pattern analysis and machine intelligence, 36(6),
1092–1106.

Fey, M., Lenssen, J. E., Morris, C., Masci, J., & Kriege, N. M. (2020). Deep graph matching
consensus. In International conference on learning representations.

Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999). High-resolution intersubject
averaging and a coordinate system for the cortical surface. Human brain mapping,
8(4), 272–284.

Glasser, M. F., Coalson, T. S., Robinson, E. S. J., Hacker, C. D., Harwell, J., Yacoub,
E., . . . Andersson, J. (2016). A multi-modal parcellation of human cerebral
cortex. , 536(7615), 171–178. Retrieved from http://dx.doi.org/10.1038/

nature18933http://www.nature.com/articles/nature18933 (ISBN:
0008-5472 (Print)\r0008-5472 (Linking) Publisher: Nature Publishing Group eprint:
NIHMS150003) doi: 10.1038/nature18933

Hastie, T., Mazumder, R., Lee, J. D., & Zadeh, R. (2015). Matrix completion and low-rank
svd via fast alternating least squares. The Journal of Machine Learning Research, 16(1),
3367–3402.

Hsu, H. H.-H., Shen, Y., & Cremers, D. (2022). A graph is more than its nodes: Towards
structured uncertainty-aware learning on graphs. arXiv preprint arXiv:2210.15575.

Hu, N., Huang, Q., Thibert, B., & Guibas, L. J. (2018). Distributable consistent multi-object
matching. In Proceedings of the ieee conference on computer vision and pattern recognition
(pp. 2463–2471).

Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J., Mattern, F., Mitchell, J., . . . Lee,
K. (2010). Reweighted Random Walks for Graph Matching. In Computer Vision
– ECCV 2010 (Vol. 6315, pp. 492–505). Berlin, Heidelberg: Springer Berlin Hei-
delberg. Retrieved 2020-03-10, from http://link.springer.com/10.1007/

978-3-642-15555-0 36 (Lecture Notes in Computer Science) doi: 10.1007/
978-3-642-15555-0 36

xxviii

http://www.ncbi.nlm.nih.gov/pubmed/17427742
http://www.ncbi.nlm.nih.gov/pubmed/17427742
http://dx.doi.org/10.1038/nature18933http://www.nature.com/articles/nature18933
http://dx.doi.org/10.1038/nature18933http://www.nature.com/articles/nature18933
http://link.springer.com/10.1007/978-3-642-15555-0_36
http://link.springer.com/10.1007/978-3-642-15555-0_36


Im, K., Guimaraes, A., Kim, Y., Cottrill, E., Gagoski, B., Rollins, C., . . . Grant, P. E.
(2017, July). Quantitative Folding Pattern Analysis of Early Primary Sulci in Hu-
man Fetuses with Brain Abnormalities. American Journal of Neuroradiology, 38(7),
1449–1455. Retrieved from http://www.ajnr.org/lookup/doi/10.3174/

ajnr.A5217 doi: 10.3174/ajnr.A5217
Im, K., Jo, H. J., Mangin, J.-F., Evans, A. C., Kim, S. I., & Lee, J.-M. (2010, March). Spatial

distribution of deep sulcal landmarks and hemispherical asymmetry on the cortical
surface. Cerebral cortex (New York, N.Y. : 1991), 20(3), 602–11. Retrieved from http://

www.ncbi.nlm.nih.gov/pubmed/19561060 doi: 10.1093/cercor/bhp127
Im, K., Lee, J.-M., Yoon, U., Shin, Y.-W., Hong, S. B., Kim, I. Y., . . . Kim, S. I. (2006). Frac-

tal dimension in human cortical surface: multiple regression analysis with cortical
thickness, sulcal depth, and folding area. Human brain mapping, 27(12), 994–1003.

Im, K., Pienaar, R., Lee, J.-M., Seong, J.-K., Choi, Y. Y., Lee, K. H., & Grant, P. E. (2011).
Quantitative comparison and analysis of sulcal patterns using sulcal graph matching:
a twin study. Neuroimage, 57(3), 1077–1086.
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Appendices

A Additional description of the β-binomial distribution

In the following section we provide additional description of the formulation of the β-
binomial distribution.

The β-binomial distribution is parameterized by ν, α and β. The parameter ν defines
the size of support (in our case, maximum number of no/ns). The setting of ν can impact
the skewness of the distribution but the shape will be Gaussian as long as the value is
sufficiently large. We show in figure A.1 the β-binomial distributions for different values
of ν, with α = 7.15 and β = 28.62. In this work, we set ν = 30 which is sufficient to get a
distribution close to Gaussian for all combinations of α and β parameters that are relevant
in our context.

Althoughα and β are not trivial to calibrate, they can be related to µ and σ of a Gaussian
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Figure A.1: Effect on β-binomial mass function for different values of ν fixing α = 7.15 and
β = 28.62

distribution using the following formulae:

ρ =
ν − µ
µ

, α =
(1 + ρ)2σ − n2ρ

(νρ(1 + ρ)− σ(1 + ρ)3
, β =

ν − µ
µ

α (A.1)

which allows us to control for µ and σ, i.e. the amount of nodes to suppress(ns) and
outliers to add(no). Figure A.1 illustrates how we can obtain distributions close to two
Gaussian with identical µ but different σ value, by controlling α and β.

Figure A.1: β-binomial distributions for identical mean: µ, µ1 = 12 but different standard
deviations: σ = 3, σ1 = 5. The dotted lines signifies the mean of the distribution where as
the shaded area is the standard deviation across 5 trials.

B Supplementary data showing the fit between simulated and
real graphs

As stated in section in 4.3.1 we empirically set the simulation parameters µpert, σpert and
p = 10% such that our simulated graphs follow the intrinsic properties of real graphs. With
the choice of µpert, σpert we estimate the corresponding α and β of β-binomial distribution

xxxiv



as described in Appendix A. This allows us to generate graphs with similar mean and
standard deviation of number of nodes as in the real data. This control on the number
of nodes is independent from the other types of perturbations we induce. In particular,
we show on Figure B.1 the match between simulated and real graphs for various values
of the parameter controlling for the perturbation of the coordinates of the nodes, κ. This
figure shows the density distribution for the number of nodes in the simulated graphs for
different values of κ, compared to number of nodes in the real population. The largely
overlapping distributions confirm the match of the number of nodes, for any value of κ.

Figure B.1: Distribution for number of node in the simulated population corresponding to
different κ value with the distribution for number of nodes in the real sulcal graphs.

In addition, we also compare the distributions of the geodesic length of the edges which
serves as the feature on the edges. Figure B.2 shows the distributions of mean geodesic dis-
tance across a populations of real data and simulated graphs for different values of κ. The
shaded area surrounding each curve shows the standard deviation across a population of
137 graphs in both real and simulated population. As stated in section 3.1 the distance be-
tween the nodes in the real graphs are larger than a minimum distance, which is illustrated
by the flat portion of the blue curve for low geodesic distances. Our simulations do not
reproduce this feature, as expected from the uniform sampling of the location of outliers
nodes that can get close to previous nodes (figure 3.b,c). Note that the fit is good for larger
geodesic distance values.

Finally, we show on Figure B.3 the distribution of the degree of nodes for simulated
and real graphs. The degree corresponds to the number of neighbors of each node, and is
thus indicative of the local topology of the graphs. This figure confirms the good match
between simulated and real data, independently of κ that controls the perturbation level.

Overall, all our measures confirmed a good match between simulated and real graphs,
for any value of κ.
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Figure B.2: Distribution for geodesic distance in the simulated and real population of 137
graphs. The shaded region corresponds to standard deviations across graphs in the popu-
lation.

Figure B.3: Degree distribution in the simulated and real population of 137 graphs. The
shaded region corresponds to standard deviations across graphs in the population.
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