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PURITY AND TORSORS OVER PRÜFER BASES

NING GUO AND FEI LIU

Abstract. We establish Zariski–Nagata purity theorem concerning finite étale covers on smooth schemes
over Prüfer rings by proving Auslander’s flatness criterion in this non-Noetherian context. Inspired by
Gabber–Ramero’s upper bound of projective dimensions over Prüfer bases, we present an Auslander–
Buchsbaum formula. On the basis of the analysis of reflexive sheaves, we prove various purity theorems
for torsors under reductive group algebraic spaces. Specifically, by parafactorial results in [EGA IV4] on
smooth schemes over normal bases, we prove the purity for cohomology groups of multiplicative type
groups at this level of generality. Subsequently, we take advantage of aforementioned purity results
to give affirmative answer to the Grothendieck–Serre conjecture for torsors on smooth schemes over
semilocal Prüfer rings in certain cases. Along the way, inspired by the recent preprint of Česnavičius
[Čes22c], we also prove several versions of Nisnevich conjecture in our context.
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1. Purity and the Grothendieck–Serre on schemes smooth over Prüfer bases

1.1. Purity and regularity. In algebraic geometry, purity refers to a diverse range of phenomena in
which certain invariants or categories associated to geometric objects are insensitive to the removal of
closed subsets of large codimensions. In the classical Noetherian world, purities, say, for vector bundles
(and even torsors), or for finite étale covers, are intimately related to the regularities measured by lengths
of regular sequences of geometric objects. For a concrete instance, the Auslander–Buchsbaum formula

depthRM ` proj.dimRM “ depthRR ([AB57, Theorem 3.7])
controls the projective dimension of the finite type module M over the Noetherian local ring R via depths,
leading to the purity for vector bundles on regular local rings of dimension two ([Sam64, Proposition 2]).
Granted this, Colliot-Thélène and Sansuc [CTS79, Théorème 6.13] established the purity for reductive
torsors over arbitrary regular local ring R of dimension two by bootstrapping from the vector bundle
case:

the restriction H1
étpSpecR,Gq

„
ÝÑ H1

étpSpecRztmRu, Gq is bijective
for every reductive R-group scheme G. Nevertheless, not only does the term ‘regularity’ make sense for
Noetherian rings, its non-Noetherian generalization can still enlighten us to contemplate purity problems.

1.2. Regularity of Prüfer rings. Originally formulated by Bertin [Ber71], [Ber72, Définition 3.5]
for coherent local rings, we say that a ring R is regular if every finitely generated ideal of R has finite
projective dimension. This coincides with the classical notion of regularity when restricting to Noetherian
rings by Serre’s homological characterization [Ser56, Théorème 3]. A typical non-Noetherian example
can be sought in Prüfer rings, namely, the rings whose all local rings are valuation rings. By definition, an
integral domain V is a valuation ring if every x P pFracV qzV satisfies x´1 P V . Beyond fields, Noetherian
valuation rings are exactly discrete valuation rings. The regularity of Prüfer rings thus follows from the
fact that all finitely generated ideals of valuation rings are principal. In addition to the regularity and
other nature (Lemma 3.1.1), the ubiquity of Prüfer rings in the study of nonarchimedean geometry,
Zariski–Riemann spaces, among others, motivates us to investigate their algebro-geometric properties.

1.3. Basic setup I. The purity part of the present article focuses on a semilocal affine Prüfer scheme S
with dimS ą 0 (and with dimS ă 8 if necessary), an S-flat finite type algebraic space X with regular
S-fibers, and a closed subset Z Ă X such that j : XzZ ãÑ X is quasi-compact. For a point x P X lying
in an open subscheme, the local ring of X at x makes sense and we denote A :“ OX,x. When involving
torsors on X, we let G be an X-group algebraic space that étale-locally permits an embedding G ãÑ GLn
such that GLn {G is X-affine. This condition is fulfilled if G is X-reductive1, or finite and locally free.

1.4. Auslander–Buchsbaum over Prüfer bases. Gabber–Ramero’s upper bound of projective di-
mensions of coherent modules over X unveils a glimpse of the Prüferian Auslander–Buchsbaum formula
Theorem 2.8.1: if x P X lies over a closed point s P S, then every finitely presented A-module M satisfies

proj. dimAM ` depthAM “ depthAA “ d` 1, where d “ dim OXs,x.

Here proj. dimAp0q “ ´8 and depthAM is the smallest i such that the i-th local cohomology of M
be nonzero (§2.4). Our proof is significantly different from the classical case [AB57, Theorem 3.7].
Specifically, taking Gabber–Ramero’s boundness [GR18, Proposition 11.4.1] as an input, we bypass
the interpretation of projective dimensions in terms with Tor functors, which is a crucial ingredient in
Auslander–Buchsbaum’s argument. In the sequel, we will only use Gabber–Ramero’s part of Proposi-
tion 3.2.7(i).

1.5. Purity for torsors on smooth relative curves over Prüfer rings. Once the projective di-
mensions of reflexive sheaves on X are controlled, by imposing codimensional constraints on Z, we may
extend vector bundles on XzZ to X, as in Noetherian scenarios. Subsequently, this allows us to obtain
the purity Theorem 6.1.4 for G-torsors: if Z satisfies

Zη “ H for each generic point η P S and codimpZs, Xsq ě 1 for all s P S,
and X is an S-curve, then restriction induces the following equivalence of categories of G-torsors

TorspXét, Gq
„

ÝÑ TorsppXzZqét, Gq.

1By this we mean a smooth affine X-group algebraic space G whose X-geometric fibers are (connected) reductive algebraic
groups. Then, étale-locally on X, G splits so admits a closed immersion G ãÑ GLn,X for some integer n; by [Alp14, 9.4.1],
the reductivity of G implies that the quotient GLn,X {G is X-affine of finite type.
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In particular, passing to isomorphism classes of objects, we have the following bijection of pointed sets
H1

étpX,Gq » H1
étpXzZ,Gq.

Meanwhile, a local version Theorem 6.2.1 allows us to loose constraints on the relative dimension of X:
if

either x P Xη with dim OXη,x “ 2, or x P Xs with s ‰ η and dim OXs,x “ 1,
then every G-torsor over Spec OX,xztxu extends uniquely to a G-torsor over Spec OX,x. This permits us
to iteratively extend reductive torsors beyond a closed subset of higher fiberwise codimensions.

1.6. Zariski–Nagata over Prüfer bases. The Zariski–Nagata purity, known as “purity of branch
locus”, states that every finite extension A Ă B of rings with A regular Noetherian and B normal is
unramified if and only if so it is in codimension one on SpecB. This purity was settled by Zariski [Zar58]
in a geometric context, and more algebraically by Nagata [Nag59] based on Chow’s local Bertini theorem.
In contrast to them, Auslander gave an alternative proof [Aus62, Theorem 1.4] by skillful homological
methods leading to a criterion for flatness. In [SGA 2new, Exposé X, §3], Grothendieck reformulated their
results into a purity concerning finite étale covers and proved this purity on Noetherian local rings that is
a complete intersection of dimension ě 3 by reducing the assertion to hypersurfaces via several passages
involving formal completions. Nevertheless, a practical deficiency of the later argument is that, even over
a rank-one valuation ring V with pseudo-uniformizer ϖ, the coherence of the ϖ-adic completion pA of A
is unknown to us, not to mention the primary decomposition on it. To circumvent this technical obstacle,
we revert to Auslander’s argument by establishing a Prüferian counterpart Theorem 4.1 of the criterion
for flatness [Aus62, Theorem 1.3]. Granted this, we acquire the Prüferian Zariski–Nagata Theorem 6.4.2:

the pullback FÉtX
„

ÝÑ FÉtXzZ is an equivalence
for every closed subset Z Ă X in the basic setup §1.3 that satisfies the following condition

codimpZη, Xηq ě 2 for each generic point η P S and codimpZs, Xsq ě 1 for all s P S.
In particular, for every geometric point x : Spec Ω Ñ XzZ with a separably closed field Ω, the map

πét
1 pXzZ, xq Ñ πét

1 pX,xq is an isomorphism.

1.7. Grothendieck–Serre on semilocal Prüfer rings. The Grothendieck–Serre conjecture predicts
that, for a regular local ring R and a reductive R-group scheme G, every generically trivial G-torsor is
trivial, that is, the following restriction map of nonabelian cohomology pointed sets has trivial kernel:

ker pH1
étpR,Gq Ñ H1

étpFracR,Gqq “ t˚u.

The conjecture was settled in the equicharacteristic case and in certain unramified mixed characteristic
cases, see the histrical summary below. Thanks to the purity for cohomology of groups of multiplicative
type, we prove the non-Noetherian counterpart of Colliot-Thélène–Sansuc’s result for tori and then obtain
a product formula for tori. Based on this, the similar argument in [Guo20] leads to a passage from the
semilocal case to the local case. Hence, we settle the Grothendieck–Serre on semilocal Prüfer rings in §9.

1.8. Basic setup II. The second half of this article deals mainly with the following. For a semilocal
Prüfer ring R, an irreducible R-smooth scheme X, the semilocalization A :“ OX,x of X at a finite
subset x Ă X contained in a single affine open of X, and a reductive A-group scheme G, we study the
trivialization behaviour of G-torsors.

1.9. Grothendieck–Serre on smooth projective schemes. This result was proved by the second
author and simultaneously by an unpublished work of Panin and the first author in the Noetherian case.
We show that, when X is R-projective in §1.8 and G has a reductive model over X, every generically
trivial G-torsor on A is trivial, that is,

ker pH1pA,Gq Ñ H1pFracA,Gqq “ t˚u.

To prove this, we use crucially our purity Theorem 6.1.4 after spreading out to extend the domain of the
torsor in question to an open subset as large as possible: according to that purity, a generically trivial
torsor on OX,x extends to a torsor on an open neighbourhood of x whose complementary closed has
codimension ě 3 (resp., ě 2) in the generic (resp., non-generic) R-fibers of X, see Corollary 6.3.2. This
codimension bound is sharp enough for us to apply the geometric presentation Lemma 7.1.1 and glueing
techniques to reduce the problem to studying torsors on relative affine lines that we treat in detail in
§10.
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1.10. Grothendieck–Serre under constant reductive groups. Assume that G is ‘constant’, namely,
it is a pullback from the Prüfer base ring R. Then every generically trivial G-torsor on A is trivial, that
is,

ker pH1pA,Gq Ñ H1pFracA,Gqq “ t˚u.

For this, we first devise a variant (in some aspect, a stronger form) of Lindel’s lemma (Proposition 7.2.1),
which states that, for a closed subscheme Y Ă X that avoids all the maximal points of the R-fibers of X,
the pair pY,Xq Zariski-locally on X can be presented as an elementary étale neighbourhood of a similar
pair pY 1, X 1q, where X 1 is an open of some projective R-space. This allows us to use glueing techniques
to reduce to studying generically trivial torsors on opens of projective R-spaces, which is done in §1.9.

1.11. Grothendieck–Serre under quasi-split groups. As for the quasi-split case of the Grothendieck–
Serre, we will follow a similar strategy of [Čes22a] (with its earlier version given by Fedorov [Fed22b]),
where the key input is our toral version of purity Proposition 8.2.5 and Grothendieck–Serre type Propo-
sition 8.3.2 in this context. Precisely, by the valuative criterion of properness, a generically trivial torsor
on X, say, reduces to a generically trivial torsor under a Borel B away from a closed subset Z of X
that has codimension ě 2 (resp., ě 1) in the generic (resp., non-generic) R-fiber. Further, utilizing the
aforementioned toral purity and Grothendieck–Serre type results, one shows that the above torsor further
reduces to a radupBq-torsor on XzZ. In conclusion, when G is quasi-split, we prove Theorem 13.1 that

ker
`

H1pAbR K,Gq Ñ H1pFracA,Gq
˘

“ t˚u;

if R has Krull dimension 1, then every generically trivial G-torsor is trivial, that is,

ker
`

H1pA,Gq Ñ H1pFracA,Gq
˘

“ t˚u.

1.12. Nisnevich’s purity conjecture. Now, we turn to Nisnevich’s purity conjecture, where we require
the total isotropicity of group schemes. A reductive group scheme G defined over a scheme S is totally
isotropic at s P S if every Gi in the decomposition [SGA 3III new, Exposé XXIV, Proposition 5.10 (i)]

Gad
OS,s

–
ś

i ResAi{OS,s
pGiq

contains a Gm,Ri
. If this holds for all s P S, then G is totally isotropic. Proposed by Nisnevich [Nis89,

Conjecture 1.3] and modified due to the anisotropic counterexamples of Fedorov [Fed22b, Proposition 4.1],
the Nisnevich conjecure predicts that, for a regular semilocal ring R, a regular parameter r P R (that is,
r P mzm2 for every maximal ideal m Ă R), and a reductive R-group scheme G such that GR{rR is totally
isotropic, every generically trivial G-torsor on Rr 1

r s is trivial, that is, the following map

H1pRr 1
r s, Gq Ñ H1pFracR,Gq has trivial kernel.

The case when R is a local ring of a regular affine variety over a field and G “ GLn was settled by
Bhatwadekar–Rao in [BR83] and was subsequently extended to arbitrary regular local rings containing
fields by Popescu [Pop02, Theorem 1]. Nisnevich in [Nis89] proved the conjecture in dimension two,
assuming that R is a local ring with infinite residue field and that G is quasi-split. For the state of
the art, the conjecure was settled in equicharacteristic case and in several mixed characteristic case by
Česnavičius in [Čes22c, Theorem 1.3] (previously, Fedorov [Fed21] proved the case when R contains
an infinite field). Besides, the toral case and some low dimensional cases are known and surveyed in
[Čes22b, Section 3.4.2 (1)] including Gabber’s result [Gab81, Chapter I, Theorem 1] for the local case
dimR ď 3 when G is either GLn or PGLn. In this article, we prove several variants of Nisnevich
conjecture over Prüfer bases, see Theorem 11.1 (ii) and Theorem 12.1 (ii).

1.13. The Grothendieck–Serre conjecture: a history. Since proposed by Serre [Ser58, page 31]
and Grothendieck [Gro58, pages 26–27, Remarques 3], [Gro68a, Remarques 1.11 a)], the Grothendieck–
Serre conjecture has already various known cases beyond the trivial dimR “ 0 case for fields, as listed
below.

(i) The case when G is a torus is proved by Colliot-Thélène and Sansuc in [CTS87].

(ii) The case when dimR “ 1, namely, R is a discrete valuation ring, was addressed by Nisnevich in
[Nis82] and [Nis84], then is improved and generalized to the semilocal Dedekind case in [Guo22].
Several special cases were proved in [Har67], [BB70], [BTIII] over discrete valuation rings, and in
[PS16], [BVG14], [BFF17], [BFFH20] for the semilocal Dedekind case.
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(iii) The case when R is Henselian was settled in [BB70] and [CTS79, Assertion 6.6.1] by reducing
the triviality of G-torsors to residue fields then inducting on dimR to reach Nisnevich’s resolved
case.

(iv) The equicharacteristic case, namely, when R contains a field k, was established by Fedorov and
Panin [FP15] when k is infinite (see also [PSV15], [Pan20b] for crucial techniques) and by Panin
[Pan20a] when k is finite, which was later simplified by [Fed22a]. Before these, several equichar-
acteristic subcases were proved in [Oja80],[CTO92], [Rag94], [PS97], [Zăı00], [Oja01], [Oja04],
[Pan05], [Zai05], [Che10], [PSV15].

(v) When R is of mixed characteristic, Česnavičius [Čes22a] settled the case when G is quasi-split
and R is unramified (that is, for p :“ charpR{mRq, the ring R{pR is regular). Prior to this,
Fedorov [Fed22b] proved the split case under additional assumptions on R. Recently, Česnavičius
[Čes22c, Theorem 1.3] settled a generalized Nisnevich conjecture under certain conditions, which
specializes to the equal and mixed characteristic cases of the Grothendieck–Serre proved in [FP15],
[Pan20a], [Čes22a].

(vi) There are sporadic cases where R or G are speical (with possible mixed characteristic condition),
see [Gro68a, Remarque 1.11 a)], [Oja82], [Nis89], [Fed22b], [Fir22], [BFFP22], [Pan21].

1.14. Notations and conventions. All rings in this paper are commutative with units, unless stated
otherwise. For a point s of a scheme (resp., for a prime ideal p of a ring), we let κpsq (resp., κppq) denote
its residue field. For a global section s of a scheme S, we write Sr 1

s s for the open locus where s does not
vanish. For a ring A, we let FracA denote its total ring of fractions. For a morphism of algebraic spaces
S1 Ñ S, we let p´qS1 denote the base change functor from S to S1; if S “ SpecR and S1 “ SpecR1 are
affine schemes, we will also write p´qR1 for p´qS1 .

Let S be an algebraic space, and let G be an S-group algebraic space. For an S-algebraic space T , by
a G-torsor over T we shall mean a GT :“ G ˆR T -torsor (see Definition 5.2). Denote by TorspSfppf , Gq

(resp., TorspSét, Gq) the groupoid of G-torsors on S that are fppf-locally (resp., étale-locally) trivial;
specifically, if G is S-smooth (e.g., G is S-reductive, see below), then every fppf-locally trivial G-torsor
is étale-locally trivial, so we have

TorspSfppf , Gq “ TorspSét, Gq.

For an algebraic space S, a reductive S-group algebraic space is a smooth affine S-group algebraic space
whose geometric S-fibers are (connected) reductive algebraic groups. For a scheme S this coincides with
the definition of reductive S-groups schemes given in [SGA 3III new].
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constant encouragements. We thank Matthew Morrow and Colliot-Thélène for proposing the Grothendieck–
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occasions during the past few months, we talked about some aspects of this article with Kęstutis Čes-
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kindly sent to us his note which contained a sketch of a different proof of the Theorem 12.1(i) in the
Noetherian case. We thank Jiandi Zou for useful suggestions about the article. This project has received
funding from the European Research Council (ERC) under the European Unions Horizon 2020 research,
the innovation programme (grant agreement No. 851146), the grant 075-15-2022-289, and the excellent
environment for research of the Euler International Mathematical Institute.

2. Auslander–Buchsbaum formula over valuation rings

The goal of this section is to establish Theorem 2.8.1, the Auslander–Buchsbaum formula over finite rank
valuation rings as an analogue of the classical regular case [AB57, Theorem 3.7]. Based on the upper-
bound of projective dimensions [GR18, Proposition 11.4.1], we induct by using the notion of depths.

2.1. Coherent rings and schemes. For a ring A, a finitely generated A-module M is coherent if its
any finitely generated A-submodule is finitely presented. A ring A is coherent if it is a coherent A-module.
For a scheme X, an OX -module F is coherent if, for every affine open U Ă X, ΓpU,F q is a coherent
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ΓpU,OU q-module. A scheme X is locally coherent if OX is a coherent OX -module. A locally coherent
scheme is coherent if it is quasi-compact quasi-separated.

Example 2.2. Noetherian rings and Prüfer rings are coherent rings ([SP, 05CY, 0EWV]). Although
Noetherian schemes are coherent, open subschemes of affine integral Prüfer schemes are not coherent
in general: there exists a valuation ring V such that SpecV ztmV u has no closed points and is not
quasi-compact.

Lemma 2.3. Let A be a coherent ring.

(i) For every multiplicative subset S Ă A, the localization S´1A is a coherent ring.

(ii) Any A-module M is coherent if and only if it is finitely presented over A. Further, the full
subcategory of coherent A-modules is an abelian subcategory of the category of A-modules and is
closed under taking extensions.

Proof. For (i), see [Gla89, Theorem 2.4.2]. For the first assertion of (ii), see [FK18, Chapter 0, Corol-
lary 3.3.5]. □

2.4. Depth. For a local ring A and the closed point x P SpecA, consider the following functor

Γtxu : A-Mod Ñ A-Mod M ÞÑ ker
´

ΓpSpecA, ĂMq Ñ ΓpSpecAztxu, ĂMq

¯

sending M to its largest A-submodule supported on txu. The functor Γtxu is left exact so gives rise to a
right derived functor RΓtxu : D`pA-Modq Ñ D`pA-Modq. The depth of M P D`pA-Modq is

depthApMq :“ suptn P Z |RiΓtxuM “ 0 for all i ă nu P Zě0 Y t`8u,

For an A-module N supported on txu, we also consider the following closely related quantity
τN pMq :“ suptn P Z | ExtiApN,Mq “ 0 for all i ă nu P Zě0 Y t`8u.

Lemma 2.5. For a local ring A, an A-module M , and an M -regular sequence pf1, ¨ ¨ ¨ , frq in mA,
depthApMq “ depthApM{

řr
i“1 fiMq ` r and τN pMq “ τN pM{

řr
i“1 fiMq ` r.

Proof. The two equalities are proved similarly, so we only treat the one concerning depth. By induction
on r, we are reduced to the case when r “ 1 and f1 “ f is a nonzerodivisor of M in mA. From the short
exact sequence 0 Ñ M

f
ÝÑ M Ñ M{fM Ñ 0, we derive the following long exact sequence

¨ ¨ ¨ Ñ Ri´1ΓtxuM
f

ÝÑ Ri´1ΓtxuM Ñ Ri´1ΓtxupM{fMq Ñ RiΓtxuM
f

ÝÑ RiΓtxuM Ñ ¨ ¨ ¨ .

If depthAM “ `8, then M “ 0 so it suffices to assume that depthAM “ d for an integer d ě 0. If
d “ 0, then there is a nontrivial A-submodule of M supported on txu, contradicting to the assumption
that f P mA is a nonzerodivisor of M . Therefore, we have d ě 1 and RiΓtxuM “ 0 for every 0 ď i ď d´1.
The displayed long exact sequence implies that RiΓtxupM{fMq “ 0 for every 0 ď i ď d´ 2 (if d´ 2 ă 0
then such i does not exist). If Rd´1ΓtxupM{fMq “ 0, then the map RdΓtxuM ãÑ RdΓtxuM induced by
multiplication by f is injective. However, since the nonzero A-module RdΓtxuM is supported on txu and
f P mA, we deduce that RdΓtxuM “ 0, that is, depthAM ą d, a contradiction. Consequently, we have
Rd´1ΓtxupM{fMq ‰ 0 and depthApM{fMq “ d´ 1 “ depthAM ´ 1. □

Example 2.6. Assume that A is Noetherian, and take N “ A{I for an ideal I of A (for instance,
N “ A{mA). Then for any finitely generated A-module M we have

depthAM “ τN pMq.

Indeed, utilizing Lemma 2.5, one verifies easily that both of them equals the length of any maximal
M -regular sequence in mA (so the length is independent of all choices). However, this is false when
A is non-Noetherian. For instance, we let A :“ V be a non-discrete valuation ring of finite rank and
let N :“ V {mV be its residue field. Take M “ V {fV for a nonzero f P mV . Then one checks
immediately that depthV pV {fV q “ 0, but there are no nonzero elements of V {fV annihilated by mV .
Thus HomV pV {mV , V {fV q “ 0, and so τV {mV

pV {fV q ě 1 ą 0 “ depthV pV {fV q.

Lemma 2.7. For a valuation ring V of finite rank, a V -flat finitely presented scheme X, and a point
x P X with image s P SpecV such that OXs,x is regular,
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(i) we have depthApAq “ d` 1, where d “ dim OXs,x;

(ii) for any A-module N supported on txu, we have ExtiApN,Aq “ 0 for all i ď d.

Proof.

(i) Since by assumption V has nonzero finite rank, we can pick an element f P mV such that
dimV {pfq “ 0. Let pg1, ¨ ¨ ¨ , gdq be a sequence in mA such that their images in the regular local
ring A{mVA forms a regular system of parameters, and hence also forms a regular sequence. By
the flatness criterion [EGA IV3, Théorème 11.3.8], pg1, ¨ ¨ ¨ , gdq is a regular sequence of A, and
the quotient ring A :“ A{pg1, ¨ ¨ ¨ , gdq is V -flat with mVA “ mA. Therefore, pg1, ¨ ¨ ¨ , gd, fq is a
regular sequence of A in mA such that dimA{pfA`

řd
i“1 giAq “ 0. Applying Lemma 2.5 yields

depthApAq “ depthApA{pfA`
řd
i“1 giAqq ` d` 1 “ d` 1.

(ii) Repeating the preceding argument involving Lemma 2.5, we deduce the following inequality

τN pAq “ τN pA{pfA`
řd
i“1 giAqq ` d` 1 ě d` 1.

By the definition of τN pAq, this is equivalent to the displayed vanishing. □

Lemma 2.8. For a local ring pA,mAq, a nonzero A-module M supported on tmAu, and a matrix H P

MmˆnpAq, if the A-linear map HM : M‘n Ñ M‘m induced by H (via left multiplication) is injective,
then H admits a left inverse, or, equivalently, H exhibits A‘n as a direct summand of A‘m.

Proof. Recall [SP, 0953] that the assumption on the support of M means that, for any w P M and any
finitely generated ideal I Ă A, we have INw “ 0 for large enough N . Let H “ phijq, then McCoy’s
theorem [Gla89, page 211] implies that the ideal generated by the minors of order n of H does not
annihilate a nonzero element of M . Indeed, the invertibility of minors already yields a left inverse of
H and we are done. Precisely, since M is supported at tmAu, there exist some i, j for which hij P Aˆ.
We may assume that h11 P Aˆ. By subtracting suitable multiples of the first row of H to other rows
(resp. the first column of H to other columns), we may also assume that h1j “ 0 for 1 ă j ď n and
hi1 “ 0 for 1 ă i ď m (the assumption and conclusion of the lemma are preserved if we replace H by
H1HH2, where H1 P MmˆmpAq and H2 P MnˆnpAq). In other words, we have H “ ph11q ‘ H 1, where
H 1 P Mpm´1qˆpn´1qpAq. Then the map H 1

M : M‘pn´1q Ñ M‘pm´1q induced by H 1 is also injective. So
we may assume by induction that H 1 admits a left inverse H2 P Mpn´1qˆpm´1qpAq. Then ph´1

11 q ‘ H2 is
a left inverse of H. □

Now, we acquire the Prüferian analogy of the Auslander–Buchsbaum formula [AB57, Theorem 3.7].

Theorem 2.8.1 (Auslander–Buchsbaum formula over valuation rings). For a valuation ring V of finite
nonzero rank, a V -flat finite type scheme X, a point x P X lying over the closed point s P SpecV such
that OXs,x is regular, and the local ring A :“ OX,x, every finitely presented A-module M satisfies

proj. dimApMq ` depthApMq “ depthApAq “ d` 1, where d “ dim OXs,x.

(By convention, proj.dimAp0q “ ´8)

Proof. Let M be a finitely presented nonzero A-module. We will induct on proj. dimApMq to verify the
formula. Note that, by [GR18, Proposition 11.4.1], we have proj. dimApMq ď d`1. If proj.dimApMq “ 0,
or, M is A-free, then by Lemma 2.7 we have depthApMq “ d`1, so proj. dimApMq`depthApMq “ d`1.

Next, assume that proj. dimApMq ě 1, so every partial resolution 0 Ñ M 1 ι
ÝÑ A‘n Ñ M Ñ 0 is non-split

and satisfies proj.dimApM 1q “ proj. dimApMq ´ 1. We exploit the associated long exact sequence
¨ ¨ ¨ Ñ Ri´1ΓtxuM

1 Ñ Ri´1ΓtxuA
‘n Ñ Ri´1ΓtxuM Ñ RiΓtxuM

1 Ñ RiΓtxuA
‘n Ñ ¨ ¨ ¨ .

If proj.dimApMq “ 1, then M 1 » A‘m for some m ě 1, and the map A‘m » M 1 ι
ÝÑ A‘n is given by an

nˆm matrix H P MnˆmpAq. We have known that proj. dimApM 1q “ d` 1, and so RiΓtxuM
1 “ 0 for all

i ď d. It follows from the above long exact sequence that RiΓtxuM “ 0 for all i ď d´1. If RdΓtxuM “ 0,
then left multiplication by H induces an injection

`

Rd`1ΓtxuA
˘‘m

“ Rd`1ΓtxupA‘mq » Rd`1ΓtxuM
1 ãÑ Rd`1ΓtxupA‘nq “

`

Rd`1ΓtxuA
˘‘n

.
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Since Rd`1ΓtxuA is a nonzero A-module supported on txu, we deduce from Lemma 2.8 that H admits a
left inverse. This implies that ι splits, and so M is A-free, contradicting our assumption proj. dimApMq “

1. Hence, depthApMq “ d, and we thus obtain the desired formula proj. dimApMq ` depthApMq “ d` 1.

If proj. dimApMq ą 1, then proj.dimApM 1q “ proj. dimApMq ´ 1. Applying the induction hypothesis to
M 1, we have

depthApM 1q “ d` 1 ´ pproj. dimApMq ´ 1q “ d` 2 ´ proj. dimApMq, which is ď d.

It follows from the above long exact sequence and the fact depthApA‘nq “ d ` 1 that Ri´1ΓtxuM »

RiΓtxuM
1 for all i ď d. Combining this with the bound depthApM 1q ď d, we deduce that depthApMq “

depthApM 1q ´ 1. Therefore, by induction hypothesis, we have

proj.dimApMq ` depthApMq “
`

proj.dimApM 1q ` 1
˘

`
`

depthApM 1q ´ 1
˘

“ d` 1.

This finishes the induction step. □

3. Geometry of schemes over Prüfer bases

In this section, we recollect useful geometric properties on scheme over Prüfer bases.

3.1. Geometric properties and reduction methods

Lemma 3.1.1. For a valuation ring V with spectrum S, a finite type irreducible S-scheme X, a point
x P X and its image s P S, the following assertions hold

(i) all nonempty S-fibers have the same dimension;

(ii) if X is S-flat , then X is finitely presented over S;

(iii) if X is S-flat, then for any maximal point ξ P Xs, the local ring OX,ξ is a valuation ring such
that the extension OS,s ãÑ OX,ξ of valuation rings induces an isomorphism of value groups;

(iv) for x1 P X that is distinct with x whose image is denoted by s1, if x P tx1u, then

‚ either htpsq “ htps1q (i.e., s “ s1) and then dimpOXs1 ,x1 q ă dimpOXs,xq;

‚ or htps1q ă htpsq and then dimpOXs1 ,x1 q ď dimpOXs,xq.

Proof. For (i), see [EGA IV3, Lemme 14.3.10]. For (ii), see [Nag66, Theorem 3’]. For (iii), see [MB22,
Théorème A]. Now, to prove (iv), we may assume that X is affine and of some pure relative dimension,
say, n, over V . By assumption, we have s P ts1u. Assume that we are not in the first case, then
htps1q ă htpsq. The schematic closure tx1u is a finite type dominant scheme over ts1u (the spectrum of
a valuation ring), so by (i), all its non-empty fibers have the same dimension. Thus, we deduce from
tx1u Ą txu that

dimptx1us1 q “ dimptx1usq ě dimptxusq.

Hence, we have
dimpOXs1 ,x1 q “ n´ dimptx1us1 q ď n´ dimptxusq “ dimpOXs,xq. □

The following Lemma 3.1.2 provides us a passage to the case when there is a section.

Lemma 3.1.2. For a valuation ring V , an essentially finitely presented (resp., essentially smooth) V -
local algebra A, there are an extension of valuation rings V 1{V with trivial extension of value groups,
and an essentially finitely presented (resp., essentially smooth) V -map V 1 Ñ A with finite residue fields
extension.

Proof. Assume A “ OX,x for an affine schemeX finitely presented over V and a point x P X lying over the
closed point s P SpecpV q. Let t “ tr.degpκpxq{κpsqq. As κpxq is a finite extension of l :“ κpsqpa1, ¨ ¨ ¨ , atq
for a transcendence basis paiq

t
1 of κpxq{κpsq, we have t “ diml Ω1

l{κpsq
ď dimκpxq Ω1

κpxq{κpsq
. Choose

sections b1, ¨ ¨ ¨ , bt P ΓpX,OXq such that db1, ¨ ¨ ¨ , dbt P Ω1
κpxq{κpsq

are linearly independent over κpxq,
where the bar stands for their images in κpxq. Define p : X Ñ AtV by sending the standard coordinates
T1, ¨ ¨ ¨ , Tt of AtV to b1, ¨ ¨ ¨ , bt, respectively. Since db1, ¨ ¨ ¨ , dbt P Ω1

κpxq{κpsq
are linearly independent, the
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image η :“ ppxq is the generic point of Atκpsq
, so V 1 :“ OAt

V ,η
is a valuation ring whose value group is

ΓV 1 » ΓV . Note that κpxq{κpηq is finite, the map V 1 Ñ A induces a finite residue fields extension.

When V Ñ A is essentially smooth, the images of db1, ¨ ¨ ¨ , dbt under the map Ω1
X{V b κpxq Ñ Ω1

κpxq{κpsq

are linearly independent, so are their images in Ω1
X{V b κpxq. Hence, p is essentially smooth at x. □

In the sequel, we will use the following limit argument repeatedly.

Lemma 3.1.3. Every semilocal Prüfer domain R is a filtered direct union of its subrings Ri such that:

(i) for every i, Ri is a semilocal Prüfer domain of finite Krull dimension; and

(ii) for i large enough, Ri Ñ R induces a bijection on the sets of maximal ideals hence is fpqc.

Proof. Write FracpRq “ YiKi as the filtered direct union of the subfields of FracpRq that are finitely
generated over its prime field K. Let Ri :“ R X Ki. Then R “ YiRi. It remains to see that every Ri
is a semilocal Prüfer domain whose local rings have finite ranks. Let tpju1ďjďn be the set of maximal
ideals of R. Then R “

Ş

1ďjďnRpj is the intersection of the valuation rings Rpj . Thus we have

Ri “
Ş

1ďjďn

`

Ki XRpj

˘

.

Since Ki{K has finite transcendence degree, by Abhyankar’s inequality, every Ki X Rpj
is a valuation

ring of finite rank. By [BouAC, VI, §7, Proposition 1–2], Ri is a semilocal Prüfer domain, and its local
rings at maximal ideals are precisely the minimal elements of the set tKi X Rpj u1ďjďn under inclusion.
This implies (i). For (ii), it suffices to show that for i large enough there are no strict inclusion relation
between Ki XRpj1

and Ki XRpj2
for j1 ‰ j2. Indeed, if πj P pjz

Ť

j1‰j pj1 for 1 ď j ď n, then (ii) holds
for any i for which tπju1ďjďn Ă Ki. □

3.2. Reflexive sheaves on schemes over Prüfer bases with regular fibers

3.2.1. Reflexive sheaves. Assume that X is a locally coherent scheme, see 2.1. For an OX -module F ,
its dual is denote by F _ :“ HomOX

pF ,OXq. A coherent OX -module F is reflexive if the canonical map
F Ñ F __ is an isomorphism. Since every coherent OX -module G is Zariski-locally finitely presented
O‘m
X Ñ O‘n

X Ñ G Ñ 0, by taking dual, G _ is finitely copresented as 0 Ñ G _ Ñ O‘n
X Ñ O‘m

X . In
particular, the dual G _ of a coherent OX -module G is also coherent (equivalently, finitely presented).
Moreover, Lemma 3.2.2 shows that for integral X and every coherent OX -module G , the double dual
G __ is OX -reflexive, hence G __ is the reflexive hull of G .

Lemma 3.2.2 (reflexive hull). For a locally coherent integral scheme X and two OX-modules F and
G , if F is coherent and G is reflexive, then H :“ HomOX

pF ,G q is reflexive. In particular, the double
dual

F __ :“ HomOX
pHomOX

pF ,OXq,OXq is a reflexive OX-module.

Proof. For the coherence of H , it suffices to take a presentation O‘m
X Ñ O‘n

X Ñ F Ñ 0 of F and its
sheaf homomorphism with G so that H “ kerpG ‘n Ñ G ‘mq which is coherent by [SP, 01BY].

Claim 3.2.3. For a domain R, a finitely presented R-module M , and an exact sequence 0 Ñ M Ñ M 1 Ñ

M2 of finite R-modules, if M 1 is reflexive and M2 is torsion-free, then M is reflexive.

Proof of the claim. Denote p´q_ “ HomRp´, Rq and consider the following commutative diagram

0 M M 1 M2

M__ M 1__
M2__

.

By [SP, 0AV0], M 1 is torsion-free, so is M , hence the map M ãÑ M__ is injective. It remains to show
that this map is surjective. For the map u : M 1_

Ñ M_, consider the exact sequence M 1_
Ñ M_ Ñ

cokerpuq Ñ 0. As M 1 is reflexive, it is finitely presented, so [SP, 0583] applies, yielding the exact sequence

HomRpM 1 bR K,Kq Ñ HomRpM bR K,Kq Ñ cokerpuq bR K Ñ 0,
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where K :“ FracR. Since K is R-flat, the injectivity of M ãÑ M 1 implies that cokerpuqK “ 0, hence
cokerpuq is R-torsion and cokerpuq_ “ 0. Therefore, M__ ãÑ M 1__ is injective. Because M2 is torsion-
free, the map M2 ãÑ M2__ is injective. By snake lemma, M ↠M__ is surjective so M is reflexive. □

Since H is coherent, it is finitely presented. The desired reflexivity follows from Claim 3.2.3. □

By reflexive hull, reflexive sheaves extend from quasi-compact open (cf. [GR18, Proposition 11.3.8(i)]).

Corollary 3.2.4. For a coherent reduced scheme X with an quasi-compact open U Ă X, the restriction

OX-Rflx Ñ OU -Rflx is essentially surjective.

Proof. It suffices to assume that X is irreducible, so X is integral. Every reflexive OU -module F , by
[GR18, Lemma 10.3.24 (ii)], extends to a finitely presented quasi-coherent OX -module ĂF , which is
coherent. Then by Lemma 3.2.2, the reflexive hull ĂF __ is a reflexive extension of F on X. □

Corollary 3.2.5. For a locally coherent integral scheme X and two OX-modules F and G , if F is coher-
ent and G is reflexive, then the natural map HomOX

pF __,G q
„

ÝÑ HomOX
pF ,G q is an isomorphism.

Proof. Locally on X the reflexive OX -module G fits into an exact sequence 0 Ñ G Ñ O‘m
X Ñ O‘n

X ,
hence we have the following commutative diagram of OX -modules with exact rows

0 HomOX
pF __,G q HomOX

pF __,O‘m
X q HomOX

pF __,O‘n
X q

0 HomOX
pF ,G q HomOX

pF ,O‘m
X q HomOX

pF ,O‘n
X q

By Lemma 3.2.2, F _ is reflexive, hence the two rightmost vertical arrows are bijective and so is the
leftmost vertical arrow, as desired. □

Lemma 3.2.6. Let X Ñ S be a finite type morphism with regular fibers between topologically Noetherian
schemes, let j : U ãÑ X be a quasi-compact open immersion with complement Z :“ XzU satisfying

codimpZs, Xsq ě 1 for every s P S and codimpZη, Xηq ě 2 for every generic point η P S,

and let F be a reflexive OX-module. Assume that S is a cofiltered inverse limit of integral schemes
pSλqλPΛ with generic point ηλ and surjective transition maps. Then, there is a λ0 P Λ, a finite type
morphism Xλ0 Ñ Sλ0 with regular fibers such that Xλ0 ˆSλ0

S » X, a closed subscheme Zλ0 Ă Xλ0 such
that Zλ0 ˆSλ0

S » Z, the open immersion jλ0 : Xλ0 zZλ0 ãÑ Xλ0 is quasi-compact, and the following

codimppZλ0 qs, pXλ0 qsq ě 1 for every s P Sλ0 and codimppZλ0 qη0 , pXλ0 qη0 q ě 2

is satisfied. Also, there is a reflexive OXλ0
-module Fλ0 whose inverse image on X is F .

Proof. The condition that X has regular S-fibers descends to Xλ0 by [EGA IV2, Proposition 6.5.3]. The
reflexive OX -module F descends thanks to [EGA IV3, Théorème 8.5.2] and by applying [EGA IV3,
Corollaire 8.5.2.5] to F

„
ÝÑ F __. Because Z is contructible closed, by [EGA IV3, Théorème 8.3.11], it

descends to Zλ such that p´1
λ pZλq “ Z. For fλ : Xλ Ñ Sλ, by the transversity of fibers and [EGA IV2,

Corollaire 4.2.6], Zλ does not contain any irreducible components of f´1
λ psλq for any sλ P Sλ. Finally,

the image of the generic point η P S is the generic point ηλ P Sλ. By [EGA IV2, Corollaire 6.1.4], we
have codimppZλqηλ

, pXλqηλ
q “ codimpZη, Xηq ě 2. □

Proposition 3.2.7. For a valuation ring V with spectrum S and a flat, locally of finite type morphism
f : X Ñ S of integral schemes with regular fibers, the following assertions hold.

(i) For every x P X and every coherent OX-module F that is reflexive at x, we have

proj.dimOX,x
Fx ď maxp0, n´ 1q, where n “ dim Of´1pfpxqq,x.
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(ii) For a closed subset Z Ă X such that j : XzZ ãÑ X is quasi-compact and satisfies the following
codimpZs, Xsq ě 1 for all s P S and codimpZη, Xηq ě 2 for the generic point η P S,

the restriction functors induce the following equivalences of categories.
OX-Rflx „

ÝÑ OXzZ-Rflx PicX „
ÝÑ PicXzZ (3.2.7.1)

In particular, for every X-affine finite type algebraic space Y , we have a bijection of sets
Y pXq » Y pXzZq.

(iii) For a closed subset Z Ă X such that j : XzZ ãÑ X is quasi-compact and XzZ contains all the
associated points of the generic fiber of X and every X-separated algebraic space Y , the map

Y pXq ãÑ Y pXzZq is injective.

(iv) For a closed subset Z Ă X satisfying the assumption in (ii) and a quasi-compact quasi-separated
morphism p : W Ñ XzZ such that p˚OW is a reflexive OXzZ-module, we have the Cartesian
square

AffXzZW AffXW

XzZ X,

paff ν

j

where AffXzZW “ Spec
XzZ

pp˚OW q and AffXW “ Spec
X

pj˚p˚OW q, such that paff and ν are
finite, paff is the relative normalization [SP, 035H] of XzZ in W and ν is the relative normalization
of X in W . In particular, ν˚pOAffpW {Xqq is a reflexive OX-module.

(v) For a closed subset Z Ă X satisfying the assumption in (ii) and a finite flat locally finitely
presented morphism p : W Ñ XzZ, the morphism ν : AffXW Ñ X is the relative normalization
of X in W such that pAffXW qXzZ “ W . In particular, ν˚pOAffXW q is a reflexive OX-module.

Proof. The assertion (i) is [GR18, Proposition 11.4.1 (iii)]. For (ii), by Lemmata 3.1.3 and 3.2.6, we
may assume that V has finite rank. Since |X| is the finite disjoint union of its S-fibers Xs, which are
Noetherian spaces, we know that X is topologically Noetherian. In particular, every open subset of X is
quasi-compact. By Corollary 3.2.4, the functors (3.2.7.1) are essentially surjective. For the faithfulness,
consider two morphisms α, β : F Ñ G between reflexive OX -modules such that α|XzZ “ β|XzZ . To show
that α “ β, since it is a local problem, it suffices to check that αx “ βx : Fx Ñ Gx for every x P Z. Take
a presentation O‘m

X,x Ñ O‘n
X,x Ñ Fx Ñ 0 and copresentation 0 Ñ Gx Ñ O‘m1

X,x Ñ O‘n1

X,x , then αx and βx
induce two morphisms between these copresentations. Then we are reduced to the case when Fx and Gx
are free. We may assume that Fx “ O‘r

X,x and Gx “ O‘s
X,x, so the following isomorphisms lead to α “ β

HomOX,x
pFx,Gxq “ HomOX,x

pO‘r
X,x,O

‘s
X,xq » Homj˚OX,x

pj˚O‘r
X,x, j

˚O‘s
X,xq.

It remains to show that (3.2.7.1) are full. If F and G are two reflexive OX -modules with a morphism
ϕ : j˚F Ñ j˚G , then by [GR18, Corollary 11.3.9], taking j˚p´q induces the following morphism

rϕ : F » j˚j
˚F Ñ j˚j

˚G » G .

For the second assertion of (ii), by the sheaf property, the problem is étale local on X, so we can
assume that X is affine. Choose an embedding Y ãÑ AnX for some integer n. The assumption implies
that XzZ is scheme-theoretically dense in X. Hence, for every morphism ϕ : XzZ Ñ Y , if ϕ extends
uniquely to a morphism rϕ : X Ñ AnX , then rϕ´1pY q is a closed subscheme of X containing XzZ and by
[EGA IV4, Lemme 20.3.8.8], coincides with X. In other words, if rϕ exists uniquely, then it factorises as
X

ψ
Ñ Y ãÑ AnX such that ψ is the unique extension of ϕ. This reduces us to the case Y “ AnX . Now, by

the reflexivity of OX and the full faithfulness of OX -Rflx „
ÝÑ OXzZ-Rflx, we have the desired bijections

AnXpXq “ HomOX
pOX ,O

‘n
X q » HomOX

pOXzZ ,O
‘n
XzZq “ AnXpXzZq.

To prove (iii), we first prove that XzZ Ă X is scheme-theoretically dense in the sense of [SP, 0834].
By [SP, 0836], we need to show that OX Ñ j˚OXzZ is injective, which through the terminology of
[GR18, 10.4.2 and 10.4.19], signifies that δpz,OXq ą 0 for all z P Z. It suffices to take étale coverings of
X by schemes and use the depth formula [GR18, Corollary 10.4.46] for flat morphisms to deduce that
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all z P Z satisfies δpx,OXq ą 0. Since j is quasi-compact, by [SP, 0835], the schematic image of XzZ is
X. Therefore, we apply [SP, 084N] to conclude. The (iv) follows from (ii). For (v), note that p˚OW is
OXzZ-reflexive since by [SP, 02KB], p is finite locally free, hence it is a special case of (iv). □

4. Auslander’s flatness criterion on schemes smooth over valuation rings

The goal is to establish Theorem 4.1 as a counterpart of Auslander’s flatness criterion [Aus62, Theo-
rem 1.3] on schemes smooth over valuation rings. As expected, our criterion leads to a Zariski–Nagata
purity.

Theorem 4.1. For a valuation ring V with spectrum S and closed point s P S, an S-smooth finite type
scheme X, a point x P X lying over s with local ring A :“ OX,x, and a reflexive A-module M ,

EndApMq is isomorphic to a direct sum of copies of M if and only if M is A-free.

As Auslander’s proof, our strategy relies on an estimate of the length of cohomology groups of M . To
begin with, we introduce the length function on torsion modules over valuation rings.

4.2. Lengths of torsion modules. For a nontrivial valuation ring V with fraction field K, value group
Γ and a valuation map ν : K Ñ Γ, every finitely presented torsion V -module M is of the form

M »
À

i V {aiV for finitely many ai P V zt0u.

Define the length of M as δpMq “
ř

i νpaiq P Γě0. The element δpMq is well defined, and δpMq “ 0 if
and only if M “ 0. Every acyclic, bounded complex M‚ of torsion, finitely presented V -modules satisfies

ř

jp´1qjδpM jq “ 0.

Lemma 4.3. For a nontrivial valuation ring V , an essentially smooth V -local algebra pA,mAq, and the
collection A-Modtor,fp of all finitely presented A-modules M such that SupppMq Ă tmAu, there exist a
totally ordered abelian group Γ and a map l : A-Modtor,fp Ñ Γě0 satisfying the following properties:

‚ for A-module M P A-Modtor,fp, we have lpMq “ 0 if and only if M “ 0;

‚ for every acyclic, bounded complex M‚ such that M j P A-Modtor,fp for each j, one has
ř

jp´1qj lpM jq “ 0.

Proof. First we assume that the structural map V Ñ A admits a section A ↠ V . In this case we claim
that M is finitely presented over V and is V -torsion, so we can simply let Γ be the valuation group of V
and set lpMq :“ δpMq, where δ is delivered from 4.2. Indeed, it is clear that M is V -torsion. Any section
SpecV Ñ SpecA is a regular immersion [SP, 067R], so there is a finitely generated ideal J Ă A such
that V » A{J . Hence, since M P A-Modtor,fp, we see that JnM “ 0 for a large n. On the other hand,
the essential smoothness of A over V implies that J{J2 is a free V » A{J-module whose rank equals the
rank of the free A-module Ω1

A{V , and there is a natural isomorphism of graded V » A{J-algebras
À

ně0 J
n{Jn`1 » Sym‚

A{JpJ{J2q.

In particular, A{Jn is a finite free V -module for every n ě 1. Therefore, by tensoring a presentation

AN Ñ AN Ñ M Ñ 0

of M with A{Jn for a large enough n, we get a desired finite presentation of the V -module M .

In the general case, we first use Lemma 3.1.2 to reduce to the case when the residue fields extension of
V Ñ A is finite. Then, if B is the integral closure of V in an algebraic closure of FracpV q, we let V 1 be a
valuation ring of FracpBq centered at a maximal ideal of B. It’s clear that V 1 is absolutely integral closed,
so it is strictly Henselian and there exists a V -map ϕ : A{mA Ñ V 1{mV 1 . Let A1 :“ A bV V

1. Then ϕ
induces a V 1-map ϕ1 : A1 Ñ V 1{mV 1 ; let p Ă A1 be its kernel. Then A1

p is essentially smooth over V 1 and
ϕ1 induces a V 1-map A1

p Ñ V 1{mV 1 , which, by the Henselianity of V 1, lifts to a V 1-map A1
p Ñ V 1. By the

previous paragraph, the lemma is true for A1
p, say, with corresponding map l1 valued in Γ, where Γ is

the valuation group of V 1. Since A Ñ A1
p is faithfully flat, it suffices to define lpMq :“ l1pM bA A

1
pq. □

12

https://stacks.math.columbia.edu/tag/0835
https://stacks.math.columbia.edu/tag/084N
https://stacks.math.columbia.edu/tag/02KB
https://stacks.math.columbia.edu/tag/067R


Lemma 4.4. For a valuation ring V , a V -smooth finite type scheme X, a point x P X that lies over a
non-generic point s P SpecpV q, and a map of finitely presented OX,x-modules M Ñ N that induces an
isomorphism over SpecpOX,xqztxu, we have an isomorphism ExtiOX,x

pN,OX,xq
„

ÝÑ ExtiOX,x
pM,OX,xq for

every i ă d and a monomorphism ExtdOX,x
pN,OX,xq ãÑ ExtdOX,x

pM,OX,xq, where d :“ dim OXs,x.

Proof. Let ker, coker, and im be the kernel, cokernel, and image of M Ñ N , respectively. By assumption
and the coherence of OX,x, ker and coker are coherent, or, equivalently, finitely presented OX,x-modules
([SP, 05CX]) supported at txu. Consider the following short exact sequences

0 Ñ ker Ñ M Ñ im Ñ 0,

0 Ñ im Ñ N Ñ coker Ñ 0.
By applying HomOX,x

p´,OX,xq, we get two long exact sequences concerning Ext’s, and the lemma follows
from the vanishing ExtiOX,x

pker,OX,xq “ 0 and ExtiOX,x
pcoker,OX,xq “ 0 for i ď d (Lemma 2.7). □

Lemma 4.5. For finitely presented A :“ OX,x-modules M and N , ExtiApM,Nq and TorAi pM,Nq are
finitely presented over A for all i ě 0 and are zero for i ą d` 1, where d “ dim OXs,x.

Proof. By [GR18, Proposition 11.4.1 (i)], since A is coherent, the coherent A-module ([SP, 05CX]) M
has a resolution by finite free A-modules of length ď d` 1: F‚ Ñ M , Fi “ 0 for i ą d` 1. Then

ExtiApM,Nq “ HipHompF‚, Nqq and TorAi pM,Nq “ HipF‚ bNq

are all coherent, or equivalently, finitely presented A-modules, and are zero for i ą d` 1. □

Lemma 4.6. For a finitely presented A :“ OX,x-module M , we have a natural isomorphism

EndApMq__ „
ÝÑ EndApM__q.

Proof. First, we define a natural map EndApMq__ Ñ EndApM__q. Note that M__ is A-reflexive due
to Lemma 3.2.2. By Corollary 3.2.5, where M__ plays the role of G , we get a natural isomorphism

HomApM,M__q
„

ÐÝ EndApM__q.

It suffices to consider the natural maps EndApMq Ñ HomApM,M__q
„

ÐÝ EndApM__q. By Lemma 3.2.2,
the two rightmost modules are reflexive. Taking double dual yields the desired map of reflexive A-
modules.

It remains to check that the map EndApMq__ Ñ EndApM__q is an isomorphism. The equivalence of
categories of reflexive modules in Proposition 3.2.7(ii) reduces us to checking this at x P X that is either
a one-codimensional point of the generic V -fiber or a maximal point of a non-generic V -fiber, where, by
Lemma 3.1.1(iii), A is a valuation ring, so there is an N P Zě0 and finitely many ai P mAzt0u such that

M » A‘N
À

p‘iA{aiAq .

Consequently, we conclude by the isomorphisms EndApMq__ » EndApA‘N q » EndApM__q. □

Proof of Theorem 4.1. The proof proceeds as the following steps.

Preliminary cases and reductions. First, since X is locally of finite presentation over S and M
is finitely presented over A, by a standard limit argument involving Lemmata 3.1.3 and 3.2.6, we are
reduced to the case when V is a finite-rank valuation ring. Secondly, if V 1 is a valuation ring of an
algebraic closure of FracpV q that dominates V and if x1 P X 1 :“ X ˆV V

1 is a point lying over x P X,
then MA1 :“ M bA A

1 is a finitely presented reflexive A1-module and EndA1 pMA1 q » EndApMq bA A
1 is

isomorphic to a direct sum of copies of MA1 , where A1 :“ OX1,x1 (because A1 is faithfully flat over A). By
faithfully flat descent [SP, 08XD, 00NX], the freeness of M over A is equivalent to the freeness of MA1

over A1. Therefore, by replacing V by V 1, A by A1, and M by MA1 , we are reduced to the case when
FracpV q is algebraically closed (this assumption will be only used in the very end of the proof).

Set dx :“ dimpOXs,xq and r :“ rankpV q. The case r “ 0 and dx arbitrary is classical. The case r
arbitrary and dx “ 0 is trivial, because A is a valuation ring (Lemma 3.1.1(iii)). The case r arbitrary
and dx “ 1 follows from Proposition 3.2.7(i). Subsequently, we may assume dx ě 2 in the sequel.
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Case 1: r is arbitrary and dx “ 2. Now, we deal with the crucial case when r arbitrary and dx “ 2
by induction on r. The induction hypothesis is that the assertion holds for dx “ 2 and r1 ď r´ 1. Notice
that, for any proper generalization x1 P X of x that lies over, say, s1 P SpecpV q, by Lemma 3.1.1(iv),
we have either s1 “ s and dx1 ă 2, or htps1q ă r and dx1 ď 2. Hence, by induction hypothesis and
the preliminary cases above, the assertion holds for OX,x1 . Since Mx1 is a finitely presented reflexive
OX,x1 -module and

EndOX,x1 pMx1 q “ EndOX,x
pMq bOX,x

OX,x1 » p
à

Mq bOX,x
OX,x1 “

à

Mx1 ,

the induction hypothesis applies to the OX,x1 -module Mx1 , implying that Mx1 is OX,x1 -free. In other
words, ĂM is locally free over SpecAztxu. Consider the following evaluation map

M_ bAM Ñ HomApM,Mq, f bm ÞÑ rm1 ÞÑ fpm1qms,

which, by the local freeness of ĂM over SpecAztxu, is an isomorphism over SpecAztxu. Since dx “ 2 ą 1,
by Lemma 4.4, we apply Ext1

Ap´, Aq to the above map to obtain the following isomorphism

Ext1
ApM_ bM,Aq » Ext1

ApEndApMq, Aq » Ext1
ApM,Aq‘rkM (4.6.1)

of A-modules that are supported on txu by the local freeness of ĂM over SpecAztxu, where rkM “

dimFracAM bA FracA. By Lemma 4.5, the modules in (4.6.1) are also finitely presented over A.

For the adjunction HomApM,HomApM_,´qq » HomApM b M_,´q, we take their derived functors
valued at A, so the E2-page of the associated Grothendieck spectral sequence yields a monomorphism

Ext1
ApM,Mq ãÑ Ext1

ApM bM_, Aq
p4.6.1q

» Ext1
ApM,Aq‘rkM ,

where we have used M__ » M ; again, by the local freeness of ĂM over SpecAztxu and Lemma 4.5, they
are finitely presented supported on txu. In particular, the map l from Lemma 4.3 applies so we have

lpExt1
ApM,Mqq ď rkM ¨ lpExt1

ApM,Aqq. (4.6.2)
Since M is reflexive, by Proposition 3.2.7(i), we have proj.dimAM ď dx´1 “ 1. We prove proj.dimpMq “

0 by contradiction. If proj.dimpMq “ 1, then M has a free resolution 0 Ñ F1 Ñ F0 Ñ M Ñ 0 by finite
A-modules. As M is not free, the sequence is nonsplit, corresponding to a nontrivial extension class in

Ext1
ApM,F1q » Ext1

ApM,AqrankpF1q.

In particular, we have C :“ Ext1
ApM,Aq ‰ 0. Applying HomAp´, Aq to F‚ Ñ M yields an exact sequence

0 Ñ M_ Ñ F_
0 Ñ F_

1 Ñ Ext1
ApM,Aq Ñ 0.

Tensoring it with M , we get an exact sequence F_
0 bAM Ñ F_

1 bAM Ñ Ext1
ApM,Aq bAM Ñ 0. Since

coker pF_
0 bM Ñ F_

1 bMq » coker pHomApF0,Mq Ñ HomApF1,Mqq “ Ext1
ApM,Mq,

we deduce that Ext1
ApM,Mq » Ext1

ApM,Aq bAM “ C bAM .

By tensoring 0 Ñ F1 Ñ F0 Ñ M Ñ 0 with C “ Ext1
ApM,Aq (which is a nonzero finitely presented

A-module supported at txu, by the locally freeness of ĂM over SpecAztxu), we get an exact sequence

0 Ñ TorA1 pC,Mq Ñ C bA F1 Ñ C bA F0 Ñ C bAM Ñ 0
of finitely presented A-modules supported on txu. Applying the map l from Lemma 4.3, we obtain

lpC bAMq “ lpC bA F0q ´ lpC bA F1q ` lpTorA1 pC,Mq “ rkM ¨ lpCq ` lpTorA1 pC,Mqq, (4.6.3)

where rkM “ rankpF0q ´ rankpF1q ą 0. On the other hand, since C bAM » Ext1
ApM,Mq, we deduce

lpC bAMq
p4.6.2q

ď rkM ¨ lpCq. (4.6.4)

The combination of (4.6.3) and (4.6.4) leads to lpTorA1 pC,Mqq “ 0. So, we have an exact sequence
0 Ñ C bA F1 Ñ C bA F0 Ñ C bAM Ñ 0,

which combined with Lemma 2.8 implies that the map F1 Ñ F0 splits, that is, M is A-free, contradicting
our assumption that proj.dimApMq “ 1. This completes the case when r is arbitrary and dx “ 2.

Case 2: r is arbitrary and dx ą 2. We deduce by double induction on the pair pr “ htpsq, dxq. By
induction hypothesis, the assertion holds for all smooth V -scheme X 1 and all points x1 P X 1 such that
htps1q ď htpsq and dx1 ď dx, where s1 P SpecpV q lies below x1, and at least one of equalities is strict. In
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particular, by Lemma 3.1.1(iv), the induction hypothesis applies to OX,x1 for all proper generalization
x1 P X of x. Since Mx1 is a finitely presented reflexive OX,x1 -module and

EndOX,x1 pMx1 q “ EndOX,x
pMqx1 »

à

Mx1 ,

the induction hypothesis gives that Mx1 is OX,x1 -free. In other words, ĂM is locally free over SpecAztxu.

Claim 4.6.5 ([SP, 057F]). Assume that the residue field extension of V Ñ A is separable (e.g., this holds
if κpsq :“ V {mV is perfect), then there exists an a P A such that A :“ A{paq is essentially V -smooth and

dimpA{mVAq “ dx ´ 1.

Since our V has algebraically closed fraction field (by the first paragraph), all of its primes have alge-
braically closed residue fields, so we can choose a P A as in the above claim. Since a is nonzerodivisor in
A and M “ HomApM_, Aq, we see that a is M -regular. Set M :“ M{aM . Applying HomApM,´q to
the short exact sequence 0 Ñ M

a
ÝÑ M Ñ M Ñ 0, we get an exact sequence

0 Ñ HomApM,Mq
a

ÝÑ HomApM,Mq Ñ HomApM,Mq Ñ Ext1
ApM,Mq.

Substituting our assumption HomApM,Mq – M‘rkM into it yields an exact sequence of A-modules

0 Ñ M
‘rkM

Ñ HomApM,Mq Ñ T Ñ 0,

where T Ă Ext1
ApM,Mq is a finitely presented A-submodule (Lemma 4.5), which, by the locally freeness

of ĂM over SpecAztxu, is supported on txu. Since dimpA{mVAq “ dx´1 ě 2, taking dual (as A-modules)
of the above short exact sequence and using Lemma 4.4, we see that

pM
_

q‘rkM » HomApM,Mq_.

Taking dual further and invoking Lemma 4.6, we get the following isomorphism

pM
__

q‘rkM » HomApM
__
,M

__
q.

Since the double dual M__ is finitely presented over A and is reflexive (Lemma 3.2.2), we can apply our
induction hypothesis to the A-module M__ and conclude that it is A-free. The same lemma also implies
that M_ is A-reflexive, so M_

» M
___ is A-free.

Finally, we show that M is A-free. Since ĂM is locally free over SpecAztxu, the natural map M Ñ M
__

is an isomorphism over SpecAztxu, and, since dimpA{mVAq “ dx ´ 1 ą 1, we may apply Lemma 4.4 to
see that Ext1

A
pM,Aq » Ext1

A
pM

__
, Aq “ 0. Since a is M -regular, we deduce that

Ext1
ApM,Aq » Ext1

A
pM bL

A A,Aq » Ext1
A

pM,Aq “ 0.

Applying HomApM,´q to the short exact sequence 0 Ñ A
a

ÝÑ A Ñ A Ñ 0 we get an exact sequence

0 Ñ M_ a
ÝÑ M_ Ñ HomApM,Aq Ñ Ext1

ApM,Aq
a

ÝÑ Ext1
ApM,Aq Ñ Ext1

ApM,Aq.

As all modules are finitely presented over A and Ext1
ApM,Aq “ 0, Nakayama’s lemma gives that

Ext1
ApM,Aq “ 0. Therefore, M_{aM_ » HomApM,Aq “ M

_ is A-free (by the previous paragraph).
From this we can deduce that M is A-free. Indeed, the A-free module M_{aM_ has projective dimension
1 over A, thus, for any finitely presented A-module N , we can derive from

0 Ñ M_ a
ÝÑ M_ Ñ M_{aM_ Ñ 0

an exact sequence of finitely presented A-modules

Ext1
ApM_, Nq

a
ÝÑ Ext1

ApM_, Nq Ñ Ext2
ApM_{aM_, Nq.

As Ext2
ApM_{aM_, Nq “ 0, by Nakayama’s lemma, we have Ext1

ApM_, Nq “ 0. In particular, for any
surjection A‘n ↠ M_ with, say, kernel N , the extension class of the short exact sequence 0 Ñ N Ñ

A‘n Ñ M_ Ñ 0 is zero. This implies that M_ is A-free, hence so is M “ M__. □
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5. Generalities on torsors over algebraic spaces

5.1. Setup. Throughout this section, we let S denote a base scheme, X an algebraic space over S, and
G an X-group algebraic space.

Definition 5.2.

(1) A (right) G-torsor (for the fppf topology) is an X-algebraic space P equipped with a G-action
a : P ˆX G Ñ P such that the following conditions hold:

(i) the induced morphism P ˆX G
„

ÝÑ P ˆX P, pp, gq ÞÑ pp, app, gqq, is an isomorphism; and

(ii) there exists a fppf covering tXi Ñ XuiPI of algebraic spaces [SP, 03Y8] such that PpXiq ‰ H

for every i P I.

(2) For G-torsors P1 and P2, a morphism P1 Ñ P2 is a G-equivariant morphism P1 Ñ P2 of X-
algebraic spaces.

(3) By a trivialization of a G-torsor P we mean a G-equivariant isomorphism t : G „
ÝÑ P, where G

acts on itself via right multiplication; this amounts to the choice of a section tp1Gq P PpXq (if
exists). A G-torsor P is trivial if there exists a trivialization, or, equivalently, if PpXq ‰ H.

Note that every morphism of two G-torsors is an isomorphism. To see this, one may pass to a fppf
covering of X to reduce to the case when both torsors are trivial, in this case the assertion is trivial.

Remark 5.3. One can also define a sheaf torsor for an X-group algebraic space G. It is a sheaf

P : pSch{Sq
opp
fppf Ñ Set

equipped with a map P Ñ X of sheaves and a G-action a : P ˆX G Ñ P such that the above two condi-
tions (i) and (ii) in (1) hold. However, it turns out that such a sheaf torsor is necessarily representable by
an algebraic space, so working with sheaf torsors adds no more generality. To see this, let tXi Ñ XuiPI
be a fppf covering as in (ii) that trivializes P. Then every P ˆX Xi » G ˆX Xi is an algebraic space,
and the map

Ů

i P ˆX Xi Ñ P
is representable by algebraic spaces and is a fppf covering, because it is the base change of the fppf
covering

Ů

iXi Ñ X of algebraic spaces via P Ñ X. Here, all coproducts are taken in the category of
sheaves on pSch {Sqfppf . It follows from (3) of [SP, 04S6] that P is an algebraic space, as desired.

Let P1,P2 be two G-torsors. Define a functor

IsomXpP1,P2q : pSch{Xqopp Ñ Set

which associates to any scheme T over X the set of GT -equivariant isomorphisms P1,T Ñ P2,T over T .

Lemma 5.4. For two G-torsors P1 and P2, IsomXpP1,P2q is an algebraic space over S. Further,
G Ñ X is quasi-compact (resp., étale, smooth, flat, separated, (locally) of finite type, (locally) of finite
presentation, quasi-affine, affine, or finite) if and only if IsomXpP1,P2q Ñ X is so.

Proof. Since IsomXpP1,P2q is fppf locally on X isomorphic to G, it admits a representable fppf covering
by algebraic spaces, hence it is an algebraic space by [SP, 04S6].

The list properties of morphisms of algebraic spaces are all stable under base changes and are fppf local on
the target, see [SP, 03KG] (resp., [SP, 03XT, 03ZF, 03MM, 03KM, 040Y, 0410, 03WM, 03WG, 03ZQ]).
Consequently, since IsomXpP1,P2q is fppf locally on X isomorphic to G, the properties of G are inherited
by and can be detected from IsomXpP1,P2q. □

Since every G-torsor P Ñ X trivializes over a fppf covering tXi Ñ Xu, one may try to obtain P by
glueing the trivial GXi

-torsors PXi
using the canonical isomorphisms

ϕij : pPXi
qXij

» PXij
» PXj

qXji
, where Xij “ Xi ˆX Xj .

It turns out that, unlike the case of schemes, this is always possible in the framework of algebraic spaces,
see Lemma 5.6. Note that, by taking U :“

Ů

Xi, we may assume that PU is trivial for a fppf covering
U Ñ X with U an algebraic space.
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Definition 5.5 (Descent datum for torsors). Let S, X and G be as in 5.1. Let U Ñ X be a fppf covering
of algebraic spaces over S. For every integer n ě 0, denote by U pnq the n-fold fiber product of U over X.
The category of descent datum for G-torsors relative to U Ñ X, denoted

Tors
´

pU p2q Ñ Uqfppf , G
¯

,

has pairs pQ, ϕq as objects, where

‚ Q Ñ U is a GU -torsor; and

‚ ϕ : pr˚
1 Q „

ÝÑ pr˚
2 Q is an isomorphism of GUp2q -torsors such that the following diagram commutes

(i.e., the cocycle condition holds)

pr˚
12pr˚

1 Q pr˚
12pr˚

2 Q pr˚
23pr˚

1 Q pr˚
23pr˚

2 Q

pr˚
13pr˚

1 Q pr˚
13pr˚

2 Q.

pr˚
12pϕq

»

» pr˚
23pϕq

»

pr˚
13pϕq

A morphism from a pair pQ, ϕq to another pair pQ1, ϕ1q is a morphism θ : Q Ñ Q1 of GU -torsors
compatible with ϕ and ϕ1, that is, pr˚

2 pθqϕ “ ϕ1pr˚
1 pθq.

To every G-torsor P one can associate a pair ΨpPq :“ pPU , canq via base changes, where can is the
canonical isomorphism pr˚

1 pPU q » PUp2q » pr˚
2 pPU q. Thus we obtain a functor

Ψ : TorspXfppf , Gq Ñ TorsppU p2q Ñ Uqfppf , Gq.

Lemma 5.6 (Descent G-torsors). Ψ is an equivalence of category.

In other words, every descent datum pQ, ϕq for G-torsors are effective in the sense that there exists a
G-torsor P and an isomorphism Q » PU compatible with θ and the canonical descent datum for PU .

Proof. The full faithfulness of Ψ follows from the sheaf property of the functor IsomXpP1,P2q for any
G-torsors P1 and P2. To show that Ψ is essential surjective, we pick a descent datum pQ, ϕq, and we
need to show that there exists a G-torsor P such that pPU , canq » pQ, ϕq.

When both X and U are schemes, this is proven in [SP, 04U1]. The case of algebraic spaces can be
proved similarly, and we repeat the argument for convenience. First we view Q as a sheaf on the site
pAS{Uqfppf (by the natural equivalence of the topoi associated to pAS{Uqfppf and pSch {Uqfppf). Since
descent datums for sheaves on any site are always effective [SP, 04TR], we may find a sheaf P on the site
pAS{Xqfppf and an isomorphism of sheaves PU » Q compatible with the descent datums. Further, since
maps of sheaves on any site can be glued [SP, 04TQ], the GU -action on Q descent to a G-action on P.
All the assumptions (i) and (ii) of Definition 5.2 hold, because they can be checked on the fppf covering
U Ñ X. It remains to see that P is representable by an algebraic space over X. However, this follows
from (3) of [SP, 04S6], in view of the fact that the map Q Ñ P is representable by algebraic spaces and
is a fppf covering (being a base change of the fppf covering U Ñ X). □

We end this section with the following result, which will be used repeatedly in the sequel.

Lemma 5.7. Let S be a scheme, X an algebraic space over S, and G an X-group algebraic space. Let
f : Y Ñ X be a morphism of algebraic spaces over S. Assume the following conditions hold:

(i) for every fppf covering T Ñ X with T a scheme, the pullback functor
f˚
T : TorspTfppf , GT q Ñ TorsppYT qfppf , GYT

q

is fully faithful, where YT :“ Y ˆX T , and fT :“ f ˆX T ; and

(ii) for every GY -torsor P, there is a fppf covering T Ñ X with T a scheme such that PYT
lies in

the essential image of f˚
T .

Then pullback induces an equivalence f˚ : TorspXfppf , GT q
„

ÝÑ TorspYfppf , GY q.

Similarly, if G Ñ X is smooth, then we have an equivalence
f˚ : TorspXét, GT q

„
ÝÑ TorspYét, GY q,
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provided that one replaces ‘fppf’ by ‘étale’ everywhere in the above assumptions.

Proof. We prove the Lemma for fppf torsors. It remains to check that f˚ is essentially surjective. Let P
be a GY -torsor. By assumption (ii) there is a fppf covering T Ñ X with T a scheme and a GT -torsor Q
such that f˚

TQ » PYT
. Using this isomorphism we can transform the canonical descent datum on PYT

to a descent datum
θ : pr˚

1f
˚
TQ „

ÝÑ pr˚
2f

˚
TQ

on f˚
TQ (relative to the covering YT Ñ Y ). For every integer n ě 0, denote by T pnq the n-fold fiber

product of T over X. Using the canonical identifications
pr˚

1f
˚
TQ “ f˚

T p2qpr˚
1 Q and pr˚

2f
˚
TQ “ f˚

T p2qpr˚
2 Q,

the full faithfulness of fT p2q implies that there is a unique isomorphism
τ : pr˚

1 Q „
ÝÑ pr˚

2 Q
of GT p2q -torsors such that f˚

T p2q pτq “ θ. Since

pr˚
13pθq “ pr˚

13pf˚
T p2q pτqq “ f˚

T p3qpr˚
13pτq

and
pr˚

13pθq “ pr˚
23pθqpr˚

12pθq

“ pr˚
23

`

f˚
T p2q pτq

˘

pr˚
12

`

f˚
T p2q pτq

˘

“ f˚
T p3q ppr˚

23pτqq f˚
T p3q ppr˚

12pτqq

“ f˚
T p3q ppr˚

23pτqpr˚
12pτqq ,

the full faithfulness of f˚
T p3q implies that pr˚

13pτq “ pr˚
23pτqpr˚

12pτq, that is, τ is a descent datum on Q
relative to T Ñ X. By Lemma 5.6, there is a G-torsor R and an isomorphism pQ, ϕq » pRT , canq of
descent datums. Pulling back to YT , we get an isomorphism of descent datums

pPYT
, canq » f˚

T pQ, τq » pRYT
, canq.

By Lemma 5.6 again (applied to the covering YT Ñ Y ), we see that f˚pRq “ RY » P. □

6. Purity for torsors and finite étale covers

We begin with generalities about linear groups that will be fundamental in multiple types of purities
for reductive torsors, where the overall argument is bootstrapped from that for vector bundles. Hence,
in this process, controlling on the projective dimensions of extended reflexive sheaves leads to relative-
dimensional constraints. In particular, we obtain the purity for reductive torsors on relative curves §6.1.
We then present local variants of the acquired purity results §6.2, where the constraints on dimensions
are more flexible. By virtue of this, we shrink complements of domains of reductive torsors to a higher-
codimensional closed subset §6.3, laying the groundwork for later proofs of the Grothendieck–Serre.
Finally, by our Auslander’s flatness criterion, we present a Prüferian counterpart of the Zariski–Nagata
purity in §6.4.

6.0.1. Coaffine locally linear groups. Let X be an algebraic space. An X-group algebraic space G is
linear if there exists a group monomorphism G ãÑ GLpV q for a locally free OX -module V of finite rank;
it is fppf (resp., étale) locally linear if there exists a fppf covering (resp., an étale covering) X 1 Ñ X such
that GX1 is linear. A locally linear X-group algebraic space G is coaffine, if it locally has an X-affine
coset GLpV q{G. For instance, if a linear group G Ă GLpV q is reductive or finite locally free, then
GLpV q{G is X-affine. In the sequel, we mainly consider locally linear coaffine X-group algebraic spaces
G.

6.1. Purity for reductive torsors on relative curves

Now we study the extension behavior of torsors over relative curves. Motivated by [EGA IV4, Proposi-
tion 21.9.4] that every invertible sheaf on a curve over a field extend across finitely many closed points,
Proposition 6.1.2 concerns relative curves over valuation rings and generalizes [Guo20, Lemma 7.3].

6.1.1. Torsors on relative curves. For a valuation ring V with spectrum S, a V -flat finite type scheme
X with regular one-dimensional V -fibers, and a closed subscheme D Ă X such that

(i) D is finite locall free over V ; and
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(ii) D factors through an affine open SpecR Ă X,

we consider the completion pR :“ lim
ÐÝn

R{In, where I Ă R is the ideal determined by D. Denote
BD :“ Spec pR as the formal neighborhood of D and UD :“ BDzD for the punctured formal neighborhood.

Proposition 6.1.2. For a valuation ring V with spectrum S, an S-flat finite type scheme X with regular
one-dimensional S-fibers, an S-finite locally free closed subscheme D Ă X inside an affine open X0 Ă X
with complementary open j : XzD ãÑ X, then the restriction functor between the categories

VectX Ñ VectXzD is essentially surjective.

In particular, for the formal neighborhood BD :“ pXD, the punctured neighborhood UD :“ BDzD, we
have

H1
ZarpUD,GLnq “ H1

étpUD,GLnq “ t˚u.

Proof. Every vector bundle E on XzD by Corollary 3.2.4 extends to a reflexive sheaf rE on X. Hence
Proposition 3.2.7(i) implies that rE is a vector bundle. Now let V be a vector bundle on UD and denote
the Henselization of the pair pX0, Dq by pBh

D, Dq with Uh
D :“ Bh

DzD. Then [BČ22, Corollary 2.1.22]
descends V to a vector bundle V h on Uh

D. Since Bh
D is the limit of elementary étale neighorhoods of

D Ă X0, by a limiat argument, V h descends to a vector bundle V 1 on an S-flat finite type scheme X 1

with regular one-dimesensional S-fibers and the open X 1zD. Since VectX1 Ñ VectX1zD is essentially
surjective, V 1 extends to a vector bundle rV 1 on X 1. Consequently, there exists a vector bundle rV on BD
extending V . Since pBD, Dq is a Henselian pair, by [Čes22b, Proposition 6.1.1], we have an isomorphism
VectBD

» VectD. Note that D is semilocal and affine, so rV is trivial, in particular, V is trivial. □

Lemma 6.1.3. For a semilocal affine Prüfer scheme S, an S-flat finite type algebraic space X with
regular one-dimensional S-fibers, and its closed subset Z such that j : XzZ ãÑ X is quasi-compact and

Zη “ H for each generic point η P S and codimpZs, Xsq ě 1 for all s P S,

the pushforward j˚p´q and restriction as inverse induce an equivalence between categories of vector
bundles

VectXzZ
„

ÝÑ VectX .

Proof. We simply verify the assumptions of Lemma 5.7 for G “ GLn,X . For vector bundles E1 and E2,

Y :“ IsomXpE1,E2q

is X-affine of finite type (Lemma 5.4), so Y pXzZq “ Y pXq by Proposition 3.2.7(ii). The same holds when
we base change to every étale X-scheme. For (ii), by taking étale atlas, we may assume that X is a scheme.
By Proposition 3.2.7(ii), every vector bundle E on XzZ extends to a reflexive OX -module j˚E . To show
that the reflexive OX -module j˚E is a vector bundle, it suffices to exploit Proposition 3.2.7(i). □

Theorem 6.1.4 (cf. [CTS79, Théorème 6.13]). For a semilocal affine Prüfer scheme S, an S-flat finite
type algebraic space X with regular one-dimensional S-fibers, an X-group algebraic space G that is étale-
locally linear and coaffine2, and a closed subset Z Ă X such that j : XzZ ãÑ X is quasi-compact and

Zη “ H for each generic point η P S and codimpZs, Xsq ě 1 for all s P S,

restriction of torsors induces the following equivalence of categories of G-torsors

TorspXét, Gq
„

ÝÑ TorsppXzZqét, Gq.

In particular, passing to isomorphism classes of objects, we have an isomorphism

H1
étpX,Gq » H1

étpXzZ,Gq.

Proof. We simply verify the assumptions of Lemma 5.7.

2A special case is when X is an affine scheme and G is X-reductive, as explained in a footnote of the introduction.
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(i) Since the assumption on the fiber codimension still holds when we base change to every étale
scheme over X, it suffices to verify that the restriction functor

TorspXét, Gq Ñ TorsppXzZqét, Gq

is fully faithful. Indeed, for any G-torsors P1 and P2, by Lemma 5.4,

Y :“ IsomXpP1,P2q

is an X-affine algebraic space of finite type, so Y pXzZq “ Y pXq by Proposition 3.2.7(ii).

(ii) Étale locally on X, every G-torsor on XzZ extends to a G-torsor on X. To see this, we may
assume that X is affine and G Ă GLn,X , then exploit the commutative diagram with exact rows

pGLn,X{GqpXq H1
étpX,Gq H1

étpX,GLn,Xq

pGLn,X{GqpXzZq H1
étpXzZ,Gq H1

étpXzZ,GLn,Xq,

»

where the bijectivity of the left vertical arrow follows from Proposition 3.2.7(ii) and our assump-
tion GLn,X{G being affine over X. For every G-torsor P on XzZ, by Lemma 6.1.3, we may
replace X by an affine open cover to ensure that the induced GLn,XzZ-torsor P ˆGXzZ GLn,XzZ

is trivial. A diagram chase implies that there exists a G-torsor Q on X such that Q|XzZ » P, as
claimed. □

6.2. Local variants of purity results

The following is a variant of Theorem 6.1.4.

Theorem 6.2.1. For a finite-rank valuation ring R with spectrum pS, ηq, an S-flat finite type scheme X
with regular fibers, an X-group scheme G that is étale-locally linear and coaffine, and a point x that is

(i) either x P Xη with dim OXη,x “ 2, or

(ii) x P Xs with s ‰ η and dim OXs,x “ 1,

every G-torsor over Spec OX,xztxu extends uniquely to a G-torsor over Spec OX,x.

Proof. The argument of Theorem 6.1.4 reduces us to the case of vector bundles, namely, G “ GLn.
Then the assertion (i) follows from the classical purity (see for instance, [Gab81, §1, Lemma 1]). For
(ii), by the quasi-compactness of SpecpOX,xqztxu and Proposition 3.2.7(ii), every vector bundle E on
Spec OX,xztxu, extends to a reflexive sheaf j˚pE q on Spec OX,x, which, by the assumption dim OXs,x “ 1
and Proposition 3.2.7(i), is projective, hence the assertion follows. □

Lemma 6.2.2. For an algebraic space S with a finitely presented closed subspace Z Ă X and an affine
morphism of algebraic spaces f : X 1 Ñ X, denote Z 1 :“ Z ˆX X 1, U :“ XzZ, and U 1 :“ U ˆX X 1,
consider the following Cartesian square

U 1 X 1

U X,

fU

j1

f

j

where j and j1 are open immersions. If f is faithfully flat and induces an isomorphism Z » Z 1, then

(i) The restriction Ψ: FÉtX
„

ÝÑ FÉtU ˆFÉtU1 FÉtX1 is an equivalence of categories. In particular,
if FÉtX1 Ñ FÉtU 1 is essentially surjective (resp., an equivalence), then so is FÉtX Ñ FÉtU .

(ii) If X, X 1 are schemes, then for a quasi-affine, flat, finitely presented X-group scheme G, the
following base change functor is an equivalence of categories of G-torsors

TorspXfppf , Gq
„

ÝÑ TorspX 1
fppf , Gq ˆTorspU 1

fppf ,Gq TorspUfppf , Gq.

Proof.
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(i) Consider the fibered category AFF over the category of algebraic spaces such that every algebraic
space T has the fiber category AFFpT q, the category of T -affine algebraic spaces. By [MB96,
Théorème 1.1], then base change induces the following equivalence of categories

ΦAFF : AFFpXq
„

ÝÑ AFFpX 1q ˆAFFpU 1q AFFpUq.

Hence Ψ is fully faithful. For the essential surjectivity, it suffices to patch finite étale covers over
U and X 1 to an X-affine algebraic space, and conclude by using faithfully flat descent for finite
étale properties.

(ii) See [Čes22a, Lemma 7.1]. □

Corollary 6.2.3. For a local scheme X, the closed point x and punctured spectrum U :“ Xztxu, if for
the Henselization Xh of X at x with punctured spectrum Uh,

FÉtXh
„

ÝÑ FÉtUh is an equivalence if and only if so is FÉtX
„

ÝÑ FÉtU .

Proposition 6.2.4. Let X 1 Ñ X be a flat morphism of affine schemes that are smooth over a semilocal
Prüfer domain R with spectrum pS, ηq such that there is a closed subscheme Z Ă X satisfies the following

(i) codimpZs, Xsq ě 1 for every s P S and codimpZη, Xηq ě 2 for the generic point η P S; and

(ii) X 1 Ñ X induces an isomorphism between Z and its preimage Z 1 :“ Z ˆX X 1.

Denote U :“ XzZ and U 1 :“ U ˆX X 1. For an affine, smooth X-group (resp., U -group) F with a
filtration

F “ F0 Ą F1 Ą ¨ ¨ ¨ Ą Fn “ 0
by affine smooth S-normal subgroups (U -normal subgroups) such that every subquotient Fi{Fi`1 is a
vector group on X (resp., such that Fi{Fi`1 is a vector group on S and is central in F {Fi`1), the map

H1
étpU,F q Ñ H1

étpU 1, F q has trivial kernel (resp., is surjective).

Proof. When F is an X-group, since X and X 1 are affine, both H1pX,F q and H1pX 1, F q vanish. Then,
for every F -torsor P on U that becomes trivial over U 1, we utilize Lemma 6.2.2 to patch trivial torsors on
X 1 and U to obtain a trivial F -torsor rP on X such that rP|U » P. Hence, P is trivial and the displayed
map has trivial kernel.

Now assume that F is a U -group and we induct on n. When n “ 1, then F is associated to a vector bundle
F on U . Let j : U ãÑ X denote the open immersion, then for j˚F we apply [GR18, Lemma 10.4.17 (iii)]
to deduce that RΓZpX, j˚F q » RΓZ1 pX 1, j˚F q. Consequently, we have HipU,F q

„
ÝÑ HipU 1, F q. When

n ą 1, we invoke the nonabelian cohomology sequences [Gir71, Chapitre IV, Remarque 4.2.10] for a
central extension to acquire the following commutative diagram with exact rows

H1pU,Fn´1q H1pU,F q H1pU,F {Fn´1q H2pU,Fn´1q

H1pU 1, Fn´1q H1pU 1, F q H1pU 1, F {Fn´1q H2pU 1, Fn´1q

„ „

by a diagram chase up to twist technique [Gir71, Chapitre III, Proposition 2.6.1(i)], we conclude. □

Theorem 6.2.5. For a semilocal Prüfer domain R with spectrum S and generic point η, an S-smooth
algebraic space X, and a point x P X that is not any maximal point of S-fibers of X such that dim OX,x ě

2, then pullback induces an equivalence of categories of finite étale covers
FÉtSpec OX,x

„
ÝÑ FÉtSpec OX,xztxu.

Further, for a qc open immersion j : U ãÑ X such that every z P XzU satisfies the condition for x,

FÉtX Ñ FÉtU is essentially surjective.

Proof. If x R Xη and dim OXs,x “ 1, then the assertion is due to Theorem 6.1.4. The remained case
is proved below. To show that FÉtX Ñ FÉtU is essentially surjective, let f : rU Ñ U be a finite étale
cover and we use Noetherian induction to reduce to showing that the finite étale cover f extends to an
open subset of U strictly containing U . Pick a maximal point of XzU so U˝ :“ U ˆX Spec OX,x “
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Spec OX,xztxu. Restricting f over U˝ to f˝ : rU˝ Ñ U˝, the equivalence FÉtSpec OX,x

„
ÝÑ FÉtSpec OX,xztxu

yields a finite étale cover W Ñ U . A spreading out [SP, 0BQ5, 0EY3] provides an open neighborhood
x P U 1 Ą U with a finite étale cover W 1 Ñ U 1 extending rU Ñ U , as desired. □

Remark 6.2.6. Let S be a semilocal affine geometrically unibranched scheme with total ring of fractions
K. For an étale locally constant group scheme E over S of finite type3, the map H1

étpS,Eq ãÑ H1
étpK,Eq

has trivial kernel. Let T be an E-torsor that trivializes over K. This signifies that T pKq ‰ H. Since
S is geometrically unibranched, by [SGA 3II, Exposé X, Théorème 5.16] (the Noetherian assumption is
removable), E is isotrivial, so there is a finite étale covering S1 Ñ S with total ring of fractions K 1 such
that ES1 is a constant group in finite type abelian group. Therefore, we have the commuative diagram

T pSq T pS1q T pS1 ˆ S1q

T pKq T pK 1q T pK 1 ˆK 1q

so descent yields the equality T pSq “ T pKq. (If S is the spectrum of a Prüfer domain and E is S-finite,
then this is simplier by valuative criterion for properness) In particular, we have T pSq ‰ H so T is
trivial.

Remark 6.2.7. For a valuation ring V with fraction field K, every reductive K-group scheme G has
at most one reductive V -model. To see this, we let G be a reductive V -model of G and consider the
commutative diagram with exact rows

H0
étpV,OutpGqq H1

étpV,Gadq H1
étpV,AutpGqq H1

étpV,OutpGqq

H0
étpK,OutpGqq H1

étpK,Gadq H1
étpK,AutpGqq H1

étpK,OutpGqq.

f0 f1 f2 f3

The map f1 is injective by [Guo20]. By diagram chase, f2 has trivial kernel, so we are done.

6.3. Extending generically trivial torsors

Granted the purity Theorem 6.2.1, we extend reductive torsors outside a closed subset of higher codi-
mension.

Proposition 6.3.1. For a semilocal affine Prüfer scheme S, an S-flat finite type scheme X with regular
S-fibers, a closed subset Z Ă X such that XzZ Ă X is quasi-compact and satisfies the following condition

codimpZη, Xηq ě 2 for each generic point η P S and codimpZs, Xsq ě 1 for all s P S,
and a reductive X-group scheme G, there is a closed subset Z 1 Ă Z satisfying the following condition

codimpZ 1
η, Xηq ě 3 for each generic point η P S and codimpZ 1

s, Xsq ě 2 for all s P S,

such that every G-torsor on XzZ extends to a G-torsor on XzZ 1.

Proof. Write R “ colimλPΛRλ as in Lemma 3.1.3. By a standard limit argument ([SP, 0EY1, 0C0C]),
for large enough λ P Λ, the scheme X, the open XzZ Ă X, and the reductive X-group scheme G descend
to a quasi-compact quasi-separated Rλ-smooth scheme Xλ, a quasi-compact open pXzZqλ Ă Xλ, and a
reductive Xλ-group scheme Gλ, respectively. Also, up to enlarging λ, the G-torsor over XzZ in question
descends to a Gλ-torsor over pXzZqλ. By Lemma 3.2.6 that descends the fiberwise codimension of Z,
we are reduced to the case when all local rings of R are valuation rings of finite ranks.

Let PXzZ be a G-torsor over XzZ. Since S has finitely many points and each fiber Xs is Noetherian,
there are finitely many points x P Z satisfying one of the assumptions (i)-(ii) of Theorem 6.2.1; among
these points we pick a maximal one under the generalization, say x. The maximality of x implies that
pXzZqXSpecpOX,xq “ SpecpOX,xqztxu, so, by Theorem 6.2.1, the G-torsor PXzZ |XzZXSpecpOX,xq extends
to a G-torsor Px over SpecpOX,xq. As X is topologically Noetherian, we may spread out Px to obtain a
G-torsor PUx over an open neighbourhood Ux of x such that PXzZ |pXzZqXUx

» PUx |pXzZqXUx
as G-torsors

over pXzZqXUx. Consequently, we may glue PXzZ and PUx
to obtain a G-torsor over U1 :“ pXzZqYUx.

3This means that after a finite étale covering, the constant group is a finite type abelian group, see [SGA 3II, X, 5.1]
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Since Z1 :“ XzU1 contains strictly fewer points x satisfying the assumptions (i) or (ii) of Theorem 6.2.1,
we extend P iteratively to find the desired closed subset Z 1 Ă X such that PXzZ extends over XzZ 1. □

Corollary 6.3.2. For a semilocal Prüfer affine scheme S, an S-flat finite type scheme X with regular
S-fibers, finitely many points x Ă X contained in an affine open, a nonzero element r P OX,x, and a
reductive X-group scheme G, every generically trivial G-torsor over OX,xr 1

r s extends to a G-torsor over
an open neighbourhood U of SpecpOX,xr 1

r sq whose complementary closed Z :“ XzU satisfies the following

codimpZη, Xηq ě 3 for each generic point η P S and codimpZs, Xsq ě 2 for all s P S.

Proof. As in the proof of Proposition 6.3.1, we may assume that S has finite Krull dimension; in particular,
X is topologically Noetherian. Let P be a generically trivial G-torsor over OX,xr 1

r s. By spreading out, P
extends to a G-torsor PU over U :“ SpecRr 1

r s for a subring R Ă OX,x. It remains to extend U and PU
to ensure that Z :“ XzU satisfies the assumptions of Proposition 6.3.1. Let z P Z be such that either

(i) z P Xη and dim OX,z “ 1, in which case SpecpOX,zq X U is a maximal point of X, or

(ii) z is a maximal point of Xs with s ‰ η, in which case SpecpOX,zq, and hence also SpecpOX,zq XU ,
is the spectrum of a valuation ring (Lemma 3.1.1(iii)).

By the Grothendieck–Serre over valuation rings [Guo20], the generically trivial G-torsor PU |SpecpOX,zqXU

is trivial. Thus, as in the proof of Proposition 6.3.1, we can glue PU with the trivial G-torsor over a
small enough open neighbourhood of z to extend PU across such a point z P Z. Note that Z contains
finitely many points z satisfying the above assumption (i) or (ii). Therefore, iteratively extend U and
PU , we may assume that Z does not contain any point z satisfying (i) or (ii), when Proposition 6.3.1
applies. □

6.4. Purity for finite locally free torsors and the Zariski–Nagata

With the purity for reflexive sheaves and Auslander’s flatness criterion Theorem 4.1 in hand, we obtain
the purity theorem for finite locally free torsors and establish our non-Noetherian Zariski–Nagata.

Theorem 6.4.1 (Purity for finite locally free groups).

(i) For a semilocal affine Prüfer scheme S, an S-smooth algebraic space X, an X-finite locally free
group algebraic space G, and a closed subset Z Ă X such that j : XzZ ãÑ X is quasi-compact and

codimpZη, Xηq ě 2 for each generic point η P S and codimpZs, Xsq ě 1 for all s P S,

the restriction functor induces the following equivalence of categories of G-torsors.

TorspXfppf , Gq
„

ÝÑ TorsppXzZqfppf , Gq.

In particular, passing to isomorphism classes of objects, we have the following isomorphism

H1
fppfpX,Gq » H1

fppfpXzZ,Gq.

(ii) For a finite-rank valuation ring R with spectrum S, an S-smooth scheme X, an X-finite locally
free group scheme G, and a point x P X that is not a maximal point of S-fibers of X such that
dim OX,x ě 2, the restriction functor induces the following equivalence of category of G-torsors

TorsppSpec OX,xqfppf , Gq
„

ÝÑ TorsppSpec OX,xztxuqfppf , Gq.

In particular, passing to isomorphism classes of objects, we have the following isomorphism

H1
fppfpSpec OX,x, Gq » H1

fppfpSpec OX,xztxu, Gq.

Proof. (i) We simply verify the assumptions of Lemma 5.7. By considering the space IsomX of isomor-
phisms of two torsors (see Lemma 5.4), we deduce from Proposition 3.2.7(ii) that the restriction functor
is fully faithful. The same holds when we base change to every étale X-scheme over S.

Next, we show that, étale locally on X, any G-torsor on XzZ extends to a G-torsor over X. For this, we
may assume that X is an affine scheme and S is the spectrum of a valuation ring. By a standard limit
argument involving Lemma 3.1.3, we reduce to the case when S has finite Krull dimension. Since every
R-fiber of X is Noetherian and S has finitely many points, X is topologically Noetherian.
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Let P be a GXzZ-torsor. Then j˚OP by Proposition 3.2.7(iv) is a reflexive OX -module. First, we prove
the OX -flatness of j˚OP . Since X is topologically Noetherian, we use Noetherian induction to reduce
to the case when X is local and essentially smooth over R and Z “ txu is its closed point. Then, our
Auslander’s flatness criterion Theorem 4.1 reduces us to showing that the following is an isomorphism

HomOX
pj˚OP , j˚OPq » pj˚OPq

‘r
, where r “ rankOX

OG.

Note that in such local case, we have OG » O‘r
X , consider the following map of reflexive OX -modules

HomOX
pOG, j˚OPq Ñ HomOX

pj˚OP , j˚OPq, f ÞÑ

´

j˚OP
j˚ρ

ÝÝÑ OG bOX
j˚OP

pf,idq
ÝÝÝÑ j˚OP

¯

.

This is an isomorphism: by Proposition 3.2.7(ii), it suffices to argue over XzZ, then its explicit inverse
is

g ÞÑ

´

OGXzZ

idb1
ÝÝÝÑ OGXzZ

bOXzZ
OP

pρ,idq´1

ÝÝÝÝÝÑ OP bOXzZ
OP

pg,idq
ÝÝÝÑ OP

¯

.

Then, we prove that the G-torsor structure of P extends uniquely to that of Spec
X

pj˚OPq. As G is finite
locally free, by projection formula [SP, 01E8], taking j˚ of the co-action ρ : OP Ñ j˚OGbOXzZ

OP yields

j˚ρ : j˚OP Ñ OG bOX
j˚OP .

To check that j˚ρ is a co-action, we verify the associativity, the commutativity of the following diagram

j˚OP OG bOX
j˚OP

OG bOX
j˚OP OG bOX

OG bOX
j˚OP ,

j˚pρq

j˚pρq idbj˚pρq

µGbid

where µG : OG Ñ OG bOX
OG is the co-multiplication of G. Since all sheaves involved are OX -reflexive,

the commutativity over XzZ by Proposition 3.2.7(ii) extends over X. Finally, the following map

pj˚ρ, 1 b idq : j˚OP bOX
j˚OP Ñ OG bOX

j˚OP ,

by the OX -flatness of j˚OP and Proposition 3.2.7(ii), is an isomorphism since so is its restriction on
XzZ.

(ii) This can be proved similarly. For instance, for the essential surjectivity of the restriction functor,
the finite rank assumption on V guarantees j : Spec OX,xztxu ãÑ Spec OX,x to be quasi-compact quasi-
separated, and so j˚OP is a reflexive OX,x-module (by Proposition 3.2.7(ii)) for any G-torsor P over
Spec OX,xztxu. Then one uses Auslander’s flatness criterion Theorem 4.1 to show that j˚OP is OX,x-free
and inherits the G-torsor structure on P, giving the desired extension of P to Spec OX,x. □

Theorem 6.4.2 (Zariski–Nagata: purity for finite étale covers).

(i) For a semilocal affine Prüfer scheme S, an S-smooth algebraic space X, and a closed subset
Z Ă X such that XzZ ãÑ X is quasi-compact and satisfies the following condition

codimpZη, Xηq ě 2 for each generic point η P S and codimpZs, Xsq ě 1 for all s P S,

the pullback functor induces the following equivalence between categories of finite étale covers

FÉtX
„

ÝÑ FÉtXzZ .

In particular, for every geometric point x : Spec Ω Ñ XzZ with a separably closed field Ω, the
map

πét
1 pXzZ, xq Ñ πét

1 pX,xq is an isomorphism.

(ii) For a finite-rank valuation ring R with spectrum S and generic point η P S, an S-smooth scheme
X, and a point which is either x P Xη with dim OXη,x “ 2, or x P Xs with s ‰ η and dim OXs,x “

1, the pullback functor induces the following equivalence of categories of finite étale covers

FÉtSpec OX,x

„
ÝÑ FÉtSpec OX,xztxu.
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Proof. (i) Full faithfulness. For two finite étale covers πi : Xi Ñ X, i “ 1, 2, consider the X-functor

Y :“ HomXpX1, X2q

that parameterizes X-morphisms from X1 to X2; it is a subfunctor of HomXpπ2,˚OX2 , π1,˚OX1 q con-
sisting of sections compatible with algebraic structures of π2,˚OX2 and π1,˚OX1 , which amount to the
commutativity of a certain diagram of OX -modules. So Y Ă HomXpπ2,˚OX2 , π1,˚OX1 q is a closed sub-
functor Zariski-locally. Hence, Y is an algebraic space finite over X. (Using the infinitesimal criterion
for formal smoothness, one can check that Y Ñ X is even finite étale, but we will not need this.) By
Proposition 3.2.7(ii), we have Y pXq » Y pXzZq, thereby proving the full faithfulness.

Essential surjectivity. Let V Ñ XzZ be a finite étale cover. We need to show that it extends to a finite
étale cover of X. By the full faithfulness, we may use glueing in the étale topology to reduce to the case
that X is an affine scheme. By the S-smoothness of X, X and also V is normal, so, by breaking X and V
into connected components, we may assume that both X and V are integral schemes. Let rV Ñ XzZ be
a connected finite étale Galois cover dominating V Ñ XzZ, say with Galois group G :“ Galp rV {pXzZq.
Let H :“ Galp rV {V q Ă G. By Theorem 6.4.1(i), the G-Galois cover rV Ñ XzZ extends (uniquely) to a G-
Galois cover W̃ Ñ X. By Grothendieck–Galois correspondence, the subcover ĂW {H Ñ X corresponding
to the subgroup H Ă G is a finite étale cover that extends V Ñ XzZ.

(ii) This is proved in the same way as (i), using Theorem 6.4.1(ii) in place of Theorem 6.4.1(i). □

7. Geometric lemmata for the Grothendieck–Serre

7.1. Geometric presentation lemma over Prüfer bases

In both of the works of Fedorov and Česnavičius on mixed charateristic Grothendieck–Serre, a certain
type geometric results in the style of Gabber-Quillen play a prominent role, see [Fed22b, Proposition 3.18]
and [Čes22a, Variant 3.7], respectively. This is also true in our context, and we begin with an analog of
[Čes22a, Variant 3.7].

Lemma 7.1.1. Let R be a semilocal Prüfer ring, X a projective, flat R-scheme with fibers of pure
dimension d ą 0, OXp1q a R-ample line bundle on X, W Ă Xsm an open, x Ă W finitely many points,
and Y Ă X a closed subscheme that is R-fiberwise of codimension ą 0. Upon replacing OXp1q by any
large power, there exists nonzero

h0 P ΓpX,OXp1qq, h1 P ΓpX,OXpw1qq, ¨ ¨ ¨ , hd´1 P ΓpX,OXpwd´1qq with w1, ¨ ¨ ¨ , wd´1 ą 0,

such that

(i) the hypersurface H0 :“ V ph0q Ă X is disjoint from x;

(ii) the hypersurfaces Hi :“ V phiq Ă X satisfy Y XH0 X ¨ ¨ ¨ XHd´1 “ H;

(iii) in the following commutative diagram with vertical maps determined by the h0, ¨ ¨ ¨ , hd´1:

XzH0 XzpH0 X ¨ ¨ ¨ XHd´1q X :“ BlXph0, ¨ ¨ ¨ , hd´1q

Ad´1
R PRp1, w1, ¨ ¨ ¨ , wd´1q PRp1, w1, ¨ ¨ ¨ , wd´1q,

π π π

the map π is smooth of relative dimension 1 at x;

(iv) we have Y XH0 X π´1pπpxqq “ H;

(v) if Y zXsm is R-fiberwise of codimension ě 2 in X, then π is smooth at Y X π´1pπpxqq;

(vi) if Y zW is R-fiberwise of codimension ě 2 in X, then pY zW q X π´1pπpxqq “ H;

(vii) if Y zW is R-fiberwise of codimension ě 2 in X, then there are affine opens

S Ă Ad´1
R and x Ă U Ă W X π´1pSq Ă XzH0

such that π : U Ñ S is smooth of relative dimension 1 and Y X U “ Y X π´1pSq is S-finite.

Proof. This can be proved similarly as [Čes22a, Variant 3.7]. □
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7.2. A variant of Lindel’s lemma

According to a lemma of Lindel [Lin81, Proposition 1 et seq Lemma], an étale extension of local rings
A Ñ B with trivial extension of residue fields automatically induces isomorphisms

A{rnA
„

ÝÑ B{rnB, where n ě 1,

for a well-chosen non-unit r P A. In our context in which the prescribed B is essentially smooth over a
valuation ring, we will prove the following variant of loc. cit. by allowing to fix the r P B in advance, at
the cost of that A is a carefully-chosen local ring of an affine space over that valuation ring. This result
will be the key geometric input for dealing with torsors under a reductive group scheme that descends to
the Prüfer base ring, and, as the cited work of Lindel on the Bass–Quillen conjecture for vector bundles,
it reduces us to studying torsors on opens of affine spaces.

Proposition 7.2.1. Let Λ be a semilocal Prüfer domain, X an irreducible, Λ-smooth affine scheme of
pure relative dimension d ą 0, Y Ă X a finitely presented closed subscheme that avoids all the maximal
points of the Λ-fibers of X, and x Ă X a finite subset. Assume that for every maximal ideal m Ă Λ with
finite residue field, there are at most maxp#κpmq, dq ´ 1 points of x lying over m. There are an affine
open neighbourhood W Ă X of x, an affine open subscheme U Ă AdΛ, and an étale surjective Λ-morphism
f : W Ñ U such that the restriction f |WXY : W X Y Ñ U is a closed immersion and f induces a
Cartesian square:

W X Y W

W X Y U.

f

Moreover, if Y is a Cartier divisor on X, then W X Y is a Cartier divisor on U .

Remark 7.2.2. The assumption on the cardinality of x holds, for instance, either if x is a singleton or
if d ą # x. The latter will be critical to settle the general semilocal case of Theorem 12.1. On the other
hand, the following finite field obstruction shows a certain assumption on #x is necessary: if d “ 1 and
Λ “ k is a finite field, then the map f delivered from Proposition 7.2.1 gives a closed immersion x ãÑ A1

k,
which is impossible as soon as # x ą # k.

To prove Proposition 7.2.1 we begin with the following reduction:

Lemma 7.2.3. The proof of Proposition 7.2.1 reduces to the case when x consists of closed points of the
closed Λ-fibers of X.

Proof. As an initial step, by a standard limit argument involving Lemma 3.1.3, we can reduce to the
case when SpecpΛq has a finite underlying space (which we will assume from now on).

If for each x P x the closure txu contains a closed point x1 of the closed Λ-fibers of X and if the new
collection tx1 : x P xu satisfies the same cardinality assumption on x, we can simply replace each x by
x1 to complete the reduction process. However, it may happen that txu does not contain any point of
the closed Λ-fibers of X, and even if it does, the new collection tx1 : x P xu may destroy the cardinality
assumption on x. To overcome this difficulty, we will use a trick by adding auxiliary primes to SpecpΛq

(and adding the corresponding fibers to X and Y ) so that txu contains closed points of the closed Λ-fibers
of X for all x P x. More precisely, we will show that there are a semilocal Prüfer domain Λ1, an open
embedding SpecpΛq Ă SpecpΛ1q, an irreducible, affine, Λ1-smooth scheme X 1 of pure relative dimension
d, a closed Λ1-subscheme Y 1 Ă X 1 that avoids all the maximal points of the Λ1-fibers of X 1, and a
Λ-isomorphism X 1

Λ » X that identifies Y 1
Λ with Y such that the assumptions of the first sentence of this

paragraph hold for our new X 1 and Y 1.

To construct the desired Λ1 (and X 1, Y 1), we can first use the specialization technique to reduce to the
case when all points of x are closed in the corresponding Λ-fibers of X, that is, if x P x lies over p Ă Λ,
then x is κppq-finite. For the rest of proof we will assume, without lose of generality, that there is exactly
one point of x, say x, that lies over some non-maximal prime of Λ, say p. Write Λp “

Ť

A as a filtered
union of its finitely generated Z-subalgebras A. By a standard limit argument ([SP, 0EY1, 0C0C]), for
large enough A,

(a) XΛp
descends to an irreducible, affine, A-smooth scheme X of pure relative dimension d;
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(b) the finitely presented closed subscheme YΛp
Ă XΛp

descends to a closed A-subscheme Y Ă X
which, upon enlarging A, avoids all the maximal points of the A-fibers of X : by [EGA IV3,
Proposition 9.2.6.1],

the subset ts P SpecpA : dim Ys “ du Ă SpecpA is constructible,

and its pullback to SpecpΛpq “ limA SpecpA is empty, hence after enlarging A we can assume
that it is already empty;

(c) the κppq-finite point x descends to a A{pA-finite closed subscheme rx Ă XA{pA
, where pA :“ AXp;

For any prime Λ Ą q Ą p with htpqq “ htppq ` 1, choose an element aq P qzp. We assume that

(d) a´1
q P A for all such q. (This guarantees the equality A ¨ Λm “ Λp for every maximal ideal m Ă Λ

containing p.)

Since a maximal ideal m Ă Λ containing p gives rise to a non-trivial valuation ring Λm{pΛm of κppq, the
field κppq is not finite. As κppq “

Ť

AA{pA, by enlarging A we may assume that A{pA is also not a finite
field, and therefore we can find a nonzero prime p1 Ă A{pA. (We have used the following fact: for a finite
type Z-algebra, a prime ideal is maximal if and only if its residue field is finite.) Choose a valuation
ring of κppAq with center p1 in A{pA, and then extend it to a valuation ring Vp1 of κppq. Let V be the
composite of Λp and Vp1 ; explicitly, V is the preimage of Vp1 under the reduction map Λp ↠ κppq. Then
V is a valuation ring of FracpΛq, and, by the above assumption (d), the equality V ¨ Λm “ Λp holds for
any maximal ideal m Ă Λ containing p. Therefore, by [BouAC, VI, §7, Proposition 1-2],

Λ1 :“ Λ X V

is a semilocal Prüfer domain whose spectrum is obtained by glueing SpecpΛq with SpecpV q along their
common open SpecpΛpq. Consequently, we may glue X with XV along XΛp

to extend X to an irreducible,
affine, Λ1-smooth scheme X 1 of pure relative dimension d, with a closed Λ1-subscheme Y 1 Ă X 1 obtained
by glueing Y with YV along YΛp

; by construction, Y 1 avoids all the maximal points of the Λ1-fibers of
X 1. Since the closed subscheme rxV Ă XV is V -finite, we may specialize x to a point of rxV Ă X 1 that lies
over the closed point of SpecpV q. Hence, by replacing Λ by Λ1, X by X 1 and Y by Y 1, we can reduce to
the already treated case when all points of x specialize to closed points of the closed Λ-fibers of X. □

Henceforth, we may assume that x consists of closed points of the closed Λ-fibers of X. Then, since the
relative dimension of X{Λ is d ą 0, the closed subset x

Ť

Y does not contain any maximal points of the
R-fibers of X, and so, by prime avoidance, there is an a P ΓpX,OXq such that a vanishes on x

Ť

Y but
does not vanish at any maximal points of Λ-fibers of X. Since for the proof of Proposition 7.2.1 we are
free to enlarge Y to a closed subscheme of X that still avoids all the maximal points of the Λ-fibers of
X, by replacing Y by V paq Ă X, we reduce to the case

‚ x consists of closed points of the closed Λ-fibers of X, and

‚ x Ă Y “ V paq for some a P ΓpX,OXq.

For the rest of the proof we will assume this throughout.

Lemma 7.2.4. For a field k, an affine k-variety X, a closed subscheme Y Ă X of pure dimension
e ą 0, a finite subset of closed points x Ă Y X Xsm, and an arbitrary element ptpxqq P

ś

xPx κpxq, there
is a morphism h : X Ñ A1

k that is smooth at x such that h|Y has fiber dimension e ´ 1 and such that
hpxq “ tpxq for every x P x.

Proof. Choose a finite subset of closed points y Ă Y that is disjoint from x and that contains precisely 1
point of every irreducible component of Y . For every integer n ą 0 denote by xpnq (resp., ypnq) the nth

infinitesimal neighbourhood of x (resp., y) in X. Let hx P H0pxp1q,Oxp1q q be such that

hxpxq “ tpxq and dhxpxq ‰ 0 P mx{m2
x for every x P x. (7.2.1)

By prime avoidance, there exists a hy P H0pX,OXq whose restriction to every irreducible component of
Yred is not identically zero. By the faithfully flatness of

OYred,y “
ź

yPy
OYred,y Ñ

ź

yPy

{OYred,y “ lim
n
H0pypnq X Yred,OypnqXYred q,
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we see that for large enough n, the restriction of hy to every component of ypnq X Yred is nonzero. Let
h P H0pX,OXq be any element whose restriction to xp1q is hx and whose restriction to ypnq is congruent
to hy for large n. Since X is smooth at x, (7.2.1) implies that the morphism h : X Ñ A1

k (obtained
by sending the standard coordinate of A1

k to h) is smooth at x and hpxq “ tpxq for every x P x. Since
the restriction of h to every irreducible component of ypnq X Yred and hence also to Yred is nonzero, the
morphism h is non-constant on every irreducible component of Y , so h|Y has fiber dimension e´ 1. □

Lemma 7.2.5. There exists a Λ-morphism g : X Ñ Ad´1
Λ such that

(i) it smooth of relative dimension 1 at x;

(ii) the restriction g|Y is quasi-finite at x; and

(iii) for x P x lying over m, one has κpmq “ κpgpxqq.

In addition, if d ą #px X Xκpmqq for every maximal ideal m Ă Λ with finite residue field, then we may
find such a g under which all points of x have pairwise distinct images.

Proof. We first reduce the lemma to the case when Λ “ k is a field. Assume that for every maximal
ideal m Ă Λ there exists a κpmq-morphism gm : Xκpmq Ñ Ad´1

κpmq
that is smooth at x X Xκpmq such that

the restriction gm|Yκpmq is quasi-finite at x X Xκpmq. We then use Chinese remainder theorem to lift the
maps tgmum simultaneously to obtain a Λ-morphism g : X Ñ Ad´1

Λ which would verify the first assertion
of the lemma: only the flatness of g at x need to be checked, but this follows from the fibral criterion
of flatness [EGA IV3, Théorème 11.3.10]. In addition, if all points of x X Xκpmq have pairwise distinct
images under gm, then the resulting morphism g verifies the second assertion of the lemma.

In case Λ “ k being a field, our assumptions become that X is a k-smooth affine variety of pure dimension
d ą 0 and Y “ V paq is a closed k-subvariety of pure codimension 1 that contains x, and, for the second
assertion, our assumption becomes that d ą # x.

For a collection of maps t1, ¨ ¨ ¨ , td´1 : x Ñ k, taking products yields maps pt1, ¨ ¨ ¨ , tiq : x Ñ Aikpkq “ ki

for 1 ď i ď d´ 1. We now apply Lemma 7.2.4 inductively to show:

Claim 7.2.1. For 1 ď i ď d´ 1, there exists a k-morphism gi : X Ñ Aik such that

‚ gi is smooth at x with gi|x “ pt1, ¨ ¨ ¨ , tiq; and

‚ every irreducible component of gi|´1
Y pgipxqq intersecting x has dimension d´ 1 ´ i.

Proof of the claim. Assume the morphism gi´1 has been constructed. We apply Lemma 7.2.4, with k
being the ring k1 of global sections of gi´1pxq here, X being g´1

i´1pgi´1pxqq here, Y being the union Y 1

of all the irreducible components of gi´1|´1
Y pgi´1pxqq meeting x here, and t being ti|k1 , to obtain a k1-

morphism h : g´1
i´1pgi´1pxqq Ñ A1

k1 that is smooth at x such that h|Y 1 has fiber dimension d´ 1 ´ i and
such that h|x “ ti|k1 , where ti|k1 : x ti

ÝÑ k Ñ k1. It remains to take gi :“ pgi´1,rhq : X Ñ Aik “ Ai´1
k ˆkA1

k

for any lifting rh P H0pX,OXq of

h P H0
´

g´1
i´1pgi´1pxqq,Og´1

i´1pgi´1pxqq

¯

.

□

Starting from a map pt1, ¨ ¨ ¨ , td´1q : x Ñ kd´1, the map g :“ gd´1 of the Claim 7.2.1 immediately settles
the first assertion of the lemma. For the second assertion, it suffices to note that, under the stated
assumption, there always exists an injection x ãÑ kd´1: for an infinite field k, kd´1 is infinite, and, for a
finite field k, # kd´1 ě d´ 1. □

Consider the map pg, aq : X Ñ AdΛ “ Ad´1
Λ ˆΛ A1

Λ. By construction, it is quasi-finite at x, and,
by the openness of the quasi-finite locus of a finite type morphism, we may shrinking X if needed
to assume that it is already quasi-finite; since the generic Λ-fibers of its domain and codomain are
irreducible varieties of the same dimension d, it is also dominant. Consequently, by Zariski’s main
theorem [EGA IV4, Corollaire 18.12.13], pg, aq factors as

X
j

ÝÑ X
h1

ÝÑ AdΛ,
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where X is an integral affine scheme, j is an open immersion, and h1 is finite, dominant. (Unless Λ is
a DVR, ΓpX,OXq is, in general, only a finite type Λ-subalgebra of the integral closure of Λrt1, ¨ ¨ ¨ , tds

in the function field of X.) Denote g :“ pr1 ˝ h1, where pr1 : AdΛ Ñ Ad´1
Λ is the projection onto the first

pd ´ 1q-coordinates, and let a P ΓpX,OXq be the pullback of the last standard coordinate of AdΛ. Then
h1 “ pg, aq, and g (resp., a) restricts to g (resp., a) on X. In what follows, we shall identify the points
of jpxq with the corresponding points of x via j.

Write S Ă Spec Λ for the union of the closed points of Spec Λ (with the reduced structure).

Lemma 7.2.6. There exists an element b P ΓpX,OXq such that the morphism

h2 :“ pg, bq : X Ñ AdΛ “ Ad´1
Λ ˆΛ A1

Λ

has the following properties:

(i) set-theoretically we have h´1
1 ph1pxqq X h´1

2 ph2pxqq “ x;

(ii) h2 is étale around x and induces a bijection x „
ÝÑ h2pxq; and

(iii) h2 induces an isomorphism of residue fields κph2pxqq
„

ÝÑ κpxq for every x P x.

Proof. Since h1 is finite, surjective, g´1pgpxqq is an S-curve that contains g´1pgpxqq as an open subcurve,
so it is S-smooth around x. For a point x P x lying over a maximal ideal m Ă Λ, its first infinitesimal
neighbourhood in g´1pgpxqq is isomorphic to Specpκpxqruxs{pu2

xqq, where ux is an uniformizer of g´1pgpxqq

at x. Recall the fact that the residue field of a point on a smooth curve over a field is a simple extension
of that field, see [Čes22a, Lemma 6.3]. It follows that, for x P x lying over m, there exists a closed
κpmq-immersion xp1q ãÑ A1

κpmq
“ A1

gpxq
. For a maximal ideal m Ă Λ with finite residue field, under our

assumption that #px XXκpmqq ă maxp#κpmq, dq, either x contains at most #κpmq ´ 1 points lying over
m or the fiber of gκpmq contains at most 1 point of x (Lemma 7.2.5). Consequently, we may arrange the
above immersions so that they jointly give a closed immersion over Ad´1

Λ :
ğ

xPx
xp1q ãÑ A1

gpxq Ă A1
Ad´1

Λ
“ AdΛ, (7.2.1)

where we regard gpxq Ă Ad´1
Λ as a closed subscheme. Note that the complement of the image of

the morphism (7.2.1) in AdΛ has at least 1 rational point Ad´1
Λ -fiberwisely. Thus, by sending any y P

ph´1
1 ph1pxqqzxq to a suitable rational point of A1

gpyq
, we may further extend (7.2.1) to a Ad´1

Λ -morphism

u : Z :“
`
Ů

xPx x
p1q

˘
Ů

´

Ů

yPh´1
1 ph1pxqqzx y

¯

Ñ AdΛ

such that upxq X uph´1
1 ph1pxqqzxq “ H, or, what amounts to the same,

h´1
1 ph1pxqq X u´1pupxqq “ x. (7.2.2)

As Z is a closed subscheme of the affine scheme X, we can lift u˚ptq P ΓpZ,OZq to obtain an element
b P ΓpX,OXq, where t is the standard coordinate on A1

Λ.

Consider the morphism h2 :“ pg, bq : X Ñ AdΛ “ Ad´1
Λ ˆΛ A1

Λ. Viewing X as a Ad´1
Λ -scheme via g, the

base change of h2 to gpxq Ă Ad´1
Λ restricts to u on Z, so h2 is unramified at x. Now (i) follows from

(7.2.2), (iii) is a consequence of our choice of the morphism (7.2.1). For (ii), it suffices to argue that h2
is flat at x; however, since the domain and the codomain of h2 are Λ-flat of finite presentation, the fibral
criterion of flatness [EGA IV3, Théorème 11.3.10] reduces us to checking the flatness of the Λ-fibers of
h2 at x, while the latter follows from the flatness criterion [EGA IV2, Proposition 6.1.5]. □

Let Λrh˚
1 pt1q, ¨ ¨ ¨ , h˚

1 ptd´1q, a, bs Ă ΓpX,OXq be the Λ-subalgebra generated by a, b and h˚
2 ptiqp“ h˚

1 ptiq “

g˚ptiqq for 1 ď i ď d´ 1. We introduce the following notations.

‚ Let V :“ SpecpΛrh˚
1 pt1q, ¨ ¨ ¨ , h˚

1 ptd´1q, a, bsq, and let h3 : X Ñ V be the morphism induced by
the inclusion Λrh˚

1 pt1q, ¨ ¨ ¨ , h˚
1 ptd´1q, a, bs Ă ΓpX,OXq.

‚ Let v1 : V Ñ AdΛ be the map such that v˚
1 ptiq “ h˚

1 ptiq for 1 ď i ď d´ 1 and v˚
1 ptdq “ a.
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‚ Let v2 : V Ñ AdΛ be the map such that v˚
2 ptiq “ h˚

1 ptiq for 1 ď i ď d ´ 1 and v˚
2 ptdq “ b. Note

that there is a natural surjection

Λrh˚
1 pt1q, ¨ ¨ ¨ , h˚

1 ptd´1q, bs ↠ Λrh˚
1 pt1q, ¨ ¨ ¨ , h˚

1 ptd´1q, a, bs{paq “ ΓpV,OV q{paq;

this implies that v2 induces a closed immersion

v2 : SpecpΓpV,OV q{paqq ãÑ V
v2

ÝÑ AdΛ.

We have the following commutative diagram of morphisms of affine schemes:

X X

V AdΛ

AdΛ

j h2

h1

h3

v2

v1

.

Lemma 7.2.7. The map h3 induces a bijection x „
ÝÑ h3pxq with h´1

3 ph3pxqq “ x. Further, h3 induces
an isomorphism of semilocal rings

OV,h3pxq » OX,x “ OX,x.

Proof. By Lemma 7.2.6(ii)-(iii), we see that h3 induces a bijection x „
ÝÑ h3pxq and an isomorphism of

residue fields κph3pxqq
„

ÝÑ κpxq for every x P x. Chasing the above diagram we see that

h´1
3 ph3pxqq Ă h´1

1 ph1pxqq X h´1
2 ph2pxqq “ x,

where the last equality is Lemma 7.2.6(i). As h3 is finite, surjective, we see that h´1
3 ph3pxqq “ x. By

Lemma 7.2.6(ii), h3 is unramified at x. It follows that the base change of h3 to Spec OV,h3pxq is

Spec OX,x Ñ Spec OV,h3pxq,

and it is actually an isomorphism: letting J be the Jacobson radical of the semilocal ring OV,h3pxq, since
the natural map

ź

xPx
κph3pxqq » OV,h3pxq{J

h˚
3

ÝÝÑ OX,x{JOX,x »
ź

xPx
κpxq

is an isomorphism (in particular, surjective), an application of Nakayama lemma shows

h˚
3 : OV,h3pxq » OX,x “ OX,x. □

End of the proof of Proposition 7.2.1. Define f :“ h2 ˝ j : X Ñ AdΛ, which we may assume to be étale
upon replacing X by an affine open neighbourhood of x. By Lemma 7.2.7, there exists an affine open
neighbourhood W 1

0 Ă V of h3pxq such that W0 :“ h´1
3 pW0q Ă jpXq and h3|W0 : W0

„
ÝÑ W 1

0. We shall
identify W0 as an open subscheme of X via j. As noted above, v2 induces a closed immersion

v2 : Y 1 :“ SpecpΓpV,OV q{paqq ãÑ AdΛ.

In particular, the topology of Y 1 is induced from that of AdΛ via v2. Note also that, since a vanishes on x,
h3pxq Ă Y 1 Ă V . Consequently, there exists an affine open neighbourhood U Ă AdΛ of fpxq “ v2ph3pxqq

such that v´1
2 pUq Ă W 1

0. Therefore, f induces a closed immersion of affine schemes

YU :“ f´1pUq X Y “ ph3 ˝ jq´1pv´1
2 pUq X Y 1q “ ph3 ˝ jq´1pv´1

2 pUqq » v´1
2 pUq ãÑ U.

Since f is separated and étale, any section of f ˆAd
Λ,f

YU , such as the one induced by the inclusion
YU ãÑ X, is an inclusion of a clopen, so

X ˆAd
Λ,f

YU “ rY1 \ rY2 with rY1
„

ÝÑ YU .

Let W Ă f´1pUq be an affine open whose preimage in X ˆAd
Λ,f

YU is rY1. Then f |W : W Ñ U is an étale
morphism such that f |WXY : WXY ãÑ U is a closed immersion and such that WˆU,f pWXY q

„
ÝÑ WXY .

As any étale map is open, we may shrink U around fpxq to ensure that f |W : W Ñ U is also surjective.
This proves the first assertion of Proposition 7.2.1.
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The second assertion follows from descent theory, because the ideal sheaf of W X Y on U pulls back to
that of W X Y on W . □

8. Cohomology of groups of multiplicative type

Inspired by the purity results in [ČS21, Theorem 7.2.8], we investigate the parafactoriality over Prüfer
bases and then present the purity for cohomology of group schemes of multiplicative type.

8.1. Geometrically parafactorial pairs

8.1.1. Parafactorial pairs. Let pX,OXq be a ringed space with a closed subspace Z Ă X and open
immersion j : XzZ ãÑ X, if for every open subspace U Ă X the restriction

PicX „
ÝÑ PicXzZ, L ÞÑ L |UXpXzZq is an equivalence of categories,

then the pair pX,Zq is parafactorial. In particular, we have L » j˚j
˚L . A local ring A is parafactorial

if the pair pSpecA, SpecA{mAq is parafactorial. We list several parafactorial pairs pX,Zq and local rings.

(i) when A is a Noetherian factorial local ring, by [EGA IV4, Exemples 21.13.9 (ii)], it is parafactorial;

(ii) by [EGA IV4, Proposition 21.13.8], a local ring A is parafactorial if and only if

Pic pSpecAztxuq “ 0 and A » ΓpSpecAztxu, rAq for the closed point x P SpecA;

(iii) when X is a locally Noetherian and locally complete intersection and Z satisfies codimpZ,Xq ě 4,
by [SGA 2new, Exposé XI, Théorème 3.13 (ii)], the pair pX,Zq is parafactorial;

(iv) for a normal scheme S, an S-smooth scheme X and a closed subset Z Ă X satisfying
codimpZη, Xηq ě 2 for each generic point η P S and codimpZs, Xsq ě 1 for every s P S,
by [EGA IV4, Proposition 21.14.3], the pair pX,Zq is parafactorial.

Now we assume that X is a scheme. A parafactorial pair pX,Zq is geometrically parafactorial, if for every
X-étale X 1 with the base change Z 1 :“ ZˆXX

1, the pair pX 1, Z 1q is parafactorial. For a local ring A, if its
strict Henselization Ash is parafactorial, then A is geometrically parafactorial (cf. [ČS21, Theorem 7.2.8]).

Lemma 8.1.2. For a topologically locally Noetherian scheme X and a closed subscheme Z Ă X,

(i) the pair pX,Zq is parafactorial if and only if OX,z is parafactorial for every z P Z;

(ii) the pair pX,Zq is geometrically parafactorial if and only if Osh
X,z is parafactorial for every z P Z.

Proof. The assertion (ii) follows the same argument of (i), except viewing Osh
X,z as the inverse limit of étale

neighborhoods of z P X. Assume that pX,Zq is parafactorial and for each z P Z, denote Uz :“ Spec OX,z
and U˝

z :“ Uzztzu. To show that OX,z is parafactorial, we prove that every invertible OUz
-module L0

is isomorphic to OU˝
z
. Then by [EGA IV3, Proposition 8.2.13] and [EGA I, Proposition 2.4.2], U˝

z is the
inverse limit of B˝ :“ BzpB X tzuq where B ranges over all open affine neighborhoods of z P X. Since
every B˝ is topologically Noetherian and separated, by a limit argument [SP, 0B8W], there exists an
open affine neighborhood B of z P X and an invertible OB˝ -module LB˝ such that L0 » LB˝ |U˝

z
. By

assumption and [EGA IV4, Corollaire 21.13.6 (i)(ii)], the pair pB,BX tzuq is parafactorial. In particular,
there exists an invertible OB-module ĂLB such that ĂLB |B˝ » LB˝ . Shrinking B if necessary, we have
ĂLB » OB hence L0 » OU˝

z
.

For the other side, assume that OX,z are parafactorial for all z P Z, which, combined with [EGA IV4,
Proposition 21.13.5], reduces us to showing that for every invertible OXzZ-module L , the pushforward
j˚L is an invertible OX -module. For this, we use Noetherian induction. Namely, consider the subset

Ω :“ tx P X | j˚L is invertible on an open neighborhood of xu

Then Ω Ă X is a non-empty open whose complementary closed is XzΩ “ : Y Ă Z. By [EGA IV2,
Lemme 2.3.1], the quasi-compact quasi-separated morphism j guarantees that the formation of j˚L
commutes with arbitrary flat base changes (in particular, localizations). Pick a maximal point y P Y Ă Z
so OX,y is parafactorial. The maximality of y P Y implies that Ω X Uy “ U˝

y , so L0 :“ pj˚L q|U˝
y

is
an invertible OU˝

y
-module. The parafactoriality of OX,y yields an extension of L0 to an invertible OUy

-
module ĂL0, which, by the limit argument [SP, 0B8W] again, descends to an invertible OW -module ĂLW
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for an open neighborhood W of y P X. Shrinking W if necessary, we may assume that the restrictions
of j˚L and ĂLW on Ω XW are equal. With this gluing datum, let Ω1 :“ Ω YW , so there is an invertible
Ω1-module L 1 such that L 1|W “ ĂLW and L 1|Ω “ pj˚L q|Ω. Since XzZ Ă Ω1 and L 1|XzZ “ L , hence
OX » j˚OXzZ and pj˚L q|Ω1 » L 1, which leads to a desired contradiction with the definition of Ω. □

Proposition 8.1.3. For a normal scheme S and an S-scheme X satisfying one of the following

(i) either X Ñ S is a smooth morphism of topologically locally Noetherian schemes; or

(ii) S is semilocal Prüfer of finite dimension and X is S-flat locally of finite type with regular S-fibers

then every x P X that does not contain any maximal point of S-fibers of X and dim OX,x ě 2 satisfies

OX,x is geometrically parafactorial, namely, Osh
X,x is parafactorial.

Proof. The parafactoriality of Osh
X,x is that of pSpec Osh

X,x, txuq, which by Lemma 8.1.2(ii), is equivalent
to the parafactoriality of pSpec OX1,x1 , tx1uq for all X-étale X 1. Since all X 1 and x1 satisfy the conditions
in the statement above ([BS15, Lemma 6.6.10 (3)]), we are reduced to showing that OX,x is parafacto-
rial. For the Zariski closure Z :“ txu, by Lemma 8.1.2 again, we are reduced to finding a small open
neighborhood U of x P X such that pU,Z X Uq is a parafactorial pair. Now, take an arbitrary open
neighborhood U of x P X, by [EGA IV3, Proposition 9.5.3] applied to Z Ă X, shrinking U , we may
assume that U X Z does not contain any irreducible components of S-fibers of X. If a z P Z lies over a
maximal point η P S, since x specializes to z, then we have dim OXη,z “ dim OX,z ě 2. Consequently,
we have codimpXη X Z,Xηq ě 2 and by §8.1.1(iv) and Proposition 3.2.7(ii), the desired parafactoriality
of pU,Z X Uq follows. □

8.2. Purity for groups of multiplicative type

Now we study purity for groups of multiplicative type in the situation of higher relative dimension. We
start with the following generalization of Theorem 6.1.4 when G “ M is a X-group algebraic space of
multiplicative type.

Lemma 8.2.1. For an algebraic space X with a closed subspace Z Ă X such that for every geometric
point z Ñ Z, the strict local ring OX,z is parafactorial, the open immersion j : XzZ ãÑ X and a finite
type multiplicative type X-group algebraic space M , the following map between fppf sheaves on X

M
„

ÝÑ j˚j
˚M is an isomorphism.

In particular, we have H0
ZpX,M q “ H1

ZpX,M q “ 0 and ΓpX,Pq » ΓpU,Pq for every M -torsor P on
X.

Proof. For an M -torsor P, to show that ΓpX,Pq » ΓpU,Pq, it suffices to prove that P » j˚j
˚P,

which can be checked fppf locally. Hence, it suffices to prove the first assertion in the case when X is a
scheme. By [SGA 3II, Exposé X, Corollaire 4.5], M is quasi-isotrivial, namely, there is an étale surjective
morphism rX Ñ X such that M ˆX

rX splits. We need to show that the morphism M Ñ j˚j
˚M is an

isomorphism fppf locally at all z P Z. Suppose f : X 1 Ñ X is a flat morphism inducing g : X 1zZ 1 Ñ XzZ,
where Z 1 :“ Z ˆX X

1 with the open immersion j1 : X 1zZ 1 ãÑ X 1 . Taking inverse image of M Ñ j˚j
˚M ,

we obtain f˚M Ñ f˚j˚j
˚M . By [EGA IV2, Lemme 2.3.1], the formation of j˚p´q commutes with flat

base change, hence f˚j˚j
˚M » j1

˚g
˚j˚M “ j1

˚pj1q˚f˚M and the inverse image of M Ñ j˚j
˚M is

f˚M Ñ j1
˚pj1q˚f˚M . We may assume that X 1 “ Spec Osh

X,z and Z 1 “ tzu, so the desired isomorphism
is reduced to an isomorphism M

„
ÝÑ j1

˚pj1q˚M for a split finite type multiplicative group sheaf M . For
an X 1-group µn, we have the following short exact sequence

0 Ñ µn Ñ Gm
ˆn
Ñ Gm Ñ 0,

hence j1
˚pj1q˚µn “ kerpj1

˚pj1q˚Gm
ˆn
Ñ j1

˚pj1q˚Gmq, reducing us to the case when MX1 “ Gm. Since
pX 1, Z 1q is parafactorial, we have Oˆ

X1
„

ÝÑ j1
˚pj1q˚Oˆ

X1 , so the assertion follows. □

Proposition 8.2.2. For a finite-rank valuation ring R with spectrum S and generic point η P S, an
S-flat finite type scheme X with regular S-fibers, a point x P X, and an OX,x-torus T ,
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(1) if either x P Xη with dim OXη,x ě 2, or x P Xs with s ‰ η and dim OXs,x ě 1, then we have

Hi
txupOX,x, T q “ 0 for 0 ď i ď 3;

(2) otherwise, OX,x is a valuation ring, then if T is flasque we have

H2
txupOX,x, T q “ 0.

Proof. (1) Notice that the finite-rank assumption on R guarantees X being topologically locally Noe-
therian. By the local-to-global E2 spectral sequence [SGA 4II, Exposé V, Proposition 6.4],

Hp
étpOX,x,Hq

txu
pT qq ñ Hp`q

txu
pOX,x, T q,

where Hq
txu

pT q is the sheafification of the étale presheaf
´

U
h

ÝÑ SpecpOX,xq

¯

ÞÑ Hq
h´1pxq

pU, T q.

Therefore, it suffices to prove the vanishing of the sheaves Hq
txu

pT q for 0 ď q ď 2. We calculate their
stalks at a geometric point x lying over x:

Hq
txu

pT qx “ Hq
txu

pOsh
X,x, T q.

Now, since TOsh
X,x

» Gdim T
m,Osh

X,x
, and, since by Proposition 8.1.3 Osh

X,x is parafactorial, we have

Hq
étpSpecpOsh

X,xq, T q » Hq
étpSpecpOsh

X,xqztxu, T q for 0 ď q ď 1;

as Osh
X,x is strictly Henselian, we have

H2
étpSpecpOsh

X,xq, T q “ 0.

Looking at the local cohomology exact sequence for the pair pSpecpOsh
X,xq, x̄q and T , we see that

Hq
tx̄u

pOsh
X,x, T q “ 0 for 0 ď q ď 2.

This implies Hq
txu

pT q “ 0 for 0 ď q ď 2, as desired.

(2) In this case, either x P Xη with dim OXη,x ď 1, then OX,x is a discrete valuation ring, or x is a
maximal point of some fiber of X Ñ S, then, by Lemma 3.1.1(iii), OX,x is a valuation ring. The desired
vanishing is proven in [Guo20, Lemma 2.3]. □

Lemma 8.2.3 (cf. [ČS21, Lemma 7.1.1]). For an algebraic space X, an open subspace U Ă X with
complement i : Z :“ XzU ãÑ X, and an abelian sheaf F on pSch{Xqfppf , if for any integer q ě 0,
Hq
ZpF q denotes the étale-sheafification of the presheaf X 1 ÞÑ Hq

Z1 pX 1,Mq where Z 1 :“ Z ˆX X
1, then we

have a convergent spectral sequence

Epq2 “ Hp
étpX,Hq

ZpF qq ñ Hp`q
Z pX,Mq.

Theorem 8.2.4.

(i) ( cf. [ČS21, Theorem 7.2.8 (a)]) For an algebraic space X, a quasi-compact open immersion
j : U ãÑ X with complement Z :“ XzU , and an X-group algebraic space M of multiplicative
type, if for every geometric point z Ñ Z, the strict local ring OX,z is parafactorial, then restric-
tion functor

TorspXfppf ,Mq
„

ÝÑ TorspUfppf ,Mq induces an equivalence of categories of M -torsors.

In particular, passing to isomorphism classes of objects, we have the following isomorphisms

Hi
fppfpX,Mq

„
ÝÑ Hi

fppfpU,Mq for i ď 1 and H2
fppfpX,Mq ãÑ H2

fppfpU,Mq.

(ii) For a semilocal Prüfer domain R with spectrum S, a quasi-compact quasi-separated S-smooth
scheme X, a quasi-compact open U Ă X with complement Z :“ XzU , and an X-torus T such
that TOX,z

is flasque for every z P Z for which OX,z is a valuation ring, then we have

H1
étpX,T q ↠ H1

étpU, T q and H2
étpX,T q ãÑ H2

étpU, T q.
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Proof. (i) By the local cohomology exact sequence for the pair pX,Zq and the sheaf M , everything
reduces to show the vanishings Hq

ZpX,Mq “ 0 for 0 ď q ď 2. By the spectral sequence in Lemma 8.2.3,
it suffices to show the vanishings of Hq

ZpMq, the étale-sheafification of the presheaf X 1 ÞÑ Hq
Z1 pX 1,Mq

where Z 1 :“ Z ˆX X 1. Further, the quasi-compactness of j allows us to identify the stalk of Hq
ZpMq

at a geometric point z Ñ Z as Hq
tzu

pOX,z,Mq. Hence we may assume that M split as µn or Gm, and
since µn “ kerpGm

ˆn
Ñ Gmq, it suffices to show that Hq

tzu
pOX,z,Gmq “ 0 for 0 ď q ď 2. Since OX,z is

parafactorial, we have

HqpSpecpOX,zq,Gmq » HqpSpecpOX,zqztzu,Gmq for 0 ď q ď 1;

as OX,z is strictly Henselian, we have

H2pSpecpOX,zq,Gmq “ 0.

Looking at the local cohomology exact sequence for the pair pSpecpOX,zq, zq and T , we deduce the desired
vanishings

Hq
tzu

pOX,z,Gmq “ 0 for 0 ď q ď 2.

(ii) By the local cohomology exact sequence

¨ ¨ ¨ Ñ H1pX,T q Ñ H1pU, T q Ñ H1
ZpX,T q Ñ H2pX,T q Ñ H2pU, T q Ñ ¨ ¨ ¨ ,

the assertion is equivalent to the vanishing H2
ZpX,T q “ 0. Since X is quasi-compact quasi-separated

and U Ă X is a quasi-compact open, by a limit argument involving Lemma 3.1.3, we reduce to the case
R having finite Krull dimension, so X is topologically Noetherian. Recall the coniveau spectral sequence
[Gro68b, §10.1]

Epq2 “
à

zPZppq

Hp`q
tzu

pT q ñ Hp`q
Z pX,T q;

the topological Noetherianness of X allows us to identify

Hp`q
tzu

pT q :“ colimHp`q

tzuXU
pU, T q

as Hp`q
tzu

pOX,z, T q, where U runs over the open neighbourhoods of z in X. Therefore, it is enough to
show H2

tzu
pOX,z, T q “ 0, which has been solved by Proposition 8.2.2. □

Proposition 8.2.5. For a normal scheme S and an S-algebraic space X satisfying one of the following

(i) either X Ñ S is a smooth morphism of topologically Noetherian algebraic spaces; or

(ii) S is semilocal Prüfer of finite dimension and X is S-flat locally of finite type with regular S-fibers,

a quasi-compact open U Ă X with complementary closed Z :“ XzU satisfying the following condition

codimpZη, Xηq ě 2 for every generic point η P S and codimpZs, Xsq ě 1 for all s P S,

and a finite type X-group algebraic space M of multiplicative type, the following restriction functor

TorspXfppf ,Mq
„

ÝÑ TorspUfppf ,Mq induces an equivalence of categories of M -torsors.

In particular, passing to isomorphism classes of objects, we have the following isomorphisms

H0pX,Mq » H0pU,Mq, H1
fppfpX,Mq » H1

fppfpU,Mq, H2
fppfpX,Mq ãÑ H2

fppfpU,Mq.

Proof. We simply verify the assumptions of Lemma 5.7. First, the restriction functor is fully faithful,
because M is X-affine so is Y :“ IsomXpP1,P2q for arbitrary M -torsors P1 and P1 on X (Lemma 5.4),
which implies that Y pXq » Y pUq (note that Y is an AutGpP1q » M -torsor, so we have Y pXq » Y pUq

by Lemma 8.2.1). The same holds when we base change to every scheme étale over X. Next, we show
that, fppf locally on X, every M -torsor on U extends on X. For this we may assume that X is affine.
Since X is normal, M is isotrivial, so there is an X-torus T and a finite X-group µ of multiplicative type
fitting into the short exact sequence

1 Ñ T Ñ M Ñ µ Ñ 1,
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From which we leverage the following commutative diagram with exact rows

µpXq H1
fppfpX,T q H1

fppfpX,Mq H1
fppfpX,µq

µpUq H1
fppfpU, T q H1

fppfpU,Mq H1
fppfpU, µq,

where µpXq » µpUq follows from the X-affineness of µ. A diagram chase reduces us to showing that

H1
fppfpX,T q

„
ÝÑ H1

fppfpU, T q and H1
fppfpX,µq

„
ÝÑ H1

fppfpU, µq are isomorphisms.

Since the extension problem is fppf local, we may assume that M splits, without loss of generalities, say
M » Gm or M “ µn. By Proposition 3.2.7(ii), the X-affineness of M implies that MpX 1q » MpU 1q.
When M “ Gm, we have PicX „

ÝÑ PicU because pX,Zq is a parafactorial pair. It remains to prove
that H1

étpX,µnq » H1
étpU, µnq, for which we consider the commutative diagram

0 OpXqˆ{OpXqˆn H1
étpX,µnq n PicpXq 0

0 OpUqˆ{OpUqˆn H1
étpU, µnq n PicpUq 0

A diagram chase leads to the desired isomorphism H1
étpX,µnq

„
ÝÑ H1

étpU, µnq. Finally, all fppf local
extension data glue together. Hence we obtain the desired essential surjectivity. □

8.3. Grothendieck–Serre type results for groups of multiplicative type

Lemma 8.3.1. Let ϕ : X Ñ Y be a morphism of schemes. Let L be an invertible OX-module. If

(1) Y is quasi-compact quasi-separated, integral, and normal,

(2) there exist a smooth projective morphism ϕ : X Ñ Y , with geometrically integral fibers, and a
quasi-compact open immersion X ãÑ X over Y , and

(3) L is trivial when restricted to the generic fiber of ϕ,

then L » ϕ˚N for some invertible OY -module N .

Proof. When Y is Noetherian, this follows from a much more general result [SP, 0BD6]; for instance, (2)
can be replaced by the assumption that X Ñ Y is faithfully flat of finite presentation, with integral fibers.
The general case can be deduced from this via Noetherian approximations. More precisely, we first use
[SP, 01ZA] to write Y “ limi Yi for a filtered inverse system tYiu of finite type integral Z-schemes with
affine transition morphisms. Since the normalization of a finite type integral Z-scheme is finite, we may
assume that each Yi is normal. Next, by [SP, 01ZM, 0C0C], for some i0 there exist a finite type smooth
morphism ϕi0 : Xi0 Ñ Yi0 such that X » Xi0 ˆYi0

Y as Y -schemes, an open subscheme Xi0 Ă Xi0

whose pullback to X identifies with X, and, by [SP, 0B8W], there is an invertible OXi0
-module Li0

whose pullback to X is isomorphic to L . For any i ě i0 denote by ϕi : Xi :“ Xi0 ˆYi0
Yi Ñ Yi the

base change of ϕi0 |Xi0
to Yi, and denote by Li the pullback of Li0 to Xi. By [SP, 01ZM, 01ZP], any

projective embedding of X over Y descends to a projective embedding of Xi over Yi for large enough i;
in particular, ϕi is projective for large enough i.

Since Y is normal, the assumption (3) implies that the Stein factorization of ϕ is itself; in particular,
OY

„
ÝÑ ϕ˚OX . This implies that the finite extension OYi0

ãÑ ϕi0,˚OXi0
is an isomorphism, because its

base change to the function field of Y is so and Yi0 is normal. In particular, by Zariski’s main theorem, ϕi0
has connected geometric fibers; as it is also smooth, all its fibers are even geometrically integral. By limit
formalism, for large enough i, Li is trivial when restricted to the generic fiber of ϕi. Consequently, for
large enough i, the morphism ϕi : Xi Ñ Yi and the invertible OXi

-module Li satisfy all the assumptions
of the Lemma, so Li » ϕ˚

i Ni for some invertible OYi
-module Ni. Then L » ϕ˚N where N is the

pullback of Ni to Y . □
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Proposition 8.3.2 (cf. [CTS87, 4.1–4.3]). For a Prüfer domain R with spectrum pS, ηq, an irreducible
scheme X essentially smooth over S with function field KpXq, an X-group scheme M of multiplicative
type, and a connected finite étale Galois covering X 1 Ñ X splitting M4, the restriction maps

H1
fppfpX,Mq Ñ H1

fppfpKpXq,Mq and H2
fppfpX,Mq Ñ H2

fppfpKpXq,Mq

are injective in each of the following cases:

(i) X “ SpecpAq and A is a semilocal ring essentially smooth over R;

(ii) For some essentially smooth semilocal R-algebra A, there exists a quasi-compact open immersion
X ãÑ X, where X is a smooth projective A-scheme, with geometrically integral fibers, such that
PicpXLq “ 0 for any finite separable fields extension L{FracpAq, and M “ NX for N an A-group
of multiplicative type (for instance, X could be any quasi-compact open subscheme of PNA );

(iii) any subcovering X2 Ñ X of X 1 Ñ X satisfies PicpX2q “ 0.

Further, if M is a flasque X-torus, then in all cases piq-piiiq the restriction map

H1
étpX,Mq

„
ÝÑ H1

étpKpXq,Mq is bijective.

Proof. It is clear that (i) is a particular case of (ii). Let us show that (ii) is a particular case of (iii).
Let A Ñ B be a connected finite étale Galois covering that splits N . Take X 1 :“ X ˆA B. By the
normality of A and the smoothness of X Ñ SpecpAq, X is also normal. Then, since X Ñ SpecpAq

has geometrically integral generic fiber, the natural map πét
1 pXq Ñ πét

1 pSpecAq is surjective. This
implies that any subcovering X2 Ñ X of X 1 Ñ X is of the form X2 “ X ˆA C for some subcovering
A Ñ C of A Ñ B. By assumption, PicpXFracpCqq “ 0, so we may apply Lemma 8.3.1 to the morphism
X ˆA C Ñ SpecpCq to deduce that the pullback map

PicpSpecpCqq Ñ PicpX ˆA Cq is surjective.

Since C is semilocal, we conclude that PicpSpecpCqq “ 0 “ PicpX ˆA Cq.

It is thus enough to prove all assertions only for (iii). Assume first that M “ T is an X-torus. Take a
flasque resolution

1 Ñ F Ñ P Ñ T Ñ 1,
where F is a flasque X-torus and P is a quasitrivial X-torus. This yields a commutative diagram

H1
étpX,P q H1

étpX,T q H2
étpX,F q

H1
étpKpXq, T q H2

étpKpXq, F q

ρ1 ρ2

with exact rows. Now the quasitrivial torus P is isomorphic to a finite direct product of tori ResX2{XGm,X2

for finite étale subcoverings X2 Ñ X of X 1 Ñ X. Hence, assumption (iii) implies that H1
étpX,P q “ 0,

and so the injectivity of ρ1 reduces to that of ρ2. To prove that ρ2 is injective we pick a P H2
étpX,F q for

which a|KpXq “ 0. By spreading out, we may assume that X is a localization of an irreducible, smooth,
affine R-scheme rX, F “ rFX for a flasque rX-torus rF , and a “ ra|X for some class ra P H2p rX, rF q. Since
ra|KpXq “ 0, for a large enough hypersurface Z Ă rX,

ra|
ĂXzZ

“ 0 P H2
étp rXzZ, rF q.

By Theorem 8.2.4(ii), ra “ 0, so a “ ra|X “ 0. This proves the injectivity of ρ2 and hence also of ρ1. Now
let M be an arbitrary X-group of multiplicative type, then there is an X-subtorus T Ă M such that
µ :“ M{T is X-finite. Consequently, for any generically trivial M -torsor P, the µ-torsor P{T is finite over
X; as X is normal, this implies pP{T qpXq “ pP{T qpKpXqq. Therefore, P{T Ñ X has a section that lifts
to a generic section of P Ñ X, that is, P reduces to a generically trivial T -torsor PT . By the injectivity
of ρ1, PT and hence also P is trivial. This proves the injectivity of H1

étpX,Mq Ñ H1
étpKpXq,Mq.

On the other hand, there is a short exact sequence

1 Ñ M Ñ F Ñ P Ñ 1

4Such a covering always exists, because X is normal and so M is isotrivial.
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of X-groups of multiplicative type, where F is flasque and P is quasitrivial, both split after base change
by X 1 Ñ X. This yields the following commutative diagram with exact rows

H1
fppfpX,P q H2

fppfpX,Mq H2
fppfpX,F q

H2
fppfpKpXq,Mq H2

fppfpKpXq, F q

ρ3 ρ2

Since we have already shown that H1
fppfpX,P q “ 0 and ρ2 is injective, the injectivity of ρ3 follows from

a diagram chase.

Finally, if M is a flasque X-torus, the bijectivity of H1
fppfpX,Mq Ñ H1

fppfpKpXq,Mq will follow if one
proves its surjectivity, but the latter follows from Theorem 8.2.4(ii) via a limit argument. □

9. Grothendieck–Serre on a semilocal Prüfer domain

The main result of this section is the following mild generalization of [Guo20].

Theorem 9.0.1. For a semilocal Prüfer domain R with fraction field K, and a reductive R-group scheme
G, the following restriction map has trivial kernel:

ker
`

H1
étpR,Gq Ñ H1

étpK,Gq
˘

“ t˚u.

9.0.2. Setup. We fix the following notations. For a semilocal Prüfer domain R of finite Krull dimension,
all the maximal ideals pmiq

r
i“1 of R, the local rings Oi :“ Rmi , an element a P R such that V paq “

tmiu
r
i“1, let pR (resp., pOi) denote the a-adic completion of R (resp., of Oi). Then pOi is an a-adic

complete valuation ring of rank 1, and we have pR »
śr
i“1

pOi, compatibly with the topologizes. Denote
pKi :“ Frac pOi “ pOir

1
a s. Topologize Rr 1

a s by declaring timpanR Ñ Rr 1
a squně1 to be a fundamental system

of open neighbourhood of 0; the associated completion is

Rr 1
a s Ñ pRr 1

a s »
śr
i“1

pOir
1
a s “

śr
i“1

pKi,

where each pKi is a complete valued field, with pseudo-uniformizer (the image of) a. In particular, for an
R-scheme X, we have a map

ΦX : XpRr 1
a sq Ñ

śr
i“1 Xp pKiq.

If X is locally of finite type over R, we endow the right hand side with the product topology where each
Xp pKiq, by, for example, Conrad, has a natural topology induced from that of pKi, which we will call the
a-adic topology. If moreover X is affine, we can canonically topologize XpRr 1

a sq by choosing a closed
embedding X ãÑ ANR and endowing XpRr 1

a sq ãÑ Rr 1
a sN with the subspace topology (this is independent

of the choices of the embeddings), then ΦX is a continuous map.

9.1. Lifting maximal tori of reductive group schemes over semilocal rings

Lemma 9.1.1. For a scheme S, an S-smooth finitely presented group scheme G whose S-fibers are
connected and affine, and a finite subset I Ă S. If I satisfies the following conditions

(i) I is contained in an affine open subset of S;

(ii) for each residue field κi of S at i P I, the fiber Gκi is a κi-reductive group; and

(iii) 7κi ě dimpGκi {Ziq for the center Zi Ă Gκi ,

then there is an open neighborhood U of I such that the following map is surjective
TorpGqpUq ↠

ś

iPI TorpGqpκiq.

Proof. By [SGA 3II, Exposé XVI, Théorème 5.2], there is an open neighborhood U of I such that G|U is a
U -reductive group scheme, so we may replace S by U . By [SGA 3II, Exposé XII, Théorème 4.7 c)], G has
a reductive center Z and we have Zi “ pZqκi

for every i P I. Since TorpGq » TorpG{Zq, we may replace
G by G{Z. By [SGA 3II, Exposé XIV, Théorème 3.18], the maximal tori of G are exactly the subgroups
of type (C), which are bijectively assigned by D ÞÑ LiepDq to the Cartan subalgebras of g :“ LiepGq

([SGA 3II, Exposé XIV, Théorème 3.9]). It suffices to lift a Cartan subalgebra c0 Ă
ś

iPI gκi
to that of g.

Denote ci :“ pc0qκi . Since for each i P I, we have 7κi ě dimpG{Zq “ dimpGq, by [Bar67, Theorem 1], ci
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is of the form Nilpaiq :“
Ť

n kerpadpani qq for some ai P ci. Hence [SGA 3II, Exposé XIII, Corollaire 5.7]
implies that each ai P ci is a regular element of gκi . We take a section a of g passing through all ai and
claim that V :“ ts P SpecR such that as P gs is regularu is an open subset of SpecR. We may assume
that R is reduced. Since the nilpotent rank of g is locally constant, there is an open neighborhood U of
I such that the nilpotent rank of g is constant on each connected component Uα of U . On each Uα, the
Killing polynomial of g at every s P Uα is uniformly Pα,gs

ptq “ trα ptn´rα ` pc1qst
n´rα´1 ` ¨ ¨ ¨ ` pcn´rα

qsq

such that pcn´rα qs is nonzero. Thus, the regular locus in g is the principle open subset
Ş

αtcn´rα ‰ 0u Ă

Wpgq so V is nonempty and open, hence shrinking U if necessary, we have V “ U . In particular, the
regular elements pai P ciqiPI are lifted to a quasi-regular section a P g, which by [SGA 3III new, Exposé XIV,
Corollaire 3.7], is regular. By definition of regular sections, there is a Cartan subalgebra of g containing
a and is the desired lifting of c0. □

Lemma 9.1.2. For a semilocal Prüfer domain R of finite Krull dimension, we use the notations in the
setup §9.0.2. For a reductive R-group scheme G, the scheme TorpGq of maximal tori of G, and the a-adic
topology on TorpGqp pKiq, the image of the following map is dense:

TorpGqpRr 1
a sq Ñ

śr
i“1 TorpGqp pKiq.

Proof. The proof proceeds in the following steps.

Step 1. The ring A :“ lim
ÝÑkě0 Cauchyěk

pRr 1
a sq is a semilocal ring with residue fields Frac pOi. Let I

be the kernel of the surjection A ↠
śr
i“1 Frac pOi. Since A{I is a product of fields, it suffices to show

that 1 ` I Ă Aˆ. For a sequence pbN qN P I, its tail lies in impakR Ñ Rr 1
a sq for all k ą 0, so the tail

of p1 ` bN qN is invertible in Rˆ. Since Rr 1
a s is semilocal, the tail of p1 ` bN qN is termwise invertible in

Rr 1
a s and the inverses form a Cauchy sequence.

Step 2. We combine the Step 1 and Lemma 9.1.1 to obtain the following surjective map

lim
ÝÑmě0

´

TorpGq
`

Cauchyěm
pRr 1

a sq
˘

¯

» TorpGq

´

lim
ÝÑmě0

`

Cauchyěm
pRr 1

a sq
˘

¯

↠
śr
i“1 TorpGqpFrac pOiq,

which signifies that every Cauchy sequence in the image of TorpGqpRr 1
a sq converges in

śr
i“1 TorpGqFrac pOi,

hence the assertion follows. □

9.2. Harder’s weak approximation

Lemma 9.2.1. For a semilocal Prüfer domain R of finite Krull dimension, we use the setup §9.0.2. For
a Rr 1

a s-torus T , let Li{ pKi be minimal Galois field extensions splitting T
xKi

and consider the norm map

Ni : T pLiq Ñ T p pKiq.

Then, the image U of
śr
i“1 Ni is a-adically open and is contained in impT pRr 1

a sq Ñ
śr
i“1 T p pKiqq.

Proof. The proof proceeds as the following steps.

Step 1. The image U is a-adically open. For each i, there is a short exact sequence of tori
1 Ñ Ti Ñ Res

Li{xKi
TLi

Ñ T
xKi

Ñ 1

and the norm map Ni : Res
Li{xKi

TLi
p pKiq Ñ pRes

Li{xKi
TLi

{Tiqp pKiq, which by [Čes15, Proposition 4.3 (a)
and §2.8 (2)] is a-adically open. As a product of open subsets, U is open in

śr
i“1 T p pKiq.

Step 2. We prove that U is contained in the closure of impT pRr 1
a sqq. Equivalently, we show that every

u P U and every a-adically open neighborhood Bu Ă U satisfy that Bu X impT pRr 1
a sqq ‰ H. Let rR{Rr 1

a s

be a minimal Galois cover splitting T . Consider the following commutative diagram

T pR̃q
śr
i“1 T pLiq

T pRr 1
a sq

śr
i“1 T p pKiq.

N
ĂR{Rr 1

a
s

śr
i“1 Ni
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Take a preimage v P p
śr
i“1 Niq

´1puq Ă
śr
i“1 T pLiq and let Bv Ă

śr
i“1 T pLiq be the preimage of Bu.

Since T
rR splits, the image of T p rRq in

śr
i“1 T pLiq is a-adically dense, hence T p rRq ˆśr

i“1 T pLiq Bv ‰ H,
namely, there is r P T p rRq whose image is in Bv. Let s :“ N

rR{Rr 1
a s

prq P T pRr 1
a sq, then the image of s

under the map T pRr 1
a sq Ñ

śr
i“1 T p pKiq is contained in Bu, so the assertion follows. □

Lemma 9.2.2. For a semilocal Prüfer domain R of finite Krull dimension, we use the setup §9.0.2. For
a reductive R-group scheme G and for each i a fixed maximal torus Ti Ă G

xKi
with minimal Galois field

extension Li{ pKi splitting Ti, consider the following norm map

Ni : T pLiq Ñ T p pKiq.

Then the image U of the map
śr
i“1 Ni is an a-adically open subgroup of

śr
i“1 T p pKiq and is contained in

the closure of impGpRr 1
a sq Ñ

śr
i“1 Gp pKiqq.

Proof. By the same arguement in Lemma 9.2.1, the image U is a-adically open in
ś

i“1 T p pKiq. It remains
to show that U Ă impGpRr 1

a sqq, which proceeds as the following steps.

Step 1. The map ϕi : Gp pKiq Ñ TorpGqp pKiq defined by g ÞÑ gTg´1 is a-adically open for each i. Since
the image of T pRr 1

a sq Ñ
śr
i“1 T p pKiq is a-adically dense, for every open neighborhood W Ă

śr
i“1 Gp pKiq

of id, we have pp
śr
i“1 ϕiqpW qq X ImpTorpGqpRr 1

a sq Ñ
śr
i“1 TorpGqp pKiqq ‰ H. Therefore, there exist a

torus T 1 P TorpGqpRr 1
a sq and a pgiq

r
i“1 P W such that giTig´1

i “ T 1
xKi

for all i.

Step 2. For any u P U , consider the map
śr
i“1 Gp pKiq Ñ

śr
i“1 Gp pKiq defined by g ÞÑ g´1ug. Then,

we apply the Step 1 to the preimage W of U under this map: there is a γ “ pγiq
r
i“1 P W and a torus

T 1 P TorpGqpRr 1
a sq such that γ´1

i Tiγi “ T 1
xKi

for each i. Then, u P γUγ´1 “ γpp
śr
i“1 NiqpTipLiqqqγ´1,

which by transport of structure, is p
śr
i“1 NiqpT 1

xKi
pLiqq. By Lemma 9.2.1, the last term is contained in

the closure of impT 1pRr 1
a sq Ñ

śr
i“1 T p pKiqq, so is contained in impGpRr 1

a sqq. □

Proposition 9.2.3. For a semilocal Prüfer domain R of finite Krull dimension, we use the setup §9.0.2.
For a reductive group scheme G over R, the closure GpRr 1

a sq of the image of GpRr 1
a sq Ñ

śr
i“1p pKiq,

GpRr 1
a sq contains an open normal subgroup N of

śr
i“1 Gp pKiq.

Proof. The proof proceeds in the following steps.

(i) For each i, we fix a maximal torus Ti Ă G
xKi

. Then Lemma 9.2.2 provides the open subgroup
U Ă

śr
i“1 Tip

pKiq. Since each component of the norm map defining U is the image of the pKi-
points of Res

Li{xKi
pTiqLi

Ñ Ti, and Res
Li{xKi

pTiqLi
is a Zariski dense open subset of an affine

space over pKi, we have U X
śr
i“1 T

reg
i p pKiq ‰ H.

(ii) Fix an element τ P U X
śr
i“1 T

reg
i p pKiq, by [SGA 3II, Exposé XIII, Corollaire 2.2], for each i,

fi : G
xKi

ˆ Ti Ñ G
xKi
, pg, tq ÞÑ gtg´1 is smooth at pid, τq.

Hence, there is a Zariski open neighborhood B of pid, τq such that p
śr
i“1 fiq|B : B Ñ

śr
i“1 GxKi

is smooth. By [GGMB14, Proposition 3.1.4], the map Bp
śr
i“1

pKiq Ñ
śr
i“1 Gp pKiq is open. Then

the image of W :“ Bp
śr
i“1

pKiq X p
śr
i“1 Gp pKiq ˆ Uq under f “

śr
i“1 fi is open. Subsequently,

all
śr
i“1 Gp pKiq translations of W have open images, so there is an open subset U0 Ă U such that

E :“ fp
śr
i“1 Gp pKiq ˆ U0q is open. Now we define N as the subgroup of

śr
i“1 Gp pKiq generated

by E, then E is an open subgroup. Further, by construction, E is stable under conjugations by
śr
i“1 Gp pKiq, thus N is normal.

(iii) We prove that N is contained in the closure of impGpRr 1
a sq Ñ

śr
i“1 Gp pKiqq. Since E is the union

of all conjugates of U0, which are contained in GpRr 1
a sq by Lemma 9.2.2, so E is in this closure,

and so is N . □
39



Corollary 9.2.4. For a semilocal Prüfer domain R of finite Krull dimension, we use the setup §9.0.2.
For a reductive group scheme G over R, a maximal torus Ti Ă G

pOi
for each i, and any a-adically open

neighborhood W of id P
śr
i“1 Gp pKiq such that W Ă GpRr 1

a sq X
śr
i“1 Gp pOiq, there exist g “ pgiqi P W

and a maximal torus T P TorpGqpRq such that for every i, we have

T
xKi

“ gipTiq
xKi
g´1
i .

Proof. By Proposition 9.2.3, GpRr 1
a sqX

śr
i“1 Gp pOiq is an a-adically open neighborhood of id P

śr
i“1 Gp pKiq,

so it makes sense to take its subset W such that W is a neighborhood of id. Now consider the a-adically
open map ϕ :

śr
i“1 Gp pKiq Ñ

śr
i“1 TorpGqp pKiq defined by gi ÞÑ gipTiq

xKi
g´1
i . Then ϕpW q is an a-adically

open neighborhood of pTiqi P
śr
i“1 TorpGqp pKiq. Since

śr
i“1 TorpGqp pOiq Ă

śr
i“1 TorpGqp pKiq is also an

a-adically open neighborhood of pTiqi, we have an open intersection ϕpW q X
śr
i“1 TorpGqp pOiq ‰ H.

Then the density of the image of TorpGqpRr 1
a sq Ñ

śr
i“1 TorpGqp pKiq provided by Lemma 9.1.2 yields an

element
T P TorpGqpRq

„
ÝÑ TorpGqpRr 1

a sq ˆśr
i“1 TorpGqpxKiq

śr
i“1 TorpGqp pOiq.

Therefore, T is a maximal torus of G over R satisfying the conditions. □

Corollary 9.2.5. With the notations in Proposition 9.2.3, we have

GpRr 1
a sq ¨

śr
i“1 Gp pOiq “ impGpRr 1

a sq Ñ
śr
i“1 Gp pKiqq ¨

śr
i“1 Gp pOiq.

9.3. Product formula over semilocal Prüfer domains, passage to the local case

Lemma 9.3.1. For a semilocal Prüfer domain R of finite Krull dimension, we use the notations in the
setup §9.0.2. For an R-torus T , we have the following product formula

śr
i“1 T p pKiq “ impT pRr 1

a sq Ñ
śr
i“1 T p pKiqq ¨

śr
i“1 T p pOiq.

Proof. Let Rh denote the Henselization of the pair pR, aRq. Then we have the commutative digram

0 T pRq T pRr 1
a sq H1

ta“0u
pR, T q H1pR, T q H1pRr 1

a s, T q

0 T pRhq T pRhr 1
a sq H1

ta“0u
pRh, T q H1pRh, T q H1pRhr 1

a s, T q,

whose exact rows are the local cohomology exact sequences. Since the case of tori for Theorem 9.0.1 is
proved, the two horizontal arrows of the rightmost squares are injective, hence the coset T pRhr 1

a sq{T pRhq »

H1
ta“0u

pRh, T q. By excision [Mil80, III, 1.28], we have an isomorphism H1
ta“0u

pR, T q – H1
ta“0u

pRh, T q,
which leads to a surjection T pRr 1

a sq ↠ H1
ta“0u

pRh, T q. Therefore, we obtain the product formula

T pRhr 1
a sq “ impT pRr 1

a sq Ñ T pRhr 1
a sqq ¨ T pRhq. (9.3.1)

On the other hand, by [BČ22, 2.2.17], the image of T pRhr 1
a sq Ñ

śr
i“1 T p pKiq is dense in

śr
i“1 T p pKiq

with respect to the topology fixed in §9.0.2. Since each T p pOiq Ă T p pKiq is an open subgroup, we have

im
`

T pRhr 1
a sq Ñ

śr
i“1 T p pKiq

˘

¨
śr
i“1 T p pOiq “

śr
i“1 T p pKiq. (9.3.2)

Consequently, the combination of (9.3.1) and (9.3.2) leads to the assertion. □

Proposition 9.3.2. For a semilocal Prüfer domain R of finite Krull dimension, we use the notations in
the setup §9.0.2. For a reductive R-group scheme G, we have

śr
i“1 Gp pKiq “ im

´

GpRr 1
a sq Ñ

śr
i“1 Gp pKiq

¯

¨
śr
i“1 Gp pOiq.

Proof. We will proceed verbatim as in [Guo20, §4]. We choose a minimal parabolic pOi-subgroup Pi for
each Gi :“ GˆR

pOi. Denote Ui :“ radupPiq.
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(i) for the maximal split torus Ti Ă Pi, we have
śr
i“1 Tip

pKiq Ă impGpRr 1
a sq Ñ

śr
i“1 Gp pKiqq ¨

śr
i“1 Gp pOiq. By [SGA 3III new, Exposé XXVI, Corollaire 6.11], there is a maximal torus rTi of Gi

containing Ti. In particular, p rTiq
xKi

is a maximal torus of G
xKi

. Then we apply Corollary 9.2.4
to all rTi: there are a g “ pgiqi P GpRr 1

a sq ¨
śr
i“1 Gp pOiq and a maximal torus T0 Ă G such that

pT0q
xKi

“ gip rTiq
xKi
g´1
i for every i, which combined with the product formula Lemma 9.3.1 for T0

yields
śr
i“1

rT p pKiq “
śr
i“1 g

´1
i T0p pKiqgi Ă

śr
i“1 impGpRr 1

a sqq ¨Gp pOiqgi.

Since g P impGpRr 1
a sqq X

śr
i“1 Gp pOiq, the inclusion displayed above implies that

śr
i“1

rTip pKiq Ă

impGpRr 1
a sqq ¨

śr
i“1 Gp pOiq. Therefore, we obtain the following desired inclusion

śr
i“1 Tip

pKiq Ă
śr
i“1

rTip pKiq Ă impGpRr 1
a sqq ¨

śr
i“1 Gp pOiq.

(ii) we have
śr
i“1 Uip

pKiq Ă impGpRr 1
a sq Ñ

śr
i“1 Gp pKiqq. Consider the Ti-action on Gi defined by

Ti ˆGi Ñ Gi, pt, gq ÞÑ tgt´1.

Recall the open normal subgroup N Ă
śr
i“1 Gp pKiq constructed in Proposition 9.2.3, then each

NXUip pKiq is open in Uip pKiq. The dynamic argument in [Guo20] shows that Uip pKiq “ NXUip pKiq,
hence Uip pKiq Ă N for each i. Therefore, we have

śr
i“1 Uip

pKiq Ă impGpRr 1
a sq Ñ

śr
i“1 Gp pKiqq.

(iii) we have
śr
i“1 Pip

pKiq Ă impGpRr 1
a sq Ñ

śr
i“1 Gp pKiqq ¨

śr
i“1 Gp pOiq. The quotient Hi :“ Li{Ti is

anisotropic, therefore we have Hip pKiq “ Hip pOiq for every i. Consider the commutative diagram

0 Tip pOiq Lip pOiq Hip pOiq H1p pOi, Tiq “ 0

0 Tip pKiq Lip pKiq Hip pKiq H1p pKi, Tiq “ 0

with exact rows. By diagram chase, we have Lip pKiq “ Tip pKiq ¨ Lip pOiq for every i. Subsequently,
the combination of (i) and (ii) yields the inclusion

śr
i“1 Pip

pKiq Ă impGpRr 1
a sq Ñ

śr
i“1 Gp pKiqq ¨

śr
i“1 Gp pOiq.

(iv) Recall [SGA 3III new, Exposé XXVI, Théorème 4.3.2 and Corollaire 5.2] that for each Pi, there is
a parabolic subgroup Qi of Gi such that Pi XQi “ Li fitting into the following surjection

radupPiqp pKiq ¨ radupQiqp pKiq ↠ Gp pKiq{Pip pKiq.

This surjection, combined with the result of (ii) gives an inclusion
śr
i“1 Gp pKiq Ă impGpRr 1

a sq Ñ
śr
i“1 Gp pKiqq ¨

śr
i“1 Pip

pKiq.

Now we further use the result of (iii) to obtain
śr
i“1 Gp pKiq Ă impGpRr 1

a sq Ñ
śr
i“1 Gp pKiqq ¨

śr
i“1 Gp pOiq. Hence, we have the following product formula

śr
i“1 Gp pKiq “ im

´

GpRr 1
a sq Ñ

śr
i“1 Gp pKiq

¯

¨
śr
i“1 Gp pOiq. □

10. Torsors on a smooth affine relative curve

In this section we prove the following result concerning triviality of torsors on a smooth affine relative
curve. The idea of the proof ultimately depends on the geometry of affine Grassmannians developed by
Fedorov, who proved Theorem 10.1 (i) for C “ A1

R. A similar result can also be found in the recent
preprint [Čes22c, Theorem 4.4].

Theorem 10.1 (Section theorem). Let R be a semilocal domain whose local rings at primes are geomet-
rically unibranch5, C a smooth, affine, relative R-curve, and G a reductive C-group scheme. Let A be a

5According to [SP, 0BPZ], a local ring A is geometrically unibranch if its reduction Ared :“ A{
a

p0q is a domain, and if
the integral closure of Ared in its fraction field is a local ring whose residue field is purely inseparable over that of A. By
[SP, 06DM], A is geometrically unibranch iff its strict Henselization Ash has a unique minimal prime.
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R-algebra. Let P be a G-torsor over CA :“ C ˆR A that trivializes over CAzZA for some R-finite closed
subscheme Z Ă C. For a section s P CpRq, if either

(i) A is semilocal, or

(ii) s˚
ApGq is totally isotropic,

then the pullback s˚
ApPq is trivial as an s˚

ApGq-torsor, where sA stands for the image of s in CApAq.

To prove Theorem 10.1, we first use Lemma 10.2 to reduce to the case when G is the base change of a
reductive R-group scheme, and then to the case when C “ A1

R, see Lemma 10.3. As for the latter, one
can approach it via the geometry of affine Grassmannians.

We start with the following result concerning equating reductive group schemes, which was already known
to experts, see also [Čes22c, Lemma 3.5].

Lemma 10.2 (Equating reductive group schemes). Let B be a semilocal ring whose local rings are
geometrically unibranch, and let G1, G2 be two reductive B-group schemes whose geometric B-fibers are
of the same type. Let T1 Ă G1, T2 Ă G2 be maximal B-tori. Assume that, for some ideal I Ă B, there is
an isomorphism of B{I-group schemes

ι : pG1qB{I » pG2qB{I such that ιppT1qB{Iq “ pT2qB{I .

There are a faithfully flat, finite, étale B-algebra B1, a section s : B1 ↠ B{I, and an isomorphism of
B1-groups ι1 : pG1qB1 » pG2qB1 such that ιppT1qB1 q “ pT2qB1 and whose s-pullback is ι.

Proof. According to [SGA 3III new, Exposé XXIV, Corollaire 2.2], the condition on the geometric B-fibers
ensures that the functor

X :“ IsomBppG1, T1q, pG2, T2qq

parameterizing the isomorphisms of the pairs pG1, T1q and pG2, T2q is representable by a B-scheme and
is a H :“ AutBppG1, T1qq-torsor. We need to show that, for any ι P XpB{Iq, there are a faithfully flat,
finite, étale B-algebra B1, an ι1 P XpB1q, and a section s : B1 ↠ B{I such that spι1q “ ι P XpB{Iq.

By loc. cit., H is an extension of an étale locally constant B-group scheme by T ad
1 , the quotient of T1 by

the scheme-theoretic center of G1. According to [SGA 3III new, Exposé XXIV, Proposition 2.6], T ad
1 acts

freely on X and the quotient
X :“ X{T ad

1

is represented by a faithfully flat B-scheme that is étale locally constant on B. As B is geometrically
unibranch, by [SGA 3III new, Exposé X, Corollaire 5.14], every connected component of X is finite, étale
over B. As the image of ι : SpecpB{Iq Ñ X Ñ X intersects only finitely many connected components
of X, the union of these components is the spectrum of a finite étale B-algebra A, and there are an
ι P XpAq and a section t : A ↠ B{I such that tpιq “ ι. By adding more connected components of X
into SpecpAq if needed, we may assume that A is faithfully flat over B. Let

Y :“ X ˆX,ι SpecpAq;

it is a T ad
A -torsor equipped with a point ι P Y pA{Jq Ă XpA{Jq, where J :“ ker pA ↠ B{Iq. By

[Čes22b, Corollary 6.3.2], there are a faithfully flat, finite, étale A-algebra B1, a section

s1 : B1 ↠ A{J » B{I,

and an ι1 P Y pB1q Ă XpB1q such that s1pι1q “ ι. □

Lemma 10.3. The proof of the Theorem 10.1 reduces to the case when C “ A1
R and G is the base change

of a reductive R-group scheme.

Proof. Let B be the semilocal ring of C at the closed points of impsqYZ; its local rings are geometrically
unibranch. By abuse of notation, we may view s : B ↠ R as a section of the R-algebra B. As B
is semilocal, by [SGA 3II, Exposé XIV, Corollaire 3.20], GB admits a maximal B-torus TB . Since the
pullbacks of the paris pGB , T q and pps˚pGqqB , ps

˚pT qqBq along s are the same, by Lemma 10.2, there are
a faithfully flat, finite, étale B-algebra B1, a section s1 : B1 ↠ R that lifts s, and a B1-isomorphism

ι : pGB1 , TB1 q » pps˚pGqqB1 , ps˚pT qB1 q
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whose s-pullback is the identity. We may spread out SpecpB1q Ñ SpecpBq to obtain a finite étale covering
C 1 Ñ U of a small enough affine open neighbourhood U of impsq Y Z in C. By shrinking U if necessary,
we may assume that the isomorphism ι is defined over C 1. In both cases of Theorem 10.1 we may replace
C by C 1, Z by C 1 ˆC Z, s by s1, and P by P|C1

A
to reduce to the case when G is the base change of the

reductive R-group scheme s˚pGq.

Next, in order to apply glueing Lemma 6.2.2(ii) to achieve that C “ A1
R, we need to modify C so that

Z embeds into A1
R. For this, we first replace Z by Z Y impsq to assume that s factors through Z. Then

we apply Panin’s ‘finite field tricks’ [Čes22a, Proposition 7.4] to obtain a finite morphism rC Ñ C that is
étale at the points in rZ :“ rCˆC Z such that s lifts to rs P rCpRq, and there are no finite fields obstruction
to embedding rZ into A1

R in the following sense: for every maximal ideal m Ă R,

7

!

z P rZκpmq : rκpzq : κpmqs “ d
)

ă 7

!

z P A1
κpmq : rκpzq : κpmqs “ d

)

for every d ě 1.

Then, by [Čes22a, Lemma 6.3], there are an affine open C2 Ă rC containing imprsq, a quasi-finite, flat
R-map C2 Ñ A1

R that maps Z isomorphically to a closed subscheme Z 1 Ă A1
R with

Z » Z 1 ˆA1
R
C2.

(Actually, by shrinking C2 around imprsq, one can show that C2 Ñ A1
R is étale.) For both cases of

Theorem 10.1, since P|C2
A

is a G-torsors that trivializes over C2
Az rZA, we may use Lemma 6.2.2(ii) to glue

PC2
A

with the trivial G-torsor over A1
A to obtain a G-torsor P 1 over A1

A that trivializes over A1
AzZ 1

A. Let
s1 P A1

RpRq be the image of rs; then s1˚pP 1q » s˚pPq. It remains to replace C by A1
R, Z by Z 1, s by s1,

and P by P 1. □

The analysis of torsors on A1
R ultimately depends on the geometry of affine Grassmannians. A nice

summary of and complement on the relevant techniques can be found in [Čes22b, §5.3]. In particular,
we will use the following result; it is a slight variant of [Čes22b, Proposition 5.3.6], which in turn is a
mild generalization of [Fed22b, Theorem 6].

Proposition 10.4. For a semilocal ring R with connected spectrum and a reductive R-group scheme G,
let

Gad »
ź

i

ResRi{RpGiq

be the canonical decomposition of the adjoint quotient Gad [SGA 3III new, Exposé XXIV, Proposition 5.10],
where Gi is an adjoint simple Ri-group scheme, and Ri is a finite, étale R-algebra with connected spectra.
Let Y Ă A1

R be a R-finite, étale, closed subscheme with the following properties:

(i) for every i, there is a clopen Yi Ă Y ˆR Ri such that pGiqYi contains a copy of Gm,Yi ;

(ii) for every maximal ideal m Ă Ri such that pGiqκpmq is isotropic, the line bundle OP1
κpmq

p1q is trivial
over P1

κpmq
zpYiqκpmq;

(iii) the line bundle OP1
R

p1q is trivial over P1
RzY .

Let P be a G-torsor over P1
R that trivializes over P1

RzZ for some R-finite closed subscheme Z Ă A1
RzY .

Assume that for every maximal ideal m Ă R the Gad-torsor over P1
κpmq

induced by P lifts to a generically
trivial pGadqsc-torsor over P1

κpmq
. Then the restriction P|P1

RzY is trivial.

Recall that, by [SGA 3III new, Exposé XXVI, Corollaire 6.12], (i) is equivalent to that the base change of
pGiqYi to every connected component of Yi contains a proper parabolic subgroup scheme. For instance, if
G is quasi-split, we can just take Yi “ Y ˆR Ri to ensure (i). In practice, we achieve (i) by guaranteeing
base change of pGiqYi

to connected components of Yi contain proper parabolics. For (ii), we can take Yi
so that Yipκpmqq ‰ H for every maximal ideal κpmq Ă Ri with pGiqκpmq isotropic. For (iii), we just need
to choose Y so that it contains finite étale R-schemes of degrees d and d ` 1 for some d ě 1, because
Opdq and Opn` 1q are both trivial on P1

RzY , and so is Op1q.

Proof. We will deduce Proposition 10.4 from (the proof of) a particular case of [Čes22b, Proposition 5.3.6].
(We remind that the assumption (ii) of loc. cit. should read as ‘pGiqYi

contains a copy of Gm,Yi
’, as its

proof shows.)
43



The R-finite étale Y is the vanishing locus of a monic polynomial t in the standard coordinate of A1
R;

namely, t is the characteristic polynomial of this standard coordinate acting on rR :“ ΓpY,OY q. The
formal completion of P1

R along Y has coordinate ring rRrrtss. Recall that, by formal glueing, a G-torsor
over P1

R can be viewed as the glueing of its restriction to P1
RzY and to rRrrtss along the ‘intersection’ rRpptqq;

since our torsor P is trivial over an open neighbourhood U Ă P1
R of Y , both of the restriction P|UzY and

P|
rRrrtss are trivial, and once a trivialization of the former was chosen, all such glueings are parameterized

by elements of Gp rRpptqqq{Gp rRrrtssq. In particular, since Gp rRpptqqq acts on Gp rRpptqqq{Gp rRrrtssq (via left
multiplication), an element of Gp rRpptqqq yields a modification of P along Y : it is the G-torsor over P1

R

whose restriction to P1
RzY and to rRrrtss are the same as P, but their corresponding glueings, viewed as

elements of Gp rRpptqqq{Gp rRrrtssq, differ by a left translation by the element of rRpptqq we choose.

Denote by Pad the Gad-torsor over P1
R induced by P. Since the formation of H1pP1

R,´q commutes
with taking products, Pad corresponds to a collection pPad

i q, where Pad
i is a ResRi{RpGiq-torsor over P1

R

satisfying the analogous assumptions (i)-(iii) of the Proposition 10.4. Since R Ñ Ri is finite étale and
Gi is Ri-smooth, we have R1f˚Gi “ 1 for the map f : SpecpRiq Ñ SpecpRq induced by R Ñ Ri. By the
exact sequence from [Gir71, Chapitre V, Proposition 3.1.3],

1 Ñ H1pP1
R,ResRi{RpGiqq Ñ H1pP1

Ri
, Giq Ñ H1pP1

R, R
1f˚Giq.

Thus Q ÞÑ ResRi{RpQq defines a bijection of pointed sets H1pP1
Ri
, Giq

„
ÝÑ H1pP1

R,ResRi{RpGiqq. In par-
ticular, each Pad

i corresponds to a Gi-torsor Qi over P1
Ri

. As one can see immediately, the assumptions
(i)-(iii) of Proposition 10.4 for the ResRi{RpGiq-torsor Pad

i translate into the assumptions [Čes22b, Propo-
sition 5.3.6] (i)-(iv) for the Gi-torsor Qi over P1

Ri
. By the proof of loc. cit., for some element

αi P im
´

Gsc
i pp rR bR Riqpptqqq Ñ Gipp rR bR Riqpptqqq

¯

,

the corresponding modification of Qi along Y ˆR Ri is trivial. We can view

α :“ pαiq P im
´

pGadqscp rRpptqqq Ñ Gadp rRpptqqq

¯

;

as pGadqsc Ñ Gad factors through pGadqsc Ñ G, α lifts to rα P Gp rRpptqqq. Denote by Q the modification
of P along Y using rα. By our construction, the Gad-torsor Qad over P1

R induced by Q corresponds
to the collection of modifications of the Pad

i “ ResRi{RpQiq along Y using αi P Gipp rR bR Riqpptqqq “

ResRi{Rp rRpptqqq, which is trivial, so that Qad is trivial, to the effect that Q reduces to a torsor over P1
R

under the center ZG of G. Now, as the last paragraph of the proof of [Čes22b, Proposition 5.3.6] shows,
any ZG-torsor over P1

R is the sum of a constant torsor (i.e., the pullback of a ZG-torsor over R) and
λ˚pOp1qq for a unique cocharacter λ of ZG. Therefore, by our assumption (iii), Q is a constant torsor,
and, by checking along the infinity section, it is even trivial, so is P|P1

RzY “ Q|P1
RzY , as desired. □

The following result will help us to construct the desired R-finite, étale schemes Yi and Y from the
previous theorem.

Lemma 10.5. Let R be a semilocal ring with connected spectrum, let R1 be a finite, étale R-algebra with
connected spectrum, let W Ă A1

R be a R-finite closed scheme, and let G1 be a simple R1-group scheme.
There is a R1-finite, étale scheme Y1, and a closed immersion Y1 Ă A1

RzW over R such that pG1qY1

contains a copy of Gm,Y1 , and, for every maximal ideal m Ă R1 with pG1qκpmq isotropic, the line bundle
OP1

κpmq
p1q is trivial over P1

κpmq
zpY1qκpmq. (Notice that Y1 is a clopen of Y1 ˆR R1, thus naturally embeds

into A1
R1

.)

In addition, there is a R1-finite, étale scheme Y 1 and a closed immersion Y 1 ãÑ A1
RzW over R such that

the line bundle OP1
R

p1q is trivial over P1
RzY 1.

Proof. Let Par1
Ñ SpecpR1q be the scheme parameterizing proper parabolic subgroup schemes of the

reductive R1-group scheme G1; it is smooth projective over R1 (cf. [SGA 3III new, Exposé XXVI, Corol-
laire 3.5]). Fix an embedding Par1

ãÑ PNR1
over R1. Write Par1

“
Ůt
i“1 Pt as a disjoint union of its

connected components; every Pt has a constant relative dimension dt over R1. For every maximal ideal
m Ă R1 with pG1qκpmq isotropic, a proper parabolic subgroup of pG1qκpmq gives a point bm P Par1

pκpmqq.
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Fix an i “ 1, ¨ ¨ ¨ , t. For every maximal ideal m Ă R1, by Bertini theorem (including Poonen’s version
over finite fields), one can find a hypersurface in PNκpmq

of large enough degree such that it passes through
all points bm that lies in Pi and it intersects pPiqκpmq transversally. We may assume that the above
hypersurfaces have the same degree for all m. By the Chinese Remainder theorem, one can lift these
simultaneously to get a hypersurfaces H Ă PNR1

. Then H X Pi is a smooth projective R1-scheme of pure
relative dimension di ´ 1, and bm P H X Pi whenever bm P Pi. The same argument can be applied to
the hypersurface section H X Pi. Continuing in this way, we finally arrive at a R1-finite, étale, closed
subscheme Yi Ă Pi such that bm P Yi whenever bm P Pi. Denote Y 1

1 :“
Ůt
i“1 Yi. Unfortunately, Y 1

1 may
not embed into A1

RzW . So let’s first modify Y 1
1 using Panin’s ‘finite field tricks’.

Let d ą 0 be a large enough integer such that, for every maximal ideal n Ă R,

(1) we have d ą dimκpnq ΓpWκpnq,OWκpmq q;

(2) for every maximal ideal n1 Ă ΓpY 1
1 ,OY 1

1
q lying over n and every n ě d, there are at least degpY 1

1{Rq

(resp., at least one) closed point(s) on A1
κpnq

(resp., on A1
κpn1q) of exact degree n.

For every maximal ideal n1 Ă ΓpY 1
1 ,OY 1

1
q we choose a monic polynomial hn1 P κpn1qrus of degree 2d ` 1

such that:

(i) if κpn1q is finite, hn1 is a product of two irreducible polynomials of degrees d and d`1, respectively
(which is possible by (2));

(ii) if κpn1q is infinite, hn1 is a separable polynomial and has at least one root in κpn1q.

Let h P ΓpY 1
1 ,OY 1

1
qrus be a common monic lifting of hn1 for all n1 Ă ΓpY 1

1 ,OY 1
1
q, and define

Y1 “ Spec
ˆΓpY 1

1 ,OY 1
1
qrus

phq

˙

;

it is finite, étale over Y 1
1 , and hence also over R1. By (1)-(2), there is a closed immersion

ğ

nĂR

pY1qκpnq ãÑ A1
RzW over R;

by Nakayama’s lemma, any of its lifting Y1 ãÑ A1
RzW over R (which exists by Chinese Remainder

theorem) is also a closed immersion. By construction, the restriction of pG1qY 1
1

to every connected
component of Y 1

1 contains a proper parabolic subgroup scheme. Thus, by [SGA 3III new, Exposé XXVI,
Corollaire 6.12], pG1qY 1

1
contains Gm,Y 1

1
, and so pG1qY1 contains Gm,Y1 . By (i)-(ii), for m Ă R1 with

pG1qκpmq isotropic, the line bundle OP1
κpmq

p1q is trivial over P1
κpmq

zpY1qκpmq.

To construct Y 1, it suffices to produce, for a large enough d, a R-finite, étale, closed subschemes Y2 Ă A1
R

of R-degrees d and d ` 1 which are disjoint from W , and then take Y 1 :“ Y1
Ů

Y2. To achieve this, one
just need to imitate the above procedure for constructing Y1 from Y 1

1 . Details are omitted. □

Proof of Theorem 10.1. By the reduction Lemma 10.3, we may assume throughout that C “ A1
R and G

is a reductive R-group scheme. Up to shifting we may assume that s “ 0R P A1
RpRq is the zero section,

and base changing to A reduces us further to the case A “ R at the cost that R need not be a domain or
geometrically unibranch. Thus, in case (i), our R is semilocal, and, in case (ii), our G is totally isotropic
(but R need not be semilocal). By decomposing SpecpRq into connected components, we can assume
that R has connected spectrum.

For both cases (i)-(ii), by glueing P with the trivial G-torsor over P1
RzZ we extend P to a G-torsor Q over

P1
R. By [Fed22b, Proposition 2.3] or [Čes22b, Lemma 5.3.5], up to replacing Q and Z by their pullbacks

by P1
R Ñ P1

R, t ÞÑ td, where d is divisible by the R-fibral degree of the simply-connected central cover
pGadqsc Ñ Gad, we may assume that for every maximal ideal m Ă R the Gad-torsor over P1

κpmq
induced

by Q lifts to a generically trivial pGadqsc-torsor over P1
κpmq

.

Claim 10.5.1. In both cases (i)-(ii), assume that R is semilocal. For any R-finite closed subscheme
W0 Ă A1

R, there exists a R-finite, étale, closed subscheme Y Ă A1
RzW0 such that Q|P1

RzY is trivial.

Proof of the claim. We write the canonical decomposition of Gad as in Proposition 10.4. Replacing W0
by W0 Y Z, we may assume that Z Ă W0. Applying Lemma 10.5 separately to each simple Ri-group
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scheme Gi (with appropriate choices of W ’s), we get Ri-finite, étale schemes Yi such that pGiqYi is totally
isotropic, a closed immersion

Ů

i Yi ãÑ A1
RzW0 over R such that for every maximal ideal m Ă Ri with

pGiqκpmq isotropic, the line bundle OP1
κpmq

p1q is trivial over P1
κpmq

zpYiqκpmq. Applying the second part of
Lemma 10.5 to W :“ p\iYiq

Ů

W0, we get a R-finite, étale, closed subscheme

Y 1 Ă A1
Rz

´

p\iYiq
ğ

W0

¯

such that OP1
R

p1q is trivial over P1
RzY 1. Let Y :“ Y 1

Ů

p\iYiq. Then all the assumptions (i)-(iii) of
Proposition 10.4 are verified, so we conclude that Q|P1

RzY is trivial. □

For (i), we take W0 “ Z Y 0R, then the above Claim 10.5.1 gives a R-finite, étale, closed subscheme
Y Ă A1

RzW0 such that Q|P1
RzY is trivial. Since Y X 0R “ H, we deduce that the pullback of Q along

s “ 0R is also trivial, as wanted.

For (ii), we will follow [Čes22c, Lemma 4.3] to show that both P “ Q|A1
R

and Q|P1
Rz0R

descend to G-
torsors over R, and then we are done: both of these descendants agree with the restriction of Q along
1R P A1

RpRq, so they agree with the restriction of Q along 8R, which is trivial, and hence they must be
trivial. By Quillen patching [Čes22b, Corollary 5.1.5 (b)], for the descent claim we may replace R by its
localizations at maximal ideals to assume that R is local.

Now, since R is local, we may apply the above Claim 10.5.1 to W0 “ 0R to find a R-finite, étale, closed
subscheme Z 1 Ă A1

Rz0R such that Q|P1
RzZ1 is trivial. It remains to apply Proposition 10.4 twice, with

Y “ 0R and Y “ 8R respectively, to show that both Q|P1
Rz0R

and Q|P1
Rz8R

are trivial. □

11. Torsors under a reductive group scheme over a smooth projective base

The main result of this section is the following:

Theorem 11.1. For a semilocal Prüfer domain R, an r P Rzt0u, an irreducible, smooth, projective
R-scheme X, a finite subset x Ă X with semilocal ring A :“ OX,x, and a reductive X-group scheme G,

(i) any generically trivial G-torsor over A is trivial, that is,
ker pH1pA,Gq Ñ H1pFracA,Gqq “ t˚u;

(ii) if GAr 1
r s is totally isotropic, then any generically trivial G-torsor over Ar 1

r s is trivial, that is,

ker pH1pAr 1
r s, Gq Ñ H1pFracA,Gqq “ t˚u

The case (i) is a version of the Grothendieck–Serre conjecture in the case the relevant reductive group
scheme GA has a reductive model over some smooth projective compactification of SpecpA. The case (ii)
provides a version of Nisnevich conjecture for such ‘nice’ reductive groups satisfying the total isotropicity
assumption: if R is a discrete valuation ring with uniformizer r and if R Ñ A is a local homomorphism
of local rings, then r P mAzm2

A, and (ii) says that any generically trivial G-torsor over Ar 1
r s is trivial (the

isotropicity assumption on GA is essential, see, for instance, [Fed21]).

Remark 11.2. An inspection of the proof below shows that, if Xns Ă X denotes the loci where a finitely
presented morphism X Ñ SpecpRq is non-smooth, then Theorem 11.1 still holds provided that X is only
a flat projective R-scheme such that Xns is R-fiberwise of codimension ě 2 in X, x X Xns “ H, and G
is a reductive XzXns-group scheme.

To prove Theorem 11.1, we first derive from Corollary 6.3.2 and Lemma 7.1.1 the following key result,
which reduces the proof of Theorem 11.1 to studying torsors on a smooth affine relative curve.

Lemma 11.3. For a semilocal Prüfer domain R of finite Krull dimension, an irreducible, smooth, pro-
jective R-scheme X of pure relative dimension d ą 0, a finite subset x Ă X, and a reductive X-group
scheme G, the following assertions hold.

(i) Given a generically trivial G-torsor P over A :“ OX,x, there are

- a smooth, affine A-curve C, an A-finite closed subscheme Z Ă C, and a section s P CpAq;

- a reductive C-group scheme G satisfying s˚G » GA and a G -torsor F such that F |CzZ is
trivial and s˚F » P.
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(ii) Given an r P Rzt0u and a generically trivial G-torsor rP over Ar 1
r s, there are

- a smooth, affine A-curve C, an A-finite closed subscheme Z Ă C, and a section s P CpAq;

- a reductive C-group scheme G such that s˚G » GA, a G -torsor rF over Cr 1
r s :“ C ˆA Ar 1

r s

such that rF |Cr 1
r szZr 1

r s is trivial and ps|Ar 1
r sq

˚p rFq » rP.

Proof. By Corollary 6.3.2, P (resp., rP) extends to a G-torsor P0 (resp., ĂP0) over an open neighbourhood
W Ă X of x (resp., an open neighbourhood ĂW Ă X of SpecpAr 1

r sq) such that
codimppXzW qK , XKq ě 3 and codimppXzW qs, Xsq ě 2 for all s P SpecpRq;

and
codimppXzĂW qK , XKq ě 3 and codimppXzĂW qs, Xsq ě 2 for all s P SpecpRq.

Here, K is the fraction field of R. Let z Ă X be the set of maximal points of the R-fibers of X; the
above codimension bounds implies z Ă W (resp., z Ă ĂW ). By Lemma 3.1.1(iii), the semilocal ring OX,z,
and hence also OX,zr 1

r s, is a Prüfer domain. By the Grothendieck–Serre on semilocal Prüfer schemes
(Theorem 9.0.1), the generically trivial G-torsor pP0q|OX,z (resp., pĂP0q|OX,zr 1

r s) is actually trivial. Thus
there exists a closed subscheme Y Ă X (resp., rY Ă X) that avoids all the maximal points of R-fibers of
X such that the restriction pP0q|XzY (resp., pĂP0q|

pXz rY qr 1
r s

) is trivial; such a Y (resp., rY ) is R-fiberwise
of codimension ą 0 in X. Now, we treat the two cases (i)–(ii) separately.

(i) By the above, XzW is R-fiberwise of codimension ě 2 in X; a fortiori, the same codimension
bound holds for Y zW in X. Consequently, we can apply Lemma 7.1.1 (vii) to obtain an affine
open S Ă Ad´1

R , an affine open neighbourhood U Ă W of x, and a smooth morphism π : U Ñ S
of pure relative dimension 1 such that U X Y is S-finite.

Let τ : C :“ U ˆS SpecA Ñ SpecA be the base change of π to SpecA. Let Z and F be the
pullbacks of U X Y and pP0q|U under pr1 : C Ñ U , respectively. Then, via τ, C is a smooth
affine A-curve, Z Ă C is a A-finite closed subscheme, and F is a G :“ pr˚

1 pGU q-torsor that
trivializes over CzZ. Finally, the diagonal in C induces a section s P CpAq with s˚F » P (as
s˚G “ GA-torsors).

(ii) Since SpecpAr 1
r sq consists of points of Xr 1

r s :“ X ˆRRr 1
r s that specializes to some point of x, we

deduce from the inclusion SpecpAr 1
r sq Ă ĂW that no points of pXzĂW qr 1

r s “ Xr 1
r szĂW r 1

r s specializes
to any points of x. Hence, the closure pXzĂW qr 1

r s (in X) is disjoint from x, so ĂW 1 :“ XzpXzĂW qr 1
r s

is an open neighbourhood of x. Notice that X is topological Noetherian, because its R-fibers are
projective varieties over fields, and by our assumption SpecpRq has a finite underlying space. Since
by the above pXzĂW qr 1

r s is Rr 1
r s-fiberwise of codimension ě 2 in Xr 1

r s, by Lemma 3.1.1(i) applied
to the closures of the (finitely many) maximal points of pXzĂW qr 1

r s, the closure pXzĂW qr 1
r s “ XzĂW 1

is R-fiberwise of codimension ě 2 in X; a fortiori, the same holds for rY zĂW 1 in X. Consequently,
we can apply Lemma 7.1.1 (vii) to obtain an affine open rS Ă Ad´1

R , an affine open neighbourhood
rU Ă ĂW 1 of x, and a smooth morphism rπ : rU Ñ rS of pure relative dimension 1 such that rU X rY

is rS-finite. Notice that rU r 1
r s Ă ĂW 1r 1

r s “ ĂW r 1
r s, so we have the restriction pĂP0q|

rUr 1
r s

.

Let τ : C :“ rU ˆ
rS SpecpA Ñ SpecpA be the base change of rπ to SpecpA. Let Z be the pullback

of rU X rY under pr1 : C Ñ rU . Let rF be the pullback of pĂP0q|
rUr 1

r s
under pr1 : Cr 1

r s Ñ rU r 1
r s.

Then, via τ, C is a smooth affine A-curve, Z Ă C is a A-finite closed subscheme, and rF is
a G :“ pr˚

1 pG
rU q-torsor over Cr 1

r s that trivializes over Cr 1
r szZr 1

r s. Finally, the diagonal in C

induces a section s P CpAq with s˚
Ar 1

r s
p rFq » rP, and s˚G “ GA. □

Proof of Theorem 11.1. By a standard limit argument involving Lemma 3.1.3, one easily reduces to the
case when R has finite Krull dimension. Now, let P (resp., rP) be a generically trivial G-torsor over
A :“ OX,x (resp., over Ar 1

r s) which we want to trivialize. Let d be the relative dimension of X over R. If
d “ 0, then A and Ar 1

r s are semilocal Prüfer domains, so, by the Grothendieck–Serre on semilocal Prüfer
schemes (Theorem 9.0.1), the torsors P and rP are trivial. Hence we may assume that d ą 0. Then,
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by Lemma 11.3, there are a smooth, affine A-curve C, an A-finite closed subscheme Z Ă C, a section
s P CpAq, a reductive C-group scheme G with s˚G » GA,

- a G -torsor F over C that trivializes over CzZ such that s˚F » P, and

- a G -torsor rF over Cr 1
r s that trivializes over Cr 1

r szZr 1
r s such that ps|Ar 1

r sq
˚p rFq » rP.

By Theorem 10.1 (i), the G-torsor s˚F » P is trivial. By Theorem 10.1 (ii), in the case ps|Ar 1
r sq

˚pG q »

GAr 1
r s is totally isotropic, the GAr 1

r s-torsor ps|Ar 1
r sq

˚p rFq » rP is trivial. □

12. Torsors under a constant reductive group scheme

In this section we prove the following variant of Theorem 11.1, in which the R-smooth scheme X need
not be proper, but the reductive group scheme G is supposed to descend to the Prüfer ring R. Thus,
we established the Grothendieck–Serre conjecture and a version of Nisnevich conjecture for ‘constant’
reductive group schemes. As for the proof, we use a variant of Lindel’s Lemma (Proposition 7.2.1) and
glueing techniques to reduce to the case already settled by Theorem 11.1.

Theorem 12.1. For a semilocal Prüfer domain R, a nonzero element r P R, an irreducible affine R-
smooth scheme X, a finite subset x Ă X, and a reductive R-group scheme G,

(i) any generically trivial G-torsor over A :“ OX,x is trivial, that is,

ker
`

H1pA,Gq Ñ H1pFracA,Gq
˘

“ t˚u;

(ii) if GRr 1
r s is totally isotropic, then any generically trivial G-torsor over Ar 1

r s is trivial, that is,

ker
`

H1pAr 1
r s, Gq Ñ H1pFracA,Gq

˘

“ t˚u.

Proof. Let P (resp., rP) be a generically trivial G-torsor over A (resp., over Ar 1
r s). By shrinking X

around x, we may assume that P is defined over the whole X (resp., rP is defined over the whole
Xr 1

r s :“ X ˆR Rr 1
r s). Let d be the relative dimension of X over R. As noted by Česnavičius, since it

suffices to argue that P (resp., rP) is trivial Zariski semilocally on X, we may replace X by X ˆR ANR
for large N to assume that d ą # x: by pulling back along the zero section X Ñ X ˆR ANR , the Zariski
semilocal triviality of PXˆRAN

R
(resp., rPXr 1

r sˆRAN
R

) on X ˆR ANR implies that of P (resp., rP) on X.

By specialization, we may assume that each point of x is closed in the corresponding R-fiber of X (but
not necessarily lies in the closed R-fibers of X). Our goal is to show that P|A (resp., rP|Ar 1

r s) is trivial.

If d “ 0, then A (resp., Ar 1
r s) is a semilocal Prüfer domain, so, by the Grothendieck–Serre conjecture on

semilocal Prüfer schemes (Theorem 9.0.1), the torsor P|A (resp., rP|Ar 1
r s) is trivial. Thus we may assume

that d ą 0 for what follows.

Denote by π : X Ñ S :“ SpecpRq the structural morphism. Let y be the set of maximal points of the
R-fibers of X.

Claim 12.1.1. No points of x specializes to any point of y, that is, x X y “ H.

Proof of the claim. By Lemma 3.1.1(iii), for any y P y, OX,y is a valuation ring having the same value
group as OS,πpyq; in particular, the map πy : Spec OX,y Ñ Spec OS,πpyq induced by π is a homeomorphism,
and is thus injective. Assume by contradiction that x P x specializes to y P y, so Spec OXπpxq,x is a
subset of Spec OX,y. Since the image of Spec OXπpxq,x under πy is the singleton tπpxqu, by the injectivity
of πy, we deduce that dim OXπpxq,x “ 0. This contradicts the fact dim OXπpxq,x “ d ą 0 (because by our
assumption x is a closed point in the corresponding π-fiber). □

By Lemma 3.1.1(iii) again, the semilocal ring OX,y, and hence also OX,yr 1
r s, is a Prüfer domain, so, by

the Grothendieck–Serre conjecture on semilocal Prüfer schemes (Theorem 9.0.1), the generically trivial G-
torsor P|OX,y (resp., rP|OX,yr 1

r s) is actually trivial. Therefore, using the above claim and prime avoidance,
we can find an element a P ΓpX,OXq such that, denoting Y :“ V paq Ă X, then x Ă Y , y X Y “ H,
and the restriction P|XzY (resp., rP|pXzY qr 1

r s) is trivial. (We just take a “ a1a2, where a1 is an element
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such that y X V pa1q “ H and P|XzV pa1q (resp., rP|pXzV pa1qqr 1
r s) is trivial, and a2 is delivered from prime

avoidance utilizing the fact x X y “ H so that x Ă V pa2q and y X V pa2q “ H.)

Since d ą # x, we may apply Proposition 7.2.1 to obtain an affine open neighbourhood W Ă X of x,
an affine open subscheme U Ă AdR, and an étale surjective R-map f : W Ñ U such that the restriction
f |WXY is a closed immersion and f induces a Cartesian square

W X Y W

W X Y U.

f

Applying p´q ˆR Rr 1
r s yields a similar Cartesian square. By glueing Lemma 6.2.2 (ii),

(i) we may (non-canonically) glue P|W and the trivial G-torsor over UzfpW X Y q to descend P|W
to a G-torsor Q over U that trivializes over UzfpW X Y q. Since U has a smooth, projective
compactification PdR, we may apply Theorem 11.1 (i) to deduce that Q|OU,fpxq is trivial, so P|A “

P|OW,x is trivial, as desired.

(ii) we may (non-canonically) glue rP|W r 1
r s and the trivial G-torsor over pUzfpW XY qqr 1

r s to descend
rP|W r 1

r s to a G-torsor rQ over U r 1
r s that trivializes over U r 1

r szfpW XY qr 1
r s. Since U has a smooth,

projective compactification PdR, we may apply Theorem 11.1 (ii) to conclude that rQ|OU,fpxqr 1
r s is

trivial, so rP|Ar 1
r s “ rP|OW,xr 1

r s is trivial, as desired. □

13. Torsors under a quasi-split reductive group scheme

In this section we study generically trivial torsors under quasi-split reductive group schemes. The main
result is the following Theorem 13.1, in which (i) is a version of Nisnevich conjecture that is inspired
by the recent preprint of Česnavičius [Čes22c, Theorem 1.3 (2)], who proved it in the case R is a
Dedekind domain, and (ii) is the Grothendieck–Serre conjecture over one-dimensional Prüfer bases. As
for the proof, we will follow the strategy of [Čes22a] (with its earlier version given by Fedorov [Fed22b]),
which goes through because the main tools, such as toral version of purity (Proposition 8.2.5) and the
Grothendieck–Serre conjecture (Proposition 8.3.2(i)) in our context, are available now.

Theorem 13.1. For a semilocal Prüfer domain R with fraction field K, an irreducible, semilocal, and
essentially smooth R-algebra A, and a quasi-split reductive A-group scheme G,

(i) every generically trivial G-torsor over AbR K is trivial, that is,
ker

`

H1pAbR K,Gq Ñ H1pFracA,Gq
˘

“ t˚u;

(ii) if R has Krull dimension 1, then every generically trivial G-torsor is trivial, that is,
ker

`

H1pA,Gq Ñ H1pFracA,Gq
˘

“ t˚u.

We start with the following consequence of Lemma 7.1.1, which is the key geometric input permitting a
series of reductions that eventually lead to Theorem 13.1.

Lemma 13.2 (cf. [Čes22a, Proposition 4.1]). For

(i) a semilocal Prüfer domain R of Krull dimension 1 with fraction field K;

(ii) a smooth, faithfully flat, R-algebra A of pure relative dimension d ě 1 over R;

(iii) a finite subset x Ă X :“ SpecA;

(iv) a closed subscheme Y Ă X that satisfies
codimpYK , XKq ě 2 and codimpYs, Xsq ě 1 for all s P SpecR;

there are an affine open U Ă SpecA containing x, an affine open S Ă Ad´1
R , and a smooth R-morphism

π : U Ñ S of relative dimension 1 such that Y X U is S-finite.

Moreover, if in piq R is allowed to be of arbitrary finite Krull dimension, then the same conclusion holds
provided pivq is replaced by the stronger assumption that Y is R-fiberwise of codimension ě 2 in X.
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Proof. Choosing an embedding of X into some affine space over R and taking schematic closure in
the corresponding projective space, we get a projective compactification X of X. Since X is flat and
projective over R, by Lemma 3.1.1(i), all its R-fibers have the same dimension d. Denote by Y Ă X the
schematic closure of Y . To apply Lemma 7.1.1 (vii) and conclude, in which X is X here, W is X here,
and Y is Y here, we need to check that the boundary Y zY is R-fiberwise of codimension ě 2 in X.

By [SP, 01R8], set-theoretically we have Y “
Ť

y tyu, where y runs through the generic points of Y .

In the case Y is R-fiberwise of codimension ě 2 in X, the same holds for Y in X; a fortiori, Y zY is
R-fiberwise of codimension ě 2 in X. Indeed, by Lemma 3.1.1(i), X has equal R-fiber dimension d and
all non-empty R-fibers of tyu have the same dimension, so, if y lies over sy P SpecR, then

codimptyus, Xsq “ codimptyusy
, Xsy

q ě 2 for any specialization sy ù s P SpecR.

Next, we assume that R has Krull dimension 1 and Y is of codimension ě 2 (resp., ě 1) in the generic
(resp., closed) R-fiber of X. If y P Yη, then, by Lemma 3.1.1(i) again, we see that

codimptyus, Xsq “ codimptyuη, Xηq ě 2 for all s P SpecR;

a fortiori, the contribution of such a y to the R-fiber codimension of Y zY in X is ě 2.

Otherwise, y lies over a height 1 prime (i.e., a closed point) s1 P Spec R, then tyus1
“ tyu Ă Ys1 ; by

assumption codimpYs1 , Xs1 q “ codimpYs1 , Xs1 q ě 1, so we have codimptyus1
, Xs1 q ě 1. But since the

generic point y of tyus1
is not contained in Y zY , we deduce that the contribution of such a y to the

s1-fiber codimension of Y zY in X is again ě 2. □

Lemma 13.3 (Lifting the torsor to a smooth relative curve; cf. [Čes22a, Proposition 4.2]). For a semilocal
Prüfer domain R with fraction field K, the semilocalization A of an irreducible, R-smooth algebra A1 at
a finite subset x Ă SpecpA1q, and a quasi-split reductive A-group scheme G with a Borel subgroup B,

(1) given a generically trivial G-torsor PK over AK :“ AbR K, there are

(i) a smooth, affine relative A-curve C with a section s P CpAq;

(ii) an A-finite closed subscheme Z Ă C;

(iii) a quasi-split reductive C-group scheme G with a Borel subgroup B Ă G whose s-pullback is
B Ă G, compatible with the quasi-pinnings;

(iv) a G -torsor PK over CK :“ C ˆR K whose sAK
-pullback is PK such that PK reduces to a

radupG q-torsor over CKzZK (here sAK
stands for the image of s in CpAKq).

(2) if R has Krull dimension 1, given a generically trivial G-torsor P , then there are

(i) a smooth, affine relative A-curve C with a section s P CpAq;

(ii) an A-finite closed subscheme Z Ă C;

(iii) a quasi-split reductive C-group scheme G with a Borel subgroup B Ă G whose s-pullback is
B Ă G, compatible with the quasi-pinnings;

(iv) a G -torsor P whose s-pullback is P such that P reduces to a radupG q-torsor over CzZ.

Proof. In case (1) we can first use a limit argument involving Lemma 3.1.3 to reduce to the case when
R has finite Krull dimension.

If A1 is of relative dimension 0 over R, then AK “ FracpAq and A is a semilocal Prüfer domain. Thus,
PK is trivial, and, by the Grothendieck–Serre conjecture on semilocal Prüfer schemes (Theorem 9.0.1),
P is also trivial. In this case we simply take C “ A1

A, s “ 0 P A1
ApAq, Z “ H, pG ,Bq “ pGA1

A
, BA1

A
q, and

PK “ pPKqA1
AK

(resp., P “ PA1
A

). Thus, for what follows, we can assume that the relative dimension of
A1 over R is d ą 0.

By spreading out and localizing A1, we may assume that our quasi-split G (in particular, the Borel B)
and torsor P all live over A1, and PK live over A1

K . By [SGA 3III new, Exposé XXVI, Corollaire 3.6 and
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Lemme 3.20], the quotient PK{BK (resp., P {B) is representable by a smooth projective scheme over A1
K

(resp., over A1). Now we treat the cases (1)-(2) separately.

(1) By the generic triviality of PK , applying the valuative criterion of properness to PK{BK Ñ SpecpA1
Kq

yields a closed subscheme YK Ă SpecpA1
Kq of codimension ě 2 such that PK{BK Ñ SpecpA1

Kq has a
section over SpecpA1

KqzYK that lifts to a generic section of PK . In other words, pPKqSpecpA1
K qzYK

reduces
to a generically trivial BSpecpA1

K qzYK
-torsor PBK . Consider the A1-torus T :“ B{ radupBq and the induced

T -torsor
PTK :“ PBK { radupBqK over SpecpA1

KqzYK .

Since PTK is generically trivial, by Corollary 6.3.2, it extends to a T -torsor ĂPTK over SpecpA1qzF for a
closed subscheme F Ă SpecpA1q satisfying

codimpFK , SpecpA1qKq ě 2 and codimpFs,SpecpA1qsq ě 1 for all s P SpecpRq;

by purity for tori (Theorem 8.2.4), this torsor further extends to the whole SpecpA1q. As ĂPTK is generically
trivial, by the Grothendieck–Serre conjecture for tori (Proposition 8.3.2(i)), we may localize A1 around
x to assume that ĂPTK , and hence also PTK , is already trivial. In other words, pPKqSpecpA1

K qzYK
reduces to

a radupBq-torsor over SpecpA1
KqzYK .

Denote by Y the schematic closure of YK in SpecpA1q; by Lemma 3.1.1(i), it is R-fiberwise of codimension
ě 2 in SpecpA1q. Applying Lemma 13.2 to the R-smooth algebra A1 and the closed subscheme Y Ă

SpecpA1q, we obtain an affine open U Ă SpecpA1q containing x, an affine open S Ă Ad´1
R , and a smooth

R-morphism π : U Ñ S of relative dimension 1 such that Y X U is S-finite.

Recall that A is the semilocal ring of U at x. Denote
C :“ U ˆS SpecA and Z :“ pY X Uq ˆS SpecA.

Then C is a smooth affine relative A-curve, the diagonal in C induces a section s P CpAq, and the closed
subscheme Z Ă C is A-finite. So (1)(i) and (1)(ii) hold. Let B Ă G be the pullback of BU Ă GU
under the first projection pr1 : C Ñ U , and let PK be the pullback of pPKqUK

under the first projection
pr1 : CK Ñ UK . Then, PK is a G -torsor over CK , and, by construction, the s-pullback (resp., sAK

-
pullback) of B Ă G (resp., of PK) is B Ă G (resp., PK). Finally, since PK reduces to a radupBq-torsor
over SpecpA1

KqzYK , PK reduces to a radupBq-torsor over CKzZK . So (1)(iii) and (1)(iv) also hold.

(2) Recall that, by Lemma 3.1.1(iii), the local rings of all maximal points of R-fibers of SpecpA1q are
valuation rings. By the generic triviality of P , applying the valuative criterion of properness to P {B Ñ

SpecpA1q yields a closed subscheme Y Ă SpecpA1q, which avoids all the codimension 1 points of the
generic fiber SpecpA1

Kq and all the maximal points of R-fibers of SpecpA1q, such that P {B Ñ SpecpA1q

has a section over SpecpA1qzY that lifts to a generic section of P . In other words, Y satisfies
codimpYK , SpecpA1qKq ě 2 and codimpYs, SpecpA1qsq ě 1 for all s P SpecpRq.

Therefore, PSpecpA1qzY reduces to a generically trivial BSpecpA1qzY -torsor PB . Consider the A1-torus
T :“ B{ radupBq and the induced T -torsor

PT :“ PB{ radupBq over SpecpA1qzY.

By purity for tori (Theorem 8.2.4), PT extends to a T -torsor ĂPT . As ĂPT is generically trivial, by the
Grothendieck–Serre conjecture for tori (Proposition 8.3.2(i)), we may localize A1 around x to assume
that ĂPT , and hence also PT , is already trivial. In other words, PSpecpA1qzY reduces to a radupBqSpecpA1qzY -
torsor.

Now, applying Lemma 13.2 to the R-smooth algebra A1 and the closed subscheme Y Ă SpecpA1q, we
obtain an affine open U Ă SpecpA1q containing x, an affine open S Ă Ad´1

R , and a smooth R-morphism
π : U Ñ S of relative dimension 1 such that Y X U is S-finite.

Recall that A is the semilocal ring of U at x. Denote
C :“ U ˆS SpecA and Z :“ pY X Uq ˆS SpecA.

Then C is a smooth affine relative A-curve, the diagonal in C induces a section s P CpAq, and the closed
subscheme Z Ă C is A-finite. So (2)(i) and (2)(ii) hold. Let B Ă G and P be the pullback of BU Ă GU
and PU under the first projection pr1 : C Ñ U , respectively. Then, P is a G -torsor over C, and, by
construction, the s-pullback of B Ă G and P are B Ă G and P , respectively. Finally, since P reduces to
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a radupBq-torsor over SpecpA1qzY , P reduces to a radupBq-torsor over CzZ. So (2)(iii) and (2)(iv) also
hold. □

Lemma 13.4 ([Čes22a, Lemma 5.2]). For a semilocal ring A whose local rings are geometrically uni-
branch, an ideal I Ă A, reductive A-groups G and G1 that on geometric A-fibers have the same type,
fixed quasi-pinnings of G and G1 extending Borel A-subgroup B Ă G and N 1 Ă G1 and an A{I-group
isomorphism

ι : GA{I
„

ÝÑ G1
A{I respecting the quasi-pinnings; in particular, ιpBA{Iq “ B1

A{I ,
there are

(i) a faithfully flat, finite, étale A-algebra rA equipped with an A{I-point a : rA↠ A{I; and

(ii) an rA-group isomorphism rι : G
rA

„
ÝÑ G1

rA
respecting the quasi-pinnings such that a˚prιq “ ι.

Notice that the original version [Čes22a, Proposition 5.1] assumed further A to be Noetherian, but the
Noetherianess of A was not used anywhere in the proof.

Lemma 13.5 (Changing the relative curve C to equate G and GC ; cf. [Čes22a, Proposition 5.2]). In the
setting of Lemma 13.3, for both cases (1) and (2) we may replace C by an étale neighbourhood of impsq
to achieve further that pG ,Bq “ pGC , BCq.

Proof. Consider the semilocalization SpecpDq of C at the closed points of impsq Y Z; since C is normal,
all the local rings of D are geometrically unibranch. The image of the section s : SpecA Ñ SpecpDq

gives rise to a closed subscheme SpecpD{Iq Ă SpecpDq. By the conclusion of Lemma 13.3, the restriction
of BD Ă GD and BD Ă GD to SpecpD{Iq agree with each other in a way compatible with their
quasi-pinnings. Thus, by Lemma 13.4, there is a faithfully flat, finite, étale D-algebra rD, a point
rs : rD ↠ D{I » A lifting s : D ↠ D{I » A such that B

rD Ă G
rD is isomorphic to B

rD Ă G
rD

compatibly with the fixed identification of rs-pullbacks. We then spread out the finite étale morphism
Specp rDq Ñ SpecpDq to a finite étale morphism rC Ñ C 1 for an open C 1 Ă C that contains impsq Y Z,
while preserving an rs P rCpAq, and an isomorphism between B

rC Ă G
rC and B

rC Ă G
rC . Now it remains to

replace C, s, Z and PK (resp., P) by rC, rs, Z ˆC
rC and pPKq

rCK
(resp., P

rC). □

Lemma 13.6 (Changing the relative smooth curve C for descending to A1
A; [Čes22a, Proposition 6.5]).

In the setting of Lemma 13.3, for both cases (1) and (2), in addition to pG ,Bq “ pGC , BCq, we may
change C to achieve further that there is a flat A-map C Ñ A1

A that maps Z isomorphically to a closed
subscheme Z 1 Ă A1

A with
Z » Z 1 ˆA1

A
C.

Proof. Assume that, in both cases (1) and (2) of Lemma 13.3, we have achieved the conclusion of
Lemma 13.5. We have the data of a smooth affine relative A-curve C, a section s P CpAq, and an
A-finite closed subscheme Z Ă C; replacing Z by Z Y impsq, we may assume that s factors through Z.
However, in general, the A-finite scheme Z may be too large to embed into A1

A. (For instance, if R “ k
is a finite field, then Z can’t be embedded into A1

k as soon as 7Zpkq ą 7 k.) For this, we first apply
Panin’s ‘finite fields tricks’ [Čes22a, Proposition 7.4] to obtain a finite morphism rC Ñ C that is étale
at the points in Z̃ :“ rC ˆC Z such that s lifts to rs P rCpAq, and there are no finite fields obstruction to
embedding rZ into A1

A in the following sense: for every maximal ideal m Ă A,

7

!

z P rZκpmq : rκpzq : κpmqs “ d
)

ă 7

!

z P A1
κpmq : rκpzq : κpmqs “ d

)

for every d ě 1.

Then, by [Čes22a, Lemma 6.3], there are an affine open C 1 Ă rC containing imprsq, a quasi-finite, flat
A-map C 1 Ñ A1

A that maps Z isomorphically to a closed subscheme Z 1 Ă A1
A with

Z » Z 1 ˆA1
A
C 1.

It remains to replace C by C 1, Z by rZ, s by rs, PK by pPKqC1
K

(resp., P by PC1). □

Lemma 13.7 (Descend to A1
A via patching; cf. [Čes22a, Proposition 7.4]). In the setting of Lemma 13.3,

for both cases (1) and (2), we may achieve further that pG ,Bq “ pGC , BCq, C “ A1
A, and s “ 0 P A1

ApAq.
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Proof. By the reduction given in Lemma 13.6, we have a flat A-curve C, a section s P CpAq, an A-finite
closed subscheme Z Ă C, a quasi-finite, affine, flat A-map C Ñ A1

A that maps Z isomorphically to a
closed subscheme Z 1 Ă A1

A with Z “ Z 1 ˆA1
A
C, and a G-torsor PK over CK whose sAK

-pullback is PK
(resp., a G-torsor P over C whose s-pullback is P ) and whose restriction to CKzZK (resp., CzZ ) reduces
to a radupBq-torsor. Now, since Z “ Z 1 ˆA1

A
C » Z 1, [Čes22a, Lemma 7.2] implies the pullback maps

H1pA1
AzZ 1, radupGqq ↠ H1pCzZ, radupGqq

and
H1pA1

AK
zZ 1

K , radupGqq ↠ H1pCKzZK , radupGqq

are surjective. Combining these, we see that PK |CK zZK
(resp., P|CzZ) descends to a G-torsor QK (resp.,

Q) over A1
AK

zZ 1
K (resp., A1

AzZ 1) that reduces to a radupBq-torsor. By the glueing Lemma 6.2.2(ii), we
may (non-canonically) glue PK with QK (resp., P with Q) to descend PK (resp., P) to a G-torsor ĄPK
(resp., rP) over A1

AK
(resp., over A1

A) that reduces to a radupBq-torsor over A1
AK

zZ 1
K (resp., over A1

AzZ 1).
It remains to replace C by A1

A, Z by Z 1, s P CpAq by its image in A1
ApAq, and PK by ĄPK (resp., P by

rP). Finally, by shifting, we may assume even that s “ 0 P A1
ApAq. □

Proof of Theorem 13.1. Let PK (resp., P ) be a generically trivial GAK
-torsor (resp., G-torsor). By the

reduction Lemma 13.7, we get an A-finite closed subscheme Z Ă A1
A, and a GA1

AK
-torsor PK (resp.,

GA1
A

-torsor P) whose pullback along the zero section is PK (resp., P ) such that pPKq|A1
AK

zZK
(resp.,

P|A1
AzZ) reduces to a radupBq-torsor. Since any A-finite closed subscheme of A1

A is contained in tf “ 0u

for some monic polynomial f , we may enlarge Z to assume that A1
AzZ is affine, to the effect that any

radupBq-torsor over A1
AK

zZK (resp., over A1
AzZ), such as pPKq|A1

AK
zZK

(resp., P|A1
AzZ), is trivial. By

section Theorem 10.1, the pullback of PK (resp., of P) along the section s P A1
ApAq is trivial, that is, PK

(resp., P ) is trivial, as desired. □
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