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PURITY AND TORSORS OVER PRUFER BASES

NING GUO AND FEI LIU

ABSTRACT. We establish Zariski-Nagata purity theorem concerning finite étale covers on smooth schemes
over Priifer rings by proving Auslander’s flatness criterion in this non-Noetherian context. Inspired by
Gabber—Ramero’s upper bound of projective dimensions over Priifer bases, we present an Auslander—
Buchsbaum formula. On the basis of the analysis of reflexive sheaves, we prove various purity theorems
for torsors under reductive group algebraic spaces. Specifically, by parafactorial results in [EGA IV4] on
smooth schemes over normal bases, we prove the purity for cohomology groups of multiplicative type
groups at this level of generality. Subsequently, we take advantage of aforementioned purity results
to give affirmative answer to the Grothendieck—Serre conjecture for torsors on smooth schemes over
semilocal Priifer rings in certain cases. Along the way, inspired by the recent preprint of Cesnavitius
[Ces‘ZQC], we also prove several versions of Nisnevich conjecture in our context.
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1. PURITY AND THE GROTHENDIECK—SERRE ON SCHEMES SMOOTH OVER PRUFER BASES

1.1. Purity and regularity. In algebraic geometry, purity refers to a diverse range of phenomena in
which certain invariants or categories associated to geometric objects are insensitive to the removal of
closed subsets of large codimensions. In the classical Noetherian world, purities, say, for vector bundles
(and even torsors), or for finite étale covers, are intimately related to the regularities measured by lengths
of regular sequences of geometric objects. For a concrete instance, the Auslander—Buchsbaum formula

depthy M + proj.dimpM = depthy R ([AB57, Theorem 3.7])

controls the projective dimension of the finite type module M over the Noetherian local ring R via depths,
leading to the purity for vector bundles on regular local rings of dimension two ([Sam64, Proposition 2]).
Granted this, Colliot-Théléne and Sansuc [CTS79, Théoréme 6.13] established the purity for reductive
torsors over arbitrary regular local ring R of dimension two by bootstrapping from the vector bundle
case:
the restriction  HZ (Spec R, G) — H} (Spec R\{mz},G) is bijective

for every reductive R-group scheme G. Nevertheless, not only does the term ‘regularity’ make sense for
Noetherian rings, its non-Noetherian generalization can still enlighten us to contemplate purity problems.

1.2. Regularity of Priifer rings. Originally formulated by Bertin [Ber71], [Ber72, Définition 3.5]
for coherent local rings, we say that a ring R is regular if every finitely generated ideal of R has finite
projective dimension. This coincides with the classical notion of regularity when restricting to Noetherian
rings by Serre’s homological characterization [Ser56, Théoréme 3]. A typical non-Noetherian example
can be sought in Priifer rings, namely, the rings whose all local rings are valuation rings. By definition, an
integral domain V is a valuation ring if every x € (Frac V)\V satisfies 27! € V. Beyond fields, Noetherian
valuation rings are exactly discrete valuation rings. The regularity of Priifer rings thus follows from the
fact that all finitely generated ideals of valuation rings are principal. In addition to the regularity and
other nature (Lemma 3.1.1), the ubiquity of Priifer rings in the study of nonarchimedean geometry,
Zariski-Riemann spaces, among others, motivates us to investigate their algebro-geometric properties.

1.3. Basic setup I. The purity part of the present article focuses on a semilocal affine Priifer scheme S
with dim S > 0 (and with dim S < o if necessary), an S-flat finite type algebraic space X with regular
S-fibers, and a closed subset Z < X such that j: X\Z — X is quasi-compact. For a point z € X lying
in an open subscheme, the local ring of X at = makes sense and we denote A := Ox ;. When involving
torsors on X, we let G be an X-group algebraic space that étale-locally permits an embedding G — GL,,
such that GL,, /G is X-affine. This condition is fulfilled if G is X-reductive', or finite and locally free.

1.4. Auslander—Buchsbaum over Priifer bases. Gabber—Ramero’s upper bound of projective di-
mensions of coherent modules over X unveils a glimpse of the Priiferian Auslander—Buchsbaum formula
Theorem 2.8.1: if x € X lies over a closed point s € S, then every finitely presented A-module M satisfies

proj.dimy M + depthy, M = depthy A =d+ 1, whered=dimOx_,.

Here proj.dim4(0) = —oo and depth 4 M is the smallest ¢ such that the i-th local cohomology of M
be nonzero (§2.4). Our proof is significantly different from the classical case [AB57, Theorem 3.7].
Specifically, taking Gabber—Ramero’s boundness [GR18, Proposition 11.4.1] as an input, we bypass
the interpretation of projective dimensions in terms with Tor functors, which is a crucial ingredient in
Auslander-Buchsbaum’s argument. In the sequel, we will only use Gabber—Ramero’s part of Proposi-
tion 3.2.7(i).

1.5. Purity for torsors on smooth relative curves over Priifer rings. Once the projective di-
mensions of reflexive sheaves on X are controlled, by imposing codimensional constraints on Z, we may
extend vector bundles on X\Z to X, as in Noetherian scenarios. Subsequently, this allows us to obtain
the purity Theorem 6.1.4 for G-torsors: if Z satisfies

Z, = & for each generic point ne S and codim(Z;, X;)>1forall se S,
and X is an S-curve, then restriction induces the following equivalence of categories of G-torsors
Tors(X¢;, G) — Tors((X\2Z)es, G).
1By this we mean a smooth affine X-group algebraic space G whose X-geometric fibers are (connected) reductive algebraic

groups. Then, étale-locally on X, G splits so admits a closed immersion G < GL,, x for some integer n; by [Alp14, 9.4.1],
the reductivity of G implies that the quotient GL,, x /G is X-affine of finite type.
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In particular, passing to isomorphism classes of objects, we have the following bijection of pointed sets
H}(X,G) ~ H:(X\Z,G).
Meanwhile, a local version Theorem 6.2.1 allows us to loose constraints on the relative dimension of X:
if
either x € X, with dim Ox, , =2, or ze€ X, with s # nand dim Oy, , =1,
then every G-torsor over Spec Ox ,\{z} extends uniquely to a G-torsor over Spec Ox ;. This permits us
to iteratively extend reductive torsors beyond a closed subset of higher fiberwise codimensions.

1.6. Zariski—-Nagata over Priifer bases. The Zariski-Nagata purity, known as “purity of branch
locus”, states that every finite extension A ¢ B of rings with A regular Noetherian and B normal is
unramified if and only if so it is in codimension one on Spec B. This purity was settled by Zariski [Zar58]
in a geometric context, and more algebraically by Nagata [Nag59] based on Chow’s local Bertini theorem.
In contrast to them, Auslander gave an alternative proof [Aus62, Theorem 1.4] by skillful homological
methods leading to a criterion for flatness. In [SGA 2,0, Exposé X, §3], Grothendieck reformulated their
results into a purity concerning finite étale covers and proved this purity on Noetherian local rings that is
a complete intersection of dimension > 3 by reducing the assertion to hypersurfaces via several passages
involving formal completions. Nevertheless, a practical deficiency of the later argument is that, even over
a rank-one valuation ring V with pseudo-uniformizer w, the coherence of the w-adic completion Aof A
is unknown to us, not to mention the primary decomposition on it. To circumvent this technical obstacle,
we revert to Auslander’s argument by establishing a Priiferian counterpart Theorem 4.1 of the criterion
for flatness [Aus62, Theorem 1.3]. Granted this, we acquire the Priiferian Zariski-Nagata Theorem 6.4.2:

the pullback FEty —> FEt Xx\z is an equivalence
for every closed subset Z < X in the basic setup §1.3 that satisfies the following condition
codim(Z,, X,) = 2 for each generic point n€ S and codim(Zs,X,) > 1 forall se S.
In particular, for every geometric point T: Spec ) — X\Z with a separably closed field €2, the map

T X\Z, %) — 7$"(X,Z) is an isomorphism.

1.7. Grothendieck—Serre on semilocal Priifer rings. The Grothendieck—Serre conjecture predicts
that, for a regular local ring R and a reductive R-group scheme G, every generically trivial G-torsor is
trivial, that is, the following restriction map of nonabelian cohomology pointed sets has trivial kernel:

ker (H% (R, G) — H} (Frac R, G)) = {*}.

The conjecture was settled in the equicharacteristic case and in certain unramified mixed characteristic
cases, see the histrical summary below. Thanks to the purity for cohomology of groups of multiplicative
type, we prove the non-Noetherian counterpart of Colliot-Théléne—Sansuc’s result for tori and then obtain
a product formula for tori. Based on this, the similar argument in [Guo20] leads to a passage from the
semilocal case to the local case. Hence, we settle the Grothendieck—Serre on semilocal Priifer rings in §9.

1.8. Basic setup II. The second half of this article deals mainly with the following. For a semilocal
Priifer ring R, an irreducible R-smooth scheme X, the semilocalization A := Ox yx of X at a finite
subset x ¢ X contained in a single affine open of X, and a reductive A-group scheme G, we study the
trivialization behaviour of G-torsors.

1.9. Grothendieck—Serre on smooth projective schemes. This result was proved by the second
author and simultaneously by an unpublished work of Panin and the first author in the Noetherian case.
We show that, when X is R-projective in §1.8 and G has a reductive model over X, every generically
trivial G-torsor on A is trivial, that is,

ker (H'(A,G) — H'(Frac A,G)) = {#}.

To prove this, we use crucially our purity Theorem 6.1.4 after spreading out to extend the domain of the
torsor in question to an open subset as large as possible: according to that purity, a generically trivial
torsor on Ox x extends to a torsor on an open neighbourhood of x whose complementary closed has
codimension > 3 (resp., = 2) in the generic (resp., non-generic) R-fibers of X, see Corollary 6.3.2. This
codimension bound is sharp enough for us to apply the geometric presentation Lemma 7.1.1 and glueing
techniques to reduce the problem to studying torsors on relative affine lines that we treat in detail in
§10.



1.10. Grothendieck—Serre under constant reductive groups. Assume that G is ‘constant’, namely,
it is a pullback from the Priifer base ring R. Then every generically trivial G-torsor on A is trivial, that
is,

ker (H'(A,G) — H'(Frac A, G)) = {*}.

For this, we first devise a variant (in some aspect, a stronger form) of Lindel’s lemma (Proposition 7.2.1),
which states that, for a closed subscheme Y < X that avoids all the maximal points of the R-fibers of X,
the pair (Y, X) Zariski-locally on X can be presented as an elementary étale neighbourhood of a similar
pair (Y', X’), where X’ is an open of some projective R-space. This allows us to use glueing techniques
to reduce to studying generically trivial torsors on opens of projective R-spaces, which is done in §1.9.

1.11. Grothendieck—Serre under quasi-split groups. As for the quasi-split case of the Grothendieck—
Serre, we will follow a similar strategy of [Ces22a] (with its earlier version given by Fedorov [Fed22b]),
where the key input is our toral version of purity Proposition 8.2.5 and Grothendieck—Serre type Propo-
sition 8.3.2 in this context. Precisely, by the valuative criterion of properness, a generically trivial torsor
on X, say, reduces to a generically trivial torsor under a Borel B away from a closed subset Z of X
that has codimension > 2 (resp., = 1) in the generic (resp., non-generic) R-fiber. Further, utilizing the
aforementioned toral purity and Grothendieck—Serre type results, one shows that the above torsor further
reduces to a rad“(B)-torsor on X\Z. In conclusion, when G is quasi-split, we prove Theorem 13.1 that

ker (H'(A®g K,G) — H'(Frac A,G)) = {*};
if R has Krull dimension 1, then every generically trivial G-torsor is trivial, that is,

ker (H'(A,G) — H'(Frac A,G)) = {}.

1.12. Nisnevich’s purity conjecture. Now, we turn to Nisnevich’s purity conjecture, where we require
the total isotropicity of group schemes. A reductive group scheme G defined over a scheme S is totally
isotropic at s € S if every G; in the decomposition [SGA 311 1ew, Exposé XXIV, Proposition 5.10 (i)]

G%is,s = Hz ReSAi/ﬁs,s (Gl)

contains a Gy, g,. If this holds for all s € S, then G is totally isotropic. Proposed by Nisnevich [Nis89,
Conjecture 1.3] and modified due to the anisotropic counterexamples of Fedorov [Fed22b, Proposition 4.1],
the Nisnevich conjecure predicts that, for a regular semilocal ring R, a regular parameter r € R (that is,
r € m\m? for every maximal ideal m © R), and a reductive R-group scheme G such that G/, is totally
isotropic, every generically trivial G-torsor on R[%] is trivial, that is, the following map

HY(R[%],G) — H'(FracR,G) has trivial kernel.

T

The case when R is a local ring of a regular affine variety over a field and G = GL,, was settled by
Bhatwadekar—Rao in [BR83] and was subsequently extended to arbitrary regular local rings containing
fields by Popescu [Pop02, Theorem 1]. Nisnevich in [Nis89] proved the conjecture in dimension two,
assuming that R is a local ring with infinite residue field and that G is quasi-split. For the state of
the art, the conjecure was settled in equicharacteristic case and in several mixed characteristic case by
Cesnavicius in [Ces22c, Theorem 1.3] (previously, Fedorov [Fed21] proved the case when R contains
an infinite field). Besides, the toral case and some low dimensional cases are known and surveyed in
[Ces22b, Section 3.4.2 (1)] including Gabber’s result [Gab81, Chapter I, Theorem 1] for the local case
dim R < 3 when G is either GL,, or PGL,,. In this article, we prove several variants of Nisnevich
conjecture over Priifer bases, see Theorem 11.1 (ii) and Theorem 12.1 (ii).

1.13. The Grothendieck—Serre conjecture: a history. Since proposed by Serre [Ser58, page 31]
and Grothendieck [Gro58, pages 26-27, Remarques 3], [Gro68a, Remarques 1.11 a)], the Grothendieck—
Serre conjecture has already various known cases beyond the trivial dim R = 0 case for fields, as listed
below.

(i) The case when G is a torus is proved by Colliot-Théléne and Sansuc in [CTS87].

(ii) The case when dim R = 1, namely, R is a discrete valuation ring, was addressed by Nisnevich in
[Nis82] and [Nis84], then is improved and generalized to the semilocal Dedekind case in [Guo22].
Several special cases were proved in [Har67], [BB70], [BTy] over discrete valuation rings, and in
[PS16], [BVG14], [BEF17], [BEFH20] for the semilocal Dedekind case.
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(iii) The case when R is Henselian was settled in [BB70] and [CTS79, Assertion 6.6.1] by reducing
the triviality of G-torsors to residue fields then inducting on dim R to reach Nisnevich’s resolved
case.

(iv) The equicharacteristic case, namely, when R contains a field k, was established by Fedorov and
Panin [FP15] when k is infinite (see also [PSV15], [Pan20b] for crucial techniques) and by Panin
[Pan20a] when k is finite, which was later simplified by [Fed22a]. Before these, several equichar-
acteristic subcases were proved in [0ja80],[CT092], [Rag94], [PS97], [Zai00], [Oja01], [Oja04],
[Pan05], [Zai05], [Chel0], [PSV15].

(v) When R is of mixed characteristic, Cesnavicius [Ces22a] settled the case when G is quasi-split
and R is unramified (that is, for p := char(R/mp), the ring R/pR is regular). Prior to this,
Fedorov [Fed22b] proved the split case under additional assumptions on R. Recently, Cesnavicius
[Ces22c, Theorem 1.3] settled a generalized Nisnevich conjecture under certain conditions, which
specializes to the equal and mixed characteristic cases of the Grothendieck—Serre proved in [FP15],
[Pan20a], [Ces22a].

(vi) There are sporadic cases where R or G are speical (with possible mixed characteristic condition),
see [Gro68a, Remarque 1.11 a)], [Oja82], [Nis89], [Fed22b], [Fir22], [BFFP22], [Pan21].

1.14. Notations and conventions. All rings in this paper are commutative with units, unless stated
otherwise. For a point s of a scheme (resp., for a prime ideal p of a ring), we let x(s) (resp., k(p)) denote
its residue field. For a global section s of a scheme S, we write S[1] for the open locus where s does not
vanish. For a ring A, we let Frac A denote its total ring of fractions. For a morphism of algebraic spaces
S — S, we let (—)g denote the base change functor from S to S’; if S = Spec R and S’ = Spec R’ are
affine schemes, we will also write (—) g/ for (—)gr.

Let S be an algebraic space, and let G be an S-group algebraic space. For an S-algebraic space T', by
a G-torsor over T' we shall mean a Gp := G x g T-torsor (see Definition 5.2). Denote by Tors(Sippr, G)
(resp., Tors(Ss;,G)) the groupoid of G-torsors on S that are fppf-locally (resp., étale-locally) trivial;
specifically, if G is S-smooth (e.g., G is S-reductive, see below), then every fppf-locally trivial G-torsor
is étale-locally trivial, so we have

Tors(Sgppt, G) = Tors(Se, G).

For an algebraic space S, a reductive S-group algebraic space is a smooth affine S-group algebraic space
whose geometric S-fibers are (connected) reductive algebraic groups. For a scheme S this coincides with
the definition of reductive S-groups schemes given in [SGA 3111 pew]-
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constant encouragements. We thank Matthew Morrow and Colliot-Théléne for proposing the Grothendieck—
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funding from the European Research Council (ERC) under the European Unions Horizon 2020 research,
the innovation programme (grant agreement No. 851146), the grant 075-15-2022-289, and the excellent
environment for research of the Euler International Mathematical Institute.

2. AUSLANDER—BUCHSBAUM FORMULA OVER VALUATION RINGS

The goal of this section is to establish Theorem 2.8.1, the Auslander—Buchsbaum formula over finite rank
valuation rings as an analogue of the classical regular case [AB57, Theorem 3.7]. Based on the upper-
bound of projective dimensions [GR18, Proposition 11.4.1], we induct by using the notion of depths.

2.1. Coherent rings and schemes. For a ring A, a finitely generated A-module M is coherent if its

any finitely generated A-submodule is finitely presented. A ring A is coherent if it is a coherent A-module.

For a scheme X, an Ox-module Z is coherent if, for every affine open U c X, T'(U, %) is a coherent
5



I'(U, Oy)-module. A scheme X is locally coherent if Ox is a coherent &x-module. A locally coherent
scheme is coherent if it is quasi-compact quasi-separated.

Example 2.2. Noetherian rings and Priifer rings are coherent rings ([SP, 05CY, 0OEWV]). Although
Noetherian schemes are coherent, open subschemes of affine integral Priifer schemes are not coherent
in general: there exists a valuation ring V' such that Spec V\{my} has no closed points and is not
quasi-compact.

Lemma 2.3. Let A be a coherent ring.
(i) For every multiplicative subset S < A, the localization S~ A is a coherent ring.

(ii) Any A-module M is coherent if and only if it is finitely presented over A. Further, the full
subcategory of coherent A-modules is an abelian subcategory of the category of A-modules and is
closed under taking extensions.

Proof. For (i), see [Gla89, Theorem 2.4.2]. For the first assertion of (ii), see [FK18, Chapter 0, Corol-
lary 3.3.5]. d

2.4. Depth. For a local ring A and the closed point x € Spec A, consider the following functor
Iz : A-Mod — A-Mod M — ker (F(Spec A, ]\7) — I'(Spec A\{z}, M))

sending M to its largest A-submodule supported on {z}. The functor I',; is left exact so gives rise to a
right derived functor RI'(,y: D*(A-Mod) — D*(A-Mod). The depth of M € D*(A-Mod) is

depth 4 (M) :=sup{n € Z| RiI‘{m}M =0 foralli<n}eZsou{+w0},
For an A-module N supported on {z}, we also consider the following closely related quantity

n(M) :=sup{n € Z | Ext’y(N,M) =0 foralli <n}e Zsou {+0}.

Lemma 2.5. For a local ring A, an A-module M, and an M -regular sequence (f1,--- , fr) in ma,
depth o (M) = depth,(M/Y!_, fiM)+r and 7n(M)=7n(M/>_, fiM)+1.

Proof. The two equalities are proved similarly, so we only treat the one concerning depth. By induction
on r, we are reduced to the case when r = 1 and f; = f is a nonzerodivisor of M in my4. From the short

exact sequence 0 — M LM M /fM — 0, we derive the following long exact sequence
o> ROT M L R M — R 4y (M/fM) — RT(yM 5 RT ()M — - .

If depthy M = +o0, then M = 0 so it suffices to assume that depth, M = d for an integer d > 0. If
d = 0, then there is a nontrivial A-submodule of M supported on {x}, contradicting to the assumption
that f € m, is a nonzerodivisor of M. Therefore, we have d > 1 and R'T'(;,, M = 0 for every 0 < ¢ < d—1.
The displayed long exact sequence implies that R'T'(,,(M/fM) =0 forevery 0 <i<d—2 (ifd—-2<0
then such i does not exist). If R*"'T'(,y(M/fM) = 0, then the map RTI'(;3 M — RT'(,3 M induced by
multiplication by f is injective. However, since the nonzero A-module Rdf{x}M is supported on {z} and
f € my, we deduce that RdF{I}M = 0, that is, depth,M > d, a contradiction. Consequently, we have
RITT (M /fM) # 0 and depth o(M/fM) = d — 1 = depth, M — 1. O

Example 2.6. Assume that A is Noetherian, and take N = A/I for an ideal I of A (for instance,
N = A/my). Then for any finitely generated A-module M we have

depthy M = 75 (M).

Indeed, utilizing Lemma 2.5, one verifies easily that both of them equals the length of any maximal
M-regular sequence in my4 (so the length is independent of all choices). However, this is false when
A is non-Noetherian. For instance, we let A := V be a non-discrete valuation ring of finite rank and
let N := V/my be its residue field. Take M = V/fV for a nonzero f € my. Then one checks
immediately that depthy (V/fV) = 0, but there are no nonzero elements of V/fV annihilated by my .
Thus Homy (V /my, V/fV) =0, and so Ty m, (V/fV) = 1 > 0 = depthy (V/fV).

Lemma 2.7. For a valuation ring V' of finite rank, a V-flat finitely presented scheme X, and a point
x € X with image s € SpecV such that Ox,_ . is regular,
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(i) we have depth 4 (A) = d + 1, where d = dim Ox_ ,;
(i) for any A-module N supported on {x}, we have Exty(N, A) = 0 for all i < d.

Proof.

(i) Since by assumption V' has nonzero finite rank, we can pick an element f € my such that
dimV/(f) = 0. Let (g1, - ,94) be a sequence in m4 such that their images in the regular local
ring A/my A forms a regular system of parameters, and hence also forms a regular sequence. By
the flatness criterion [EGA TV3, Théoréme 11.3.8], (g1, - ,g4) is a regular sequence of A, and

the quotient ring A := A/(g1," - ,ga4) is V-flat with my A = my. Therefore, (g1, ,ga, f) is a
regular sequence of A in my4 such that dim A/(fA + Z?zl giA) = 0. Applying Lemma 2.5 yields

depth 4 (A) = depth 4 (A/(FA+ YL, giA) +d+1=d+1.

(ii) Repeating the preceding argument involving Lemma 2.5, we deduce the following inequality

™(A) = Tn(A/(fA+ XL g A) +d+1=d+ 1.
By the definition of 75 (A), this is equivalent to the displayed vanishing. O

Lemma 2.8. For a local ring (A, m4), a nonzero A-module M supported on {ma}, and a matriz H €
Mopxn(A), if the A-linear map Hyr : MO — MO™ induced by H (via left multiplication) is injective,
then H admits a left inverse, or, equivalently, H exhibits A®™ as a direct summand of AP™.

Proof. Recall [SP, 0953] that the assumption on the support of M means that, for any w € M and any
finitely generated ideal I = A, we have INw = 0 for large enough N. Let H = (h;;), then McCoy’s
theorem [Gla89, page 211] implies that the ideal generated by the minors of order n of H does not
annihilate a nonzero element of M. Indeed, the invertibility of minors already yields a left inverse of
H and we are done. Precisely, since M is supported at {m,}, there exist some ¢,j for which h;; € A*.
We may assume that hi; € A*. By subtracting suitable multiples of the first row of H to other rows
(resp. the first column of H to other columns), we may also assume that h;; = 0 for 1 < j < n and
his1 =0 for 1 < ¢ < m (the assumption and conclusion of the lemma are preserved if we replace H by
HyHH,, where Hy € My, xm(A) and Hy € My x,(A)). In other words, we have H = (hy1) @ H', where
H' € M;n—1)x(n—1)(A). Then the map H}, : M®=1) — M®m=1 induced by H' is also injective. So
we may assume by induction that H' admits a left inverse H” € M,,_1)x (m—1)(A). Then (b ® H" is
a left inverse of H. (]

Now, we acquire the Priiferian analogy of the Auslander-Buchsbaum formula [AB57, Theorem 3.7].

Theorem 2.8.1 (Auslander-Buchsbaum formula over valuation rings). For a valuation ring V' of finite
nonzero rank, a V-flat finite type scheme X, a point x € X lying over the closed point s € Spec V' such
that Ox, 5 is reqular, and the local ring A := Ox 5, every finitely presented A-module M satisfies

proj.dim4 (M) + depth 4 (M) = depth 4 (A) =d+ 1, whered = dim Ox_ .

(By convention, proj.dim4(0) = —o0)

Proof. Let M be a finitely presented nonzero A-module. We will induct on proj. dim4 (M) to verify the
formula. Note that, by [GR18, Proposition 11.4.1], we have proj. dim4 (M) < d+1. If proj. dim4 (M) = 0,
or, M is A-free, then by Lemma 2.7 we have depth 4 (M) = d+1, so proj. dim 4 (M) +depth 4 (M) = d+1.

Next, assume that proj.dim (M) > 1, so every partial resolution 0 — M’ > A®" — M — 0 is non-split

and satisfies proj. dim 4 (M’) = proj.dim4 (M) — 1. We exploit the associated long exact sequence
i—1 i—1 n i—1 i i n
> RTIT (M — RT3 A" > Ry M — R'T ;) M’ — R'T (1, A%" — ...
If proj. dim (M) = 1, then M’ ~ A®™ for some m > 1, and the map A®™ ~ M’ 5 A®" is given by an
n x m matrix H € My .m(A). We have known that proj. dims (M’) = d + 1, and so R'T';3 M’ = 0 for all
i < d. It follows from the above long exact sequence that Ril“{x}M =0foralli <d—1. If RdF{I}M =0,
then left multiplication by H induces an injection
@&m - n @n
(RT™Ty A)7 = R ( (A®™) ~ RIT ()M’ — RU'T(,,(A%") = (RY'T(,,4) 7.
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Since Rd“l"{x}A is a nonzero A-module supported on {z}, we deduce from Lemma 2.8 that H admits a
left inverse. This implies that ¢ splits, and so M is A-free, contradicting our assumption proj. dim 4 (M) =
1. Hence, depth 4 (M) = d, and we thus obtain the desired formula proj. dim 4 (M) + depth 4, (M) = d + 1.

If proj. dim4 (M) > 1, then proj. dim4 (M’) = proj. dim4 (M) — 1. Applying the induction hypothesis to
M’ we have

depth 4 (M') = d + 1 — (proj.dims (M) — 1) = d + 2 — proj.dima (M), whichis <d.

It follows from the above long exact sequence and the fact depth,(A®") = d + 1 that R,y M ~
R'T'(;3 M’ for all i < d. Combining this with the bound depth 4(M’) < d, we deduce that depth 4 (M) =
depth 4, (M’) — 1. Therefore, by induction hypothesis, we have

proj. dim4 (M) + depth 4 (M) = (proj.dim4(M’) + 1) + (depth,(M') —1) = d + 1.
This finishes the induction step. O

3. GEOMETRY OF SCHEMES OVER PRUFER BASES

In this section, we recollect useful geometric properties on scheme over Priifer bases.

3.1. Geometric properties and reduction methods
Lemma 3.1.1. For a valuation ring V with spectrum S, a finite type irreducible S-scheme X, a point
x € X and its image s € S, the following assertions hold
(i) all nonempty S-fibers have the same dimension;
(i) of X is S-flat , then X is finitely presented over S;

(iii) if X is S-flat, then for any mazimal point £ € X, the local ring Ox ¢ is a valuation ring such
that the extension Os s — Ox ¢ of valuation rings induces an isomorphism of value groups;

(iv) for a’ € X that is distinct with x whose image is denoted by s, if x € m, then
e cither ht(s) = ht(s') (i.e., s = s') and then dim(Ox , o) < dim(Ox, »);
e or ht(s') < ht(s) and then dim(Ox , o) < dim(Ox, 2).

Proof. For (i), see [EGA 1V3, Lemme 14.3.10]. For (ii), see [Nag66, Theorem 3’]. For (iii), see [MB22,
Théoréme A]. Now, to prove (iv), we may assume that X is affine and of some pure relative dimension,
say, n, over V. By assumption, we have s € {s’}. Assume that we are not in the first case, then
ht(s’) < ht(s). The schematic closure {z'} is a finite type dominant scheme over {s'} (the spectrum of
a valuation ring), so by (i), all its non-empty fibers have the same dimension. Thus, we deduce from
{2/} o {z} that

dim({a'},) = dim({a},) > dim({z},).
Hence, we have - o
dim(Ox, o) = n —dim({z'},,) <n —dim({z},) = dim(Ox, ). O

The following Lemma 3.1.2 provides us a passage to the case when there is a section.

Lemma 3.1.2. For a valuation ring V, an essentially finitely presented (resp., essentially smooth) V -
local algebra A, there are an extension of valuation rings V'/V with trivial extension of value groups,
and an essentially finitely presented (resp., essentially smooth) V-map V' — A with finite residue fields
extension.

Proof. Assume A = Ox ,, for an affine scheme X finitely presented over V and a point z € X lying over the

closed point s € Spec(V). Let ¢t = tr.deg(k(z)/k(s)). As k() is a finite extension of | := k(s)(a1, - ,at)

for a transcendence basis (a;)i of k(z)/k(s), we have t = dim; Q) < dimy() Qp /() Choose

sections by,--- ,b; € I'(X, Ox) such that dby,--- ,db; € Qfli(z)/m(s) are linearly independent over r(x),

where the bar stands for their images in x(x). Define p : X — Al by sending the standard coordinates

Ty, ,T; of Al, to by,--- by, respectively. Since dby,--- ,db; € Q}i(a?)/n(s) are linearly independent, the
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image 1 := p(z) is the generic point of A‘;(S), so V' = @%,n is a valuation ring whose value group is
I'v» ~ T'y. Note that x(z)/k(n) is finite, the map V' — A induces a finite residue fields extension.

When V — A is essentially smooth, the images of dby, - - - , db; under the map Qk/v ® k() — Q}Q(z)/ﬁ(s)
are linearly independent, so are their images in Q}( w® k(x). Hence, p is essentially smooth at x. ]

In the sequel, we will use the following limit argument repeatedly.
Lemma 3.1.3. Fvery semilocal Priifer domain R is a filtered direct union of its subrings R; such that:
(i) for every i, R; is a semilocal Prifer domain of finite Krull dimension; and

(ii) for i large enough, R; — R induces a bijection on the sets of mazimal ideals hence is fpqc.

Proof. Write Frac(R) = u;K; as the filtered direct union of the subfields of Frac(R) that are finitely
generated over its prime field 8. Let R; := R n K;. Then R = u;R;. It remains to see that every R;
is a semilocal Priifer domain whose local rings have finite ranks. Let {p;}1<j<n be the set of maximal
ideals of R. Then R = [, _ j<n Bp; is the intersection of the valuation rings Ry;. Thus we have

R; = ﬂ1<j<n (K Ry,).

Since K;/8 has finite transcendence degree, by Abhyankar’s inequality, every K; n R, is a valuation
ring of finite rank. By [BouAC, VI, §7, Proposition 1-2], R; is a semilocal Priifer domain, and its local
rings at maximal ideals are precisely the minimal elements of the set {K; N Ry, }1<j<n under inclusion.
This implies (i). For (ii), it suffices to show that for ¢ large enough there are no strict inclusion relation
between K; n Ry, and K; n Ry, for ji # jo. Indeed, if 7; € p;\{J;1; pjr for 1 < j < n, then (ii) holds
for any 4 for which {7;}1<j<n < K. O

3.2. Reflexive sheaves on schemes over Priifer bases with regular fibers

3.2.1. Reflexive sheaves. Assume that X is a locally coherent scheme, see 2.1. For an &'x-module .7,
its dual is denote by ZFV := Home, (F,Ox). A coherent Ox-module .Z is reflexive if the canonical map
F — FYY is an isomorphism. Since every coherent 0x-module ¢ is Zariski-locally finitely presented
ﬁ%m — ﬁ%" — 4 — 0, by taking dual, ¢V is finitely copresented as 0 — ¥V — ﬁ’g‘?" — ﬁ%m. In
particular, the dual ¢ of a coherent Ox-module ¢ is also coherent (equivalently, finitely presented).
Moreover, Lemma 3.2.2 shows that for integral X and every coherent &x-module ¢, the double dual
@GV is Ox-reflexive, hence ¥V is the reflexive hull of 4.

Lemma 3.2.2 (reflexive hull). For a locally coherent integral scheme X and two Ox-modules F and
4, if F is coherent and 9 is reflexive, then H = Home, (F,9) is reflexive. In particular, the double
dual

FVY = Homey (Home, (F,0x),0x) is a reflexive Ox-module.

Proof. For the coherence of J7, it suffices to take a presentation ﬁ%m — ﬁ’%” — % — 0 of % and its
sheaf homomorphism with ¢ so that J# = ker(4®" — ¢®™) which is coherent by [SP, 01BY].

Claim 3.2.3. For a domain R, a finitely presented R-module M, and an exact sequence 0 — M — M’ —
M" of finite R-modules, if M’ is reflexive and M” is torsion-free, then M is reflexive.

Proof of the claim. Denote (—)¥ = Hompg(—, R) and consider the following commutative diagram

0 M M’ M

l ! |

MY —— M"Y ——s M"Y

By [SP, 0AVO0], M’ is torsion-free, so is M, hence the map M — M"Y is injective. It remains to show
that this map is surjective. For the map u: M’" — MY, consider the exact sequence M’" — MY —
coker(u) — 0. As M’ is reflexive, it is finitely presented, so [SP, 0583] applies, yielding the exact sequence

Hompg(M' ®g K, K) - Homg(M ®g K, K) — coker(u) ®g K — 0,
9
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where K := Frac R. Since K is R-flat, the injectivity of M — M’ implies that coker(u)x = 0, hence
coker(u) is R-torsion and coker(u)¥ = 0. Therefore, MV¥ — M’'"" is injective. Because M” is torsion-
free, the map M” <« M""" is injective. By snake lemma, M —» M "V is surjective so M is reflexive. [

Since S is coherent, it is finitely presented. The desired reflexivity follows from Claim 3.2.3. ([

By reflexive hull, reflexive sheaves extend from quasi-compact open (cf. [GR18, Proposition 11.3.8(i)]).
Corollary 3.2.4. For a coherent reduced scheme X with an quasi-compact open U < X, the restriction

Ox-Rlx — Oy -Rlx  is essentially surjective.

Proof. 1t suffices to assume that X is irreducible, so X is integral. Every reflexive y-module .%, by
[GR18, Lemma 10.3.24 (ii)], extends to a finitely presented quasi-coherent &'x-module %, which is
coherent. Then by Lemma 3.2.2, the reflexive hull .# ¥ is a reflexive extension of % on X. O

Corollary 3.2.5. For a locally coherent integral scheme X and two Ox-modules & and 9, if F is coher-
ent and 9 is reflexive, then the natural map Home (FVV,9) —> Homey (F,9) is an isomorphism.

Proof. Locally on X the reflexive &x-module ¢ fits into an exact sequence 0 — ¢4 — ﬁ)é?m — ﬁ)@?ﬂ
hence we have the following commutative diagram of &'x-modules with exact rows

0 —— Home, (FVV,9) —— Home, (F", ﬁ%m) — Home, (FVV, ﬁ%n)

| | |

00— Home, (F,9) Home, (F,00™) Homg (F, 00

By Lemma 3.2.2, FV is reflexive, hence the two rightmost vertical arrows are bijective and so is the
leftmost vertical arrow, as desired. O

Lemma 3.2.6. Let X — S be a finite type morphism with regular fibers between topologically Noetherian
schemes, let j: U — X be a quasi-compact open immersion with complement Z := X\U satisfying

codim(Zs, Xs) = 1 for every se S and codim(Z,, X,)) = 2 for every generic pointne S,

and let & be a reflevive Ox-module. Assume that S is a cofiltered inverse limit of integral schemes
(S\)rea with generic point ny and surjective transition maps. Then, there is a Ao € A, a finite type
morphism Xy, — Sx, with regular fibers such that Xy, xs, S ~ X, a closed subscheme Zx, = Xy, such
that Z, xs,, S =~ Z, the open immersion jx,: Xx,\Zx, = X, is quasi-compact, and the following

codim((Zx,)s, (Xay)s) = 1 for every s € Sy, and  codim((Zx,)ny, (X )no) = 2

is satisfied. Also, there is a reflevive Ox, -module F\, whose inverse image on X is F.

Proof. The condition that X has regular S-fibers descends to Xy, by [EGA IV,, Proposition 6.5.3]. The
reflexive Ox-module % descends thanks to [EGA IV3, Théoréme 8.5.2] and by applying [EGA IV,
Corollaire 8.5.2.5] to .# — ZVV. Because Z is contructible closed, by [EGA 1V3, Théoréme 8.3.11], it
descends to Z) such that pxl(ZA) = Z. For fy: X\ — S, by the transversity of fibers and [EGA IV,
Corollaire 4.2.6], Z\ does not contain any irreducible components of f, (sy) for any sy € Sy. Finally,
the image of the generic point n € S is the generic point 1) € Sy. By [EGA TV, Corollaire 6.1.4], we
have codim((Zy)y,, (X2 )y, ) = codim(Z,, X,,) = 2. O

Proposition 3.2.7. For a valuation ring V' with spectrum S and a flat, locally of finite type morphism
f: X — S of integral schemes with regular fibers, the following assertions hold.

(i) For every x € X and every coherent Ox-module F that is reflexive at x, we have

proj.dimg, F, <max(0,n—1), where n=dimOs-1(5(2))qe-
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(ii) For a closed subset Z < X such that j: X\Z — X is quasi-compact and satisfies the following
codim(Z,, Xs) = 1 for allse S and codim(Z,,X,) = 2 for the generic point ne S,
the restriction functors induce the following equivalences of categories.
Ox-Rflx — Ox\ z-Rflx Pic X — Pic X\Z (3.2.7.1)
In particular, for every X -affine finite type algebraic space Y, we have a bijection of sets
Y(X)~Y(X\Z).
(iii) For a closed subset Z — X such that j: X\Z — X is quasi-compact and X\Z contains all the
associated points of the generic fiber of X and every X-separated algebraic space Y, the map
Y(X) > Y(X\Z) is injective.
(iv) For a closed subset Z < X satisfying the assumption in (ii) and a quasi-compact quasi-separated
morphism p: W — X\Z such that psOw is a reflexive Ox\z-module, we have the Cartesian

square

| | l

X\Z ! X,

where Aff x\,W = SpecX\Z

finite, p is the relative normalization [SP, 035H] of X\Z in W and v is the relative normalization
of X in W. In particular, v« (Oxgw/x)) is a reflevive Ox-module.

(p+Ow) and AffxW = SpecX(j*p*ﬁW), such that p% and v are

(v) For a closed subset Z < X satisfying the assumption in (ii) and a finite flat locally finitely
presented morphism p: W — X\Z, the morphism v: At xW — X is the relative normalization
of X in W such that (AMffxW)x\z = W. In particular, vi(Oagyw) is a reflexive Ox-module.

Proof. The assertion (i) is [GR18, Proposition 11.4.1 (iii)]. For (ii), by Lemmata 3.1.3 and 3.2.6, we
may assume that V has finite rank. Since |X]| is the finite disjoint union of its S-fibers X, which are
Noetherian spaces, we know that X is topologically Noetherian. In particular, every open subset of X is
quasi-compact. By Corollary 3.2.4, the functors (3.2.7.1) are essentially surjective. For the faithfulness,
consider two morphisms «, : .7 — ¢ between reflexive &x-modules such that a|x\z = | x\z. To show
that « = 3, since it is a local problem, it suffices to check that a, = 8,: %, — ¥, for every x € Z. Take
a presentation ﬁg?"; — ﬁ%’; — %, — 0 and copresentation 0 — ¥4, — ﬁ)@?z, — ﬁ)@?g, then o, and 3,
induce two morphisms between these copresentations. Then we are reduced to the case when .%, and ¥,
are free. We may assume that .%, = ﬁ’%rw and ¥, = ﬁg‘?fw, so the following isomorphisms lead to a =

Homg,  (#:,%,) = Homg, (09, 0%°,) ~ Homjx g, (7*OF",,j*02,).

It remains to show that (3.2.7.1) are full. If .# and ¢ are two reflexive &x-modules with a morphism
¢: j*F — %9, then by [GR18, Corollary 11.3.9], taking j.(—) induces the following morphism

b F ~ juj* F — juj* 9 ~ 9.
For the second assertion of (ii), by the sheaf property, the problem is étale local on X, so we can

assume that X is affine. Choose an embedding Y < A% for some integer n. The assumption implies
that X\Z is scheme-theoretically dense in X. Hence, for every morphism ¢: X\Z — Y, if ¢ extends

uniquely to a morphism 5 : X — A%, then 5*1(1/) is a closed subscheme of X containing X\Z and by
[EGA TV, Lemme 20.3.8.8], coincides with X. In other words, if 03 exists uniquely, then it factorises as
X5y A", such that 1 is the unique extension of ¢. This reduces us to the case Y = A%. Now, by
the reflexivity of Ox and the full faithfulness of Ox-Rflx — & x\z-Rflx, we have the desired bijections

A% (X) = Homg, (Ox, 0F") ~ Homg, (Ox\z, 0%',) = Ak (X\Z).

To prove (iii), we first prove that X\Z < X is scheme-theoretically dense in the sense of [SP, 0834].

By [SP, 0836], we need to show that Ox — jsOx\z is injective, which through the terminology of

[GR18, 10.4.2 and 10.4.19], signifies that d(z, Ox) > 0 for all z € Z. Tt suffices to take étale coverings of

X by schemes and use the depth formula [GR18, Corollary 10.4.46] for flat morphisms to deduce that
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all z € Z satisfies §(x, Ox) > 0. Since j is quasi-compact, by [SP, 0835], the schematic image of X\Z is
X. Therefore, we apply [SP, 084N] to conclude. The (iv) follows from (ii). For (v), note that p, Oy is
O x\z-reflexive since by [SP, 02KB], p is finite locally free, hence it is a special case of (iv). O

4. AUSLANDER’S FLATNESS CRITERION ON SCHEMES SMOOTH OVER VALUATION RINGS

The goal is to establish Theorem 4.1 as a counterpart of Auslander’s flatness criterion [Aus62, Theo-
rem 1.3] on schemes smooth over valuation rings. As expected, our criterion leads to a Zariski-Nagata
purity.

Theorem 4.1. For a valuation ring V with spectrum S and closed point s € S, an S-smooth finite type
scheme X, a point x € X lying over s with local ring A := Ox 4, and a reflexive A-module M,

End 4 (M) is isomorphic to a direct sum of copies of M if and only if M is A-free.

As Auslander’s proof, our strategy relies on an estimate of the length of cohomology groups of M. To
begin with, we introduce the length function on torsion modules over valuation rings.

4.2. Lengths of torsion modules. For a nontrivial valuation ring V with fraction field K, value group
I" and a valuation map v: K — I, every finitely presented torsion V-module M is of the form

M ~@®,V/a;V for finitely many a; € V\{0}.

Define the length of M as 6(M) = >, v(a;) € I'so. The element 6(M) is well defined, and §(M) = 0 if
and only if M = 0. Every acyclic, bounded complex M* of torsion, finitely presented V-modules satisfies

(=1 6(M7) = 0.

Lemma 4.3. For a nontrivial valuation ring V', an essentially smooth V -local algebra (A,my4), and the
collection A-Modyor gp of all finitely presented A-modules M such that Supp(M) < {ma}, there exist a
totally ordered abelian group I' and a map 1: A-Modor,s, — I'so satisfying the following properties:

o for A-module M € A-Modyq, s, we have [(M) = 0 if and only if M = 0;
e for every acyclic, bounded complex M*® such that M’ € A-Mody, s, for each j, one has
Zj(—l)jl(Mj) = 0.

Proof. First we assume that the structural map V' — A admits a section A — V. In this case we claim
that M is finitely presented over V and is V-torsion, so we can simply let I' be the valuation group of V'
and set [(M) := §(M), where § is delivered from 4.2. Indeed, it is clear that M is V-torsion. Any section
SpecV — Spec A is a regular immersion [SP, 067R], so there is a finitely generated ideal J — A such
that V' ~ A/J. Hence, since M € A-Modyor g, We see that J”M = 0 for a large n. On the other hand,
the essential smoothness of A over V implies that .J/J? is a free V ~ A/J-module whose rank equals the
rank of the free A-module 9114 v and there is a natural isomorphism of graded V' ~ A/J-algebras

Do I/ I = Sym 5 (T/2).
In particular, A/J™ is a finite free V-module for every n > 1. Therefore, by tensoring a presentation
AN > AN - M -0
of M with A/J™ for a large enough n, we get a desired finite presentation of the V-module M.

In the general case, we first use Lemma 3.1.2 to reduce to the case when the residue fields extension of
V — A is finite. Then, if B is the integral closure of V in an algebraic closure of Frac(V'), we let V' be a
valuation ring of Frac(B) centered at a maximal ideal of B. It’s clear that V' is absolutely integral closed,
so it is strictly Henselian and there exists a V-map ¢ : A/mag — V'/my.. Let A’ := A®y V’. Then ¢
induces a V'-map ¢’ : A" — V'/my; let p = A’ be its kernel. Then Aj is essentially smooth over V' and
¢' induces a V'-map Aj — V’/my, which, by the Henselianity of V", lifts to a V'-map A}, — V'. By the
previous paragraph, the lemma is true for A;J, say, with corresponding map !’ valued in I', where I is
the valuation group of V. Since A — Aj, is faithfully flat, it suffices to define [(M) :=I'(M ®4 A}). O
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Lemma 4.4. For a valuation ring V, a V-smooth finite type scheme X, a point x € X that lies over a
non-generic point s € Spec(V), and a map of finitely presented Ox ,-modules M — N that induces an
isomorphism over Spec(Ox .)\{z}, we have an isomorphism Exty, (N, Ox ) — Exty (M, Ox ) for

every i < d and a monomorphism Ext%xym(N, Ox ) — EXt%’X,m (M,0x ), where d :=dim Ox, ,.

Proof. Let ker, coker, and im be the kernel, cokernel, and image of M — N, respectively. By assumption
and the coherence of Ox ., ker and coker are coherent, or, equivalently, finitely presented 0'x ,-modules
([SP, 05CX]) supported at {z}. Consider the following short exact sequences

0 — ker > M — im — 0,

0 — im — N — coker — 0.
By applying Homg, , (—, Ox ), We get two long exact sequences concerning Ext’s, and the lemma follows
from the vanishing Ext%X (ker, Ox ;) =0 and Ext%X ,(coker, Ox ;) = 0 for i < d (Lemma 2.7). O

Lemma 4.5. For finitely presented A := Ox ,-modules M and N, Ext'y(M,N) and Tor:(M,N) are
finitely presented over A for alli > 0 and are zero for i > d + 1, where d = dim Ox_ 5.

Proof. By [GR18, Proposition 11.4.1 (i)], since A is coherent, the coherent A-module ([SP, 05CX]) M
has a resolution by finite free A-modules of length < d + 1: F, - M, F; =0 for i > d + 1. Then

Exth(M,N):Hi(Hom(F.,N)) and Torf(M,N):Hi(F.(@N)

are all coherent, or equivalently, finitely presented A-modules, and are zero for i > d + 1. O

Lemma 4.6. For a finitely presented A := Ox 5-module M, we have a natural isomorphism

1311(1,4(]\4)\/v = EndA(Mvv).

Proof. First, we define a natural map End (M) — Enda(MYY). Note that MYV is A-reflexive due
to Lemma 3.2.2. By Corollary 3.2.5, where MYV plays the role of ¢, we get a natural isomorphism

Hom s (M, MY) <~ Enda(M"").

It suffices to consider the natural maps End (M) — Hom (M, MY") «<— Ends(M“). By Lemma 3.2.2,
the two rightmost modules are reflexive. Taking double dual yields the desired map of reflexive A-
modules.

It remains to check that the map Ends(M)¥Y — End4(M YY) is an isomorphism. The equivalence of
categories of reflexive modules in Proposition 3.2.7(ii) reduces us to checking this at € X that is either
a one-codimensional point of the generic V-fiber or a maximal point of a non-generic V-fiber, where, by
Lemma 3.1.1(iii), A is a valuation ring, so there is an N € Zs( and finitely many a; € m4\{0} such that

Consequently, we conclude by the isomorphisms End 4 (M)VY ~ Enda(A®Y) ~ Enda(MY). O

Proof of Theorem 4.1. The proof proceeds as the following steps.

Preliminary cases and reductions. First, since X is locally of finite presentation over S and M
is finitely presented over A, by a standard limit argument involving Lemmata 3.1.3 and 3.2.6, we are
reduced to the case when V is a finite-rank valuation ring. Secondly, if V' is a valuation ring of an
algebraic closure of Frac(V') that dominates V and if 2’ € X' := X xy V' is a point lying over z € X,
then My := M ®4 A’ is a finitely presented reflexive A’-module and End 4/ (My/) ~ Ends (M) ®4 A’ is
isomorphic to a direct sum of copies of M4/, where A’ := Ox/ ,» (because A’ is faithfully flat over A). By
faithfully flat descent [SP, 08XD, 00NX], the freeness of M over A is equivalent to the freeness of M/
over A’. Therefore, by replacing V by V', A by A’, and M by M., we are reduced to the case when
Frac(V) is algebraically closed (this assumption will be only used in the very end of the proof).

Set d, := dim(0x, ,) and r := rank(V). The case r = 0 and d, arbitrary is classical. The case r
arbitrary and d, = 0 is trivial, because A is a valuation ring (Lemma 3.1.1(iii)). The case r arbitrary
and d, = 1 follows from Proposition 3.2.7(i). Subsequently, we may assume d, > 2 in the sequel.
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Case 1: r is arbitrary and d, = 2. Now, we deal with the crucial case when r arbitrary and d, = 2
by induction on r. The induction hypothesis is that the assertion holds for d, = 2 and r’ < r — 1. Notice
that, for any proper generalization 2’ € X of x that lies over, say, s’ € Spec(V), by Lemma 3.1.1(iv),
we have either s’ = s and d,» < 2, or ht(s’) < r and d,» < 2. Hence, by induction hypothesis and
the preliminary cases above, the assertion holds for Ox .. Since M, is a finitely presented reflexive
Ox z-module and

Endﬁxﬁm, (ML/) = Endﬁxw (M) ®ﬁxyz ﬁX@J o~ (@ M) ®ﬁxym ﬁXJ/ = @MI/’

the induction hypothesis applies to the Ox ,-module M/, implying that M, is Ox y-free. In other
words, M is locally free over Spec A\{z}. Consider the following evaluation map

MY ®a M — Homu (M, M), fQ®m— [m'— f(m')m],
which, by the local freeness of M over Spec A\{z}, is an isomorphism over Spec A\{z}. Since dy = 2 > 1,
by Lemma 4.4, we apply E){‘c}q(—7 A) to the above map to obtain the following isomorphism
Exty (MY ® M, A) ~ Ext (End (M), A) ~ Ext}, (M, A)®km (4.6.1)

of A-modules that are supported on {z} by the local freeness of M over Spec A\{z}, where rky; =
dimpyac 4 M ®4 Frac A. By Lemma 4.5, the modules in (4.6.1) are also finitely presented over A.

For the adjunction Hom4(M,Hom (MY, —)) ~ Homa(M ® M",—), we take their derived functors
valued at A, so the Fs-page of the associated Grothendieck spectral sequence yields a monomorphism

(4.6.1)
)~

Ext! (M, M) — Ext4y(M @MY, A Ext!, (M, 4)®7

where we have used MY ~ M; again, by the local freeness of M over Spec A\{z} and Lemma 4.5, they
are finitely presented supported on {x}. In particular, the map [ from Lemma 4.3 applies so we have
I(Extl (M, M)) < tkys - I(Exth (M, A)). (4.6.2)

Since M is reflexive, by Proposition 3.2.7(i), we have proj.dim 4 M < d,—1 = 1. We prove proj.dim(M) =
0 by contradiction. If proj.dim(M) = 1, then M has a free resolution 0 — F; — Fy — M — 0 by finite
A-modules. As M is not free, the sequence is nonsplit, corresponding to a nontrivial extension class in

Extl (M, Fy) ~ Extly (M, A)rankEn),
In particular, we have C' := Ext} (M, A) # 0. Applying Hom4(—, A) to Fy — M yields an exact sequence
0—> MY — Fy — FY — Exty(M,A) - 0.
Tensoring it with M, we get an exact sequence Fy @4 M — F)Y @4 M — Ext! (M, A)®4 M — 0. Since
coker (Fy @ M — FY ® M) ~ coker (Hom 4 (Fy, M) — Hom 4 (Fy, M)) = Ext’y (M, M),
we deduce that Extl (M, M) ~ Ext!y (M, A)®4 M = C®4 M.
By tensoring 0 — Fy — Fy > M — 0 with C = EX/E;(M ,A) (which is a nonzero finitely presented
A-module supported at {z}, by the locally freeness of M over Spec A\{x}), we get an exact sequence
0— Tord (C,M) > CQaF, > CQaFy > C®s M —0
of finitely presented A-modules supported on {z}. Applying the map ! from Lemma 4.3, we obtain
(C®a M) =1(C®aFy) —I(C®a Fy) + I(Tori' (C, M) = rkys - 1(C) + I(Tori(C, M)), (4.6.3)
where rky; = rank(Fy) — rank(Fy) > 0. On the other hand, since C ® 4 M ~ Exty (M, M), we deduce
(C @ M) < v - 100). (4.6.4)
The combination of (4.6.3) and (4.6.4) leads to I(Tori (C, M)) = 0. So, we have an exact sequence
0->C®R®4F1 >CQ®aFy—>C®sM—0,
which combined with Lemma 2.8 implies that the map F; — Fj splits, that is, M is A-free, contradicting

our assumption that proj.dim 4 (M) = 1. This completes the case when r is arbitrary and d, = 2.

Case 2: r is arbitrary and d, > 2. We deduce by double induction on the pair (r = ht(s),d,). By

induction hypothesis, the assertion holds for all smooth V-scheme X’ and all points 2’ € X’ such that

ht(s") < ht(s) and d,» < d;, where s’ € Spec(V) lies below 2/, and at least one of equalities is strict. In
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particular, by Lemma 3.1.1(iv), the induction hypothesis applies to Ox , for all proper generalization
x' € X of x. Since M, is a finitely presented reflexive Ox ,,-module and

Endﬁx,m/ (MCD’) = Endﬁx,z (M)I/ = @Mm/’

the induction hypothesis gives that M, is Ox j-free. In other words, M is locally free over Spec A\{x}.

Claim 4.6.5 ([SP, 057F]). Assume that the residue field extension of V' — A is separable (e.g., this holds
if k(s) := V/my is perfect), then there exists an a € A such that A := A/(a) is essentially V-smooth and

dim(A/my A) = d, — 1.

Since our V' has algebraically closed fraction field (by the first paragraph), all of its primes have alge-
braically closed residue fields, so we can choose a € A as in the above claim. Since a is nonzerodivisor in
A and M = Homa (M, A), we see that a is M-regular. Set M := M /aM. Applying Hom (M, —) to
the short exact sequence 0 — M LM > M — 0, we get an exact sequence

0 — Hom 4 (M, M) % Hom (M, M) — Hom (M, M) — Ext’ (M, M).

Substituting our assumption Hom 4 (M, M) = M®*x into it yields an exact sequence of A-modules

0 — MO, Hom+(M,M) - T — 0,

where T' < Ext’ (M, M) is a finitely presented A-submodule (Lemma 4.5), which, by the locally freeness
of M over Spec A\{z}, is supported on {z}. Since dim(A/my A) = d, —1 > 2, taking dual (as A-modules)
of the above short exact sequence and using Lemma 4.4, we see that

(M ")®rkm ~ Hom (M, M)".
Taking dual further and invoking Lemma 4.6, we get the following isomorphism
(M )@k ~ Hom (M, M.

Since the double dual M~ is finitely presented over A and is reflexive (Lemma 3.2.2), we can apply our

induction hypothesis to theE—mO(LuIe M _and conclude that it is A-free. The same lemma also implies
that M~ is A-reflexive, so M~ M~~~ is A-free.

\a%

Finally, we show that M is A-free. Since M is locally free over Spec A\{z}, the natural map M — M
is an isomorphism over Spec A\{z}, and, since dim(A/my A) = d, — 1 > 1, we may apply Lemma 4.4 to
see that Extlz(ﬁ, A) ~ EX‘L%(MW ,A) = 0. Since a is M-regular, we deduce that

Extly (M, 4) ~ ExtL(M ®% 4, 4) ~ Ext4(M, 4) = 0.
Applying Hom 4 (M, —) to the short exact sequence 0 — A % A — A — 0 we get an exact sequence
0— MY % MY — Homy (M, A) — Extly (M, A) % Extly (M, A) — Ext! (M, A).

As all modules are finitely presented over A and Eth(M ,A) = 0, Nakayama’s lemma gives that
ExtY (M, A) = 0. Therefore, MY /aM" ~ Homy(M,A) = M is A-free (by the previous paragraph).
From this we can deduce that M is A-free. Indeed, the A-free module M /aM " has projective dimension
1 over A, thus, for any finitely presented A-module N, we can derive from

0> M5 MY — MY/aM¥ —0
an exact sequence of finitely presented A-modules
Extl (MY,N) S Exth (MY, N) — Ext% (M"Y /aM" N).

As Ext% (MY /aM",N) = 0, by Nakayama’s lemma, we have Ext} (MY, N) = 0. In particular, for any

surjection A®" — MV with, say, kernel N, the extension class of the short exact sequence 0 — N —

AP MV — 0 is zero. This implies that MY is A-free, hence so is M = M V. O
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5. GENERALITIES ON TORSORS OVER ALGEBRAIC SPACES

5.1. Setup. Throughout this section, we let S denote a base scheme, X an algebraic space over S, and
G an X-group algebraic space.

Definition 5.2.

(1) A (right) G-torsor (for the fppf topology) is an X-algebraic space P equipped with a G-action
a: P xx G — P such that the following conditions hold:

(i) the induced morphism P x x G — P xx P, (p,g) — (p,a(p,g)), is an isomorphism; and

(i) there exists a fppf covering {X; — X },es of algebraic spaces [SP, 03Y8] such that P(X;) # &
for every i € I.

(2) For G-torsors Py and Pa, a morphism P; — Py is a G-equivariant morphism P; — Ps of X-
algebraic spaces.

(3) By a trivialization of a G-torsor P we mean a G-equivariant isomorphism ¢ : G — P, where G
acts on itself via right multiplication; this amounts to the choice of a section t(1g) € P(X) (if
exists). A G-torsor P is trivial if there exists a trivialization, or, equivalently, if P(X) # (.

Note that every morphism of two G-torsors is an isomorphism. To see this, one may pass to a fppf
covering of X to reduce to the case when both torsors are trivial, in this case the assertion is trivial.

Remark 5.3. One can also define a sheaf torsor for an X-group algebraic space G. It is a sheaf
P: (Sch/s)%f’gf — Set

equipped with a map P — X of sheaves and a G-action a : P x x G — P such that the above two condi-
tions (i) and (ii) in (1) hold. However, it turns out that such a sheaf torsor is necessarily representable by
an algebraic space, so working with sheaf torsors adds no more generality. To see this, let {X; — X}ier
be a fppf covering as in (ii) that trivializes P. Then every P xx X; ~ G x x X; is an algebraic space,
and the map

L, Pxx Xi =P

is representable by algebraic spaces and is a fppf covering, because it is the base change of the fppf
covering | |, X; — X of algebraic spaces via P — X. Here, all coproducts are taken in the category of
sheaves on (Sch /S)gpe. It follows from (3) of [SP, 04S6] that P is an algebraic space, as desired.

Let Py, P2 be two G-torsors. Define a functor
Isom x (P1,P2) : (Sch/x )PP — Set
which associates to any scheme 7" over X the set of G'r-equivariant isomorphisms Py 7 — Por over T'.

Lemma 5.4. For two G-torsors Py and P, Isomy (P, Ps) is an algebraic space over S. Further,
G — X is quasi-compact (resp., étale, smooth, flat, separated, (locally) of finite type, (locally) of finite
presentation, quasi-affine, affine, or finite) if and only if Isom  (Py,Pa) — X is so.

Proof. Since Isom y (P71, P2) is fppf locally on X isomorphic to G, it admits a representable fppf covering
by algebraic spaces, hence it is an algebraic space by [SP, 04S6].

The list properties of morphisms of algebraic spaces are all stable under base changes and are fppf local on
the target, see [SP, 03KG] (resp., [SP, 03XT, 03ZF, 03MM, 03KM, 040Y, 0410, 03WM, 03WG, 03ZQ)).
Consequently, since Isom y (Py, Ps) is fppf locally on X isomorphic to G, the properties of G are inherited
by and can be detected from Isom (Pq, P2). O

Since every G-torsor P — X trivializes over a fppf covering {X; — X}, one may try to obtain P by
glueing the trivial G x,-torsors Px, using the canonical isomorphisms

¢ij : (’PXJX” =~ PXij > PXj)in, Where Xij = )(2 Xx Xj.

It turns out that, unlike the case of schemes, this is always possible in the framework of algebraic spaces,
see Lemma 5.6. Note that, by taking U := | | X;, we may assume that Py is trivial for a fppf covering
U — X with U an algebraic space.
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Definition 5.5 (Descent datum for torsors). Let S, X and G be as in 5.1. Let U — X be a fppf covering
of algebraic spaces over S. For every integer n = 0, denote by U™ the n-fold fiber product of U over X.
The category of descent datum for G-torsors relative to U — X, denoted

Tors ((U(Z) 3 U)sppt G) ,
has pairs (Q, ¢) as objects, where
e Q — U is a Gy-torsor; and

e ¢:pr¥Q — priQ is an isomorphism of Gy 2)-torsors such that the following diagram commutes
(i.e., the cocycle condition holds)

priy (¢) ~ pris(4)
pri,priQ —2— pri,priQ —— pri;priQ —=— pri;priQ

] ;

pri (9)
prizpriQ = prizprs Q.

A morphism from a pair (Q,¢) to another pair (Q’,¢’) is a morphism 6 : Q@ — Q' of Gy-torsors
compatible with ¢ and ¢', that is, pri(0)¢ = ¢'pr¥(6).

To every G-torsor P one can associate a pair U(P) := (Py,can) via base changes, where can is the
canonical isomorphism pr¥(Py) ~ Py ~ pri(Py). Thus we obtain a functor

U : Tors(Xpppt, G) — Tors(UP = Uy, G).

Lemma 5.6 (Descent G-torsors). U is an equivalence of category.

In other words, every descent datum (Q, ¢) for G-torsors are effective in the sense that there exists a
G-torsor P and an isomorphism Q ~ Py compatible with # and the canonical descent datum for Py .

Proof. The full faithfulness of ¥ follows from the sheaf property of the functor Isomy (P;,Ps) for any
G-torsors Py and Py. To show that U is essential surjective, we pick a descent datum (Q, ¢), and we
need to show that there exists a G-torsor P such that (Py,can) ~ (Q, ).

When both X and U are schemes, this is proven in [SP, 04U1]. The case of algebraic spaces can be
proved similarly, and we repeat the argument for convenience. First we view Q as a sheaf on the site
(AS/U)gppt (by the natural equivalence of the topoi associated to (AS/U)gppr and (Sch /U)gppe). Since
descent datums for sheaves on any site are always effective [SP, 04TR], we may find a sheaf P on the site
(AS/X)¢ppr and an isomorphism of sheaves Py ~ Q compatible with the descent datums. Further, since
maps of sheaves on any site can be glued [SP, 04TQ], the Gy-action on Q descent to a G-action on P.
All the assumptions (i) and (ii) of Definition 5.2 hold, because they can be checked on the fppf covering
U — X. It remains to see that P is representable by an algebraic space over X. However, this follows
from (3) of [SP, 04S6], in view of the fact that the map Q — P is representable by algebraic spaces and
is a fppf covering (being a base change of the fppf covering U — X). (]

We end this section with the following result, which will be used repeatedly in the sequel.

Lemma 5.7. Let S be a scheme, X an algebraic space over S, and G an X -group algebraic space. Let
f:Y — X be a morphism of algebraic spaces over S. Assume the following conditions hold:

(i) for every fppf covering T — X with T a scheme, the pullback functor
f7 + Tors(Tippt, Gr) — Tors((Yr)sppt, Gyr)
is fully faithful, where Ypr :=Y xx T, and fr = f xx T; and

(ii) for every Gy -torsor P, there is a fppf covering T — X with T a scheme such that Py, lies in
the essential image of fi.

Then pullback induces an equivalence f* : Tors(Xgppt, G1) —> Tors(Yepps, Gy ).

Similarly, if G — X is smooth, then we have an equivalence

f* : Tors(Xg, Gr) — Tors(Yg, Gy ),
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provided that one replaces ‘fppf’ by ‘€tale’ everywhere in the above assumptions.

Proof. We prove the Lemma for fppf torsors. It remains to check that f* is essentially surjective. Let P
be a Gy-torsor. By assumption (ii) there is a fppf covering T'— X with T a scheme and a Gp-torsor Q
such that frQ ~ Py,. Using this isomorphism we can transform the canonical descent datum on Py;,
to a descent datum

0 : pri f3Q — pr3 f7Q
on f¥Q (relative to the covering Yr — Y'). For every integer n > 0, denote by T the n-fold fiber
product of T over X. Using the canonical identifications

pr’ffika = f;mpﬂkQ and pr;fq**Q = f;@)pl“;Q
the full faithfulness of fp(2) implies that there is a unique isomorphism
7:priQ — pr; Q
of Gp2-torsors such that f7 ., (7) = 6. Since

pris(0) = pris(fre (7)) = fre pris(T)
and
priz(0) = pris(0)pris(0)
= prig (fT<2> 7)) pris (fT(2> )
= fT(3> (pr3s(7)) fT<3) (pria(7))
= fT(S> (pr33(T)pria(7))

the full faithfulness of f7, implies that pri;(7) = pris(7)pri,(7), that is, 7 is a descent datum on Q
relative to T'— X. By Lemma 5.6, there is a G-torsor R and an isomorphism (Q, ¢) ~ (Rr,can) of
descent datums. Pulling back to Y, we get an isomorphism of descent datums

(Py,.,can) ~ fA(Q,7) ~ (Ry;,can).
By Lemma 5.6 again (applied to the covering Y — Y), we see that f*(R) = Ry ~ P. O

6. PURITY FOR TORSORS AND FINITE ETALE COVERS

We begin with generalities about linear groups that will be fundamental in multiple types of purities
for reductive torsors, where the overall argument is bootstrapped from that for vector bundles. Hence,
in this process, controlling on the projective dimensions of extended reflexive sheaves leads to relative-
dimensional constraints. In particular, we obtain the purity for reductive torsors on relative curves §6.1.
We then present local variants of the acquired purity results §6.2, where the constraints on dimensions
are more flexible. By virtue of this, we shrink complements of domains of reductive torsors to a higher-
codimensional closed subset §6.3, laying the groundwork for later proofs of the Grothendieck—Serre.
Finally, by our Auslander’s flatness criterion, we present a Priiferian counterpart of the Zariski-Nagata
purity in §6.4.

6.0.1. Coaffine locally linear groups. Let X be an algebraic space. An X-group algebraic space G is
linear if there exists a group monomorphism G — GL(¥) for a locally free &x-module ¥ of finite rank;
it is fppf (vesp., étale) locally linear if there exists a fppf covering (resp., an étale covering) X’ — X such
that Gx- is linear. A locally linear X-group algebraic space G is coaffine, if it locally has an X-affine
coset GL(¥)/G. For instance, if a linear group G < GL(¥) is reductive or finite locally free, then
GL(7)/G is X-affine. In the sequel, we mainly consider locally linear coaffine X-group algebraic spaces

6.1. Purity for reductive torsors on relative curves

Now we study the extension behavior of torsors over relative curves. Motivated by [EGA TV, Proposi-
tion 21.9.4] that every invertible sheaf on a curve over a field extend across finitely many closed points,
Proposition 6.1.2 concerns relative curves over valuation rings and generalizes [Guo20, Lemma 7.3].

6.1.1. Torsors on relative curves. For a valuation ring V' with spectrum S, a V-flat finite type scheme
X with regular one-dimensional V-fibers, and a closed subscheme D < X such that

(i) D is finite locall free over V; and
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(ii) D factors through an affine open Spec R < X,

we consider the completion R = LiLnn R/I™, where I < R is the ideal determined by D. Denote
Bp := Spec R as the formal neighborhood of D and Up := Bp\D for the punctured formal neighborhood.

Proposition 6.1.2. For a valuation ring V with spectrum S, an S-flat finite type scheme X with reqular
one-dimensional S-fibers, an S-finite locally free closed subscheme D < X inside an affine open Xg < X
with complementary open j: X\D — X, then the restriction functor between the categories

Vectx — Vectx\p is essentially surjective.

In particular, for the formal neighborhood Bp = )A(D, the punctured neighborhood Up = Bp\D, we
have

H%ar(UDvGLn) = Hélt(UDvGLn) = {x}.

Proof. Every vector bundle & on X\D by Corollary 3.2.4 extends to a reflexive sheaf & on X. Hence
Proposition 3.2.7(i) implies that & is a vector bundle. Now let # be a vector bundle on Up and denote
the Henselization of the pair (Xo, D) by (BY, D) with UY := BR\D. Then [BC22, Corollary 2.1.22]
descends 7 to a vector bundle ¥® on UB. Since BY is the limit of elementary étale neighorhoods of
D < Xy, by a limiat argument, " descends to a vector bundle #’ on an S-flat finite type scheme X’
with regular one-dimesensional S-fibers and the open X'\D. Since Vecty — Vect x/\D is essentially

surjective, ¥’ extends to a vector bundle ¥ on X'. Consequently, there exists a vector bundle ¥ on Bp
extending ¥. Since (Bp, D) is a Henselian pair, by [Ces22b, Proposition 6.1.1], we have an isomorphism
Vectp,, ~ Vectp. Note that D is semilocal and affine, so ¥ is trivial, in particular, ¥ is trivial. O

Lemma 6.1.3. For a semilocal affine Priifer scheme S, an S-flat finite type algebraic space X with
reqular one-dimensional S-fibers, and its closed subset Z such that j: X\Z — X is quasi-compact and

Zy =& for each generic point ne S and codim(Zs,Xs) =1 forallse S,

the pushforward j.(—) and restriction as inverse induce an equivalence between categories of wvector
bundles

Vect x\;, — Vectx.

Proof. We simply verify the assumptions of Lemma 5.7 for G = GL,, x. For vector bundles &1 and &3,
Y = ISOIHX(gyl7 6"2)

is X-affine of finite type (Lemma 5.4), so Y (X\Z) = Y (X) by Proposition 3.2.7(ii). The same holds when
we base change to every étale X-scheme. For (ii), by taking étale atlas, we may assume that X is a scheme.
By Proposition 3.2.7(ii), every vector bundle & on X\Z extends to a reflexive &x-module j,&. To show
that the reflexive &'x-module j,& is a vector bundle, it suffices to exploit Proposition 3.2.7(i). O

Theorem 6.1.4 (c¢f. [CTS79, Théoréme 6.13]). For a semilocal affine Priifer scheme S, an S-flat finite
type algebraic space X with reqular one-dimensional S-fibers, an X -group algebraic space G that is étale-
locally linear and coaffine’, and a closed subset Z = X such that j: X\Z — X is quasi-compact and

Zy =& for each generic pointne S and codim(Zs, Xs) =1 for all se S,
restriction of torsors induces the following equivalence of categories of G-torsors
Tors(X¢;, G) — Tors((X\2)es, G).
In particular, passing to isomorphism classes of objects, we have an isomorphism

Helt(Xa G) = Hét(X\Z7 G)

Proof. We simply verify the assumptions of Lemma 5.7

2A special case is when X is an affine scheme and G is X-reductive, as explained in a footnote of the introduction.
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(i) Since the assumption on the fiber codimension still holds when we base change to every étale
scheme over X, it suffices to verify that the restriction functor

Tors(Xe;, G) — Tors((X\Z)st, G)
is fully faithful. Indeed, for any G-torsors P; and Po, by Lemma 5.4,
Y := Isom y (P1, P2)
is an X-affine algebraic space of finite type, so Y(X\Z) = Y (X) by Proposition 3.2.7(ii).

(ii) Etale locally on X, every G-torsor on X\Z extends to a G-torsor on X. To see this, we may
assume that X is affine and G < GL,, x, then exploit the commutative diagram with exact rows

(GLy,x/G)(X) H (X, G) H, (X, GLa x)

| | |

(GLn,X/G)(X\Z) - Hét(X\Z, G) — Hé}t(X\Za GLn,X)a

where the bijectivity of the left vertical arrow follows from Proposition 3.2.7(ii) and our assump-
tion GL,, x/G being affine over X. For every G-torsor P on X\Z, by Lemma 6.1.3, we may
replace X by an affine open cover to ensure that the induced GL,, x\z-torsor P xGx\z GL, x\z
is trivial. A diagram chase implies that there exists a G-torsor Q on X such that Q|x\z ~ P, as
claimed.

6.2. Local variants of purity results
The following is a variant of Theorem 6.1.4.

Theorem 6.2.1. For a finite-rank valuation ring R with spectrum (S,n), an S-flat finite type scheme X
with reqular fibers, an X -group scheme G that is étale-locally linear and coaffine, and a point x that is

(i) either x € X, with dim Ox, . =2, or
(i) x € X5 with s #n and dim Ox, , = 1,

every G-torsor over Spec Ox ;\{z} extends uniquely to a G-torsor over Spec Ox .

Proof. The argument of Theorem 6.1.4 reduces us to the case of vector bundles, namely, G = GL,.
Then the assertion (i) follows from the classical purity (see for instance, [Gab81, §1, Lemma 1]). For
(ii), by the quasi-compactness of Spec(Ox ,)\{z} and Proposition 3.2.7(ii), every vector bundle & on
Spec Ox ;. \{z}, extends to a reflexive sheaf j, (&) on Spec Ox ., which, by the assumption dim Ox,_ , =1
and Proposition 3.2.7(i), is projective, hence the assertion follows. (]

Lemma 6.2.2. For an algebraic space S with a finitely presented closed subspace Z < X and an affine
morphism of algebraic spaces f: X' — X, denote Z' := Z xx X', U := X\Z, and U' := U xx X',
consider the following Cartesian square

U x
fUi if
U AN X,
where j and j' are open immersions. If f is faithfully flat and induces an isomorphism Z ~ Z', then
(i) The restriction W : FEty — FEty X Pty FEty: is an equivalence of categories. In particular,
if FEtx. — FEty/ is essentially surjective (resp., an equivalence), then so is FEtx — FEty.

(ii) If X, X' are schemes, then for a quasi-affine, flat, finitely presented X -group scheme G, the
following base change functor is an equivalence of categories of G-torsors

Tors(Xippt, G) — Tors(X{, ., G) Xors(u: ..y Tors(Uspps, G).

fppf?

Proof.
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(i) Consider the fibered category AFF over the category of algebraic spaces such that every algebraic
space T has the fiber category AFF(T), the category of T-affine algebraic spaces. By [MBY6,
Théoréme 1.1], then base change induces the following equivalence of categories

PAFF: AFF(X) = AFF(X/) X AFF(U’) AFF(U)

Hence V is fully faithful. For the essential surjectivity, it suffices to patch finite étale covers over
U and X’ to an X-affine algebraic space, and conclude by using faithfully flat descent for finite
étale properties.

(ii) See [Ces22a, Lemma 7.1]. O

Corollary 6.2.3. For a local scheme X, the closed point x and punctured spectrum U := X\{z}, if for
the Henselization X" of X at x with punctured spectrum U",

FEtyn — FEtyn s an equivalence if and only if so is FEtxy — FEtg.

Proposition 6.2.4. Let X' — X be a flat morphism of affine schemes that are smooth over a semilocal
Priifer domain R with spectrum (S,n) such that there is a closed subscheme Z < X satisfies the following

i) codim(Zs, X5) = 1 for every s € S and codim(Z,, X,)) = 2 for the generic point n € S; and
nyAn n
(ii) X’ — X induces an isomorphism between Z and its preimage Z' == 7 x x X'.

Denote U := X\Z and U’ := U xx X'. For an affine, smooth X-group (resp., U-group) F with a
filtration
F=FyoF,>---2F,=0

by affine smooth S-normal subgroups (U-normal subgroups) such that every subquotient F;/F;1 is a
vector group on X (resp., such that F;/F; 1 is a vector group on S and is central in F/F; 1), the map

H}\(U,F) - HL(U',F)  has trivial kernel (resp., is surjective).

Proof. When F is an X-group, since X and X’ are affine, both H!(X, F) and H'(X', F) vanish. Then,
for every F-torsor P on U that becomes trivial over U’, we utilize Lemma 6.2.2 to patch trivial torsors on
X’ and U to obtain a trivial F-torsor P on X such that 75|U ~ P. Hence, P is trivial and the displayed
map has trivial kernel.

Now assume that F'is a U-group and we induct on n. When n = 1, then F' is associated to a vector bundle
F onU. Let j: U — X denote the open immersion, then for j..# we apply [GR18, Lemma 10.4.17 (iii)]
to deduce that RTz(X, j4.%) ~ Rl z/(X', j«.%). Consequently, we have H* (U, F) — H!(U’, F'). When
n > 1, we invoke the nonabelian cohomology sequences [Gir71, Chapitre IV, Remarque 4.2.10] for a
central extension to acquire the following commutative diagram with exact rows

HYU,F,_,) —— HYU,F) —— HYU,F/Fn_1) —— H*(U, F,_,)
HY\U',Fo_y) —— HYU',F) —— HYU',F/F,_,) —— H2(U',F,_,)

by a diagram chase up to twist technique [Gir71, Chapitre III, Proposition 2.6.1(i)], we conclude. O

Theorem 6.2.5. For a semilocal Priifer domain R with spectrum S and generic point n, an S-smooth
algebraic space X, and a point x € X that is not any mazimal point of S-fibers of X such that dim Ox , >
2, then pullback induces an equivalence of categories of finite étale covers

FEtspec 0., — FEtgpec oy . \(}-
Further, for a gc open immersion j: U — X such that every z € X\U satisfies the condition for x,

FEty — FEty s essentially surjective.

Proof. If x ¢ X,, and dim Ox_, = 1, then the assertion is due to Theorem 6.1.4. The remained case

is proved below. To show that FEty — FEty is essentially surjective, let f: U — U be a finite étale

cover and we use Noetherian induction to reduce to showing that the finite étale cover f extends to an

open subset of U strictly containing U. Pick a maximal point of X\U so U® := U xx SpecOx , =
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Spec Ox ,\{z}. Restricting f over U° to f°: Ue — U°, the equivalence FEtspec Ox.0 = FEtSpeC Ox 2 \{x}
yields a finite étale cover W — U. A spreading out [SP, 0BQ5, 0EY3] provides an open neighborhood
z € U' o U with a finite étale cover W/ — U’ extending U — U, as desired. d

Remark 6.2.6. Let S be a semilocal affine geometrically unibranched scheme with total ring of fractions
K. For an étale locally constant group scheme E over S of finite type’, the map HZ (S, E) — H} (K, E)
has trivial kernel. Let T be an E-torsor that trivializes over K. This signifies that T(K) # . Since
S is geometrically unibranched, by [SGA 3;;, Exposé X, Théoréme 5.16] (the Noetherian assumption is
removable), E is isotrivial, so there is a finite étale covering S’ — S with total ring of fractions K’ such
that Eg is a constant group in finite type abelian group. Therefore, we have the commuative diagram

T(S) —— T(S') —— T(S' x §')

| H H

T(K) — T(K') == T(K' x K')

so descent yields the equality 7(S) = T(K). (If S is the spectrum of a Priifer domain and E is S-finite,
then this is simplier by valuative criterion for properness) In particular, we have T(S) # ¢ so T is
trivial.

Remark 6.2.7. For a valuation ring V with fraction field K, every reductive K-group scheme G has
at most one reductive V-model. To see this, we let G be a reductive V-model of G and consider the
commutative diagram with exact rows

HE, (V, Out(G))
fo
Hg, (K, Out(g))

Hy, (V,G) He (V, Aut(G)) Hg, (V. Out(G))

| ‘| |

HG, (K, G*) Hi, (K, Aut(G)) Hj, (K, Out(G)).

The map f; is injective by [Guo20]. By diagram chase, f has trivial kernel, so we are done.
6.3. Extending generically trivial torsors

Granted the purity Theorem 6.2.1, we extend reductive torsors outside a closed subset of higher codi-
mension.

Proposition 6.3.1. For a semilocal affine Priifer scheme S, an S-flat finite type scheme X with reqular
S-fibers, a closed subset Z < X such that X\Z c X is quasi-compact and satisfies the following condition

codim(Z,, X,) =2 for each generic pointne S and codim(Zs,X,)>1 forallse S,
and a reductive X -group scheme G, there is a closed subset Z' = Z satisfying the following condition

codim(Z;,XT,) >3 for each generic pointn€ S and codim(Z., Xs) =2 forallse S,
such that every G-torsor on X\Z extends to a G-torsor on X\Z'.

Proof. Write R = colimyep Ry as in Lemma 3.1.3. By a standard limit argument ([SP, 0EY1, 0C0C]),
for large enough A € A, the scheme X, the open X\Z < X, and the reductive X-group scheme G descend
to a quasi-compact quasi-separated Ry-smooth scheme X, a quasi-compact open (X\Z), < X, and a
reductive X -group scheme G, respectively. Also, up to enlarging A, the G-torsor over X\Z in question
descends to a Gz-torsor over (X\Z)y. By Lemma 3.2.6 that descends the fiberwise codimension of Z,
we are reduced to the case when all local rings of R are valuation rings of finite ranks.

Let Px\z be a G-torsor over X\Z. Since S has finitely many points and each fiber X is Noetherian,
there are finitely many points x € Z satisfying one of the assumptions (i)-(ii) of Theorem 6.2.1; among
these points we pick a maximal one under the generalization, say x. The maximality of z implies that
(X\Z) nSpec(Ox ) = Spec(Ox )\{x}, so, by Theorem 6.2.1, the G-torsor Px\ z|x\zAspec(ox ) €Xtends
to a G-torsor P, over Spec(Ox ;). As X is topologically Noetherian, we may spread out P, to obtain a
G-torsor Py, over an open neighbourhood U, of x such that Px\z|(x\z)~v, =~ Pv. |(x\z)~v, as G-torsors
over (X\Z) nU,. Consequently, we may glue Px\z and Py, to obtain a G-torsor over U := (X\Z) v U,.

3This means that after a finite étale covering, the constant group is a finite type abelian group, see [SGA 31, X, 5.1]
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Since Z; := X\U; contains strictly fewer points z satisfying the assumptions (i) or (ii) of Theorem 6.2.1,
we extend P iteratively to find the desired closed subset Z" = X such that Px\» extends over X\Z'. 0O

Corollary 6.3.2. For a semilocal Priifer affine scheme S, an S-flat finite type scheme X with regular
S-fibers, finitely many points € < X contained in an affine open, a nonzero element r € Ox x, and a
reductive X -group scheme G, every generically trivial G-torsor over ﬁx’z[%] extends to a G-torsor over
an open neighbourhood U of Spec(Ox 5[ 1]) whose complementary closed Z := X\U satisfies the following

codim(Z,, X)) = 3 for each generic pointne S and codim(Zs, Xs) =2 forallse S.

Proof. Asin the proof of Proposition 6.3.1, we may assume that S has finite Krull dimension; in particular,
X is topologically Noetherian. Let P be a generically trivial G-torsor over & X,x[%]. By spreading out, P
extends to a G-torsor Py over U := Spec R[}] for a subring R < Ox x. It remains to extend U and Py
to ensure that Z := X\U satisfies the assumptions of Proposition 6.3.1. Let z € Z be such that either

(i) z € X, and dim Ox . = 1, in which case Spec(Ox ) n U is a maximal point of X, or

(i) z is a maximal point of X with s # 7, in which case Spec(Ox .), and hence also Spec(Ox ) N U,
is the spectrum of a valuation ring (Lemma 3.1.1(iii)).

By the Grothendieck-Serre over valuation rings [Guo20], the generically trivial G-torsor Py|spec(ox .)nU
is trivial. Thus, as in the proof of Proposition 6.3.1, we can glue Py with the trivial G-torsor over a
small enough open neighbourhood of z to extend Py across such a point z € Z. Note that Z contains
finitely many points z satisfying the above assumption (i) or (ii). Therefore, iteratively extend U and
Pu, we may assume that Z does not contain any point z satisfying (i) or (ii), when Proposition 6.3.1
applies. [l

6.4. Purity for finite locally free torsors and the Zariski-INagata

With the purity for reflexive sheaves and Auslander’s flatness criterion Theorem 4.1 in hand, we obtain
the purity theorem for finite locally free torsors and establish our non-Noetherian Zariski—-Nagata.

Theorem 6.4.1 (Purity for finite locally free groups).

(i) For a semilocal affine Priifer scheme S, an S-smooth algebraic space X, an X-finite locally free
group algebraic space G, and a closed subset Z < X such that j: X\Z — X is quasi-compact and

codim(Z,, X,) =2 for each generic point ne S and codim(Z,, Xs) =1 forallse S,
the restriction functor induces the following equivalence of categories of G-torsors.
Tors(Xeppt, G) — Tors((X\2)ppt, G)-
In particular, passing to isomorphism classes of objects, we have the following isomorphism
Hflppf(X? G) ~ Hflppf(X\Za G).
(ii) For a finite-rank valuation ring R with spectrum S, an S-smooth scheme X, an X -finite locally

free group scheme G, and a point x € X that is not a mazimal point of S-fibers of X such that
dim Ox = 2, the restriction functor induces the following equivalence of category of G-torsors

Tors((Spec Ox 4 )tppt; G) — Tors((Spec Ox ,\{x})tppt, G).
In particular, passing to isomorphism classes of objects, we have the following isomorphism

Hflppf(Spec Ox 4, G) ~ Hflppf(Spec Ox :\{z},G).

Proof. (i) We simply verify the assumptions of Lemma 5.7. By considering the space Isom y of isomor-
phisms of two torsors (see Lemma 5.4), we deduce from Proposition 3.2.7(ii) that the restriction functor
is fully faithful. The same holds when we base change to every étale X-scheme over S.

Next, we show that, étale locally on X, any G-torsor on X\Z extends to a G-torsor over X. For this, we
may assume that X is an affine scheme and S is the spectrum of a valuation ring. By a standard limit
argument involving Lemma 3.1.3, we reduce to the case when S has finite Krull dimension. Since every
R-fiber of X is Noetherian and S has finitely many points, X is topologically Noetherian.
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Let P be a G'x\z-torsor. Then j,Op by Proposition 3.2.7(iv) is a reflexive &'x-module. First, we prove
the Ox-flatness of j.Op. Since X is topologically Noetherian, we use Noetherian induction to reduce
to the case when X is local and essentially smooth over R and Z = {z} is its closed point. Then, our
Auslander’s flatness criterion Theorem 4.1 reduces us to showing that the following is an isomorphism

Home, (jxOp.jxOp) ~ (jxOp)®", where r = ranke, Og.
Note that in such local case, we have Og ~ ﬁ§r7 consider the following map of reflexive &'x-modules

. . . . j . (f,id) .

Homey (Og,j+«Op) — Homey (j«Op,jxOp), [ — (J*ﬁp P2y Oc @y juOp ~> j*ﬁp)-
This is an isomorphism: by Proposition 3.2.7(ii), it suffices to argue over X\Z, then its explicit inverse
is

id®1

id)~!
g— (ﬁcx\z I ﬁcx\z ®ﬁx\z ﬁp u’

(g.id)
ﬁp@ﬁx\z ﬁP L > P).

Then, we prove that the G-torsor structure of P extends uniquely to that of Spec, (j«Op). As G is finite
locally free, by projection formula [SP, 01ES8], taking j, of the co-action p : Op — j*Oq ®oy, Op yields
Jxp:  JxOp — Oc Qo jxOp.

To check that j.p is a co-action, we verify the associativity, the commutativity of the following diagram

Jx(p)

J«Op Oc ®ox jxOp
lj* (p) lid®j* (p)

. id ‘
Oc Qe j»Op LT ®e6x Oc Q6 j+0p,

where pg : Og — Og ®e, Oc is the co-multiplication of G. Since all sheaves involved are Ox-reflexive,
the commutativity over X\Z by Proposition 3.2.7(ii) extends over X. Finally, the following map

(Jxp, 1®id):  juOp oy jxOp — Oc oy jxOp,

by the Ox-flatness of j,Op and Proposition 3.2.7(ii), is an isomorphism since so is its restriction on
X\Z.

(ii) This can be proved similarly. For instance, for the essential surjectivity of the restriction functor,
the finite rank assumption on V' guarantees j : Spec Ox ,\{z} — Spec Ox , to be quasi-compact quasi-
separated, and so j.Op is a reflexive Ox ,-module (by Proposition 3.2.7(ii)) for any G-torsor P over
Spec Ox ;\{z}. Then one uses Auslander’s flatness criterion Theorem 4.1 to show that j,. Op is Ox ,-free
and inherits the G-torsor structure on P, giving the desired extension of P to Spec Ox 5. (|

Theorem 6.4.2 (Zariski-Nagata: purity for finite étale covers).

(i) For a semilocal affine Priifer scheme S, an S-smooth algebraic space X, and a closed subset
7Z < X such that X\Z — X is quasi-compact and satisfies the following condition

codim(Z,, X,) =2 for each generic point ne S and codim(Z,, X5) =1 forallse S,
the pullback functor induces the following equivalence between categories of finite étale covers
FEtx — FEty\ 2.

In particular, for every geometric point T: SpecQ — X\Z with a separably closed field Q, the
map

T X\Z,Z) — 7$(X,T) is an isomorphism.

(ii) For a finite-rank valuation ring R with spectrum S and generic point n € S, an S-smooth scheme
X, and a point which is either x € X, with dim Ox, . = 2, or x € X, with s # n and dim Ox_ , =
1, the pullback functor induces the following equivalence of categories of finite étale covers

FEtSpec Ox .,z — FEtSpec Ox \{z}*
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Proof. (i) Full faithfulness. For two finite étale covers m; : X; — X, i = 1,2, consider the X-functor
Y := Hom y (X1, X5)

that parameterizes X-morphisms from X; to Xy; it is a subfunctor of Hom y (72 +Ox,,m1 +Ox,) con-
sisting of sections compatible with algebraic structures of m2 . Ox, and 71 xOx,, which amount to the
commutativity of a certain diagram of &x-modules. So Y < Homy (72 +Ox,, 71 xOx, ) is a closed sub-
functor Zariski-locally. Hence, Y is an algebraic space finite over X. (Using the infinitesimal criterion
for formal smoothness, one can check that ¥ — X is even finite étale, but we will not need this.) By
Proposition 3.2.7(ii), we have Y (X) ~ Y (X\Z), thereby proving the full faithfulness.

Essential surjectivity. Let V' — X\Z be a finite étale cover. We need to show that it extends to a finite
étale cover of X. By the full faithfulness, we may use glueing in the étale topology to reduce to the case
that X is an affine scheme. By the S-smoothness of X, X and also V' is normal, so, by breaking X and V'
into connected components, we may assume that both X and V are integral schemes. Let Vo X \Z be
a connected finite étale Galois cover dominating V — X\Z, say with Galois group G := Gal(V /(X \Z2).
Let H := Gal(V/V)  G. By Theorem 6.4.1(i), the G-Galois cover V — X\Z extends (uniquely) to a G-
Galois cover W — X. By Grothendieck-Galois correspondence, the subcover f/IV//H — X corresponding
to the subgroup H < G is a finite étale cover that extends V — X\Z.

(ii) This is proved in the same way as (i), using Theorem 6.4.1(ii) in place of Theorem 6.4.1(i). O

7. GEOMETRIC LEMMATA FOR THE GROTHENDIECK—SERRE
7.1. Geometric presentation lemma over Priifer bases

In both of the works of Fedorov and Cesnavi¢ius on mixed charateristic Grothendieck—Serre, a certain
type geometric results in the style of Gabber-Quillen play a prominent role, see [Fed22b, Proposition 3.18]
and [CesQQa, Variant 3.7], respectively. This is also true in our context, and we begin with an analog of
[Ces22a, Variant 3.7].

Lemma 7.1.1. Let R be a semilocal Prifer ring, X a projective, flat R-scheme with fibers of pure
dimension d > 0, Ox (1) a R-ample line bundle on X, W < X an open, x ¢ W finitely many points,
and Y < X a closed subscheme that is R-fiberwise of codimension > 0. Upon replacing Ox (1) by any
large power, there exists nonzero

hoeT(X,0x (1)), hi e (X, Ox(w1)), -+, hae1 € (X, Ox(wg—1)) with wy, - ,wg—1 >0,
such that

(i) the hypersurface Hy := V (ho) € X is disjoint from x;

(ii) the hypersurfaces H; ==V (h;) € X satisfyY n Hon---n Hyg_1 = J;

(iii) in the following commutative diagram with vertical maps determined by the ho, -+ ,hq_1:
X\Hy — X\(Hpn-nHy 1) —— X :=Blx(ho, ,ha_1)
| | |-
AdR_l —— Pr(l,wq, - ,wg—1) === Pr(1,wr, - ,wq_1),
the map m is smooth of relative dimension 1 at x;
) we have Y n Hy n 7 Y(7(z)) = &;
) if YAX®™ is R-fiberwise of codimension > 2 in X, then w is smooth at Y n 7 ' (n(x));
(vi) if Y\W is R-fiberwise of codimension > 2 in X, then (Y\W) n7 (r(z)) = &;
) if YA\W is R-fiberwise of codimension = 2 in X, then there are affine opens
ScAYt and zcUcWnr }(S)c X\Hp
such that m: U — S is smooth of relative dimension 1 andY nU =Y n 7= (S) is S-finite.

Proof. This can be proved similarly as [Ces22a, Variant 3.7]. O
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7.2. A variant of Lindel’s lemma

According to a lemma of Lindel [Lin81, Proposition 1 et seq Lemma], an étale extension of local rings
A — B with trivial extension of residue fields automatically induces isomorphisms

A/r"A —> B/r"B, where n>1,

for a well-chosen non-unit r € A. In our context in which the prescribed B is essentially smooth over a
valuation ring, we will prove the following variant of loc. cit. by allowing to fix the r € B in advance, at
the cost of that A is a carefully-chosen local ring of an affine space over that valuation ring. This result
will be the key geometric input for dealing with torsors under a reductive group scheme that descends to
the Priifer base ring, and, as the cited work of Lindel on the Bass—Quillen conjecture for vector bundles,
it reduces us to studying torsors on opens of affine spaces.

Proposition 7.2.1. Let A be a semilocal Priifer domain, X an irreducible, A-smooth affine scheme of
pure relative dimension d > 0, Y < X a finitely presented closed subscheme that avoids all the mazimal
points of the A-fibers of X, and x < X a finite subset. Assume that for every maximal ideal m < A with
finite residue field, there are at most max(# x(m),d) — 1 points of  lying over m. There are an affine
open neighbourhood W < X of @, an affine open subscheme U Aﬁl\, and an étale surjective A-morphism
f W — U such that the restriction flw~y : WY — U is a closed immersion and [ induces a
Cartesian square:

WnY «—— W

H |

WnY —— U.

Moreover, if Y is a Cartier divisor on X, then W n'Y is a Cartier divisor on U.

Remark 7.2.2. The assumption on the cardinality of x holds, for instance, either if x is a singleton or
if d > #x. The latter will be critical to settle the general semilocal case of Theorem 12.1. On the other
hand, the following finite field obstruction shows a certain assumption on #x is necessary: if d = 1 and
A = k is a finite field, then the map f delivered from Proposition 7.2.1 gives a closed immersion x < A},
which is impossible as soon as #x > # k.

To prove Proposition 7.2.1 we begin with the following reduction:

Lemma 7.2.3. The proof of Proposition 7.2.1 reduces to the case when x consists of closed points of the
closed A-fibers of X.

Proof. As an initial step, by a standard limit argument involving Lemma 3.1.3, we can reduce to the
case when Spec(A) has a finite underlying space (which we will assume from now on).

If for each = € x the closure {z} contains a closed point z’ of the closed A-fibers of X and if the new
collection {2’ : x € x} satisfies the same cardinality assumption on x, we can simply replace each = by
2’ to complete the reduction process. However, it may happen that m does not contain any point of
the closed A-fibers of X, and even if it does, the new collection {z’ : x € x} may destroy the cardinality
assumption on x. To overcome this difficulty, we will use a trick by adding auxiliary primes to Spec(A)
(and adding the corresponding fibers to X and Y') so that m contains closed points of the closed A-fibers
of X for all x € x. More precisely, we will show that there are a semilocal Priifer domain A’, an open
embedding Spec(A) < Spec(A’), an irreducible, affine, A’-smooth scheme X’ of pure relative dimension
d, a closed A’-subscheme Y’ < X’ that avoids all the maximal points of the A’-fibers of X', and a
A-isomorphism X} ~ X that identifies Y with ¥ such that the assumptions of the first sentence of this
paragraph hold for our new X’ and Y.

To construct the desired A’ (and X’,Y”), we can first use the specialization technique to reduce to the
case when all points of x are closed in the corresponding A-fibers of X, that is, if x € x lies over p < A,
then x is k(p)-finite. For the rest of proof we will assume, without lose of generality, that there is exactly
one point of x, say x, that lies over some non-mazimal prime of A, say p. Write A, = |J A as a filtered
union of its finitely generated Z-subalgebras A. By a standard limit argument ([SP, OEY1, 0C0C]), for
large enough A,

a) X, descends to an irreducible, affine, A-smooth scheme X of pure relative dimension d;
p
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(b) the finitely presented closed subscheme Y;, < X, descends to a closed A-subscheme ) < X
which, upon enlarging A, avoids all the maximal points of the A-fibers of X: by [EGA TVj,
Proposition 9.2.6.1],

the subset {s € Spec(4 : dim ) = d} < Spec(A is constructible,

and its pullback to Spec(A,) = lima Spec(A is empty, hence after enlarging A we can assume
that it is already empty;

(c) the x(p)-finite point = descends to a A/pa-finite closed subscheme & < X4/, ,, where pa := Anp;
For any prime A © q D p with ht(q) = ht(p) + 1, choose an element a4 € q\p. We assume that

d) a;! e A for all such q. (This guarantees the equality A - A, = A, for every maximal ideal m < A
q q p
containing p.)

Since a maximal ideal m < A containing p gives rise to a non-trivial valuation ring Ay /pAn of k(p), the
field k(p) is not finite. As k(p) = J4 A/pa, by enlarging A we may assume that A/p 4 is also not a finite
field, and therefore we can find a nonzero prime p’ < A/p4. (We have used the following fact: for a finite
type Z-algebra, a prime ideal is maximal if and only if its residue field is finite.) Choose a valuation
ring of k(pa) with center p’ in A/p4, and then extend it to a valuation ring Vi of k(p). Let V be the
composite of A, and V,; explicitly, V' is the preimage of V}, under the reduction map A, — x(p). Then
V is a valuation ring of Frac(A), and, by the above assumption (d), the equality V - Ay, = A, holds for
any maximal ideal m — A containing p. Therefore, by [BouAC, VI, §7, Proposition 1-2],

N:=AnV

is a semilocal Priifer domain whose spectrum is obtained by glueing Spec(A) with Spec(V') along their
common open Spec(A,). Consequently, we may glue X with Xy along Xj, to extend X to an irreducible,
affine, A’-smooth scheme X’ of pure relative dimension d, with a closed A’-subscheme Y’ < X’ obtained
by glueing Y with Yy along Yj,; by construction, Y’ avoids all the maximal points of the A’-fibers of
X'. Since the closed subscheme 7y < Xy is V-finite, we may specialize x to a point of Ty, < X’ that lies
over the closed point of Spec(V'). Hence, by replacing A by A’, X by X’ and Y by Y’ we can reduce to
the already treated case when all points of x specialize to closed points of the closed A-fibers of X. O

Henceforth, we may assume that x consists of closed points of the closed A-fibers of X. Then, since the
relative dimension of X /A is d > 0, the closed subset x| JY does not contain any maximal points of the
R-fibers of X, and so, by prime avoidance, there is an a € I'(X, Ox) such that a vanishes on x| Y but
does not vanish at any maximal points of A-fibers of X. Since for the proof of Proposition 7.2.1 we are
free to enlarge Y to a closed subscheme of X that still avoids all the maximal points of the A-fibers of
X, by replacing Y by V(a) X, we reduce to the case

e x consists of closed points of the closed A-fibers of X, and
e x Y =V(a) for some a € T'(X, Ox).
For the rest of the proof we will assume this throughout.

Lemma 7.2.4. For a field k, an affine k-variety X, a closed subscheme Y < X of pure dimension
e >0, a finite subset of closed points € <Y n X¥, and an arbitrary element (t(x)) € [ [, o, k(x), there
is a morphism h : X — Al that is smooth at T such that h|y has fiber dimension e — 1 and such that
h(zx) = t(z) for every x € x.

Proof. Choose a finite subset of closed points y < Y that is disjoint from x and that contains precisely 1
point of every irreducible component of Y. For every integer n > 0 denote by x(™) (resp., y(™) the nt®
infinitesimal neighbourhood of x (resp., y) in X. Let hy € HO(x("), &, 1)) be such that

hy(z) = t(x) and dhy(z) #0€m,/m2 for every z€x. (7.2.1)

By prime avoidance, there exists a hy € H°(X, Ox) whose restriction to every irreducible component of
Yied is not identically zero. By the faithfully flatness of

= : 0 n
ﬁYx-emy = H ﬁYx-ed,y - H ﬁyx'edvy = hTanH (y( ) N Ked7 ﬁy(n)mymd)?
yey yey
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we see that for large enough n, the restriction of hy to every component of y(™ A Yieq is nonzero. Let
he HY(X, Ox) be any element whose restriction to x( is hy and whose restriction to y(™ is congruent
to hy for large n. Since X is smooth at x, (7.2.1) implies that the morphism h : X — A} (obtained
by sending the standard coordinate of A} to h) is smooth at x and h(z) = t(z) for every x € x. Since
the restriction of h to every irreducible component of y(™) A Y;oq and hence also to Y;eq is nonzero, the
morphism A is non-constant on every irreducible component of Y, so h|y has fiber dimension e — 1. [

Lemma 7.2.5. There exists a A-morphism g: X — A?jl such that
(i) it smooth of relative dimension 1 at x;
(ii) the restriction gly is quasi-finite at x; and
(iii) for x € x lying over m, one has k(m) = k(g(x)).

In addition, if d > #(x N X)) for every mazimal ideal m < A with finite residue field, then we may
find such a g under which all points of x have pairwise distinct images.

Proof. We first reduce the lemma to the case when A = k is a field. Assume that for every maximal
ideal m < A there exists a s(m)-morphism gy : Xym) — Aia) that is smooth at x N X, () such that

the restriction guly, .., is quasi-finite at x N X, (). We then use Chinese remainder theorem to lift the

(m)
maps {gm }m simultaneously to obtain a A-morphism g : X — Ai‘l which would verify the first assertion
of the lemma: only the flatness of g at x need to be checked, but this follows from the fibral criterion
of flatness [EGA 1V3, Théoreme 11.3.10]. In addition, if all points of x N X, () have pairwise distinct

images under gy, then the resulting morphism ¢ verifies the second assertion of the lemma.

In case A = k being a field, our assumptions become that X is a k-smooth affine variety of pure dimension
d>0and Y = V(a) is a closed k-subvariety of pure codimension 1 that contains x, and, for the second
assertion, our assumption becomes that d > # x.

For a collection of maps t1, -+ ,t4—1 : x — k, taking products yields maps (t1,-- ,t;) : x — Al (k) = k°
for 1 <i<d—1. We now apply Lemma 7.2.4 inductively to show:

Claim 7.2.1. For 1 <i < d — 1, there exists a k-morphism g; : X — Al such that
e g; is smooth at x with ¢;|x = (t1, -+ ,¢;); and

e every irreducible component of g;|y" (gi(x)) intersecting x has dimension d — 1 — i.

Proof of the claim. Assume the morphism g;_; has been constructed. We apply Lemma 7.2.4, with k
being the ring k' of global sections of g;_1(x) here, X being gi__l1 (gi—1(x)) here, Y being the union Y’
of all the irreducible components of g;_1|y"(gi—1(x)) meeting x here, and ¢ being #;|x, to obtain a k'
morphism % : g; ! (gi—1(x)) — A} that is smooth at x such that h|y~ has fiber dimension d — 1 — 4 and

such that h|x = t;|gs, where ¢;]3 : x i, k= k. Tt remains to take gi = (gi,l,iNL) X > Al = Az_l X A
for any lifting h € H°(X, Ox) of

heH° <g;_11(g¢71(X)>7 ﬁgi_,ll(gi—l(x))) ’
(]

Starting from a map (t1,--- ,tq_1) : x — k%71 the map g := g4_1 of the Claim 7.2.1 immediately settles
the first assertion of the lemma. For the second assertion, it suffices to note that, under the stated
assumption, there always exists an injection x < k%~!: for an infinite field k, k%~! is infinite, and, for a
finite field k, # k41 >d — 1. O

Consider the map (g,a) : X — Afl\ = Af\*l XA A}\. By construction, it is quasi-finite at x, and,
by the openness of the quasi-finite locus of a finite type morphism, we may shrinking X if needed
to assume that it is already quasi-finite; since the generic A-fibers of its domain and codomain are
irreducible varieties of the same dimension d, it is also dominant. Consequently, by Zariski’s main
theorem [EGA TV, Corollaire 18.12.13], (g, a) factors as

i <~ h
XL X2 AL
28



where X is an integral affine scheme, j is an open immersion, and h; is finite, dominant. (Unless A is
a DVR, I'(X, O) is, in general, only a finite type A-subalgebra of the integral closure of Afty,- -+ ,t4]
in the function field of X.) Denote g := pr; o hq, where pry : A — Aji(l is the projection onto the first
(d — 1)-coordinates, and let @ € I'(X, O5) be the pullback of the last standard coordinate of A. Then
h1 = (g,a), and g (resp., @) restricts to g (resp., a) on X. In what follows, we shall identify the points
of j(x) with the corresponding points of x via j.

Write S < Spec A for the union of the closed points of Spec A (with the reduced structure).
Lemma 7.2.6. There exists an element b € I'(X, O) such that the morphism
hy = (g,b) : X — A% = AT x, A}
has the following properties:
(i) set-theoretically we have hy*(hi(x)) N hy ' (he(x)) = 2;
(ii) hg is étale around x and induces a bijection  — ha(x); and

(iii) he induces an isomorphism of residue fields k(ho(x)) = K(x) for every x € x.

Proof. Since h; is finite, surjective, g~!(g(x)) is an S-curve that contains g~'(g(x)) as an open subcurve,
so it is S-smooth around x. For a point x € x lying over a maximal ideal m < A, its first infinitesimal
neighbourhood in §~* (g(x)) is isomorphic to Spec(k(z)[u.]/(u2)), where u, is an uniformizer of g~*(g(x))
at x. Recall the fact that the residue field of a point on a smooth curve over a field is a simple extension
of that field, see [Ces22a, Lemma 6.3]. It follows that, for x € x lying over m, there exists a closed
#(m)-immersion z(1) « AL () = Ay, For a maximal ideal m = A with finite residue field, under our
assumption that #(x N X, (m)) < max(# x(m), d), either x contains at most # x(m) — 1 points lying over
m or the fiber of g, () contains at most 1 point of x (Lemma 7.2.5). Consequently, we may arrange the
above immersions so that they jointly give a closed immersion over Ai*%

|_| M < A;(x) c A}%i,l = A4, (7.2.1)

TEX
where we regard g(x) < Aiﬁl as a closed subscheme. Note that the complement of the image of
the morphism (7.2.1) in A¢ has at least 1 rational point Aiﬁl—ﬁberwisely. Thus, by sending any y €

(R (h1(x))\X) to a suitable rational point of A;(y), we may further extend (7.2.1) to a A%~ *-morphism

u: Z = (I_lxex .’L‘(1)> I_I (Uyehl_l(hl(x))\x y) - A%
such that u(x) nu(hy'(h1(x))\x) = &, or, what amounts to the same,
it (hy(x)) nut(u(x)) = x. (7.2.2)

As Z is a closed subscheme of the affine scheme X, we can lift u*(t) € I'(Z, 0z) to obtain an element
be I'(X, Ox), where t is the standard coordinate on A} .

Consider the morphism hy = (g,b) : X — A% = AT! x, A}. Viewing X as a A} '-scheme via g, the
base change of hs to g(x) c Aji\_l restricts to w on Z, so hs is unramified at x. Now (i) follows from
(7.2.2), (iii) is a consequence of our choice of the morphism (7.2.1). For (ii), it suffices to argue that ho
is flat at x; however, since the domain and the codomain of ho are A-flat of finite presentation, the fibral
criterion of flatness [EGA TV, Théoréme 11.3.10] reduces us to checking the flatness of the A-fibers of
hg at x, while the latter follows from the flatness criterion [EGA IV, Proposition 6.1.5]. O

Let A[h¥(t1),- -+ ,h¥(ta—1),a,b] = T'(X, O%) be the A-subalgebra generated by a, b and h (t;)(= hi(t;) =

g*(t;)) for 1 <i < d— 1. We introduce the following notations.

e Let V := Spec(A[h¥(t1), - ,h¥(ta—1),a,b]), and let h3 : X — V be the morphism induced by
the inclusion A[h¥(t1),- -+, h¥(ta—1),a,b] < T(X, O%).

e Let v1 : V — A4 be the map such that v} (t;) = hi(t;) for 1 <i <d—1and v¥(tq) = a.
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e Let v2 : V. — A¢ be the map such that v3(t;) = h¥(t;) for 1 <i < d—1 and v}(t4) = b. Note
that there is a natural surjection

A[hik(tl)v U )hT(td—l)v b] - A[hik(tl)’ T 7h>1k(td—1)’ a, b]/(a) = F(Vv ﬁv)/(a);
this implies that vy induces a closed immersion

Ty : Spec(T(V, Oy)/(a)) — V 22> A4,

We have the following commutative diagram of morphisms of affine schemes:

X J X ho
I
ha vV —= AG .
5
A

Lemma 7.2.7. The map hs induces a bijection x ~> ha(x) with hy ' (h3(z)) = x. Further, hy induces
an isomorphism of semilocal rings
Ovihs@) =~ 0% 45 = OX 0

Proof. By Lemma 7.2.6(ii)-(iii), we see that hg induces a bijection x — h3(x) and an isomorphism of
residue fields x(hs(z)) — r(z) for every x € x. Chasing the above diagram we see that
hy' (hs(x)) < by (h(x)) 0 by (he(x)) = x,
where the last equality is Lemma 7.2.6(i). As hs is finite, surjective, we see that hy'(h3(x)) = x. By
Lemma 7.2.6(ii), h3 is unramified at x. It follows that the base change of h3 to Spec Oy, (x) is
Spec ﬁ?,x — Spec Oy h,(x)

and it is actually an isomorphism: letting J be the Jacobson radical of the semilocal ring Oy j, (%), since
the natural map

h¥
[ [5(hs(2)) = Ovpy /T =5 Ox4/TO% 5 = | | ()

TEX TEX

is an isomorphism (in particular, surjective), an application of Nakayama lemma shows

h; N ﬁV,hg(x) ~ ﬁ?,x = ﬁX,x- |:|

End of the proof of Proposition 7.2.1. Define f := hgoj: X — Ajlv which we may assume to be étale
upon replacing X by an affine open neighbourhood of x. By Lemma 7.2.7, there exists an affine open
neighbourhood Wy, = V' of hz(x) such that Wy := h3 ' (W) < j(X) and hslw, : Wo = W;. We shall
identify Wy as an open subscheme of X via j. As noted above, vy induces a closed immersion

Ty : Y’ := Spec(I(V, Oy)/(a)) — AS.

In particular, the topology of Y is induced from that of Aj{ via U3. Note also that, since a vanishes on x,
hs(x) = Y’ < V. Consequently, there exists an affine open neighbourhood U = A4 of f(x) = va(hs(x))
such that T, ' (U) = W{. Therefore, f induces a closed immersion of affine schemes

Yy = fHU) Y = (h30 ) vz (U) nY') = (h3 0 j) ' (T3 (U)) ~ 55 (U) = U.
Since f is separated and étale, any section of f x Al f Yy, such as the one induced by the inclusion
Yy < X, is an inclusion of a clopen, so

X Xpa Yy =Y, uYs with Vi 5 Y.

Let W < f~}(U) be an affine open whose preimage in X Xad f Yy is Yi. Then flw : W — U is an étale
morphism such that flw~y : WnY < U is a closed immersion and such that W xy ¢ (W nY) S WY
As any étale map is open, we may shrink U around f(x) to ensure that f|y : W — U is also surjective.
This proves the first assertion of Proposition 7.2.1.
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The second assertion follows from descent theory, because the ideal sheaf of W n'Y on U pulls back to
that of WY on W. O

8. COHOMOLOGY OF GROUPS OF MULTIPLICATIVE TYPE

Inspired by the purity results in [CS21, Theorem 7.2.8], we investigate the parafactoriality over Priifer
bases and then present the purity for cohomology of group schemes of multiplicative type.

8.1. Geometrically parafactorial pairs

8.1.1. Parafactorial pairs. Let (X, Ox) be a ringed space with a closed subspace Z < X and open
immersion j: X\Z — X if for every open subspace U < X the restriction
PicX — PicX\Z, ¥+~ Zlu~x\z) is an equivalence of categories,

then the pair (X, Z) is parafactorial. In particular, we have & ~ j,j*.%. A local ring A is parafactorial
if the pair (Spec A, Spec A/m4) is parafactorial. We list several parafactorial pairs (X, Z) and local rings.

(i) when A is a Noetherian factorial local ring, by [EGA 1V, Exemples 21.13.9 (ii)], it is parafactorial;
(ii) by [EGA TV, Proposition 21.13.8], a local ring A is parafactorial if and only if
Pic (Spec A\{z}) =0 and A ~ I'(Spec A\{z}, A) for the closed point z € Spec A;

(iii) when X is a locally Noetherian and locally complete intersection and Z satisfies codim(Z, X) = 4,
by [SGA 2.y, Exposé XI, Théoréme 3.13 (ii)], the pair (X, Z) is parafactorial;

(iv) for a normal scheme S, an S-smooth scheme X and a closed subset Z < X satisfying

codim(Z,, X,) > 2 for each generic point ne S and codim(Zs, X;) > 1 for every se S,
by [EGA TV, Proposition 21.14.3], the pair (X, Z) is parafactorial.

Now we assume that X is a scheme. A parafactorial pair (X, Z) is geometrically parafactorial, if for every
X-étale X’ with the base change Z' := Z x x X', the pair (X', Z’) is parafactorial. For a local ring A, if its
strict Henselization A" is parafactorial, then A is geometrically parafactorial (cf. [CS21, Theorem 7.2.8]).

Lemma 8.1.2. For a topologically locally Noetherian scheme X and a closed subscheme Z < X,
(i) the pair (X, Z) is parafactorial if and only if Ox , is parafactorial for every z € Z;

(i) the pair (X, Z) is geometrically parafactorial if and only if ﬁ;‘g"z is parafactorial for every z € Z.

Proof. The assertion (ii) follows the same argument of (i), except viewing ﬁg(h’z as the inverse limit of étale
neighborhoods of z € X. Assume that (X, Z) is parafactorial and for each z € Z, denote U, := Spec Ox
and U3 := U,\{z}. To show that Ox , is parafactorial, we prove that every invertible ¢y, -module %
is isomorphic to Oye. Then by [EGA V3, Proposition 8.2.13] and [EGA I, Proposition 2.4.2], U? is the
inverse limit of B° := B\(B n {z}) where B ranges over all open affine neighborhoods of z € X. Since
every B° is topologically Noetherian and separated, by a limit argument [SP, 0B8W], there exists an
open affine neighborhood B of z € X and an invertible &po-module £go such that % ~ Zpe|y.. By
assumption and [EGA TV, Corollaire 21.13.6 (i)(ii)], the pair (B, B n {z}) is parafactorial. In particular,
there exists an invertible &'g-module .,?ﬁ_c; such that .,273| Be ~ Zpo. Shrinking B if necessary, we have
.,% ~ Op hence £ ~ Oye.

For the other side, assume that Ox , are parafactorial for all z € Z, which, combined with [EGA IV,
Proposition 21.13.5], reduces us to showing that for every invertible &'x\ z-module .Z, the pushforward
j-Z is an invertible &x-module. For this, we use Noetherian induction. Namely, consider the subset

Q= {x € X |j4Z is invertible on an open neighborhood of x}

Then < X is a non-empty open whose complementary closed is X\Q2 =: Y < Z. By [EGA IV,
Lemme 2.3.1], the quasi-compact quasi-separated morphism j guarantees that the formation of j,.Z
commutes with arbitrary flat base changes (in particular, localizations). Pick a maximal point y € Y < Z
so Ox, is parafactorial. The maximality of y € Y implies that Q@ n U, = U, so % := (j*$)|U; is
an invertible Op.-module. The parafactoriality of O, yields an extension of Z to an invertible 0y, -

module .%p, which, by the limit argument [SP, 0B8W] again, descends to an invertible &y,-module P
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for an open neighborhood W of y € X. Shrinking W if necessary, we may assume that the restrictions
of j..% and .,Q;W on Q n W are equal. With this gluing datum, let ' := Q U W, so there is an invertible
Y-module ¥’ such that £’y = Zw and Lo = (jxL)|a. Since X\Z < @ and £'|x\z = &£, hence
Ox ~ j+Ox\z and (jxZ)|a ~ £, which leads to a desired contradiction with the definition of Q. [

Proposition 8.1.3. For a normal scheme S and an S-scheme X satisfying one of the following

(i) either X — S is a smooth morphism of topologically locally Noetherian schemes; or

(ii) S is semilocal Priifer of finite dimension and X is S-flat locally of finite type with regqular S-fibers
then every x € X that does not contain any mazimal point of S-fibers of X and dim Ox , > 2 satisfies

Ox 4 is geometrically parafactorial, namely, ﬁﬁg‘@ is parafactorial.

Proof. The parafactoriality of ﬁ;?’w is that of (Spec ﬁ??@, {z}), which by Lemma 8.1.2(ii), is equivalent
to the parafactoriality of (Spec Ox ., {z'}) for all X-étale X’. Since all X’ and 2’ satisfy the conditions
in the statement above ([BS15, Lemma 6.6.10 (3)]), we are reduced to showing that Ox , is parafacto-
rial. For the Zariski closure Z := {z}, by Lemma 8.1.2 again, we are reduced to finding a small open
neighborhood U of z € X such that (U, Z n U) is a parafactorial pair. Now, take an arbitrary open
neighborhood U of z € X, by [EGA IV3, Proposition 9.5.3] applied to Z < X, shrinking U, we may
assume that U n Z does not contain any irreducible components of S-fibers of X. If a z € Z lies over a
maximal point 7 € S, since z specializes to z, then we have dim Oy, . = dim Ox ., > 2. Consequently,
we have codim(X, n Z, X;;) = 2 and by §8.1.1(iv) and Proposition 3.2.7(ii), the desired parafactoriality
of (U, Z nU) follows. O

8.2. Purity for groups of multiplicative type

Now we study purity for groups of multiplicative type in the situation of higher relative dimension. We
start with the following generalization of Theorem 6.1.4 when G = M is a X-group algebraic space of
multiplicative type.

Lemma 8.2.1. For an algebraic space X with a closed subspace Z < X such that for every geometric
point Z — Z, the strict local ring Ox 3 is parafactorial, the open immersion j: X\Z — X and a finite
type multiplicative type X -group algebraic space A , the following map between fppf sheaves on X

M "5 G 3 M is an isomorphism.

In particular, we have HY(X, #) = HL(X, . #) = 0 and T'(X,P) ~ T'(U, P) for every .# -torsor P on
X.

Proof. For an .#-torsor P, to show that T'(X,P) ~ T'(U,P), it suffices to prove that P ~ j,j*P,
which can be checked fppf locally. Hence, it suffices to prove the first assertion in the case when X is a
scheme. By [SGA 3;1, Exposé X, Corollaire 4.5], .# is quasi-isotrivial, namely, there is an étale surjective
morphism X — X such that .# xx X splits. We need to show that the morphism .# — j,j*.# is an
isomorphism fppf locally at all z € Z. Suppose f: X’ — X is a flat morphism inducing g: X'\Z' — X\Z,
where Z' := Z x x X' with the open immersion j': X"\Z’ — X' . Taking inverse image of # — j.j*. 4,
we obtain f*.#4 — f*j.j*.#. By [EGA IV,, Lemme 2.3.1], the formation of j.(—) commutes with flat
base change, hence f*j.j* 4 ~ jl.g*j* M = jl.(j)*f*# and the inverse image of A4 — j.j*. A is
fr* — (3 f* . We may assume that X’ = Spec ﬁ%z and Z' = {Z}, so the desired isomorphism
is reduced to an isomorphism .# — j' (j')*.# for a split finite type multiplicative group sheaf .#. For
an X'-group p,, we have the following short exact sequence

hence 4. (5')*1n = ker(j4(5)*G, =5 §4(5")*G,y), reducing us to the case when .#x: = G,,. Since

(X', Z') is parafactorial, we have 0%, — j.,(j')* 0., so the assertion follows. O

Proposition 8.2.2. For a finite-rank valuation ring R with spectrum S and generic point n € S, an
S-flat finite type scheme X with regular S-fibers, a point x € X, and an Ox ,-torus T,
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(1) if either x € X, with dim Ox, o« =2, orxe X, with s #n and dim Ox_ , > 1, then we have
H{(Ox2,T) =0 for 0<i<3;

(2) otherwise, Ox 4 is a valuation ring, then if T is flasque we have

H}\(Ox.2,T) = 0.

Proof. (1) Notice that the finite-rank assumption on R guarantees X being topologically locally Noe-
therian. By the local-to-global Es spectral sequence [SGA 4;;, Exposé V, Proposition 6.4],

H, (Ox0, 11, (T)) = HI(0x.0.T),

where ’Hf{]m}(T ) is the sheafification of the étale presheaf
(U Spec(Ox.0)) = HY (U, T),

Therefore, it suffices to prove the vanishing of the sheaves 'H?x}(T ) for 0 < ¢ < 2. We calculate their
stalks at a geometric point T lying over x:
M, (T)z = H, (0%, T).

~ dim T
=G,

Hf (Spec(0%.,), T) ~ H{ (Spec(0R,)\7},T) for 0<g<1;

Now, since Tﬁgéq and, since by Proposition 8.1.3 &5 is parafactorial, we have

as ﬁi}},x is strictly Henselian, we have
HE (Spec(0%,),T) = 0.
Looking at the local cohomology exact sequence for the pair (Spec(ﬁ%x), z) and T, we see that
H{ (0%, T)=0 for0<q<2.
This implies ?—[f{’x}(T) =0 for 0 < g < 2, as desired.
(2) In this case, either € X, with dim Ox,« < 1, then Ox , is a discrete valuation ring, or z is a

maximal point of some fiber of X — S, then, by Lemma 3.1.1(iii), Ox 5 is a valuation ring. The desired
vanishing is proven in [Guo20, Lemma 2.3]. O

Lemma 8.2.3 (c¢f. [CS21, Lemma 7.1.1)). For an algebraic space X, an open subspace U < X with
complement i : Z 1= X\U — X, and an abelian sheaf F on (Sch;x)iwppt, if for any integer ¢ = 0,
ML (F) denotes the étale-sheafification of the presheaf X' — HZ, (X', M) where Z' := Z x x X', then we
have a convergent spectral sequence

EY = HY (X, HL(F)) = HY (X, M).

Theorem 8.2.4.

(i) (cf. [CS21, Theorem 7.2.8 (a)]) For an algebraic space X, a quasi-compact open immersion
j: U — X with complement Z := X\U, and an X-group algebraic space M of multiplicative
type, if for every geometric point 7 — Z, the strict local ring Ox z is parafactorial, then restric-
tion functor

Tors(Xppe, M) —> Tors(Uspps, M) induces an equivalence of categories of M-torsors.
In particular, passing to isomorphism classes of objects, we have the following isomorphisms
Htl:ppf(XaM) — Hfippf(Uv M) fOT’i <1 and Htgppt'(XaM) - Hf2ppf(Uv M)
(ii) For a semilocal Prifer domain R with spectrum S, a quasi-compact quasi-separated S-smooth

scheme X, a quasi-compact open U < X with complement Z := X\U, and an X-torus T such
that T , is flasque for every z € Z for which Ox . is a valuation ring, then we have

Hélt(Xa T) - Hélt(U’ T) and HéQt(X7 T) - Hé2t(Ua T)
33



Proof. (i) By the local cohomology exact sequence for the pair (X,Z) and the sheaf M, everything
reduces to show the vanishings HZ (X, M) = 0 for 0 < ¢ < 2. By the spectral sequence in Lemma 8.2.3,
it suffices to show the vanishings of H% (M), the étale-sheafification of the presheaf X’ — HZ, (X', M)
where Z' := Z xx X'. Further, the quasi-compactness of j allows us to identify the stalk of H% (M)
at a geometric point Z — Z as H{qz}(ﬁxvg, M). Hence we may assume that M split as p, or G,,, and

since fi,, = ker(G,, =5 G,,), it suffices to show that Hé}(ﬁX;,Gm) =0 for 0 < g < 2. Since Oxz is
parafactorial, we have
H1(Spec(Ox z), Gp,) ~ HY(Spec(Ox z)\{Z},Gy)  for 0 < g <1,
as Ox z is strictly Henselian, we have
H?(Spec(Ox ), Gp,) = 0.
Looking at the local cohomology exact sequence for the pair (Spec(@x z),z) and T, we deduce the desired
vanishings
Hé}(ﬁxg,(@m) =0 for0<g<2.

(ii) By the local cohomology exact sequence
-— HY(X,T) -» H'(U,T) > HY(X,T) - H*(X,T) - H*(U,T) — - - -,

the assertion is equivalent to the vanishing H%(X,T) = 0. Since X is quasi-compact quasi-separated
and U c X is a quasi-compact open, by a limit argument involving Lemma 3.1.3, we reduce to the case
R having finite Krull dimension, so X is topologically Noetherian. Recall the coniveau spectral sequence
[Gro68Db, §10.1]

B = @ HPYT) = HE(X,TY,
zeZ(P)

the topological Noetherianness of X allows us to identify

Hfj}q(T) := colim H%i ,(U.T)

as Hfj}q(ﬁX’Z,T), where U runs over the open neighbourhoods of z in X. Therefore, it is enough to
show H{QZ}(ﬁX’Z7 T) = 0, which has been solved by Proposition 8.2.2. (]

Proposition 8.2.5. For a normal scheme S and an S-algebraic space X satisfying one of the following
(i) either X — S is a smooth morphism of topologically Noetherian algebraic spaces; or
(ii) S is semilocal Priifer of finite dimension and X is S-flat locally of finite type with regular S-fibers,
a quasi-compact open U < X with complementary closed Z := X\U satisfying the following condition
codim(Z,, X,) = 2 for every generic pointne S  and codim(Z,, Xs) =1 for all se€ S,
and a finite type X -group algebraic space M of multiplicative type, the following restriction functor
Tors(Xppe, M) —> Tors(Uspps, M) induces an equivalence of categories of M-torsors.
In particular, passing to isomorphism classes of objects, we have the following isomorphisms
HO(X7M)2HO(U,M)7 Hflppf(XaM)nglppf(UvM)ﬂ Hfzppf(X7M)<_’Hf2ppf(UaM)'
Proof. We simply verify the assumptions of Lemma 5.7. First, the restriction functor is fully faithful,
because M is X-affine so is Y := Isom y (P1,P2) for arbitrary M-torsors P; and P; on X (Lemma 5.4),
which implies that Y (X) ~ Y(U) (note that Y is an Aut,(P1) ~ M-torsor, so we have Y (X) ~ Y(U)
by Lemma 8.2.1). The same holds when we base change to every scheme étale over X. Next, we show
that, fppf locally on X, every M-torsor on U extends on X. For this we may assume that X is affine.

Since X is normal, M is isotrivial, so there is an X-torus T and a finite X-group p of multiplicative type
fitting into the short exact sequence

1-T->M-—>p—1,
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From which we leverage the following commutative diagram with exact rows

M(X) - Hflppf(X7T) - Hflppf(X? M) - Hflppf(X7 ‘LL)

| | | |

M(U) - Hflppf(U’ T) - Hflppf(U7 M) - Hflppf(U’ ,u)7

where p(X) ~ pu(U) follows from the X-affineness of p. A diagram chase reduces us to showing that
Hi, (X, T) —> Hy o (U,T) and  Hp, (X, p) — Hy (U, p) - are isomorphisms.

Since the extension problem is fppf local, we may assume that M splits, without loss of generalities, say
M ~ Gy, or M = p,. By Proposition 3.2.7(ii), the X-affineness of M implies that M (X') ~ M(U’).
When M = G,,, we have Pic X — PicU because (X, Z) is a parafactorial pair. It remains to prove
that HY (X, un) ~ HZ (U, 1), for which we consider the commutative diagram

0 —— ﬁ(X)X/ﬁ(X)Xn - Hé}t(X’,un) - nPiC(X) —0

| | l

0 —— OU)/OU)" —— HY(U. ) —— » Pic(U) —— 0

A diagram chase leads to the desired isomorphism Hy (X, u,) —> HZ (U, ). Finally, all fppf local
extension data glue together. Hence we obtain the desired essential surjectivity. ([

8.3. Grothendieck—Serre type results for groups of multiplicative type

Lemma 8.3.1. Let ¢ : X — Y be a morphism of schemes. Let £ be an invertible Ox-module. If
(1) Y is quasi-compact quasi-separated, integral, and normal,

(2) there exist a smooth projective morphism ¢ X — Y, with geometrically integral fibers, and a
quasi-compact open immersion X — X overY, and

(8) & is trivial when restricted to the generic fiber of ¢,
then £ ~ ¢* N for some invertible Oy -module N .

Proof. When Y is Noetherian, this follows from a much more general result [SP, 0BD6]; for instance, (2)
can be replaced by the assumption that X — Y is faithfully flat of finite presentation, with integral fibers.
The general case can be deduced from this via Noetherian approximations. More precisely, we first use
[SP, 01ZA] to write Y = lim; Y; for a filtered inverse system {Y;} of finite type integral Z-schemes with
affine transition morphisms. Since the normalization of a finite type integral Z-scheme is finite, we may
assume that each Y; is normal. Next, by [SP, 01ZM, 0C0C], for some iy there exist a finite type smooth
morphism Eio : X;, — Y;, such that X ~ X, Xy,, Y as Y-schemes, an open subscheme X;, < X,
whose pullback to X identifies with X, and, by [SP, 0B8W], there is an invertible Ox, -module Z;,
whose pullback to X is isomorphic to .Z. For any ¢ > iy denote by ¢; : X; := X, X Yo Y, —» Y, the
base change of $i0|xi0 to Y;, and denote by .Z; the pullback of .Z;, to X;. By [SP, 01ZM, 01ZP], any
projective embedding of X over Y descends to a projective embedding of X; over Y; for large enough i;
in particular, ¢, is projective for large enough i.

Since Y is normal, the assumption (3) implies that the Stein factorization of ¢ is itself; in particular,
Oy — ¢, 0%. This implies that the finite extension Oy, — ¢, o,*ﬁfio is an isomorphism, because its

base change to the function field of Y is so and Y;, is normal. In particular, by Zariski’s main theorem, ¢; o

has connected geometric fibers; as it is also smooth, all its fibers are even geometrically integral. By limit

formalism, for large enough i, .%; is trivial when restricted to the generic fiber of ¢;. Consequently, for

large enough 4, the morphism ¢, : X; — Y; and the invertible Ox,-module .Z; satisfy all the assumptions

of the Lemma, so .Z; ~ ¢F.# for some invertible Oy,-module .4;. Then £ ~ ¢*.4" where ./ is the

pullback of A4 to Y. O
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Proposition 8.3.2 (¢f. [CTS87, 4.1-4.3]). For a Prifer domain R with spectrum (S,n), an irreducible

scheme X essentially smooth over S with function field K(X), an X-group scheme M of multiplicative

type, and a connected finite étale Galois covering X' — X splitting M*, the restriction maps
Hflppf(X7M) _)Hflppf(K(X)vM) and Hf2ppf(X7M) _)Hf2ppf(K(X)’M)

are injective in each of the following cases:

(i) X = Spec(A) and A is a semilocal ring essentially smooth over R;

(ii) For some essentially smooth semilocal R-algebra A, there exists a quasi-compact open immersion
X — X, where X is a smooth projective A-scheme, with geometrically integral fibers, such that

Pic(X1) = 0 for any finite separable fields extension L/Frac(A), and M = Nx for N an A-group
of multiplicative type (for instance, X could be any quasi-compact open subscheme of PY );

(iii) any subcovering X" — X of X' — X satisfies Pic(X") = 0.
Further, if M is a flasque X -torus, then in all cases (1)-(iil) the restriction map

HY (X, M) > HY{(K(X),M) s bijective.

Proof. Tt is clear that (i) is a particular case of (ii). Let us show that (ii) is a particular case of (iii).
Let A — B be a connected finite étale Galois covering that splits N. Take X’ := X x4 B. By the
normality of A and the smoothness of X — Spec(A4), X is also normal. Then, since X — Spec(A)
has geometrically integral generic fiber, the natural map 7$*(X) — 7$*(Spec A) is surjective. This
implies that any subcovering X” — X of X’ — X is of the form X” = X x4 C for some subcovering
A — C of A — B. By assumption, Pic(Xpac(cy) = 0, so we may apply Lemma 8.3.1 to the morphism
X x4 C — Spec(C) to deduce that the pullback map

Pic(Spec(C)) — Pic(X x4 C) is surjective.
Since C' is semilocal, we conclude that Pic(Spec(C)) = 0 = Pic(X x4 C).

It is thus enough to prove all assertions only for (iii). Assume first that M = T is an X-torus. Take a
flasque resolution
1-F—->P->T->1,

where F' is a flasque X-torus and P is a quasitrivial X-torus. This yields a commutative diagram

Hg (X, P) Hg, (X, T) HE (X, F)

| |2

Hi(K(X),T) —— HE(K(X), F)

with exact rows. Now the quasitrivial torus P is isomorphic to a finite direct product of tori Res x»/x Gy, x~
for finite étale subcoverings X” — X of X’ — X. Hence, assumption (iii) implies that H} (X, P) = 0,
and so the injectivity of p; reduces to that of ps. To prove that ps is injective we pick a € HZ (X, F) for
which a|g(x) = 0. By spreading out, we may assume that X is a localization of an irreducible, smooth,
affine R-scheme )?, F = Fy for a flasque X-torus f‘, and a = @|x for some class & € H? ()Z', ﬁ’) Since
a|g(x) = 0, for a large enough hypersurface Z < X’,
il5, = 0 HA(X\Z, F).

By Theorem 8.2.4(ii), @ = 0, so a = a|x = 0. This proves the injectivity of ps and hence also of p;. Now
let M be an arbitrary X-group of multiplicative type, then there is an X-subtorus 7' < M such that
w:= M /T is X-finite. Consequently, for any generically trivial M-torsor P, the u-torsor P/T is finite over
X; as X is normal, this implies (P/T)(X) = (P/T)(K(X)). Therefore, P/T — X has a section that lifts
to a generic section of P — X, that is, P reduces to a generically trivial T-torsor Pr. By the injectivity
of p1, Pr and hence also P is trivial. This proves the injectivity of HZ, (X, M) — HL (K(X), M).

On the other hand, there is a short exact sequence

1-M—->F—->P-—>1

4Such a covering always exists, because X is normal and so M is isotrivial.
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of X-groups of multiplicative type, where F' is flasque and P is quasitrivial, both split after base change
by X’ — X. This yields the following commutative diagram with exact rows

Hprpf(X7M) Hprpf(X7 F)

: .

Hprpf(K(X)?M) - Hfzppf(K(X)?F)

Hflppf(X7 P)

Since we have already shown that Hflppf(X ,P) =0 and ps is injective, the injectivity of ps follows from
a diagram chase.

Finally, if M is a flasque X-torus, the bijectivity of Hflppf(X, M) — Hflppf(K(X),M) will follow if one
proves its surjectivity, but the latter follows from Theorem 8.2.4(ii) via a limit argument. O

9. GROTHENDIECK—SERRE ON A SEMILOCAL PRUFER DOMAIN
The main result of this section is the following mild generalization of [Guo20].

Theorem 9.0.1. For a semilocal Priifer domain R with fraction field K, and a reductive R-group scheme
G, the following restriction map has trivial kernel:

ker (Hét(R, G) — Hy (K, G)) = {*}.

9.0.2. Setup. We fix the following notations. For a semilocal Priifer domain R of finite Krull dimension,
all the maximal ideals (m;)]_; of R, the local rings O; := Ry, an element a € R such that V(a) =
{m;}i_,, let R (resp., O;) denote the a-adic completion of R (resp., of @;). Then O, is an a-adic
complete valuation ring of rank 1, and we have R~ T, (52-, compatibly with the topologizes. Denote
K; := FracO; = @Z[%] Topologize R[] by declaring {im(a"R — R[%])},>1 to be a fundamental system
of open neighbourhood of 0; the associated completion is
R[3] — RG]~ TTis O3] = [Tis, K.
where each [A(i is a complete valued field, with pseudo-uniformizer (the image of) a. In particular, for an
R-scheme X, we have a map
Ox: X(R[L]) — [T, X(Ky).

If X is locally of finite type over R, we endow the right hand side with the product topology where each
X (I?l), by, for example, Conrad, has a natural topology induced from that of I?Z-, which we will call the
a-adic topology. If moreover X is affine, we can canonically topologize X (R[%]) by choosing a closed
embedding X — AY and endowing X (R[%]) — R[1]" with the subspace topology (this is independent

a
of the choices of the embeddings), then ®x is a continuous map.

9.1. Lifting maximal tori of reductive group schemes over semilocal rings

Lemma 9.1.1. For a scheme S, an S-smooth finitely presented group scheme G whose S-fibers are
connected and affine, and a finite subset I < S. If I satisfies the following conditions

(i) I is contained in an affine open subset of S;
(i) for each residue field k; of S atie€ I, the fiber Gy, is a k;-reductive group; and
(iii) tr; = dim(Gy,/Z;) for the center Z;  G,,,,
then there is an open neighborhood U of I such that the following map is surjective

Tor(G)(U) = [ [ie; Tor(G)(x)-

Proof. By [SGA 311, Exposé XVI, Théoréme 5.2], there is an open neighborhood U of I such that G|y is a
U-reductive group scheme, so we may replace S by U. By [SGA 3;;, Exposé XII, Théoréme 4.7 ¢)], G has
a reductive center Z and we have Z; = (Z),,, for every i € I. Since Tor(G) ~ Tor(G/Z), we may replace
G by G/Z. By [SGA 31, Exposé XIV, Théoréme 3.18], the maximal tori of G are exactly the subgroups
of type (C), which are bijectively assigned by D — Lie(D) to the Cartan subalgebras of g := Lie(G)
([SGA 311, Exposé XIV, Théoréme 3.9]). It suffices to lift a Cartan subalgebra ¢ < [ [,.; g9x, to that of g.
Denote ¢; := (cg),,;. Since for each i € I, we have fx; > dim(G/Z) = dim(G), by [Bar67, Theorem 1], c;
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is of the form Nil(a;) := (J,, ker(ad(al)) for some a; € ¢;. Hence [SGA 311, Exposé XIII, Corollaire 5.7]
implies that each a; € ¢; is a regular element of g.,. We take a section a of g passing through all a; and
claim that V := {s € Spec R such that as € g, is regular} is an open subset of Spec R. We may assume
that R is reduced. Since the nilpotent rank of g is locally constant, there is an open neighborhood U of
I such that the nilpotent rank of g is constant on each connected component U, of U. On each U,, the
Killing polynomial of g at every s € U, is uniformly Py g, (t) = t" (t" 7" + (c1)st" "> 4+ (Cror,)s)
such that (¢,_r, )s is nonzero. Thus, the regular locus in g is the principle open subset (), {¢n—r, # 0}
W(g) so V is nonempty and open, hence shrinking U if necessary, we have V = U. In particular, the
regular elements (a; € ¢;)er are lifted to a quasi-regular section a € g, which by [SGA 3111 jew, Exposé XIV,
Corollaire 3.7], is regular. By definition of regular sections, there is a Cartan subalgebra of g containing
a and is the desired lifting of cq. O

Lemma 9.1.2. For a semilocal Priifer domain R of finite Krull dimension, we use the notations in the
setup §9.0.2. For a reductive R-group scheme G, the scheme Tor(G) of mazimal tori of G, and the a-adic
topology on Tor(G)(K;), the image of the following map is dense:

Tor(G)(R[3]) = [Tizy Tox(G)(K5).
Proof. The proof proceeds in the following steps.

}=0 Cauchyzk(R[%]) is a semilocal ring with residue fields Frac O;. Let I
be the kernel of the surjection A — [];_, Frac (5z Since A/I is a product of fields, it suffices to show
that 1+ I < A*. For a sequence (by)y € I, its tail lies in im(a”R — R[1]) for all k > 0, so the tail
of (1+ by)n is invertible in R*. Since R[%] is semilocal, the tail of (1 + by)y is termwise invertible in

R[%] and the inverses form a Cauchy sequence.

Step 1. The ring A := lim

Step 2. We combine the Step 1 and Lemma 9.1.1 to obtain the following surjective map
liny _ (Tor(G) (Cauchy>" (R[4])) ) ~ Tor(G) (timy_, (Cauchy™™ (R[2])) ) — [T, Tor(G)(Frac Oy),

which signifies that every Cauchy sequence in the image of Tor(G)(R[1]) converges in [ ]_, Tor(G)Frac 0,

hence the assertion follows. O

9.2. Harder’s weak approximation

Lemma 9.2.1. For a semilocal Priifer domain R of finite Krull dimension, we use the setup §9.0.2. For
a R[%]-torus T, let L;/K; be minimal Galois field extensions splitting T5 and consider the norm map
Ki

Then, the image U of [];_, N; is a-adically open and is contained in im(T(R[2]) — [T,_, T(K;)).

Proof. The proof proceeds as the following steps.

Step 1. The image U is a-adically open. For each ¢, there is a short exact sequence of tori

1-7 — ResLi/i{\i Tr, _>Tf(\,; -1

and the norm map N;: Res; 7. Ty, (K;) — (ResLi/;{\i Ty, /T:)(K;), which by [Ces15, Proposition 4.3 (a)

and §2.8 (2)] is a-adically open. As a product of open subsets, U is open in [[;_; T(K;).

Step 2. We prove that U is contained in the closure of im(7T'(R[%])). Equivalently, we show that every

u € U and every a-adically open neighborhood B, < U satisfy that B, nim(T(R[%])) # &. Let ﬁ/R[%]
be a minimal Galois cover splitting T'. Consider the following commutative diagram

T(R) [Tio, T(L:)
Nﬁ/R[%]l ll’[lgl Ni

T(R[F]) — 1=, T(KY).
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Take a preimage v € ([[[_, NV )_ (u) < TT;_, T(L;) and let B, < [];_, T(L;) be the preimage of B,,.
Since T' splits, the image of T'(R R) in [T, T(L;) is a-adically dense, hence T(R) x X[, T(L:) Bo # &,
namely, there is r € T(R) whose image is in B,. Let s := NE/R[l](T) € T(R[1]), then the image of s

under the map T(R[1]) — [T;_, T'( 7) is contained in B,,, so the assertion follows. O

Lemma 9.2.2. For a semilocal Priifer domain R of finite Krull dimension, we use the setup §9.0.2. For
a reductive R-group scheme G and for each i a fized mazimal torus T; < G with minimal Galois field

extension LZ/I?Z splitting T;, consider the following norm map
N;: T(L;) — T(K;).

Then the image U of the map | [i_, N; is an a-adically open subgroup of | [;_, T([A(l) and is contained in
the closure of im(G(R[%]) — TT;_; G(K;)).

Proof. By the same arguement in Lemma 9.2.1, the image U is a-adically openin [ [,_; T(IAQ) It remains
to show that U < im(G(R[2])), which proceeds as the following steps.

a

Step 1. The map ¢;: G (IA() — Tor(G)(IAQ) defined by g — ¢gTg~" is a-adically open for each i. Since
the image of T(R[1]) — [Ti_, T(K. T(K;) is a-adically dense, for every open neighborhood W ITi_, G(K;)
of id, we have (([T;_; ¢:)( )) A Im(Tor(G)(R[1]) — H;lm(G)(fQ)) # (. Therefore, there exist a
torus 7" € Tor(G)(R[]) and a (g;)7_, € W such that 9:Tig;7 " = Tllz_ for all s.

Step 2. For any u € U, consider the map []!_, G(K;) — T, G(K;) defined by g — g~'ug. Then,
we apply the Step 1 to the preimage W of U under this map: there is a v = (y;)i_; € W and a torus
T' € Tor(G)(R[1]) such that ~; 'T;y; = TA for each i. Then, u € YUy~ = y((Ti_; Ni)(T3(L:)v 1,
which by transport of structure, is (]_[Z 1 N )(T;((L )). By Lemma 9.2.1, the last term is contained in

the closure of im(T"(R[%]) — [T;_, T(K;)), so is contained in im(G(R[1])). O

Proposition 9.2.3. For a semilocal Priifer domain R of finite Krull dimension, we use the setup §9.0.2.
For a reductive group scheme G over R, the closure G(R[1]) of the image of G(R[1]) — [T._,(K3),

a

G(R[%]) contains an open normal subgroup N of T],_, G(K;).

Proof. The proof proceeds in the following steps.

i) For each i, we fix a maximal torus T; < G+ . en Lemma 9.2.2 provides the open subgroup
i) F h 4 fi imal t T; © G Then L 9.2.2 ides th b

Ucll_, T,(K;). Since each component of the norm map defining U is the image of the K;-
points of ResL R (T3)r, — T, and ResL IR (T;)r, is a Zariski dense open subset of an affine

space over K;, we have U n [[I_, Tr8(K;) # &.

(ii) Fix an element 7€ U n [];_, Tireg(Ki), by [SGA 3y, Exposé XIII, Corollaire 2.2], for each 1,
fir G xT; —> G, (9,t) — gtg~! is smooth at (id, 7).

Hence, there is a Zariski open neighborhood B of (id, 7) such that ([];_, fi)ls: B — [];_, G,
is smooth. By [GGMBI14, Proposition 3.1.4], the map B([T/_, K:) — [i_, G(K;) is open. Then
the image of W := B([],_, K) n (ITi—, G(K;) x U) under f = [1;_, fi is open. Subsequently,
all [T/_, G (IA(Z) translations of W have open images, so there is an open subset Uy c U such that

E:=f(Ili_, G(IAQ) x Up) is open. Now we define N as the subgroup of []}_, G( i) generated
by E, then F is an open subgroup. Further, by construction, E is stable under conjugations by
[T, G(K;), thus N is normal.

(iii) We prove that N is contained in the closure of im(G(R[%]) — TT,_; G(K;)). Since E is the union

of all conjugates of Uy, which are contained in G(R[%]) by Lemma 9.2.2, so E is in this closure,
and so is V. 0
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Corollary 9.2.4. For a semilocal Priifer domain R of finite Krull dimension, we use the setup §9.0.2.
For a reductive group scheme G over R, a maximal torus T; G@i for each i, and any a-adically open

neighborhood W of id € [],_, G(K;) such that W < G(R[:]) nTT_, G(O;), there exist g = (g;); € W
and a mazimal torus T € Tor(G)(R) such that for every i, we have

Ty = 9T .9, "

Proof. By Proposition 9.2.3, G(R[2])n]T_, G( ;) is an a-adically open neighborhood of id € [ ]}_, G(IA(,-)7
so it makes sense to take its subset W such that W is a neighborhood of id. Now consider the a-adically
open map ¢: [[r_, G(K;) — [i_, Tor(G)(K;) defined by g; — g (Ti)f(igfl. Then ¢(W) is an a-adically
open neighborhood of (T3); € [i_; Tor(G)(K;). Since []i_, Tor(G)(O;) < [1i_, Tor(G)(K;) is also an
a-adically open neighborhood of (7;);, we have an open intersection ¢(W) n [];_, Tor(G)(0;) # &.
Then the density of the image of Tor(G)(R[1]) — [T;_; Tor(G)(K;) provided by Lemma 9.1.2 yields an
element

T € Tor(G)(R) = Tor(G)(RIE]) X1 (i) 1 lim1 Tor(G)(O).

Therefore, T is a maximal torus of G over R satisfying the conditions. O

Corollary 9.2.5. With the notations in Proposition 9.2.3, we have
G(R[ZD - TTi=, G(O:) = im(G(RIZ]) — 1=, G(K3) - [ Ti=, G(O
9.3. Product formula over semilocal Priifer domains, passage to the local case

Lemma 9.3.1. For a semilocal Priifer domain R of finite Krull dimension, we use the notations in the
setup §9.0.2. For an R-torus T, we have the following product formula

[T7-) T(K) = m(T(R[3]) = [Ti=, T(K)) - [T, T(O0)-

Proof. Let R" denote the Henselization of the pair (R,aR). Then we have the commutative digram

0 —> T(R) —> T(R[7]) — H{oy(R.T) —> H'(R,T) —> H'(R[].T)
| | | | |
R

0 —> T(R") — T(R"[}]) — H{,_;(R",T) — H'(R", T) — H'(R"[]],T),

whose exact rows are the local cohomology exact sequences. Since the case of tori for Theorem 9.0.1 is
proved, the two horizontal arrows of the rightmost squares are injective, hence the coset T(R"[1])/T(R") ~
H{a:O}(Rh,T). By excision [Mil80, III, 1.28], we have an isomorphism H{a:O}(R’ T) = H{Q:O}(Rh T),
which leads to a surjection T(R[1]) — H{lazo}(Rh, T). Therefore, we obtain the product formula
T(R"[g]) = m(T(R[5]) — T(R"[3]) - T(RY). (9-3.1)

On the other hand, by [BC22, 2.2.17], the image of T(R"[1]) — H 1 T( K;) is dense in [T, T(K;)
with respect to the topology fixed in §9.0.2. Since each T(@) c T(Ki) is an open subgroup, we have

m(T(R']) = [Tio, T(K)) - 1o, T(O) = [Ti, T(K). (9.3.2)

Consequently, the combination of (9.3.1) and (9.3.2) leads to the assertion. O

Proposition 9.3.2. For a semilocal Priifer domain R of finite Krull dimension, we use the notations in
the setup §9.0.2. For a reductive R-group scheme G, we have

[Tl G = im (G(RIE]) — [T, G(R) - T, G(O).

Proof. We will proceed verbatim as in [Guo20, §4]. We choose a minimal parabolic O;-subgroup P; for
each G; := G xr O;. Denote U; := rad"(F;).
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(i)

(i)

(iii)

for the maximal split torus T, < P;, we have [[_, Ti(K;) < im(G(R[1]) — [T, G(K;)) -
11—, G(@z) By [SGA 3111 new, Exposé XXVI, Corollaire 6.11], there is a maximal torus ﬁ of G;
containing 7;. In particular, (ﬁ) 7 Isa maximal torus of GIAQ’ Then we apply Corollary 9.2.4
to all T}: there are a g = (g;); € G(R[L]) -TT_, G(0;) and a maximal torus Ty G such that
(To)z, = gz(ﬁ)f( g; ! for every i, which combined with the product formula Lemma 9.3.1 for T
yields

~ A~

[T T(K;
im(G(R[;])) - TTi=, G(
[Tims Ti(R3) € T Ti(K) = (G RED) - [T G(O).

A~

=11 97 To(K,)gi © [Ty im(G(R[£])) - G(Os)g:.
T, G(0O;), the inclusion displayed above implies that [T, i(f(l) c

)
N
(51) Therefore, we obtain the following desired inclusion

we have [T/, Ui(K;) © im(G(R[L]) = [T;_, G(K;)). Consider the Tj-action on G; defined by
T; x Gi — Gi, (t,g) — tgt™L.

Recall the open normal subgroup N < [];_, G(I?Z) constructed in Proposition 9.2.3, then each
NnU;(K;) is open in U;(K;). The dynamic argument in [Guo20] shows that U;(K;) = NnU;(K;),
hence U;(K;) © N for each i. Therefore, we have IT_, Ui(K;) im(G(R[L]) - [T;_, G(K;)).

we have []I_, Pi(K;) © im(G(R[1]) - TT_, G(K.)) - TIi—, G(O;). The quotient H; := L;/T; is

anisotropic, therefore we have H;(K;) = HZ(@Z) for every i. Consider the commutative diagram

~

0 —— E(él) — Lz(@z) — H;(0;) — Hl(éiaTi) =0

l | H |

A~

0 —— Ti(K;) — Li(K;) — Hy(K;) — H'(K;,T;) =0

with exact rows. By diagram chase, we have L;(K;) = Tz(lAQ) . LZ(@Z) for every . Subsequently,
the combination of (i) and (ii) yields the inclusion

[T, P(K;) < im(G(R[L]) — TT;_, G(K))) - TTi-, G(O).

Recall [SGA 3111 pew, Exposé XXVI, Théoréme 4.3.2 and Corollaire 5.2] that for each P;, there is
a parabolic subgroup @Q; of G; such that P; n Q; = L; fitting into the following surjection
rad"(P;)(K;) - rad*(Q:)(K;) — G(K;)/Pi(K,).
This surjection, combined with the result of (ii) gives an inclusion
[Ti-, G(K) < im(G(R[]) — [Tiy G(K3)) - TTioy Pi(K).
Now we further use the result of (iii) to obtain []_, G(K;) im(G(R[]) - [T, G( Ki)) -
11—, G(@Z) Hence, we have the following product formula

[T/ G(Ry) = im (G(RIL]) — [Ty G(K)) - T, G(O0). O

10. TORSORS ON A SMOOTH AFFINE RELATIVE CURVE

In this section we prove the following result concerning triviality of torsors on a smooth affine relative
curve. The idea of the proof ultimately depends on the geometry of affine Grassmannians developed by
Fedorov, who proved Theorem 10.1 (i) for C = AkL. A similar result can also be found in the recent
preprint [Ces22c, Theorem 4.4].

Theorem 10.1 QSection theorem). Let R be a semilocal domain whose local rings at primes are geomet-
rically unibranch’, C a smooth, affine, relative R-curve, and G a reductive C-group scheme. Let A be a

5According to [SP, 0BPZ], a local ring A is geometrically unibranch if its reduction Aqq := A/4/(0) is a domain, and if

the integral closure of A,.q in its fraction field is a local ring whose residue field is purely inseparable over that of A. By
[SP, 06DM], A is geometrically unibranch iff its strict Henselization AS® has a unique minimal prime.
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R-algebra. Let P be a G-torsor over Cy := C x g A that trivializes over Ca\Z s for some R-finite closed
subscheme Z < C. For a section s € C(R), if either

(i) A is semilocal, or
(ii) s%(G) is totally isotropic,
then the pullback s% (P) is trivial as an s*(G)-torsor, where s stands for the image of s in C4(A).

To prove Theorem 10.1, we first use Lemma 10.2 to reduce to the case when G is the base change of a
reductive R-group scheme, and then to the case when C' = AL, see Lemma 10.3. As for the latter, one
can approach it via the geometry of affine Grassmannians.

We start with the following result concerning equating reductive group schemes, which was already known
to experts, see also [Ces22c, Lemma 3.5].

Lemma 10.2 (Equating reductive group schemes). Let B be a semilocal ring whose local rings are
geometrically unibranch, and let Gy, G2 be two reductive B-group schemes whose geometric B-fibers are
of the same type. Let Th < G1,To < Go be maximal B-tori. Assume that, for some ideal I — B, there is
an isomorphism of B/I-group schemes

L (Gl)B/I ~ (GQ)B/I such that L((Tl)B/I) = (TQ)B/].

There are a faithfully flat, finite, étale B-algebra B’, a section s : B — B/I, and an isomorphism of
B'-groups i/ : (G1)p ~ (G2)pr such that 1((T1)p) = (T2)p: and whose s-pullback is ¢.

Proof. According to [SGA 3111 new, Exposé XXIV, Corollaire 2.2], the condition on the geometric B-fibers
ensures that the functor

X :=Isomp((G1, T1), (G2, T2))
parameterizing the isomorphisms of the pairs (G1,7T1) and (G2, T3) is representable by a B-scheme and
is a H := Autz((G1,T1))-torsor. We need to show that, for any ¢« € X (B/I), there are a faithfully flat,
finite, étale B-algebra B’, an ' € X(B’), and a section s : B’ — B/I such that s(//) = € X(B/I).

By loc. cit., H is an extension of an étale locally constant B-group scheme by 7%, the quotient of T} by
the scheme-theoretic center of G1. According to [SGA 3111 pew, Exposé XXIV, Proposition 2.6], de acts
freely on X and the quotient
X = X/

is represented by a faithfully flat B-scheme that is étale locally constant on B. As B is geometrically
unibranch, by [SGA 3111 new, Exposé X, Corollaire 5.14], every connected component of X is finite, étale
over B. As the image of ¢ : Spec(B/I) — X — X intersects only finitely many connected components
of X, the union of these components is the spectrum of a finite étale B-algebra A, and there are an
7€ X(A) and a section ¢t : A — B/I such that #() = . By adding more connected components of X
into Spec(A) if needed, we may assume that A is faithfully flat over B. Let

Y := X x5, Spec(4);

it is a T%d-torsor equipped with a point « € Y(A/J) = X(A/J), where J := ker (A — B/I). By
[Ces22b, Corollary 6.3.2], there are a faithfully flat, finite, étale A-algebra B’, a section

s':B'"—- A/J ~ BJI,
and an ' € Y(B') ¢ X(B’) such that s'(/) = ¢. O

Lemma 10.3. The proof of the Theorem 10.1 reduces to the case when C' = A}% and G is the base change
of a reductive R-group scheme.

Proof. Let B be the semilocal ring of C' at the closed points of im(s) U Z; its local rings are geometrically
unibranch. By abuse of notation, we may view s : B — R as a section of the R-algebra B. As B
is semilocal, by [SGA 31, Exposé XTIV, Corollaire 3.20], Gp admits a maximal B-torus Tp. Since the
pullbacks of the paris (Gp,T) and ((s*(G)) g, (s*(T))p) along s are the same, by Lemma 10.2, there are
a faithfully flat, finite, étale B-algebra B’, a section s’ : B’ — R that lifts s, and a B’-isomorphism

v (G, Tp) = ((s™(@) B, (s™(T) )
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whose s-pullback is the identity. We may spread out Spec(B’) — Spec(B) to obtain a finite étale covering
C'" — U of a small enough affine open neighbourhood U of im(s) u Z in C. By shrinking U if necessary,
we may assume that the isomorphism ¢ is defined over C’. In both cases of Theorem 10.1 we may replace
C by C', Z by C' xc Z, s by s', and P by P|cr, to reduce to the case when G is the base change of the
reductive R-group scheme s*(G).

Next, in order to apply glueing Lemma 6.2.2(ii) to achieve that C = A}, we need to modify C so that
Z embeds into A},. For this, we first replace Z by Z U im(s) to assume that s factors through Z. Then

we apply Panin’s ‘finite field tricks’ [Ces22a, Proposition 7.4] to obtain a finite morphism C — C that is
étale at the points in Z := C x¢ Z such that s lifts to § € C(R), and there are no finite fields obstruction
to embedding Z into A}, in the following sense: for every maximal ideal m c R,

ﬁ{z € Zﬂ(m) D [k(2) s k(m)] = d} < ﬁ{z € A};(m) [k(2) : k(m)] = d} for every d > 1.

Then, by [Ces22a, Lemma 6.3], there are an affine open C” < C containing im(3), a quasi-finite, flat
R-map C” — AL that maps Z isomorphically to a closed subscheme Z’ < AL with

~ 7! "
7 ~7 XA}?C.

(Actually, by shrinking C” around im(3), one can show that C” — Al is étale.) For both cases of
Theorem 10.1, since P|C§§ is a G-torsors that trivializes over C’j{,\z 4, we may use Lemma 6.2.2(ii) to glue
Per with the trivial G-torsor over Ay to obtain a G-torsor P’ over Al that trivializes over AL\Z/,. Let
s’ € AL(R) be the image of 3; then s"*(P’) ~ s*(P). It remains to replace C by AL, Z by Z’, s by ¢,
and P by P'. O

The analysis of torsors on A}% ultimately depends on the geometry of affine Grassmannians. A nice
summary of and complement on the relevant techniques can be found in [Ces22b, §5.3]. In particular,
we will use the following result; it is a slight variant of [Ces22b, Proposition 5.3.6], which in turn is a
mild generalization of [Fed22b, Theorem 6).

Proposition 10.4. For a semilocal ring R with connected spectrum and a reductive R-group scheme G,
let

G ~ nReSRi/R(Gi)

be the canonical decomposition of the adjoint quotient G* [SGA 3111 ey, Exposé XXIV, Proposition 5.10],
where G; is an adjoint simple R;-group scheme, and R; is a finite, étale R-algebra with connected spectra.
Let Y < AL be a R-finite, étale, closed subscheme with the following properties:

(i) for every i, there is a clopen Y; € Y x g R; such that (G;)y, contains a copy of Gy, y,;
(ii) for every mazimal ideal m = R; such that (G;).(m) is isotropic, the line bundle ﬁpi(m) (1) is trivial
over ]P’}{(m)\(Y;),Q(m) ;
(iii) the line bundle Opy (1) is trivial over PL\Y.

Let P be a G-torsor over Py, that trivializes over PR\Z for some R-finite closed subscheme Z < ARL\Y .
Assume that for every mazimal ideal m = R the G®-torsor over ]P’,li(m) induced by P lifts to a generically

trivial (G*4)%-torsor over Pi(m). Then the restriction Plp1\y is trivial.

Recall that, by [SGA 3111 new, Exposé XX VI, Corollaire 6.12], (i) is equivalent to that the base change of
(Gi)y; to every connected component of Y; contains a proper parabolic subgroup scheme. For instance, if
G is quasi-split, we can just take Y; =Y x g R; to ensure (i). In practice, we achieve (i) by guaranteeing
base change of (G;)y; to connected components of Y; contain proper parabolics. For (ii), we can take Y;
so that Yj(k(m)) # & for every maximal ideal x(m) c R; with (G}),(m) isotropic. For (iii), we just need
to choose Y so that it contains finite étale R-schemes of degrees d and d 4+ 1 for some d > 1, because
0(d) and O(n + 1) are both trivial on P%L\Y, and so is 0/(1).

Proof. We will deduce Proposition 10.4 from (the proof of) a particular case of [Ces22b, Proposition 5.3.6].
(We remind that the assumption (ii) of loc. cit. should read as ‘(G;)y, contains a copy of G, y;’, as its
proof shows.)
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The R-finite étale Y is the vanishing locus of a monic polynomial ¢ in the standard coordinate of A};
namely, t is the characteristic polynomial of this standard coordinate acting on R = I'(Y,Oy). The
formal completion of PL along Y has coordinate ring ﬁ[[t]] Recall that, by formal glueing, a G-torsor
over P}, can be viewed as the glueing of its restriction to PL\Y and to R[[t] along the ‘intersection’ R((t);
since our torsor P is trivial over an open neighbourhood U < PL of Y, both of the restriction Pliny and
P| Ry A€ trivial, and once a trivialization of the former was chosen, all such glueings are parameterized

by elements of G(R((t))/G(R[[t]). In particular, since G(R((t)) acts on G(R((t)/G(R[t]) (via left
multiplication), an element of G(R((t))) yields a modification of P along Y: it is the G-torsor over P}
whose restriction to ]P’}%\Y and to R|[[t]] are the same as P, but their corresponding glueings, viewed as

elements of G(R((t))/G(R[t]), differ by a left translation by the element of R((t)) we choose.

Denote by P2d the G*-torsor over PL induced by P. Since the formation of H'(Pk, —) commutes
with taking products, P24 corresponds to a collection (Pf‘d), where ’Pf‘d is a Resp, /r(G})-torsor over IP’}%
satisfying the analogous assumptions (i)-(iii) of the Proposition 10.4. Since R — R; is finite étale and
G, is Ri-smooth, we have R! f,G; = 1 for the map f : Spec(R;) — Spec(R) induced by R — R;. By the
exact sequence from [Gir71, Chapitre V, Proposition 3.1.3],

1 — H'(Pk, Resp,/r(Gi)) — H' (Pk,,Gi) — H' (Pk, R' f+G,).

Thus Q — Resp,/r(Q) defines a bijection of pointed sets H' (P} ,G;) — H'(Py, Resg, /r(Gs)). In par-
ticular, each P24 corresponds to a G-torsor Q; over P}{i. As one can see immediately, the assumptions
(i)-(iii) of Proposition 10.4 for the Resg, /r(G;)-torsor P24 translate into the assumptions [Ces22b, Propo-
sition 5.3.6] (i)-(iv) for the Gj-torsor Q; over Py, . By the proof of loc. cit., for some element

a; € im (Gf“((ﬁ ®r Ri)(t) — Gi(R®r Rl)((t)))) ;
the corresponding modification of Q; along Y x g R; is trivial. We can view
o t= (o) & im (@) (B(1)) — G (B(1)) ) :

as (G*4)s - Gad factors through (G24)¢ — @, a lifts to & € G(R((t)). Denote by Q the modification
of P along Y using &. By our construction, the G*d-torsor Q@ over P} induced by Q corresponds
to the collection of modifications of the P4 = Resp,/r(Q;) along Y using a; € Gi((R®r R)(1)) =
Resg, /R(}Nz((t))), which is trivial, so that Q2 is trivial, to the effect that Q reduces to a torsor over P
under the center Zg of G. Now, as the last paragraph of the proof of [Ces22b, Proposition 5.3.6] shows,
any Zg-torsor over P}, is the sum of a constant torsor (i.e., the pullback of a Zg-torsor over R) and
Ax(O(1)) for a unique cocharacter A of Zg. Therefore, by our assumption (iii), Q is a constant torsor,
and, by checking along the infinity section, it is even trivial, so is ’P|P}e\y = Q|]p}?\y, as desired. O

The following result will help us to construct the desired R-finite, étale schemes Y; and Y from the
previous theorem.

Lemma 10.5. Let R be a semilocal ring with connected spectrum, let Ry be a finite, étale R-algebra with
connected spectrum, let W c A}% be a R-finite closed scheme, and let G1 be a simple Ri-group scheme.
There is a Ry-finite, étale scheme Y7, and a closed immersion Y, < A},—K,/\W over R such that (G1)y,
contains a copy of G y,, and, for every mazimal ideal m = Ry with (G1).m) isotropic, the line bundle

Opl( )(1) is trivial over Pi(m)\(iﬁ),{(m). (Notice that Y1 is a clopen of Y1 x g R1, thus naturally embeds

into Ag, .)

In addition, there is a Ry-finite, étale scheme Y’ and a closed immersion Y' < AL\W over R such that
the line bundle Op1 (1) is trivial over PL\Y".

Proof. Let Par’ — Spec(R;) be the scheme parameterizing proper parabolic subgroup schemes of the

reductive Ri-group scheme G1; it is smooth projective over Ry (cf. [SGA 3111 new, Exposé XXVI, Corol-

laire 3.5]). Fix an embedding Par’ — P} over Ry. Write Par’ = LI_, P; as a disjoint union of its

connected components; every P; has a constant relative dimension d; over R;. For every maximal ideal

m c Ry with (G1),m) isotropic, a proper parabolic subgroup of (G1).m) gives a point by, € Par’(k(m)).
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Fix an ¢ = 1,--- ,¢. For every maximal ideal m < R;, by Bertini theorem (including Poonen’s version
over finite fields), one can find a hypersurface in JP’HN( m) of large enough degree such that it passes through

all points by, that lies in P; and it intersects (P;).(m) transversally. We may assume that the above
hypersurfaces have the same degree for all m. By the Chinese Remainder theorem, one can lift these
simultaneously to get a hypersurfaces H < ]P’gl. Then H n P; is a smooth projective R;-scheme of pure
relative dimension d; — 1, and b, € H n P; whenever b, € P;. The same argument can be applied to
the hypersurface section H n P;. Continuing in this way, we finally arrive at a R;-finite, étale, closed
subscheme Y; ¢ P; such that b, € Y; whenever b, € P;. Denote Y] := |_|f:1 Y;. Unfortunately, Y{ may
not embed into AL\W. So let’s first modify Y/ using Panin’s ‘finite field tricks’

Let d > 0 be a large enough integer such that, for every maximal ideal n ¢ R,

(1) we have d > dimﬁ(n) F(Wﬁ(n), ﬁwn(m));

(2) for every maximal ideal n’ = I'(Y{, Oy,) lying over n and every n > d, there are at least deg(Y{/R)

(resp., at least one) closed point(s) on A}C(n) (resp., on A}i(n,)) of exact degree n.

For every maximal ideal n’ < T'(Y{, Oy,) we choose a monic polynomial hy € x(n)[u] of degree 2d + 1
such that:

(i) if k(n') is finite, hy is a product of two irreducible polynomials of degrees d and d+ 1, respectively
(which is possible by (2));

(ii) if k(n’) is infinite, hy is a separable polynomial and has at least one root in x(n’).
Let h e T'(Y{, Oy;)[u] be a common monic lifting of hy for all n’ = T'(Y7, Oy;), and define
LYY, Oyy)[u]\ |
(h) ) ’
it is finite, étale over Y7, and hence also over Ry. By (1)-(2), there is a closed immersion

|_| (Yl),i(n) s A}%\W over R;

ncR

Y1 = Spec (

by Nakayama’s lemma, any of its lifting ¥; — A}z\W over R (which exists by Chinese Remainder
theorem) is also a closed immersion. By construction, the restriction of (G1)y; to every connected
component of Y/ contains a proper parabolic subgroup scheme. Thus, by [SGA 311 1w, Exposé XXVI,
Corollaire 6.12], (G1)y; contains G, y, and so (G1)y, contains G, y,. By (i)-(ii), for m < R; with
(G1)s(m) isotropic, the line bundle ﬁpi(m) (1) is trivial over Pi(m)\(Yl),{(m).

To construct Y, it suffices to produce, for a large enough d, a R-finite, étale, closed subschemes Y2 = AL
of R-degrees d and d + 1 which are disjoint from W, and then take Y’ := Y7 | | Y2. To achieve this, one
just need to imitate the above procedure for constructing Y7 from Y]. Details are omitted. O

Proof of Theorem 10.1. By the reduction Lemma 10.3, we may assume throughout that C' = A} and G
is a reductive R-group scheme. Up to shifting we may assume that s = Or € AL(R) is the zero section,
and base changing to A reduces us further to the case A = R at the cost that R need not be a domain or
geometrically unibranch. Thus, in case (i), our R is semilocal, and, in case (ii), our G is totally isotropic
(but R need not be semilocal). By decomposing Spec(R) into connected components, we can assume
that R has connected spectrum.

For both cases (i)-(ii), by glueing P with the trivial G-torsor over P%L,\Z we extend P to a G-torsor Q over
PL. By [Fed22b, Proposition 2.3] or [Ces22b, Lemma 5.3.5], up to replacing Q and Z by their pullbacks
by PL — PL ¢ — t4 where d is divisible by the R-fibral degree of the simply-connected central cover
(G*1)*¢ — G4 we may assume that for every maximal ideal m < R the G*-torsor over P}i(m) induced

by Q lifts to a generically trivial (G24)%-torsor over Pt(m).

Claim 10.5.1. In both cases (i)-(ii), assume that R is semilocal. For any R-finite closed subscheme
Wo < A}, there exists a R-finite, étale, closed subscheme Y < AL\W, such that Q|P}% \y is trivial.

Proof of the claim. We write the canonical decomposition of G as in Proposition 10.4. Replacing W,
by Wy u Z, we may assume that Z ¢ Wy. Applying Lemma 10.5 separately to each simple R;-group
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scheme G; (with appropriate choices of W’s), we get R;-finite, étale schemes Y; such that (G;)y; is totally
isotropic, a closed immersion | |, Y; — A}%\WO over R such that for every maximal ideal m ¢ R; with
(Gi)r(m) isotropic, the line bundle O]Pn( )(1) is trivial over Pi(m)\(Yi)ﬁ(m)‘ Applying the second part of
Lemma 10.5 to W := (1,;Y;) | | Wo, we get a R-finite, étale, closed subscheme

Y AL\ ((um) |_|WO)

such that Opy (1) is trivial over PER\Y’. Let Y := Y’| |(u;Y;). Then all the assumptions (i)-(iii) of
Proposition 10.4 are verified, so we conclude that Q|P}%\y is trivial. (]

For (i), we take Wy = Z U Og, then the above Claim 10.5.1 gives a R-finite, étale, closed subscheme
Y A}%\WO such that Q|P}%\y is trivial. Since Y n 0 = &, we deduce that the pullback of Q along
s = Og is also trivial, as wanted.

For (ii), we will follow [Ces22¢, Lemma 4.3] to show that both P = Qlar, and Qlpr g, descend to G-
torsors over R, and then we are done: both of these descendants agree with the restriction of Q along
1r € AL(R), so they agree with the restriction of Q along g, which is trivial, and hence they must be
trivial. By Quillen patching [Ces22b, Corollary 5.1.5 (b)], for the descent claim we may replace R by its
localizations at maximal ideals to assume that R is local.

Now, since R is local, we may apply the above Claim 10.5.1 to Wy = Og to find a R-finite, étale, closed
subscheme Z' < AL\Og such that Qh% \z/ is trivial. It remains to apply Proposition 10.4 twice, with
Y = 0g and Y = o0 respectively, to show that both Qlp1\o, and Qlp1 s, are trivial. O

11. TORSORS UNDER A REDUCTIVE GROUP SCHEME OVER A SMOOTH PROJECTIVE BASE
The main result of this section is the following;:

Theorem 11.1. For a semilocal Prifer domain R, an r € R\{0}, an irreducible, smooth, projective
R-scheme X, a finite subset x < X with semilocal ring A := Ox 5, and a reductive X -group scheme G,

(i) any generically trivial G-torsor over A is trivial, that is,

ker (H'(A,G) — H'(Frac A, G)) = {*};

(ii) of G 4[17 s totally isotropic, then any generically trivial G-torsor over A[%] is trivial, that is,

ker (H'(A[1],G) — H'(Frac A, G)) = {=}

The case (i) is a version of the Grothendieck—Serre conjecture in the case the relevant reductive group
scheme G 4 has a reductive model over some smooth projective compactification of Spec(A. The case (ii)
provides a version of Nisnevich conjecture for such ‘nice’ reductive groups satisfying the total isotropicity
assumption: if R is a discrete valuation ring with uniformizer r and if R — A is a local homomorphism
of local rings, then r € m4\m?, and (ii) says that any generically trivial G-torsor over A[%] is trivial (the
isotropicity assumption on G4 is essential, see, for instance, [Fed21]).

Remark 11.2. An inspection of the proof below shows that, if X™ < X denotes the loci where a finitely
presented morphism X — Spec(R) is non-smooth, then Theorem 11.1 still holds provided that X is only
a flat projective R-scheme such that X™ is R-fiberwise of codimension > 2 in X, x n X™ = ¢, and G
is a reductive X\ X™-group scheme.

To prove Theorem 11.1, we first derive from Corollary 6.3.2 and Lemma 7.1.1 the following key result,
which reduces the proof of Theorem 11.1 to studying torsors on a smooth affine relative curve.

Lemma 11.3. For a semilocal Priifer domain R of finite Krull dimension, an irreducible, smooth, pro-
jective R-scheme X of pure relative dimension d > 0, a finite subset * < X, and a reductive X -group
scheme G, the following assertions hold.

(i) Given a generically trivial G-torsor P over A := Ox g, there are
- a smooth, affine A-curve C, an A-finite closed subscheme Z < C, and a section s € C(A);

- a reductive C-group scheme ¢ satisfying s*9 ~ G4 and a 9-torsor F such that F|c\z is
trivial and s*F ~ P.
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(ii) Given an r € R\{0} and a generically trivial G-torsor P over A[1], there are

- a smooth, affine A-curve C, an A-finite closed subscheme Z < C, and a section s € C(A);

- a reductive C-group scheme & such that s*9 ~ GA, a G-torsor F over ClL]:=C x4 A[1]
such that ]-"|C[ ©z2] is trivial and (s] 411 )¥(F) =~ P.

Proof. By Corollary 6.3.2, P (resp., 75) extends to a G-torsor Py (resp., 737)) over an open neighbourhood
W < X of x (resp., an open neighbourhood W < X of Spec(A[2])) such that

codim((X\W)k,Xk) =23 and codim((X\W)s, X;) = 2 for all s € Spec(R);

and

codim((X\W)g,Xx) >3 and codim((X\W),, X,) > 2 for all s € Spec(R).
Here, K is the fraction field of R. Let z < X be the set of maximal points of the R-fibers of X; the
above codimension bounds implies z ¢ W (resp., z W) By Lemma 3.1.1(iii), the semilocal ring Ox ,,
and hence also Ox ,[1], is a Priifer domain. By the Grothendieck-Serre on semilocal Priifer schemes
(Theorem 9.0.1), the generically trivial G-torsor (Po)|ey., (resp., (%ﬂﬁx‘z[ﬂ) is actually trivial. Thus

there exists a closed subscheme Y < X (resp., YeX ) that avoids all the maximal points of R-fibers of
X such that the restriction (Po)|x\y (resp., (7?0)|( X\Y/)[l]) is trivial; such a Y (resp., Y) is R-fiberwise
of codimension > 0 in X. Now, we treat the two cases (i)—(ii) separately.

(i) By the above, X\W is R-fiberwise of codimension > 2 in X; a fortiori, the same codimension
bound holds for YA\W in X. Consequently, we can apply Lemma 7.1.1 (vii) to obtain an affine
open S A?{l, an affine open neighbourhood U ¢ W of x, and a smooth morphism 7: U — §
of pure relative dimension 1 such that U n'Y is S-finite.

Let 7 : C' := U xg Spec A — Spec A be the base change of m to Spec A. Let Z and F be the
pullbacks of U n' Y and (Py)|y under pry : C — U, respectively. Then, via 7, C' is a smooth
affine A-curve, Z < C is a A-finite closed subscheme, and F is a ¢ := pr¥(Gy)-torsor that
trivializes over C\Z. Finally, the diagonal in C induces a section s € C(A) with s*F ~ P (as
s*9 = G 4-torsors).

(i) Since Spec(A[1]) consists of points of X[1] := X x g R[1] that specializes to some point of x, we
deduce from the inclusion Spec(A[1]) < W that no points of (X\W)[%] = X[%]\W[%] specializes
to any points of x. Hence, the closure (X\WN/)[%] (in X) is disjoint from x, so W’ := X\(X\VIN/)[%]
is an open neighbourhood of x. Notice that X is topological Noetherian, because its R-fibers are
projective varieties over fields, and by our assumption Spec(R) has a finite underlying space. Since
by the above (X\W)[ ] is R[+]-fiberwise of codimension > 2 in X[1], by Lemma 3.1.1(i) applied

to the closures of the (finitely many) maximal points of (X\VIN/)[ ], the closure (X\VIN/)[ | = X\VIN/'
is R-fiberwise of codimension > 2 in X; a fortiori, the same holds for Y\W’ in X. Consequently,
we can apply Lemma 7.1.1 (vii) to obtain an affine open S < Ad ! an affine open nelghbourhood

UcW of x, and a smooth morphlsm F#:U — S of pure relatlve dimension 1 such that U n Y
is S-finite. Notice that U[T] c W’[T] = W[L], so we have the restriction (PO)\U 1

r

Let 7:C:=U x 5 Spec(A — Spec(A be the base change of 7 to Spec(A. Let Z be the pullback
of U nY under pr; : C — U. Let F be the pullback of (’fﬁo)h}[%] under pry : C[1] — (7[%]
Then, via 7, C is a smooth affine A-curve, Z c C is a A-finite closed subscheme, and Fis
a @ := pr{(Gp)-torsor over C[1] that trivializes over C[2]\Z[1]. Finally, the diagonal in C
induces a section s € C(A) with SA[l](]:) ~ P, and s*¢4 = G4. O
Proof of Theorem 11.1. By a standard limit argument involving Lemma 3.1.3, one easily reduces to the
case when R has finite Krull dimension. Now, let P (resp., P) be a generically trivial G-torsor over
A := Oxx (resp., over A[1]) which we want to trivialize. Let d be the relative dimension of X over R. If
d =0, then A and A[%] are semilocal Priifer domains, so, by the Grothendieck—Serre on semilocal Priifer

schemes (Theorem 9.0.1), the torsors P and P are trivial. Hence we may assume that d > 0. Then,
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by Lemma 11.3, there are a smooth, affine A-curve C, an A-finite closed subscheme Z < C, a section
s € C(A), a reductive C-group scheme ¥ with s*¢ ~ G4,

- a 9-torsor F over C that trivializes over C\Z such that s*F ~ P, and
- a Y-torsor F over C[%] that trivializes over C[£]\Z[2] such that (s|A[;])*(]T') ~P.

By Theorem 10.1 (i), the G-torsor s*F ~ P is trivial. By Theorem 10.1 (ii), in the case (s[4[1))*(¢) ~
G a[1 is totally isotropic, the G 4[1)-torsor (s|A[;])*(]-") ~ P is trivial. O

12. TORSORS UNDER A CONSTANT REDUCTIVE GROUP SCHEME

In this section we prove the following variant of Theorem 11.1, in which the R-smooth scheme X need
not be proper, but the reductive group scheme G is supposed to descend to the Priifer ring R. Thus,
we established the Grothendieck—Serre conjecture and a version of Nisnevich conjecture for ‘constant’
reductive group schemes. As for the proof, we use a variant of Lindel’s Lemma (Proposition 7.2.1) and
glueing techniques to reduce to the case already settled by Theorem 11.1.

Theorem 12.1. For a semilocal Priifer domain R, a nonzero element r € R, an irreducible affine R-
smooth scheme X, a finite subset © < X, and a reductive R-group scheme G,

(i) any generically trivial G-torsor over A := Ox 4 is trivial, that is,

ker (H'(A,G) — H'(Frac A,G)) = {*};

(ii) if Ggpay is totally isotropic, then any generically trivial G-torsor over A[3] is trivial, that is,

ker (H'(A[L],G) — H'(Frac A, G)) = {#}.

Proof. Let P (resp., 75) be a generically trivial G-torsor over A (resp., over A[%]) By shrinking X
around x, we may assume that P is defined over the whole X (resp., P is defined over the whole
X[1] := X xg R[1]). Let d be the relative dimension of X over R. As noted by Cesnavicius, since it
suffices to argue that P (resp., P) is trivial Zariski semilocally on X, we may replace X by X x AY
for large N to assume that d > # x: by pulling back along the zero section X — X xp A% the Zariski
semilocal triviality of P, ,an (resp., ﬁx[%]xRAg) on X xp AN implies that of P (resp., P) on X.

By specialization, we may assume that each point of x is closed in the corresponding R-fiber of X (but
not necessarily lies in the closed R-fibers of X). Our goal is to show that P|4 (resp., P|4[1}) is trivial.

If d = 0, then A (resp., A[1]) is a semilocal Priifer domain, so, by the Grothendieck—Serre conjecture on

semilocal Priifer schemes (Theorem 9.0.1), the torsor P|4 (resp., P| a[1]) is trivial. Thus we may assume
that d > 0 for what follows.

Denote by 7 : X — S := Spec(R) the structural morphism. Let y be the set of maximal points of the
R-fibers of X.

Claim 12.1.1. No points of x specializes to any point of y, that is, x ny = .

Proof of the claim. By Lemma 3.1.1(iii), for any y € y, Ox,, is a valuation ring having the same value
group as Og r(,); in particular, the map m, : Spec Ox ,, — Spec Og r(,) induced by 7 is a homeomorphism,
and is thus injective. Assume by contradiction that = € x specializes to y € y, so Spec Ox_,, . is a
subset of Spec O . Since the image of Spec Ox_,, » under m, is the singleton {r(z)}, by the injectivity
of m,, we deduce that dim ﬁXﬂ(z),z = 0. This contradicts the fact dim ﬁXﬂ(z),m = d > 0 (because by our
assumption x is a closed point in the corresponding w-fiber). O

By Lemma 3.1.1(iii) again, the semilocal ring €x y, and hence also ﬁxyy[%], is a Priifer domain, so, by
the Grothendieck—Serre conjecture on semilocal Priifer schemes (Theorem 9.0.1), the generically trivial G-
torsor P|gy , (resp., 75\ Ox 2 1) is actually trivial. Therefore, using the above claim and prime avoidance,
we can find an element a € I'(X, Ox) such that, denoting ¥ := V(a) € X, then x c Y, ynY = &,
and the restriction P|x\y (resp., ﬁ\(X\y)[%]) is trivial. (We just take a = ajag, where a; is an element
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such that y n V(a1) = & and P|x\v(q,) (resp., ﬁ|(X\v(a1))[%]) is trivial, and as is delivered from prime
avoidance utilizing the fact X Ny = & so that x € V(az) and y n V(a2) = &.)
Since d > # x, we may apply Proposition 7.2.1 to obtain an affine open neighbourhood W < X of x,

an affine open subscheme U c A%, and an étale surjective R-map f : W — U such that the restriction
flway is a closed immersion and f induces a Cartesian square

WnY — W

H I

WnY —— U.
Applying (=) xg R[%] yields a similar Cartesian square. By glueing Lemma 6.2.2 (ii),

(i) we may (non-canonically) glue P|y and the trivial G-torsor over U\f(W nY) to descend P|w
to a G-torsor Q over U that trivializes over U\f(W nY). Since U has a smooth, projective
compactification P%, we may apply Theorem 11.1 (i) to deduce that Qloy s 18 trivial, so Pla =
Pl is trivial, as desired.

(ii) we may (non-canonically) glue 75|W[%] and the trivial G-torsor over (U\f(W nY))[1] to descend
73|W[;] to a G-torsor Q over U[1] that trivializes over U[X]\f(W nY)[+]. Since U has a smooth,
projective compactification P%, we may apply Theorem 11.1 (ii) to conclude that @\ O rooli] 18

trivial, so 75|A[;.] = 75\5‘%([;] is trivial, as desired. O

13. TORSORS UNDER A QUASI-SPLIT REDUCTIVE GROUP SCHEME

In this section we study generically trivial torsors under quasi-split reductive group schemes. The main
result is the following Theorem 13.1, in which (i) is a version of Nisnevich conjecture that is inspired
by the recent preprint of Cesnavicius [Ces22¢, Theorem 1.3 (2)], who proved it in the case R is a
Dedekind domain, and (ii) is the Grothendieck—Serre conjecture over one-dimensional Priifer bases. As
for the proof, we will follow the strategy of [Ces22a] (with its earlier version given by Fedorov [Fed22b]),
which goes through because the main tools, such as toral version of purity (Proposition 8.2.5) and the
Grothendieck—Serre conjecture (Proposition 8.3.2(i)) in our context, are available now.

Theorem 13.1. For a semilocal Priifer domain R with fraction field K, an irreducible, semilocal, and
essentially smooth R-algebra A, and a quasi-split reductive A-group scheme G,

(i) every generically trivial G-torsor over A®p K is trivial, that is,

ker (H'(A®g K,G) — H'(Frac A,G)) = {*};

(ii) if R has Krull dimension 1, then every generically trivial G-torsor is trivial, that is,
ker (H'(A,G) — H'(Frac A,G)) = {}.

We start with the following consequence of Lemma 7.1.1, which is the key geometric input permitting a
series of reductions that eventually lead to Theorem 13.1.

Lemma 13.2 (cf. [Ces22a, Proposition 4.1]). For
(i) a semilocal Priifer domain R of Krull dimension 1 with fraction field K ;

(ii

) a smooth, faithfully flat, R-algebra A of pure relative dimension d = 1 over R;
iii) a finite subset x € X := Spec A;
(ili) a fi pec 4;

)

(iv) a closed subscheme Y < X that satisfies

codim(Yg,Xg) =2 and codim(Yy, Xs) = 1 for all s € Spec R;

there are an affine open U < Spec A containing X, an affine open S < A?{l, and a smooth R-morphism
m:U — S of relative dimension 1 such that Y nU is S-finite.

Moreover, if in (i) R is allowed to be of arbitrary finite Krull dimension, then the same conclusion holds
provided (iv) is replaced by the stronger assumption that'Y is R-fiberwise of codimension = 2 in X.
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Proof. Choosing an embedding of X into some affine space over R and taking schematic closure in
the corresponding projective space, we get a projective compactification X of X. Since X is flat and
projective over R, by Lemma 3.1.1(i), all its R-fibers have the same dimension d. Denote by Y < X the
schematic closure of Y. To apply Lemma 7.1.1 (vii) and conclude, in which X is X here, W is X here,
and Y is Y here, we need to check that the boundary Y\Y is R-fiberwise of codimension > 2 in X.

By [SP, 01R8], set-theoretically we have Y = U, {y}, where y runs through the generic points of V.

In the case Y is R-fiberwise of codimension > 2 in X, the same holds for Y in X; a fortiori, Y\Y is
R-fiberwise of codimension > 2 in X. Indeed, by Lemma 3.1.1(i), X has equal R-fiber dimension d and
all non-empty R-fibers of {y} have the same dimension, so, if y lies over s, € Spec R, then

codim({y},, Xs) = codim({?}sy,y%) > 2 for any specialization s, v s € Spec R.
Next, we assume that R has Krull dimension 1 and Y is of codimension > 2 (resp., = 1) in the generic
(resp., closed) R-fiber of X. If y € Y}, then, by Lemma 3.1.1(i) again, we see that
codim({y},, Xs) = codim({?}n,yn) >2 for all s € Spec R;
a fortiori, the contribution of such a y to the R-fiber codimension of Y\Y in X is > 2.

Otherwise, y lies over a height 1 prime (i.e., a closed point) s; € Spec R, then @Sl = {y} c Ys,; by

assumption codim(Yy,, X,,) = codim(Y;,, X,,) = 1, so we have codim({y}, ,X,,) = 1. But since the

generic point y of {y}s1 is not contained in Y\Y, we deduce that the contribution of such a y to the
s1-fiber codimension of Y\Y in X is again > 2. O

Lemma 13.3 (Lifting the torsor to a smooth relative curve; cf. [Ces22a, Proposition 4.2]). For a semilocal
Priifer domain R with fraction field K, the semilocalization A of an irreducible, R-smooth algebra A’ at
a finite subset < Spec(4’), and a quasi-split reductive A-group scheme G with a Borel subgroup B,

(1) given a generically trivial G-torsor Pk over Ak := A®gr K, there are
(i) a smooth, affine relative A-curve C with a section s € C(A);
(ii) an A-finite closed subscheme Z < C;

(iii) a quasi-split reductive C-group scheme & with a Borel subgroup B < 4 whose s-pullback is
B c G, compatible with the quasi-pinnings;

(iv) a 9-torsor Px over Ck = C xp K whose sa, -pullback is Py such that Pk reduces to a
rad“(9)-torsor over Ck\Zk (here sa,. stands for the image of s in C(Ak)).

(2) if R has Krull dimension 1, given a generically trivial G-torsor P, then there are
(i) a smooth, affine relative A-curve C with a section s € C(A);
(ii) an A-finite closed subscheme Z < C;

(iii) a quasi-split reductive C-group scheme ¢ with a Borel subgroup B < 4 whose s-pullback is
B c G, compatible with the quasi-pinnings;

(iv) a 9-torsor P whose s-pullback is P such that P reduces to a rad“(¥)-torsor over C\Z.

Proof. In case (1) we can first use a limit argument involving Lemma 3.1.3 to reduce to the case when
R has finite Krull dimension.

If A’ is of relative dimension 0 over R, then Ax = Frac(A) and A is a semilocal Priifer domain. Thus,

Py is trivial, and, by the Grothendieck—Serre conjecture on semilocal Priifer schemes (Theorem 9.0.1),

P is also trivial. In this case we simply take C = Al s =0e A4 (A), Z = &, (¥, B) = (Gay, By ), and

Pr = (Pk)ay_ (resp., P = Py ). Thus, for what follows, we can assume that the relative dimension of
K

A’ over Risd > 0.

By spreading out and localizing A’, we may assume that our quasi-split G (in particular, the Borel B)
and torsor P all live over A’, and Pk live over A%. By [SGA 3111 yew, Exposé XXVI, Corollaire 3.6 and
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Lemme 3.20], the quotient Px /B (resp., P/B) is representable by a smooth projective scheme over A’
(resp., over A’). Now we treat the cases (1)-(2) separately.

(1) By the generic triviality of P, applying the valuative criterion of properness to Px/Bg — Spec(A’)
yields a closed subscheme Yx < Spec(A4)) of codimension > 2 such that Px/Bx — Spec(A’) has a
section over Spec(A’,)\Yx that lifts to a generic section of P . In other words, (Pg )spec( Aj)\vi Teduces
to a generically trivial Bgpec(a )\vy -torsor PE. Consider the A’-torus T := B/rad"(B) and the induced
T-torsor

PL = PB/rad“(B)x over  Spec(A%)\Yk.

Since PL is generically trivial, by Corollary 6.3.2, it extends to a T-torsor ]3:7; over Spec(A\F for a
closed subscheme F' < Spec(A’) satisfying

codim(Fk,Spec(A") k) =2 and codim(Fs, Spec(A’)s) > 1 for all s € Spec(R);

by purity for tori (Theorem 8.2.4), this torsor further extends to the whole Spec(A’). As PL is generically
trivial, by the Grothendieck—Serre conjecture for tori (Proposition 8.3.2(i)), we may localize A" around
x to assume that PL, and hence also PL is already trivial. In other words, (Pr)spec( A\ reduces to
a rad"(B)-torsor over Spec(A’% )\Yk.

Denote by Y the schematic closure of Yy in Spec(A’); by Lemma 3.1.1(i), it is R-fiberwise of codimension
> 2 in Spec(A’). Applying Lemma 13.2 to the R-smooth algebra A’ and the closed subscheme Y <
Spec(A’), we obtain an affine open U < Spec(A’) containing x, an affine open S = A% and a smooth
R-morphism 7 : U — S of relative dimension 1 such that Y n U is S-finite.

Recall that A is the semilocal ring of U at x. Denote
C:=UxgSpecA and Z:=(Y nU) xgSpecA.

Then C is a smooth affine relative A-curve, the diagonal in C induces a section s € C'(A), and the closed
subscheme Z < C is A-finite. So (1)(i) and (1)(ii) hold. Let # < ¢ be the pullback of By < Gy
under the first projection pry : C'— U, and let Pg be the pullback of (Pk )y, under the first projection
pr; : Cx — Ugk. Then, Pk is a ¥-torsor over Ck, and, by construction, the s-pullback (resp., s4,-
pullback) of < ¢ (resp., of Px) is B < G (resp., Px). Finally, since Pk reduces to a rad"(B)-torsor
over Spec(A )\Yk, Pk reduces to a rad"(%)-torsor over Cx\Zx. So (1)(iii) and (1)(iv) also hold.

(2) Recall that, by Lemma 3.1.1(iii), the local rings of all maximal points of R-fibers of Spec(A’) are
valuation rings. By the generic triviality of P, applying the valuative criterion of properness to P/B —
Spec(A4’) yields a closed subscheme Y < Spec(A’), which avoids all the codimension 1 points of the
generic fiber Spec(A% ) and all the maximal points of R-fibers of Spec(A4’), such that P/B — Spec(A4’)
has a section over Spec(A’)\Y that lifts to a generic section of P. In other words, Y satisfies

codim(Yg, Spec(A')k) =2 and codim(Ys, Spec(4’)s) = 1 for all s € Spec(R).
Therefore, Pgpec(aryy reduces to a generically trivial Bgpec(aryy-torsor PB. Consider the A’-torus
T := B/rad“(B) and the induced T-torsor
PT .= PB/rad“(B) over Spec(A)\Y.
By purity for tori (Theorem 8.2.4), PT extends to a T-torsor PT. As PT is generically trivial, by the
Grothendieck—Serre conjecture for tori (Proposition 8.3.2(i)), we may localize A’ around x to assume
that PT, and hence also P7, is already trivial. In other words, Pspec(anyy reduces to a rad"(B)spec(ayy-

torsor.

Now, applying Lemma 13.2 to the R-smooth algebra A’ and the closed subscheme Y < Spec(4’), we
obtain an affine open U < Spec(A’) containing x, an affine open S < Aﬁlgl, and a smooth R-morphism
m:U — S of relative dimension 1 such that Y n U is S-finite.

Recall that A is the semilocal ring of U at x. Denote

C:=UxgSpecA and Z:=(Y nU) xgSpecA.
Then C is a smooth affine relative A-curve, the diagonal in C induces a section s € C'(A4), and the closed
subscheme Z c C'is A-finite. So (2)(i) and (2)(ii) hold. Let 8 < ¢ and P be the pullback of By < Gy
and Py under the first projection pr; : C — U, respectively. Then, P is a ¥-torsor over C, and, by

construction, the s-pullback of Z ¢ ¢4 and P are B c G and P, respectively. Finally, since P reduces to
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a rad"(B)-torsor over Spec(A")\Y, P reduces to a rad"(Z#)-torsor over C\Z. So (2)(iii) and (2)(iv) also
hold. ]

Lemma 13.4 ([Ces22a, Lemma 5.2]). For a semilocal ring A whose local rings are geometrically uni-
branch, an ideal I < A, reductive A-groups G and G’ that on geometric A-fibers have the same type,
fized quasi-pinnings of G and G' extending Borel A-subgroup B < G and N' < G’ and an A/I-group
isomorphism

v: Gy — G'A/I respecting the quasi-pinnings; in particular, —«(Bar) = B;x/[;
there are
(i) a faithfully flat, finite, étale A-algebra A equipped with an A/I-point a : A A/I; and
(i) an fl-gmup isomorphism T: G y — G;T respecting the quasi-pinnings such that a*(7) = ¢.

Notice that the original version [Ces22a, Proposition 5.1] assumed further A to be Noetherian, but the
Noetherianess of A was not used anywhere in the proof.

Lemma 13.5 (Changing the relative curve C to equate 4 and G¢; cf. [Ces22a, Proposition 5.2]). In the
setting of Lemma 13.3, for both cases (1) and (2) we may replace C by an étale neighbourhood of im(s)
to achieve further that (4, %) = (Gec, Be).

Proof. Consider the semilocalization Spec(D) of C' at the closed points of im(s) u Z; since C' is normal,
all the local rings of D are geometrically unibranch. The image of the section s : Spec A — Spec(D)
gives rise to a closed subscheme Spec(D/I) < Spec(D). By the conclusion of Lemma 13.3, the restriction
of Bp € ¥p and Bp <= Gp to Spec(D/I) agree with each other in a way compatible with their
quasi-pinnings. Thus, by Lemma 13.4, there is a faithfully flat, finite, étale D-algebra 5, a point
§:D — D/I ~ A lifting s : D — D/I ~ A such that #p < ¥ is isomorphic to By < Gp
compatibly with the fixed identification of s-pullbacks. We then spread out the finite étale morphism
Spec(D) — Spec(D) to a finite étale morphism C' — €’ for an open ¢’ < C that contains im(s) U Z,
while preserving an 5 € C (A), and an isomorphism between %z < ¥ and By < G. Now it remains to
replace C, s, Z and Pk (resp., P) by C,3, Z x¢C and (Pk)g,. (resp., Pg). O

Lemma 13.6 (Changing the relative smooth curve C for descending to Al; [Ces22a, Proposition 6.5]).
In the setting of Lemma 13.3, for both cases (1) and (2), in addition to (¥,8) = (G¢, Be), we may
change C to achieve further that there is a flat A-map C — AYy that maps Z isomorphically to a closed
subscheme Z' < Al with

Z~7 XA}«; C.

Proof. Assume that, in both cases (1) and (2) of Lemma 13.3, we have achieved the conclusion of
Lemma 13.5. We have the data of a smooth affine relative A-curve C, a section s € C'(A4), and an
A-finite closed subscheme Z < C; replacing Z by Z u im(s), we may assume that s factors through Z.
However, in general, the A-finite scheme Z may be too large to embed into Al,. (For instance, if R = k
is a finite field, then Z can’t be embedded into A} as soon as §Z(k) > tk.) For this, we first apply

Panin’s ‘finite fields tricks’ [Ces22a, Proposition 7.4] to obtain a finite morphism C' — C that is étale
at the points in Z := C x ¢ Z such that s lifts to $ € C(A), and there are no finite fields obstruction to
embedding Z into Ay in the following sense: for every maximal ideal m < A,

j:t{z € Zn(m) D [k(2) s k(m)] = d} < j:t{z € A}i(m) D[k(2) s k(m)] = d} for every d = 1.

Then, by [Ces22a, Lemma 6.3], there are an affine open C’ < C containing im(%), a quasi-finite, flat
A-map C’ — Al that maps Z isomorphically to a closed subscheme Z’ < A} with
7 ~ ZI X AL C/.
A

It remains to replace C' by C’, Z by Z, s by 3, Px by (Pr)cy. (resp., P by Pcr). O

Lemma 13.7 (Descend to A| via patching; cf. [Ces22a, Proposition 7.4]). In the setting of Lemma 15.3,
for both cases (1) and (2), we may achieve further that (4, %) = (Gc,Bc), C = Ay, and s = 0 € Al (A).
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Proof. By the reduction given in Lemma 13.6, we have a flat A-curve C, a section s € C'(A), an A-finite
closed subscheme Z < C, a quasi-finite, affine, flat A-map C — A, that maps Z isomorphically to a
closed subscheme Z' < A}L‘ with Z = Z' x AL C, and a G-torsor Pk over Cx whose s4,-pullback is Pk
(resp., a G-torsor P over C whose s-pullback is P) and whose restriction to Cx\Zk (resp., C\Z ) reduces
to a rad"(B)-torsor. Now, since Z = Z" x4 C' ~ Z', [Ces22a, Lemma 7.2] implies the pullback maps

HY(AY\Z' rad"(G)) - H'(C\Z,rad"(G))

and
HY (A4 \Zj,rad"(G)) - H' (Ck\Zk,rad"(G))

are surjective. Combining these, we see that Px|c,\z, (resp., P|c\z) descends to a G-torsor Qg (resp.,
Q) over A}y \Zj (resp., A4\Z’) that reduces to a rad"(B)-torsor. By the glueing Lemma 6.2.2(ii), we
may (ngn—canonicaﬂy) glue Px with Qx (resp., P with Q) to descend Px (resp., P) to a G-torsor Px
(resp., P) over A}y  (resp., over Al}) that reduces to a rad"(B)-torsor over A}y \Zj (resp., over AY\Z’).
It remains to replace C by AL, Z by Z’, s € C(A) by its image in AY(A), and Px by Pr (resp., P by
’ﬁ) Finally, by shifting, we may assume even that s = 0 € A} (A). O

Proof of Theorem 13.1. Let Pk (resp., P) be a generically trivial G 4, -torsor (resp., G-torsor). By the
reduction Lemma 13.7, we get an A-finite closed subscheme Z < A}, and a GA% -torsor Pg (resp.,
K

Gy -torsor P) whose pullback along the zero section is P (resp., P) such that (Px)ay \z, (resp.,
K

Pla1\z) reduces to a rad”(B)-torsor. Since any A-finite closed subscheme of Ay is contained in {f = 0}
for some monic polynomial f, we may enlarge Z to assume that AL\Z is affine, to the effect that any
rad"(B)-torsor over Aly \Zg (resp., over A}}\Z), such as (PK)|A}4K\ZK (resp., Pla1\z), is trivial. By

section Theorem 10.1, the pullback of Pk (resp., of P) along the section s € Al (A) is trivial, that is, Pk
(resp., P) is trivial, as desired. O

REFERENCES

[BouAC] Nicolas Bourbaki, Commutative algebra. Chapters 1-7, Elements of Mathematics (Berlin), Springer-Verlag,
Berlin, 1998. Translated from the French, Reprint of the 1989 English translation.

[EGA I] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique. I. Le langage des schémas, Inst.
Hautes Etudes Sci. Publ. Math. 4 (1960), 228. MR0217083 (36 #177a)

[EGA IV3] Alexander Grothendieck and Jean Dieudonné, Eléments de géométrie algébrique. IV. Etude locale des
schémas et des morphismes de schémas. II, Inst. Hautes Etudes Sci. Publ. Math. 24 (1965), 231 (French).
MRO0199181 (33 #7330)

[EGA IV3] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique. IV. Etude locale des schémas et des
morphismes de schémas. III, Inst. Hautes Etudes Sci. Publ. Math. 28 (1966), 255. MR0217086 (36 #178)

[EGA IV4] Alexander Grothendieck and Jean Alexandre Eugéne Dieudonné, Eléments de géométrie algébrique. IV.
FEtude locale des schémas et des morphismes de schémas IV, Inst. Hautes Etudes Sci. Publ. Math. 32
(1967), 361 (French). MR0238860 (39 #220)

[SGA 2pew]| Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorémes de Lefschetz locauz et
globauz (SGA 2), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 4, Société
Mathématique de France, Paris, 2005 (French). Séminaire de Géométrie Algébrique du Bois Marie, 1962;
Augmenté d’un exposé de Michéle Raynaud. [With an exposé by Michéle Raynaud]; With a preface and
edited by Yves Laszlo; Revised reprint of the 1968 French original. MR2171939

[SGA 311] Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes générauz, Sémi-
naire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck.
Lecture Notes in Mathematics, Vol. 152, Springer-Verlag, Berlin-New York, 1970 (French). MR0274459 (43
#223b)

[SGA 3111 new| Philippe Gille and Patrick Polo (eds.), Schémas en groupes (SGA 3). Tome III. Structure des schémas en
groupes réductifs, Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 8, Société Mathé-
matique de France, Paris, 2011 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962—64. [Alge-
braic Geometry Seminar of Bois Marie 1962-64]; A seminar directed by M. Demazure and A. Grothendieck
with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre; Revised and
annotated edition of the 1970 French original. MR2867622

[SGA 4y1] Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, Vol. 270,
Springer-Verlag, Berlin, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA
4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne
et B. Saint-Donat. MR0354653 (50 #7131)
[Alp14] Jarod Alper, Adequate moduli spaces and geometrically reductive group schemes, Algebr. Geom. 1 (2014),
no. 4, 489-531, DOI 10.14231/AG-2014-022.

53



[AB57]
[Aus62]
[Bar67]
[BFF17]
[BFFH20]

[BFFP22]

[BVG14]
[Ber71]
[Ber72]
[BS15]
[BRS3)
[BB70]
[BC22|
(BT1m1]
[Ces15]
[Ces22a]
[Ces22b]
[Ces22¢]
[Cs21]
[Che10]
[CTST79]
[CTS87]

[CTO92]

[FP15]

[Fed21]
[Fed22a]
[Fed22b)

[Fir22]

[FK18]

[Gab81]
[GR18]

[Glag89]

[GGMB14]

Maurice Auslander and David A. Buchsbaum, Homological dimension in local rings, Trans. Am. Math. Soc.
85 (1957), 390-405, DOI 10.2307/1992937 (English).

M. Auslander, On the purity of the branch locus, Am. J. Math. 84 (1962), 116-125, DOI 10.2307/2372807
(English).

Donald W. Barnes, On Cartan subalgebras of Lie algebras, Math. Z. 101 (1967), 350-355, DOI
10.1007/BF01109800.

Eva Bayer-Fluckiger and Uriya A. First, Rationally isomorphic Hermitian forms and torsors of some non-
reductive groups, Adv. Math. 312 (2017), 150-184, DOI 10.1016/j.aim.2017.03.012 (English).

Eva Bayer-Fluckiger, Uriya A. First, and Mathieu Huruguen, Orders that are étale-locally isomorphic, St.
Petersbg. Math. J. 31 (2020), no. 4, 573-584, DOI 10.1090/spmj/1615 (English).

Eva Bayer-Fluckiger, Uriya A. First, and R. Parimala, On the Grothendieck—Serre conjecture for classical
groups, Journal of the London Mathematical Society, posted on 2022, DOI 10.1112/jlms.12651. online,
available at https://doi.org/10.1112/jlms.12651.

Sofie Beke and Jan Van Geel, An isomorphism problem for Azumaya algebras with involution over semilocal
Bézout domains, Algebr. Represent. Theory 17 (2014), no. 6, 1635-1655, DOI 10.1007/s10468-013-9463-6.
José Bertin, Anneauz cohérents réguliers. (Regular coherent rings), C. R. Acad. Sci., Paris, Sér. A 273
(1971), 590-591 (French).

Jose Bertin, Anneauz cohérents de dimension homologique finie, 1972 (French).

Bhargav Bhatt and Peter Scholze, The pro-étale topology for schemes, De la géométrie algébrique aux formes
automorphes (I). Une collection d’articles en I’honneur du soixanti¢me anniversaire de Gérard Laumon, 2015,
pp. 99-201 (English).

S. M. Bhatwadekar and R. A. Rao, On a question of Quillen, Trans. Am. Math. Soc. 279 (1983), 801-810,
DOI 10.2307/1999568 (English).

Andrzej Biatynicki-Birula, Rationally trivial homogeneous principal fibrations of schemes, Invent. Math. 11
(1970), 259-262, DOI 10.1007/BF01404652 (English).

Alexis Bouthier and Kestutis Cesnavi¢ius, Torsors on loop groups and the Hitchin fibration, Annales scien-
tifiques de I’Ecole normale supérieure 55 (2022), no. 3, 791864, DOI 10.24033/asens.2506.

F. Bruhat and J. Tits, Groupes algébriques sur un corps local. Chapitre I1I. Compléments et applications
a la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 671-698.

Kestutis Cesnavi¢ius, Topology on cohomology of local fields, Forum Math. Sigma 3 (2015), €16, 55, DOI
10.1017/fms.2015.18. MR3482265

_, Grothendieck—Serre in the quasi-split unramified case, Forum Math. Pi 10 (2022), no. €9, 30, DOI
10.1017/fmp.2022.5.

, Problems about torsors over regular rings, Acta Math. Vietnam. 47 (2022), no. 1, 39-107, DOI
10.1007/s40306-022-00477-y (English).

, Torsors on the complement of a smooth divisor, Available at https://wuw.imo.
universite-paris-saclay.fr/~cesnavicius/torsors-complement.pdf (2022).

Kestutis Cesnavi¢ius and Peter Scholze, Purity for flat cohomology, 2021. arXiv:1912.10932; available at
https://www.imo.universite-paris-saclay.fr/~cesnavicius/flat-purity.pdf.

V. Chernousov, Variations on a theme of groups splitting by a quadratic extension and Grothendieck-Serre
conjecture for group schemes Fy with trivial g3 invariant, Doc. Math. Extra Vol. (2010), 147-169 (English).
Jean-Louis Colliot-Théléne and Jean-Jacques Sansuc, Fibrés quadratiques et composantes connexes réelles,
Math. Ann. 244 (1979), no. 2, 105-134, DOI 10.1007/BF01420486.

, Principal homogeneous spaces under flasque tori: applications, J. Algebra 106 (1987), no. 1, 148-
205, DOI 10.1016/0021-8693(87)90026-3. MR878473

Jean-Louis Colliot-Théléne and Manuel Ojanguren, Locally trivial principal homogeneous spaces, Publ.
Math., Inst. Hautes Etud. Sci. 75 (1992), 97-122, DOI 10.1007/BF02699492 (French).

Roman Fedorov and Ivan Panin, A proof of the Grothendieck—Serre conjecture on principal bundles over
regular local rings containing infinite fields, Publ. Math. Inst. Hautes Etudes Sci. 122 (2015), 169-193, DOI
10.1007/s10240-015-0075-z. MR3415067

Roman Fedorov, On the purity conjecture of Nisnevich for torsors under reductive group schemes, Available
at https://arxiv.org/pdf/2109.10332.pdf (2021).

, On the Grothendieck-Serre conjecture about principal bundles and its generalizations, Algebra
Number Theory 16 (2022), no. 2, 447-465, DOI 10.2140/ant.2022.16.447 (English).

, On the Grothendieck-Serre conjecture on principal bundles in mized characteristic, Trans. Am.
Math. Soc. 375 (2022), no. 1, 559-586, DOI 10.1090/tran/8490 (English).

U. A. First, An 8-periodic exact sequence of Witt groups of Azumaya algebras with involution, Manuscripta
Math. (2022). to appear. Available at https://arxiv.org/abs/1910.03232v2.

Kazuhiro Fujiwara and Fumiharu Kato, Foundations of rigid geometry. I, EMS Monographs in Mathematics,
European Mathematical Society (EMS), Ziirich, 2018. MR3752648.

Ofer Gabber, Some theorems on Azumaya algebras, 1981 (English).

Ofer Gabber and Lorenzo Ramero, Foundations for almost ring theory, Available at https://arxiv.org/
abs/math/0409584 (2018).

Sarah Glaz, Commutative coherent rings, Lect. Notes Math., vol. 1371, Berlin etc.: Springer-Verlag, 1989
(English).

Ofer Gabber, Philippe Gille, and Laurent Moret-Bailly, Fibrés principaux sur les corps valués henséliens,
Algebr. Geom. 1 (2014), no. 5, 573612 (French, with English and French summaries). MR3296806

54


https://www.imo.universite-paris-saclay.fr/~cesnavicius/torsors-complement.pdf
https://www.imo.universite-paris-saclay.fr/~cesnavicius/torsors-complement.pdf
https://www.imo.universite-paris-saclay.fr/~cesnavicius/flat-purity.pdf
https://arxiv.org/pdf/2109.10332.pdf
https://arxiv.org/abs/1910.03232v2
https://arxiv.org/abs/math/0409584
https://arxiv.org/abs/math/0409584

[Gir71]
[Gro58)
[Gro68a]
[Gro68b]
[Guo22]
[Guo20]
[Har67]
[Lin81]
[Mil80]
[MB96]
[MB22]
[Nag66]

[Nag5h9]
[Nis82]

[Nis84]

[Nis89]

[0ja80]

[0Oja82]
[0ja01]

[0ja04]
[Pan05]
[Pan21]
[Pan20a)
[Pan20b]
[PS97]

[PSV15]

[PS16]

[Rag94]
[Pop02]
[Sam64]
[Ser56]
[Ser58]

[SP]
[Zai00]

Jean Giraud, Cohomologie non abélienne (1971), ix+467. Die Grundlehren der Mathematischen Wis-
senschaften, Band 179.

Alexander Grothendieck, Torsion homologique et sections rationnelles, Anneaux de Chow et applications,
Séminaire Chevalley, 2e année, Secrétariat mathématique, Paris (1958).

, Le groupe de Brauer. II. Théorie cohomologique, Dix exposés sur la cohomologie des schémas, 1968,
pp. 67-87.

, Le groupe de Brauer. III. Exemples et compléments, Dix Exposés sur la Cohomologie des Schémas,
North-Holland, Amsterdam, 1968, pp. 88-188 (French). MR0244271 (39 #5586¢)

N. Guo, The Grothendieck-Serre conjecture over semilocal Dedekind rings, Transform. Groups 27 (2022),
no. 3, 897-917, DOI 10.1007/s00031-020-09619-8 (English).

Ning Guo, The Grothendieck—Serre conjecture over valuation rings, Available at http://arxiv.org/abs/
2008.02767 (2020).

Gunter Harder, Halbeinfache Gruppenschemata tber Dedekindringen, Invent. Math. 4 (1967), 165-191, DOI
10.1007/BF01425754 (German).

Hartmut Lindel, On the Bass-Quillen conjecture concerning projective modules over polynomial rings, In-
vent. Math. 65 (1981), 319-323, DOI 10.1007/BF01389017 (English).

James S. Milne, Etale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press,
Princeton, N.J., 1980.

Laurent Moret-Bailly, A problem of descent, Bull. Soc. Math. Fr. 124 (1996), no. 4, 559-585, DOI
10.24033 /bsmf.2293 (French).

, A construction of weakly unramified extensions of a wvaluation ring, Rend. Semin. Mat. Univ.
Padova 147 (2022), 139-151, DOI 10.4171/RSMUP/94 (French).

Masayoshi Nagata, Finitely generated rings over a valuation ring, J. Math. Kyoto Univ. 5 (1966), 163-169,
DOI 10.1215/kjm/1250524533.

M. Nagata, On the purity of branch loci in regular local rings, Ill. J. Math. 3 (1959), 328-333 (English).
Yevsey A. Nisnevich, ETALE COHOMOLOGY AND ARITHMETIC OF SEMISIMPLE GROUPS., Pro-
Quest LLC, Ann Arbor, MI, 1982. Thesis (Ph.D.)-Harvard University.

, Espaces homogénes principauz rationnellement triviauxr et arithmétique des schémas en groupes
réductifs sur les anneauz de Dedekind, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 1, 5-8 (French,
with English summary). MR756297

, Rationally trivial principal homogeneous spaces, purity and arithmetic of reductive group schemes
over extensions of two-dimensional regular local rings, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989),
no. 10, 651-655 (English, with French summary). MR1054270

Manuel Ojanguren, Quadratic forms over regular rings, J. Indian Math. Soc., New Ser. 44 (1980), 109-116
(English).

, Unites représentees par des formes quadratiques ou par des normes reduites, 1982 (French).
Manuel and Panin Ojanguren Ivan, Rationally trivial Hermitian spaces are locally trivial, Math. Z. 237
(2001), no. 1, 181-198, DOI 10.1007/PL00004859 (English).

M. and Panin Ojanguren I. and Zainoulline, On the norm principle for quadratic forms, J. Ramanujan
Math. Soc. 19 (2004), no. 4, 289-300 (English).

Ivan Panin, Purity for multipliers., Algebra and number theory. Proceedings of the silver jubilee conference,
Hyderabad, India, December 11-16, 2003, 2005, pp. 66-89 (English).

I. Panin, Notes on a Grothendieck-Serre conjecture in mized characteristic case, J. Math. Sci., New York
252 (2021), no. 6, 841-848, DOI 10.1007/s10958-021-05204-w (English).

Ivan A. Panin, Proof of the Grothendieck-Serre conjecture on principal bundles over regular local rings
containing a field, Izv. Math. 84 (2020), no. 4, 780-795, DOI 10.1070/IM8982 (English).

, Two purity theorems and the Grothendieck-Serre conjecture concerning principal G-bundles, Sb.
Math. 211 (2020), no. 12, 1777-1794, DOI 10.1070/SM9393 (English).

I. A. Panin and A. A. Suslin, On a Grothendieck conjecture for Azumaya algebras, St. Petersbg. Math. J.
9 (1997), no. 4, 1 (English).

I. Panin, A. Stavrova, and N. Vavilov, On Grothendieck-Serre’s conjecture concerning principal
G-bundles over reductive group schemes: I, Compos. Math. 151 (2015), no. 3, 535-567, DOI
10.1112/S0010437X 14007635 (English).

Ivan Panin and A. K. Stavrova, On the Grothendieck—Serre conjecture concerning principal G-bundles
over semi-local Dedekind domains, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)
443 (2016), no. Voprosy Teorii Predstavlenii Algebr i Grupp. 29, 133-146, DOI 10.1007/s10958-017-3316-5.
Reprinted in J. Math. Sci. (N.Y.) 222, (2017), no. 4, 453-462.

M. S. Raghunathan, Principal bundles admitting a rational section, Invent. Math. 116 (1994), no. 1-3,
409-423, DOI 10.1007/BF01231567 (English).

Dorin Popescu, On a question of Quillen, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 45 (2002), no. 3-4,
209-212 (English).

Pierre Samuel, Anneauz gradués factoriels et modules réflexifs, Bull. Soc. Math. Fr. 92 (1964), 237249,
DOI 10.24033/bsmf.1608 (French).

Jean-Pierre Serre, Sur la dimension homologique des anneauz et des modules noethériens, 1956 (French).

, Espaces fibrés algébriques, Séminaire Claude Chevalley 3 (1958), 1-37.

The Stacks Project Authors, Stacks Project, 2018. SP.

K. Zainullin, On Grothendieck’s conjecture about principal homogeneous spaces for some classical algebraic
groups, St. Petersbg. Math. J. 12 (2000), no. 1, 1 (English).

55


http://arxiv.org/abs/2008.02767
http://arxiv.org/abs/2008.02767

[Zai05] K. Zainoulline, On Knebusch’s norm principle for quadratic forms over semi-local rings, Math. Z. 251
(2005), no. 2, 415-425, DOI 10.1007/s00209-005-0809-6 (English).

[Zar58] Oscar Zariski, On the purity of the branch locus of algebraic functions, Proc. Natl. Acad. Sci. USA 44
(1958), 791-796, DOI 10.1073/pnas.44.8.791 (English).

ST. PETERSBURG BRANCH OF V. A. STEKLOV MATHEMATICAL INSTITUTE, FONTANKA 27, 191023 ST. PETERSBURG, RUSSIA

Email address: guo.ning@eimi.ru

DEPARTMENT OF MATHEMATICS, SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY, SHENZHEN, CHINA

Email address: 1iufeib4@pku.edu.cn

56



	1. Purity and the Grothendieck–Serre on schemes smooth over Prüfer bases
	Acknowledgements

	2. Auslander–Buchsbaum formula over valuation rings
	3. Geometry of schemes over Prüfer bases
	3.1. Geometric properties and reduction methods 1007 
	3.2. Reflexive sheaves on schemes over Prüfer bases with regular fibers 1007 

	4. Auslander's flatness criterion on schemes smooth over valuation rings
	5. Generalities on torsors over algebraic spaces
	6. Purity for torsors and finite étale covers
	6.1. Purity for reductive torsors on relative curves 1007 
	6.2. Local variants of purity results 1007 
	6.3. Extending generically trivial torsors 1007 
	6.4. Purity for finite locally free torsors and the Zariski–Nagata 1007 

	7. Geometric lemmata for the Grothendieck–Serre
	7.1. Geometric presentation lemma over Prüfer bases 1007 
	7.2. A variant of Lindel's lemma 1007 

	8. Cohomology of groups of multiplicative type
	8.1. Geometrically parafactorial pairs 1007 
	8.2. Purity for groups of multiplicative type 1007 
	8.3. Grothendieck–Serre type results for groups of multiplicative type 1007 

	9. Grothendieck–Serre on a semilocal Prüfer domain
	9.1. Lifting maximal tori of reductive group schemes over semilocal rings 1007 
	9.2. Harder's weak approximation 1007 
	9.3. Product formula over semilocal Prüfer domains, passage to the local case 1007 

	10.  Torsors on a smooth affine relative curve
	11.  Torsors under a reductive group scheme over a smooth projective base
	12.  Torsors under a constant reductive group scheme
	13.  Torsors under a quasi-split reductive group scheme
	References

