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Abstract: Modelling studies of irradiation defects in α-Zr, such as point defects and their multiple
clusters, often use semi-empirical potentials because of their higher computational efficiency as
compared to ab initio approaches. Such potentials rely on a fixed number of parameters that need
to be fitted to a reference dataset (ab initio and/or experimental), and their reliability is closely
related to the uncertainty associated with their parameters, coming from both data inconsistency and
model approximations. In this work, parametric uncertainties are quantified on a Second Moment
Approximation (SMA) potential, focusing on bulk and point defect properties in α-Zr. A surrogate
model, based on polynomial chaos expansion, is first built for properties of interest computed
from atomistics, and simultaneously allows us to analytically compute the sensitivity indices of
the observed properties to the potential parameters. This additional information is then used to
select a limited number of material properties for the Bayesian inference. The posterior probability
distributions of the parameters are estimated through two Markov Chain Monte Carlo (MCMC)
sampling algorithms. The estimated posteriors of the model parameters are finally used to estimate
materials properties (not used for the inference): in any case, most of the properties are closer to the
reference ab initio and experimental data than those obtained from the original potential.

Keywords: uncertainty quantification; interatomic potential; tight-binding second moment approximation;
zirconium; point defects

1. Introduction

Zirconium-based alloys are used as a nuclear cladding material since zirconium (Zr)
has a low neutron absorption cross-section combined with satisfactory thermo-mechanical
properties and good corrosion resistance. Neutron irradiation triggers the creation of a large
number of point defects—both of vacancy and self-interstitial type—that subsequently
diffuse and cluster within the crystalline hcp (hexagonal close-packed) Zr matrix. This
directly affects the structural and mechanical properties of the cladding material, up to the
macroscopic scale [1]. Accurately computing the properties of the multiple possible config-
urations of point defects and their clusters is a first necessary step towards understanding
irradiation effects in α-Zr [2–4].

The atomic scale is relevant for the study of small defects, with ab initio approaches,
like the Density Functional Theory (DFT), being the most popular, as they account for the
electronic structure of the materials. Unfortunately, their high computational cost compli-
cates their systematic use. Alternatively, interatomic potentials offer efficient numerical
evaluations of energies and forces [5], which then would enable systematic sampling of
defect configurations. These potentials are defined by a fixed number of parameters, that
are typically identified by a fitting on a user-defined set of target properties. However, they
carry a certain amount of uncertainties of quite diverse origins: details of the fitting proce-
dure (cost function, weights of the cost function, etc.. . . ), choice of the reference database
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(experimental error, various DFT values with different exchange-correlation functionals,
etc.), and model inadequacy of the interatomic potential itself. Therefore, the accuracy of
the physical data predicted using these approaches directly depends on the uncertainties
associated with the parameters. As pointed out by Cailliez et al. [6] very few studies
quantify the uncertainties associated with the use of such potentials [7–11], and the used
potentials are generally simply fitted on a number of properties with no assumed inherent
uncertainties (see e.g., [12]).

In this work, we quantify the parametric uncertainties of a Tight-Binding Second
Moment Approximation (SMA) potential [13]. We purposefully select a potential that
was not adjusted on α-Zr properties [14], and that inaccurately predicts vacancy and self-
interstitial formation energies. Our methodology combines molecular static simulations,
sensitivity analysis, and Bayesian inference. We first build a polynomial chaos-based
surrogate model of bulk and point defect properties, which provide analytical expressions
for the sensitivity indices of the observed properties to the potential parameters. Then, we
identify a limited number of quantities of interest to be used for Bayesian inference, through
a careful examination of indices. We calculate the posterior probability distributions of the
parameters, using both ab initio and experimental data, and examine the influence of the
chosen property for Bayesian inference and of the sampling algorithm. Finally, we use the
obtained posteriors to propagate uncertainties from the parameters of the potential up to
α-Zr bulk and point defect properties and achieve more accurate predictions.

2. Methods & Material
2.1. Second Moment Approximation (SMA) Potential

In the Second Moment Approximation of the tight-binding scheme [13,15], the energy
of an atomic site i, with i = 1 . . . Nat for a system of Nat atoms, can be written as the sum of
a band term Eb

i and a repulsive term Erep
i , as

Etot
i = Eb

i + Erep
i = −

√√√√ξ
rcut

∑
j 6=i

e−2q
( rij

r0
−1
)
+ A

rcut

∑
j 6=i

e−p
( rij

r0
−1
)

, (1)

where r0 represents a distance close to the first nearest neighbor distance, and rij is the
distance between atoms i and j. ξ > 0 is an effective hopping integral, and q describes its
dependence on the relative interatomic distance. A > 0 provides the repulsive energy scale,
and p accounts for the atomic distance dependence of the repulsive term. The potential
is thus based on a set of four adjustable parameters θ = {p, q, A, ξ}. The summation in
Equation (1) is truncated at a cutoff distance rcut, chosen to include a suitable number of
interacting atoms. Its practical implementation involves a fifth-order polynomial, smoothly
linking the SMA functional to zero in an interval whose extremities must lie between two
successive neighbor shells. The SMA potential described here is part of the ‘smatb’ package
of the LAMMPS molecular dynamics software [16,17].

The set of SMA potential parameters proposed by Dufresne et al. [14] is selected. They
were calibrated by fitting some bulk properties of fcc Zr quoted in Refs. [18–20], and their
values are θ0 = {p, q, A, ξ} = {7.376, 2.492, 0.269, 2.693}, with r0 = 3.17. For this potential,
the rcut interval lies between the second and third neighbors. The nominal potential is not
perfect in reproducing small defects properties, as established in Ref. [21].

2.2. Quantities of Interest (QOIs)

We choose a subset of (observed) properties that are relevant for irradiation effects in
α-Zr. More precisely, we keep elastic constants Cij of the hcp matrix (Bulk modulus, C11,
C12, C44, C13 and C33), and formation energies E f of single point defects (vacancy V and
self-interstitial SIA), that are basic blocks for point defect clusters. Four configurations
of SIAs are considered: octahedral (O), basal octahedral (BO), crowdions out of the basal
plane (BC’), and split dumbbells in the basal plane (BS), as described in Refs. [22–24]. All
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these are T = 0 K quantities, and simulation boxes in molecular static (MS) simulations
include ∼1500 atoms, which ensures well-converged formation energy values.

2.3. Uncertainty Quantification (UQ)

A previous study [21] showed that for any given set of parameters θ, the specific
choice of the cutoff interval can generate large artifacts when computing the observed
properties. Those rcut-induced biases can be corrected by refining—for each random draw
of the parameters set—the cutoff interval until elastic properties are stable (see Ref. [21] for
details). This procedure requires an additional amount of computational time. To speed up
the whole process of UQ/inference, a polynomial chaos expansion-based surrogate model
of the corrected QOIs is thus developed, i.e., for the elastic constants Cij and the formation
energies of point defects E f . The mathematical background of such an expansion is well
described in Ref. [25], and as explained in Ref. [26], the Sobol’s sensitivity indices—that
quantify the effect of the potential parameters on the QOIs—are an additional outcome of
this expansion.

The uncertainty quantification is carried out using the Bayesian methodology pre-
sented in [27]. Using similar notations, we denote Ytrue as the true value of a given property
Y, which deviates from the experimental or ab initio observation value Yobs through the
following relation:

Yobs = Ytrue + εobs. (2)

Similarly, the output of the metamodel YMM(θ) is linked to the true value via the surrogate
model error εMM, as

YMM = Ytrue + εMM. (3)

Our goal is to find the posterior distribution of the parameter set θ given the observed
quantity Yobs, which is obtained by Bayes’ theorem through the equation:

P(θ|Yobs) ∝ P(θ)× P(Yobs|θ) (4)

with P(θ) the prior distribution. To align YMM closer to Yobs, the error terms εobs and εMM
are combined into a single error term ε = εobs + εMM. Assuming the error ε is distributed
as a Gaussian (Histograms of residuals support this assumption (not shown here).) with
zero mean and variance σ2

ε , the likelihood has the following form:

P(Yobs|θ, σ2
ε ) ∝ exp

(
− 1

σ2
ε
[Yobs −YMM(θ)]2

)
. (5)

The variance σ2
ε is treated here as another parameter whose posterior probability must

be determined. It is assigned a prior half-normal distribution zero-centered and with
σε = εobs+εMM

3 .
To estimate the posterior distribution, a sampling using a Monte Carlo Markov Chain

(MCMC) method is used, which allows us to perform random draws and thus generate
drawn samples of the parameter posterior distributions (Equation (4)). Two MCMC algo-
rithms are tested: Metropolis-Hastings (MH) [28] and Hamiltonian Monte Carlo (HMC) [29],
both implemented in the Python module pymc3 [30].

The first one works by simulating a Markov Chain whose stationary distribution is the
wanted posterior distribution π. Each element of the chain is randomly drawn from π and
is accepted or rejected according to a so-called acceptance probability α, which is a function
of a transition kernel Q, defining the conditional probability of moving to a new position in
space given a current position. Many versions of this algorithm exist, depending on the
choice of the transition kernel. For this work, we used the classical random walk type, in
which Q is symmetrical. For this scheme, a normal proposal function, N (0, 1), and a single
parameter update steps are used. The acceptance rate is close to 35% for the Metropolis-
Hastings scheme. The second algorithm proceeds by random draw, for each new element
of the chain, of both position and momentum. We then let the system evolve according to
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the Hamiltonian equations up to a new position, which is theoretically always accepted, as
the acceptance probability is defined by min(1, e−∆H) and the dynamics conserve energy
along the trajectory (i.e., ∆H = 0). Nonetheless, the actual rate of acceptance is close to
65%, since the hamiltonian equations are solved numerically: thus, the ∆H is not always
equal to 0. The leapfrog integrator is used to solve such equations and the time step
is automatically scaled through the Non-U-Turns Sampler [31]. The assigned velocity
distribution for the HMC runs is N (0, 1). For both algorithms, the convergence is tested
through the Gelman-Rubin index, which needs to be lower than 1.1 [32].

3. Results
3.1. Surrogate Model and Sensitivity Indices

To develop the above-mentioned surrogate model of the corrected QOIs, we build
an experimental plan for the MS simulations by varying the four potential parameters
θ = {p, q, A, ξ} in a maximum range of δ = ±7% around their nominal values. The plan is
generated by randomly drawing 5000 sets of parameters, assuming a uniform probability
distribution function (PDF) for all the parameters. Legendre polynomials are chosen for the
polynomial expansion since they are well adapted for uniform PDFs [25]. The convergence
of the surrogate model is assessed by testing the convergence of both statistical mean and
variance for all QOIs. The resulting first order (S1) and total sensitivity indices (ST) [33],
quantifying respectively the direct effect and the sum of direct and parameter interactions
effect, are given in Figure 1 for the QOIs.

Ef
V Ef

O-SIA

(a)

Vacancy

Basal Split

Basal Octahedral

Octahedral

(b)

Figure 1. (a) Sobol’s first order and total sensitivity indices, quantifying the effect of the parameters
of the potential on the QOIs. In terms of formation energies of point defects, only indices for EV

f and

EO−SIA
f are shown, the others being substantially the same as the octahedral. (b) Projection in the

basal plane of some observed point defects. White spheres represent the bulk Zr atoms at z = 0, gray
spheres the bulk Zr atoms at z = c

2 . The square represents the vacancy (V), and the blue spheres are
self-interstitials (SIAs) at z = 0 (BO and BS configurations), and the yellow sphere the SIA at z = c

4
(O-SIA configuration).

The gap between first order and total indices is small for all QOIs and all parameters,
meaning that interaction between parameters in the studied cases is insignificant. Parame-
ters affect the observed properties differently: EO−SIA

f is essentially impacted by p, while

EV
f is equally impacted by p, q and ξ, with almost no effect of A. Regarding the elastic

constants, ξ is the leading sensitivity index, except for C44 that shows a stronger influence
of p. We also note that for all Cij, there is more than one significant influential parameter.
As will be seen below, the sensitivity indices give valuable hints regarding which properties
are relevant for performing the UQ study.

3.2. Posterior Distributions of Parameters and Uncertainty Quantification

We first evaluate the effect of the choice of properties included for Bayesian inference,
and of the chosen MCMC sampling algorithm, on the estimated posterior PDFs of parame-
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ters. Then, uncertainty quantification is performed and commented on for all QOIs listed
in Section 2.2.

3.2.1. Effect of Chosen QOIs and MCMC Algorithm

We first aim at choosing a subset of QOIs used to estimate the posterior PDFs of
parameters. Not including all QOIs is meant to test the propagation of uncertainty for
quantities that are not included in the inference, and that could, in a more general sense,
be quantities for which there exist no observed values. Results of the sensitivity analysis
show the selection of subsets containing three elastic constants (Bulk modulus, C13 and
C44) and EV

f . Indeed, Bulk = (2C11 + C33 + 4C12 + 2C13)/9 in hcp structure, and thus
encompass information regarding four QOIs at the same time. C13 and C44 have high p
and q sensitivity indices, respectively, and the vacancy is fairly affected by all parameters
but A. Input data Yobs for the inference come from both experiments [34] and ab initio
calculations ([12,23,35,36]). Posterior PDFs of parameters are calculated using each chosen
property alone (UQ Bulk, UQ C13, UQ C44 and UQ EV

f ), and altogether (UQ Tot). For all
studied cases, non-informative uniform prior distributions are assigned to the parameters
U (−7%, 7%)θ0, and the Metropolis-Hastings (MH) MCMC scheme is used.

Results are summarized in terms of the mean and standard deviation of the estimated
posterior distributions of parameters in Table 1. For the case of posterior PDFs obtained
using data of each property alone, mean values are very similar and are also fairly close
to the nominal parameter values. Standard deviations are occasionally more affected
(see e.g., the q parameter), but still rather similar. In contrast, the posterior distributions
obtained using simultaneous data from Bulk modulus, C13, C44, and EV

f are significantly
different. Indeed, and as expected, when using data from multiple properties at the
same time, more constraints have to be satisfied during the actualization of the posterior
distributions. This leads to a shift of the mean and variance of the estimated posteriors
against the nominal potential, especially because the QOIs used for this UQ study are
different from the ones originally used to fit the nominal potential. As is well-known,
the choice of observed properties is crucial for uncertainty quantification, and sensitivity
analysis provides additional information about the more relevant QOIs to select. For the
following, we thus chose the subset of Bulk modulus, C44, C13 and EV

f (i.e., UQ Tot), since
this combination of QOIs allows for an overall rather balanced effect of parameters.

Table 1. Means and standard deviations of posterior distributions of the parameters obtained using
data of only one QOI alone (UQ Bulk, UQ C13, UQ C44, and UQ EV

f ) or all four QOIs together
(UQ Tot.).

UQ Bulk UQ C13 UQ C44 UQ EV
f UQ Tot.

Nominal µ σ µ σ µ σ µ σ µ σ

p 7.376 7.379 0.293 7.429 0.226 7.390 0.297 7.40 0.558 7.621 0.114
q 2.492 2.488 0.986 2.485 0.1004 2.494 0.0936 2.486 0.189 2.607 0.0402
A 0.269 0.269 0.0107 0.269 0.0108 0.268 0.0106 0.269 0.0217 0.273 0.009
ξ 2.693 2.690 0.0866 2.690 0.107 2.700 0.0982 2.671 0.205 2.596 0.057

With this subset, we now examine the influence of the MCMC algorithm on the
posterior PDFs. Converged results are shown in Figure 2 for θ = {p, q, A, ξ}. MH and
HMC algorithms lead to similar results in terms of shape and standard deviations of the
posteriors: p and q have slightly skewed PDFs, A has a close-to-uniform distribution,
and ξ is a symmetrical distribution. However, we note a small shift of the mean of the
distributions for p and ξ parameters when comparing, in more detail, the outcomes of the
two algorithms. This will have consequences on the propagated uncertainty, as discussed
below.
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p q A ξ

---- Nominal potential

HMC
MH

P
(θ

|Y
o
b

s)

Figure 2. Posterior distributions of the four parameters obtained through the Hamiltonian Monte
Carlo (HMC) and Metropolis-Hastings (MH) algorithms. Dashed lines represent the values of
the parameters in the nominal potential [14]. The showed posteriors are scaled through an is a
probabilistic transformation from the original independent and identically distributed in [−1, 1]
variables defining the polynomial chaos-based metamodel. The normalization is done considering
the corresponding potentials parameters: θ = [(1− δ)θ0, (1 + δ)θ0], with δ = 7%.

3.2.2. Uncertainty Quantification

Distribution of Cij and point defect formation energies (vacancy and four configura-
tions of SIAs) are shown in Figure 3a,b. Results of MH and HMC algorithms are displayed
using boxplot representations. Nominal parameter values are indicated with blue crosses,
and as visual references, we added some experimental and ab initio values (red and dark
crosses, from Refs. [23,34,36]).

Bulk C11 C12 C44 C13 C33

20

40

60

80

100

120

140

160

180

[G
Pa

]

DFT
Exp.
MH
HMC
Nominal

(a)

EV
f EO SIA

f EBO
f EBS

f EBCp
f

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

[e
V]

DFT
MH
HMC
Nominal

(b)

Figure 3. Distributions of Cij (a) and E f (b) obtained from the posterior distributions of parameter
estimated through the Metropolis-Hastings (MH) and Hamiltonian Monte Carlo (HMC) algorithm.
DFT data come from ab initio calculations reported in [36] for the Cij and in [23] for the E f . Experi-
mental points for Cij come from [34] and the nominal points correspond to the properties obtained
using the original potential [14].

In the case of elastic properties and vacancy formation energy, the choice of the
algorithm has a negligible impact on the property distributions. It is quite different for
the SIAs formation energies: distributions are shifted, and the spreading with HMC is
larger, with many outliers. Such differences are likely due to the fact that all SIAs have
essentially one strongly influential parameter, p, whose PDF is slightly shifted when
comparing MH and HMC. Comparing now both UQ results to the reference values, we
find that mostly, median values are closer to the reference ab initio values than the nominal
parameter values. In particular, SIA E f values, that were not included in the inference,
have improved predictions. Nevertheless, actual E f values and their relative ordering
are not fully recovered, and this might be related to the expressivity limit of the chosen
potential, having difficulties correctly describing this type of defect [21]. Since the median
values of the E f related to the HMC algorithm are closer to the more accurate ab initio input
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data, this scheme seems to be the most appropriate for the UQ, although it is also the most
computationally costly (2 to 3 times longer than the MH algorithm).

4. Conclusions

In this work, we quantified the parametric uncertainties of an SMA potential used
for the study of elastic constants and point defect energetics of α-Zr, through an approach
combining molecular dynamics, polynomial chaos expansion, sensitivity analysis, and
Bayesian inference. The main outcomes of this work are:

• Sensitivity analysis gives insights on the relevant properties for performing the infer-
ence of posterior PDFs parameters, here a subset of Cij and EV

f ,

• Propagation of uncertainty provides more accurate results than the nominal potential—
even if not perfect—as compared to the set of reference values. This is particularly
visible for SIAs E f , for which predictions by the nominal potential were poor,

• MH and HMC MCMC schemes give qualitatively similar results for the PDFs and
property distributions. However, mean values of E f are closer to the ab initio values
for the HMC scheme.

The proposed methodology could be applied to estimate properties of point defect
clusters in α-Zr: multiple configurations having diverse energetics do exist, and are usually
not perfectly captured by interatomic potentials. More generally speaking, the present
UQ methodology should be applied systematically more often when using interatomic
potentials (e.g., EAM, MEAM, etc.).The approach could also be used with more complex
models, such as N-moment tight-binding electronic structure schemes. An application to
Zr-H systems will be the topic of future work.
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