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a b s t r a c t

This paper aims at studying the ultrasound response of a functionally-graded and
anisotropic porous elastic layer surrounded by a fluid in the frequency domain. Based
on Biot’s theory in a planar configuration, a semi-analytical high-order finite element
method was proposed for computing the reflection and transmission coefficients of a
plane wave with oblique incidence to the interface between the fluid and poroelastic
layer. Two approximation techniques were investigated: (i) spectral element approxi-
mation; and (ii) isogeometric approximation. A numerical study was performed on the
ultrasound response of bone materials with different depth-varied profiles of porosity
showing high effectiveness of the proposed high-order methods.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Study of the reflection and transmission (R/T ) of waves at interfaces of porous waveguides has received much of
attention in the past. This attention is motivated by the characterization and optimization problems of the mechanical
properties of unknownmaterials and complex material systems. In many applications, the macroscopic material properties
of the studied waveguides are relatively homogeneous along with its longitudinal direction but heterogeneous (with
functionally graded or layered profiles) in the cross-section plane. Different analytical and numerical methods have been
used to study the wave propagation in its functionally-graded/layered waveguides. For multilayered systems, the semi-
analytical techniques such as the Transfer Matrix method (TMM) have often been used [1,2]. By using this method,
the wave fields in each horizontal homogeneous layer are analytically decomposed into downward and upward wave
components. The wave propagation in the layered medium is then performed through interface operators which are
derived from boundary conditions at the upper and lower interfaces of the layers. The use of interface operators is
also convenient for considering multiphysics systems such as coupled fluid/elastic/poroelastic media. When the material
properties are not piecewise-constant as in layered media but continuously vary, the asymptotic formulation using Peano’s
series has been developed [3–5]. Although the proposed analytical method is rigorously derived and very fast, it has been
shown that numerical instabilities may occur due to positive exponential terms for the cases of large layer thickness (in
compared with wavelengths in the medium), requiring some particular techniques [6,7].

The numerical technique called Semi-Analytical Finite Element (SAFE) method [8–11], also known as the Hybrid
Numerical Method (HNM, see e.g. [12,13]) or Spectral Finite Element Method (SFEM, see e.g. [14,15]), has also been
widely employed for studying the dispersion of guided waves and the R/T coefficients in prismatic structures with
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nhomogeneous properties and/or arbitrary cross-section’s geometry. The key point of this method consists in using a
ybrid algorithm which begins by employing the Fourier transform (with respect to time and to the longitudinal direction
f the waveguide) to transform the problem into the frequency–wavenumber domain. Then, the spectral wave equations
re governed in the cross-section plane (or a 1D domain for infinite plates or cylindrical tubes) and may be solved by using
he finite element (FE) method [12,15,16]. By using the SAFE method, inhomogeneous material properties in the guided-
ave’s cross-section may be taken into account without difficulties. Recently, the SAFE method has also been employed in
he context of wave propagation in porous waveguides. Liu et al. [17] used this method to obtain the dispersion relations of
multilayer panel which consists of an isotropic poroelastic core sandwiched between two elastic layers. In the same vein,
SAFE procedure for the simulation of the time-domain wave propagation in an anisotropic poroelastic plate immersed

n fluids has been developed in [18]. In compared with the finite element method, the SAFE method allows us to gain
ome significant advantages in terms of memory requirement or computational time. However, as the discretization
ize needs to be extensively refined when considering strongly heterogeneous cross-section or/and at high frequencies,
he computation cost of SAFE method could become significant. For inversion and optimization problems of poroelastic
tructures [19–21] in which the computational cost is important, there is a necessity to improve the effectiveness of SAFE
ethod for the direct computation of the acoustic response of the considered medium.
This work aims at studying the effectiveness of high-order finite elements within the SAFE framework for the

omputation of reflection/transmission coefficients of a fluid-saturated poroelastic plate with arbitrary porosity immersed
n fluids. To do so, we have investigated and compared two kinds of high-order elements. First, we employed the
pectral element technique in which the nodes are located at Gauss–Lobatto–Legendre (GLL) points. Second, isogeometric
pproximation based on Non-uniform rational basis splines (NURBS) was used. Note that both the spectral element
ethod (SEM) and the isogeometric analysis (IGA) have proved to have great advantages for computation of the wave
ropagation in different acoustic, viscoelastic or poroelastic waveguides [22–25]. In particular, it has been shown in
recent work [26] that semi-analytical isogeometric finite element method can solve very efficiently the complex

igenvalue problems that allow us to determine the dispersion curves of the phase velocity and attenuation of guided
ave in poroelastic plates. As the SAFE computation of R/T coefficients does not deal with solving eigenvalue problems

but linear systems of equations, the convergence of isogeometric solutions of R/T waves needs to be carefully studied.
Additionally, to the best of the authors’ knowledge, the effectiveness of spectral elements in estimation of R/T coefficients
of functionally-graded poroelastic plates has not been investigated in the literature. Therefore, a detailed study of both
mentioned techniques aiming at estimations R/T coefficients merits interest.

The paper is organized as follows. Section 2 reviews the governing equations for modeling a poroelastic plate immersed
in fluids under excitation of an incident plane wave. The Biot theory is used to model the anisotropic poroelastic
material. Section 3 presents the finite element formulations with two kinds of shape functions to solve the considered
problem. The validation of proposed procedure and numerical examples are presented in Section 4. Section 5 sets out
some conclusions. Finally, we provide procedure for analytically estimating the reflection/transmission coefficients of a
homogeneous poroelastic plate in Appendix A and the formulations for determination of poroelastic parameters by using
a continuum micro-mechanics model in Appendix B.

2. Governing equations

2.1. Problem description

Fig. 1 presents the two-dimensional geometrical description of a poroelastic layer with constant thickness h, which
ccupies the unbounded domain Ωb in e1-axis, is surrounded by two fluid half-spaces Ω

f
1 and Ω

f
2 . The interfaces between

he poroelastic layer Ωb and the two fluid domains Ω
f
1 and Ω

f
2 are assumed to be flat and denoted by Γ

bf
1 and Γ

bf
2 ,

espectively.
The surrounding fluids in the domains Ω

f
1 and Ω

f
2 are assumed to be homogeneous and inviscid. The layer Ωb is

ssumed to be a fluid-saturated transversely isotropic poroelastic medium. We also assume that the material properties of
he poroelastic layer are homogeneous along with its longitudinal direction, given by e1-axis, but may be inhomogeneous
n its depth direction, given by e2-axis. Despite the fact that the fluid viscosity is neglected in the surrounding fluid
omains, it is taken into account in the porous plate pores. A plane and harmonic wave with an angular frequency ω,
ropagating in the upper fluid domain, is incident under angle θI to the interface Γ

bf
1 . To determine the reflection and

ransmission coefficients of the poroelastic layer, we assume a time-dependence exp(−iωt) (where i =
√

−1) for all
ovement quantities Y (x, t), i.e. Y (x, t) = y(x, ω) exp(−iωt).
In what follows, the term ω in y(x, ω) will be omitted for simplification and brevity purposes. Moreover, the summation

onvention over repeated indices is used and the subscript indices after comma stand for the partial derivatives with
espect to the space.
2
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Fig. 1. Geometry description of the poroelastic layer surrounded by two fluid half-spaces.

.2. Wave propagation in the fluids of domains Ω
f
1 and Ω

f
2

The mass densities of fluids in domains Ω
f
1 and Ω

f
2 are respectively denoted by ρ1 and ρ2. The wave celerity in the

fluids are respectively denoted by c1 and c2. The Helmholtz and Euler equations describing the fluid motion in these
domains read:

−
ω2

c2n
p(n) − p(n),jj = 0, (1)

− ω2u(n)
j +

1
ρn

p(n),j = 0, (2)

where p(n) and u(n)
j denote respectively the pressure and components of displacement vector of the fluid in Ω

f
n (n = 1, 2).

Let us consider an incident plane and harmonic wave pI propagating with an angular frequency ω in the upper fluid
omain Ω

f
1 and arriving at the interface Γ

bf
1 from an angle θI (see Fig. 1). The wavenumber vector of the field pI may be

expressed by k I = k0nI where k0 = ω/c1 is the wavenumber and nI = (sin θI , − cos θI)
T is the propagation direction. In

the domain Ω
f
1 , the pressure field pI should satisfy the relation (1) and thus has the form given by:

pI = PI exp(i(k1x1 − k(1)2 x2)), (3)

where PI denotes the wave amplitude, k1 and −k(1)2 are the projections of the wavenumber vector k I on e1-axis and
e2-axis, respectively, and are given by k1 = k0 sin θI and k(1)2 = k0 cos θI . Under the excitation of pI , the total pressure field
in Ω

f
1 may be expressed as a superposition of the incident and reflected wave fields:

p(1) = pI + pR, (4)

where pR is the reflected wave field which may be shown to have the form:

pR = PR exp(i(k1x1 + k(1)2 x2)), (5)

where PR denotes the reflected wave amplitude. Similarly, the solution of the transmitted wave field in the domain Ω
f
2

reads:

p(2) = PT exp(i(k1x1 − k(2)2 (x2 + h))), (6)

where PT denotes the amplitude of the transmitted wave and −k(2)2 is the projection of the wavenumber vector k(2) on

e2-axis: k
(2)
2 =

√
(ω/c2)2 − k21

.3. Wave propagation in the anisotropic poroelastic layer Ωb

Neglecting the body forces (other than inertia), the equations describing the wave propagation in the anisotropic
oroelastic layer in the frequency domain read:

σjk,k = −ω2ρ uj − ω2ρf wj , (7)

− p,j = −ω2ρf uj − ω2ãjkwk , (8)
3
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here ρ = φ ρf +(1−φ) ρs is the effective mass density where ρs and ρf denote the solid skeleton and fluid mass densities,
espectively; ãij are the components of a frequency-dependent viscodynamic tensor which depends on the permeability
nd tortuosity of the medium. For a transversely isotropic poroelastic material, ã is a diagonal tensor in which ãjj, j = 1, 2,

is the dynamic tortuosity in e1- and e2-axis and is estimated via the relation [27,28]:

ãjj(ω) =
ρf

φ

(
a∞

j +
iφηFj(ω)
ωρf κjj

)
(9)

where a∞

j is the static tortuosity, η is the dynamic viscosity of the interstitial fluid, κjj is the intrinsic permeability in
ej-axis; Fj(ω) is a correction factor which is introduced to take into account the viscous resistance of the fluid flow at high
frequencies. We recall that all mechanical characteristics above are x2-dependent functions. The constitutive equations
for an anisotropic poroelastic material are given by:

σjk = Cjklmϵlm − αjk p , (10)

−
1
M

p = wj,j + αjkϵjk , (11)

here σjk denote the components of the total stress tensor; ϵjk denote the components of the strain tensor given by the
elation ϵjk =

1
2 (uj,k + uk,j) where uj are components of the solid skeleton’s displacement vector; wj are the fluid/solid

elative displacement components weighted by the porosity given by wj = φ(uj − uf
j ) where uf

j denote the fluid
isplacement components and φ denotes the porosity; Cjklm are the components of the elasticity fourth-order tensor of
he drained skeleton; αjk are the Biot effective coefficients and M is the Biot’s modulus.

For the subsequent mathematical development, we rewrite the equations below in a matrix form. Let us then use
oigt’s notation which expresses the symmetric second-order tensors as vectors, so the stress is denoted by s =

σ11, σ22, σ12)T , the strain by e = (ϵ11, ϵ22, 2ϵ12)T , the Biot effective coefficients by α̌ = (α11, α22, α12)T where the
uperscript (⋆)T designates the transpose operator. We also introduce an operator L which takes the form:

L = L1∂1 + L2∂2, with L1 =

[1 0
0 0
0 1

]
, L2 =

[0 0
0 1
1 0

]
, (12)

here ∂1 and ∂2 denote the partial derivatives with respect to x1 and x2, respectively. Using these notations, the equations
f linear momentum (7)–(8) may be rewritten as:

− ω2ρ u − ω2ρf w − LT s = 0, (13)

− ω2ρf u − ω2ã w + LTm p = 0, (14)

where m = (1, 1, 0)T . The constitutive equations (10)–(11) read:

s = C e − α̌ p, (15)

p = −M
(
mT Lw + α̌

TLu
)

, (16)

here C is the 3-by-3 matrix of the drained elastic tensor written in the Voigt’s notation. By noting that e = Lu and by
substituting (16) into (15), the constitutive Eqs. (15)–(16) may be written as:

s = CuLu + CαLw, (17)

mp = −
(
CMLw + CT

αLu
)
, (18)

here the quantities Cu, Cα and CM are defined as: Cu = C + M α̌ α̌
T
, Cα = M α̌mT , CM = M mmT . The matrix Cu is

known as the undrained elasticity which represents the rigidity of an equivalent elastic medium in which the relative
movement between the interstitial fluid and solid skeleton has vanished (i.e. when w = 0). Note that while Cu and CM
are symmetric, Cα is not. The unsymmetric form of Cα is due to the anisotropy of the poroelastic medium.

By considering the plane wave nature of presented problem, the solutions of (13) and (14) may be taken under the
harmonic form: y(x1, x2) = ŷ(k1, x2) exp(ik1x1). Noting that the operator L now becomes L = ik1L1 + ∂2L2, one has:

− ω2A1v + k21A2v − ik1A3∂2v − ∂2t = 0, (19)

where

v =

(
û
ŵ

)
, t =

(
LT2 ŝ

−LT2mp̂

)
= ik1AT

3v + A4∂2v, (20)

and

A1 =

[
ρ1 ρf 1
ρ 1 ã

]
, A2 =

[
C11
u C11

α( 11)T 11

]
, (21a)
f Cα CM

4
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A3 =

[
C12
u C12

α(
C21

α

)T C12
M

]
, A4 =

[
C22
u C22

α(
C22

α

)T C22
M

]
, (21b)

n which 1 denotes the 2-by-2 identity matrix; the 2-by-2 matrices Cab
u , Cab

α and Cab
M (a, b = 1, 2) are defined by:

ab
u = LTaCuLb, Cab

α = LTaCαLb, Cab
M = LTaCMLb. One may notice that while matrices A1,A2 and A4 are symmetric, matrix A3

s not because of the unsymmetrical form of Cα .

.4. Interface conditions

At the interfaces Γ
bf
1 and Γ

bf
2 , the continuity of pressure and stress fields between the poroelastic medium and the

luid domains requires:

p = p(n), ∀ x ∈ Γ bf
n (n = 1, 2), (22a)

σnbf
n = −p(n)nbf

n , ∀ x ∈ Γ bf
n (n = 1, 2), (22b)

here nbf
n is the normal unit vector to Γ

bf
n pointing from the poroelastic domain Ωb toward the fluid domain Ω

f
n (see

ig. 1). In addition, the open-pore condition at the interfaces Γ
bf
n (n = 1, 2) is assumed, requiring the continuity of fluid

isplacement in normal direction (see Eq. (2)):(
1
ρn

∇p(n) − ω2(w + u)
)

· nbf
n = 0, ∀ x ∈ Γ bf

n . (23)

By using the harmonic forms of the solutions defined by p(n) = p̂(n) exp(ik1x1) and by noting that the normal unit
vectors of Ωb at two interfaces Γ

bf
1 and Γ

bf
2 (see Fig. 1) are defined by: nbf

1 = −nbf
2 = {0, 1}T , the interface conditions

may be expressed as follows:

û2 + ŵ2 =
1

ρnω2 ∂2p̂(n), ∀ x ∈ Γ bf
n (n = 1, 2), (24a)

p̂ = p̂(n), ∀ x ∈ Γ bf
n (n = 1, 2), (24b)

t̂ = { 0, −p̂(n)}T , ∀ x ∈ Γ bf
n (n = 1, 2), (24c)

here t̂ is the traction vector and is defined by t̂ = LT2 ŝ = {σ̂12, σ̂22}
T .

3. Finite element formulation

3.1. Weak formulation

The weak formulation of the boundary value problem given by Eq. (19) and the boundary conditions (24a)–(24c) may
be now carried out by using an usual procedure. Let C ad be the set of admissible functions constituted by the sufficiently
differentiable complex-valued functions such as: x2 ∈ Hb

= ] − h, 0[ → δv(x2) ∈ C
4 where C is the set of complex

numbers. Upon multiplying (19) by a test vector function δv and applying the Gauss theorem, then using the boundary
condition (24c), the weak formulation of Eq. (19) reads:

− ω2
∫ 0

−h
δv∗A1v dx2 + k21

∫ 0

−h
δv∗A2v dx2 + ik1

∫ 0

−h

(
∂2(δv∗)AT

3v − δv∗A3∂2v
)
dx2

+

∫ 0

−h
∂2(δv∗)A4∂2v dx2 + δv∗(0)d p̂(0) − δv∗(−h)d p̂(−h) = 0, ∀ δv ∈ C ad,

(25)

here δv∗ denotes the conjugate transpose of δv and d = (0, 1, 0, 1)T .
In the weak formulation given by Eq. (25), the pore pressure p̂ at x2 = 0 and at x2 = −h are unknowns but may be

etermined in terms of the displacement by using the conditions (24a)–(24b) and by taking into account the forms of the
eneral solution in fluid domains presented in Appendix A. At the upper interface between Ωb and Ω

f
1 (x2 = 0), we have:

û2 + ŵ2 =
ik(1)2

ρ1ω2 (−PI + PR), (26a)

p̂ = PI + PR, (26b)

which leads to an impedance boundary condition:

p̂(0) =
ρ1ω

2

(1) (û2(0) + ŵ2(0)) + 2PI . (27)

ik2

5
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imilarly the impedance boundary condition at the lower interface (x2 = −h) reads:

p̂(−h) = −
ρ2ω

2

ik(2)2

(û2(−h) + ŵ2(−h)). (28)

y noting that û2 + ŵ2 = dTv and by substituting (27)–(28) into (25), we obtain:

− ω2
∫ 0

−h
δv∗A1v dx2 + k21

∫ 0

−h
δv∗A2vdx2 + ik1

∫ 0

−h

(
∂2(δv∗)AT

3v − δv∗A3∂2v
)
dx2

+

∫ 0

−h
∂2(δv∗)A4∂2vdx2 + δv∗(0)Dv(0) + δv∗(−h)Dv(−h) = −2PIδv∗(0)d, ∀δv ∈ C ad,

(29)

here D = ddT .

.2. Finite element discretization

The domain [−h, 0] is discretized into nel elements: [−h, 0] =
⋃

e Ωe with e = 1, . . . , nel. By mapping each element
e to the reference domain Ω̄e = [−1, 1], the ith component of v is approximated by:

ve
i =

q∑
j=1

Nj(ξ )ve
i (ξj), (30)

here q is the number of nodes used for this approximation, Nj(ξ ) is the jth shape function, ξj is the position of jth node
nd ve

i (ξj) is the nodal solution at jth node. Using the standard Galerkin method, the test function of δve
i is approximated

y the same shape function. These approximations may be expressed as follows:

v(ξ ) = Ne(ξ )Ve, δv(ξ ) = Ne(ξ )δVe, (31)

here Ne is the interpolation matrix constructed from 1D shape functions given by Eq. (30), Ve and δVe are the vectors
f nodal solutions of v and δv within the element Ωe, respectively.
Substituting (31) into (29) and assembling the elementary matrices leads to a system of linear equations:(

Kb
+ KΓ

)
V = F, (32)

here V is the global nodal solution vector; Kb is the global ‘‘stiffness matrix" of the poroelastic layer; KΓ represents the
oupling operator between the fluid and poroelastic layers; the vector F is the external force vector due to the incident
aves. Note that the element number of the vectors V and F is n = 4(nel

× q − 1) because each node has 4 degrees of
reedom. Thus, the sizes of Kb and KΓ equal to n × n and are defined by:

Kb
= −ω2 K1 + k21 K2 + ik1 K3 + K4 (33a)

KΓ
jk =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ2ω
2

ik(2)2

if (j, k) = (2, 2), (2, 4), (4, 2), (4, 4)

ρ1ω
2

ik(1)2

if (j, k) = (n − 2, n − 2), (n − 2, n),

(n, n − 2), (n, n)
0 otherwise

(33b)

Fj =

{
−2PI if j = n − 2, n
0 otherwise (33c)

here the matrices K1,K2,K3 and K4 are defined by:

K1 =

⋃
e

∫ 1

−1

(
Ne(ξ )

)T A1(ξ )Ne(ξ )J (ξ ) dξ, (34a)

K2 =

⋃
e

∫ 1

−1

(
Ne(ξ )

)T A2(ξ )Ne(ξ )J (ξ ) dξ, (34b)

K3 =

⋃
e

∫ 1

−1
2
[(

∂2Ne(ξ )
)T A3(ξ )Ne(ξ )

]
a
dξ, (34c)

K4 =

⋃
e

∫ 1

−1

(
∂2Ne(ξ )

)T A4(ξ )
(
∂2Ne(ξ )

)
J−1(ξ ) dξ, (34d)
in which J is the Jacobian operator and [⋆]a designates the anti-symmetric part of [⋆].
6
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By using the standard finite element method (FEM) to solve Eq. (29), the elements’ size of the spatial discretization has
to be sufficiently refined, i.e. a sufficient number of grid points per wavelength has to be adjusted, to be able to capture
the oscillation of the solution. Thus, the quality of numerical solutions depends on the wave-number k1. When solving a
Helmholtz-type equation, the rule that must be respected is that the ratio k1ℓe must be constant where ℓe is the element
ize. However, as shown in studies on the error bound estimation when the FEM is used for solving Helmholtz equation, as
1 increases, the accuracy of FE solution still significantly decreases while the ratio k1ℓe is kept to be constant, due to the
o-called ‘‘pollution effect’’. It has also been shown that for large wave-number problems, using high-order interpolation
olynomials would be better to reduce the pollution effect than use lower-order ones with refined element sizes. To do
o, we propose to use two different high-order approximation techniques: the first one uses the spectral element method
SEM) and the second one uses the isogeometric analysis (IGA) method.

.3. On the use of high-order spectral-elements

The high-order spectral-element method (SEM) has been widely used for wave propagation simulation (see e.g. [29]).
ike standard FEM, the SEM uses the Lagrange polynomials as interpolation functions. In the reference element [−1, 1],
one may define q Lagrange polynomials of degree (q − 1) based on q-nodes ξi (for −1 ≤ ξi ≤ 1):

Nq−1
j (ξ ) =

q∏
i=1,i̸=j

(ξ − ξi)
(ξj − ξi)

, (35)

hich imposes the condition given by Nq−1
j (ξi) = δij where δij denote the Kronecker symbol for which δij = 1 if i = j else

δij = 0 if i ̸= j. One important difference between FEM and SEM is the node distribution within an element. In SEM, the
coordinates of nodes are chosen to be located at the q Gauss–Lobatto–Legendre (GLL) points which are the roots of the
following equation:

(1 − ξ 2)P ′

q−1(ξ ) = 0, (36)

where P ′

q−1(ξ ) denotes the first-order derivative of the Legendre polynomial of degree (q − 1) with respect to ξ . It is
worth noting that in the time-domain simulation, this choice is motivated by the fact that the mass matrix will become
a diagonal matrix which is very convenient for employing an explicit time integration scheme.

3.4. On the use of NURBS basis functions

In the framework of the SAFE approach, we consider the non-uniform rational B-spline (NURBS) basis functions [25,30]
for discretization of the weak problem presented in Section 3.1. A two-dimensional plate only needs to be described by
one-dimensional NURBS curve elements. The NURBS are defined from B-spline. In a parametric approach, B-spline basis
functions of order q are constructed using a sequence of non-decreasing set of coordinates called knot vector defined
as Ξ = {ξ1, ξ2, ξ3, . . . , ξn+q+1}, where ξi ∈ R (where R denotes the set of real numbers and i = 1, 2, . . . , n) is the ith
knot and n is the number of basis functions used to construct the B-spline curve. The B-spline basis functions Bi,q can be
defined recursively by:

q = 0 : Bi,0(ξ ) =

{
1 if ξi < ξ < ξi+1,

0 otherwise,
(37a)

q > 0 : Bi,q(ξ ) =
(ξ − ξi)

(ξi+q − ξi)
Bi,q−1(ξ ) +

(ξi+q+1 − ξ )
(ξi+q+1 − ξi+1)

Bi+1,q−1(ξ ). (37b)

NURBS basis functions Ni,q(ξ ) can be defined by assigning a weight wi to every B-spline function Bi,q(ξ ):

Ni,q(ξ ) =
Bi,q(ξ )wi∑n
j=1 Bj,q(ξ )wj

. (38)

.5. Reflection and transmission coefficients

By solving the linear system of Eqs. (32), one obtains the displacement at all the nodes. Then, the reflection and
ransmission coefficients, denoted R and T respectively, can be computed by using the displacement values at the upper
nd the lower surfaces, respectively (see Eqs. (26a) and (28)):

R =
PR
PI

=
ρ1ω

2

ik(1)2

×
û2(0) + ŵ2(0)

PI
+ 1, (39a)

T =
PT

= −
ρ2ω

2

(2) ×
û2(−h) + ŵ2(−h)

. (39b)

PI ik2 PI

7
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Table 1
Values of the parameters for cortical bone.
Mass density of the fluid ρf 1000 kg.m−3

Bulk modulus of the fluid Kf 2.25 GPa
Mass density of the solid ρs 1722 kg.m−3

Young’s modulus of the solid Es 20 GPa
Poisson’s coefficient of the solid νs 0.3 –
Viscosity of the fluid η 10−3 Pa.s
Characteristic length in e1-direction Λ1 2 µm
Characteristic length in e2-direction Λ2 0.2 µm
Tortuosity in a∞

1 -direction e1 1 –
Tortuosity in a∞

2 -direction e2 1 –

Table 2
Parameters of poroelastic materials with different porosities.
φ C11 C22 C12 C66 α11 α22 M κ11 κ22
[−] [GPa] [GPa] [GPa] [GPa] [−] [−] [GPa] [m−2

] [m−2
]

0.05 26.668 20.252 8.452 6.294 0.1083 0.1463 35.574 2.5 × 10−12 2.5 × 10−14

0.5 12.672 5.708 2.327 1.865 0.6605 0.765 4.1941 2.5 × 10−11 2.5 × 10−13

4. Numerical results

4.1. Material parameters

As an example of the capability of the method presented, we have studied the effect of porosity on the dynamic
esponse of cortical bone while using ultrasound diagnostic devices. Many of the past studies have focused on the
odeling of guided waves in long bones by using fluid-loaded homogeneous/multilayer/functional graded plate models.
he understanding of wave phenomena involved in the long bone structures has been studied by many authors in the
requency-domain [3,31] or in the time-domain [32–34]. In these studies, the cortical bone material has been considered as
n equivalent (visco-)elastic medium of which the effective macroscopic mass density and effective macroscopic elasticity
ensor are estimated from its porosity. The presence of the interstitial fluid, which was considered in many works for
he analysis of the behavior of cortical bone (e.g. [35–37]) or of ultrasonic wave propagation through cancellous bones
(e.g. [38–41]), has usually been neglected when studying ultrasonic wave propagation in cortical bones.

The observations at all ages and for both genders show that the mean porosity in the endosteal region (inner part of the
bone) is significantly higher than the porosity in the periosteal region (outer part of the bone) [42]. This observation may be
explained by the fact that the cortical bone is affected by age-related bone resorption and osteoporosis, causing reduction
of bone shell thickness as well as an increase in porosity, namely in the endosteal region. Moreover, the macroscopic
mechanical properties of bones have proved to strongly depend on their porosity [43,44]. As a consequence, the cortical
bone may naturally be considered as a functionally graded material.

In this study, both surround fluid domains Ω
f
1 and Ω

f
2 are also assumed to be the water with the mass densities and

ave celerities given by ρ1 = ρ2 = 1000 kg.m−3 and c1 = c2 = 1500 m.s−1, respectively. The material properties and the
pore geometry of the poroelastic plate are determined by assuming that the solid skeleton is an isotropic elastic material
and the pores have a cylindrical shape. Here, the poroelastic constants (see Eqs. (10)–(11), C, α and M) are determined
following a micro-mechanical approach presented in [45]. Moreover, the permeability is calculated depending on the
porosity, the pore surface area and the cross section parameters by using the Kozeny–Carman law (see details in [46]). In
all the examples that follow, the solid and fluid phases’ parameters are fixed as shown in Table 1 and only the porosity
φ varies. The poroelastic constants are determined for each value of φ. For example, Table 2 shows the numerical values
of the poroelastic constants computed for φ = 0.05 and φ = 0.5, respectively.

4.2. Cases of homogeneous poroelastic plates

4.2.1. Reference solutions
We first consider a homogeneous anisotropic poroelastic bone plate with thickness h = 5 mm immersed in water

for which the analytical solutions may be determined using the procedure described in Appendix A. For illustration
purposes, we present in Figs. 2(a,b) the variation of the coefficient R as a function of the incidence angle θ at two
frequencies (f = 0.25 MHz and f = 1 MHz). For each frequency, the graphs of |R(θ )| of plates with different porosities
(φ = 0.01, 0.05, 0.2, 0.5) are shown. When φ is very small (case of φ = 0.01, shown by solid black curves), the poroelastic
plate behaves similarly to an elastic plate. On the other hand, when φ increases, the behavior of a poroelastic plate is very
different from an elastic plate. Note that the reflection coefficient R gets the minimum values (close to zero) at some angles
of incidence corresponding to the guided-wave modes of which the phase velocities are given by Cph = c1/ sin θ [47]. For
example, when f = 250 kHz (see Fig. 2a), three zero-peaks found at θ ∼ 12.5◦, 25◦ and 51.5◦ correspond to the A , S and
1 0

8
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Fig. 2. Reflection coefficient |R| versus incident angle θ for a homogeneous plate.

Fig. 3. Case of homogeneous plates: reflection coefficient |R| versus incident angle (θ ) and frequency (f = ω/2π ).

A0 modes, respectively. At a high frequency (f = 1 MHz), as the plate’s thickness is important compared with the incident
wavelength, there exists a critical angle (θ ∼ 50◦) above which the incident plane wave is nearly totally reflected (see
Fig. 2b). By increasing the porosity φ, both elasticity and absorption of the poroelastic material are accordingly changed,
causing significant modifications not only in the amplitudes of reflected waves but also in the phase velocity of the modes.
This effect is more pronounced at a high frequency. For higher porosity, when the stiffness of the plate is smaller than
the one of the precedent case, we may check that the reflection coefficient has globally smaller values.

In Fig. 3, we present the variation of modulus of |R| with respect to both incident angle θ and the frequency f in two
ases of porosity φ = 0.05 and φ = 0.5. As it would be expected, a greater number of modes may be observed for the
late with φ = 0.5 than the one with φ = 0.05 in a same frequency range [0, 1] MHz.

4.2.2. Validation
To validate the proposed numerical methods, we have investigated the reflection and transmission coefficients (R and

T , respectively) obtained for f = 1 MHz with various incident angles as shown in Fig. 4. As the plate is homogeneous,
the reflection and transmission coefficients can be analytically calculated (see Appendix A) and are served as reference
solutions. Three finite element solutions are shown in this figure. The first one has been obtained by using the standard
SAFE method with 6 quadratic Lagrange elements (p = 2). The second one has been computed by using only one high-
order spectral GLL element with p = 12. The third one has been obtained by one NURBS-based element with p = 12.
As a consequence, all of these three FE meshes contain in total 13 nodes with 52 degrees of freedom. At the studied
frequency (f = 1 MHz), both real and imaginary parts of R and T solutions obtained by using the high-order elements
(GLL or NURBS) perfectly match the analytical ones for all values of θ . On the contrary, the R− and T−curves computed
by using low-order elements (p = 2) have proved to significantly be less accurate, namely for the small incident angle
values between 0◦ and 20◦. In particular, some lack precision at some incident angles. For example, the peaks of both
reflection and transmission coefficients at the incident angle θ ∼ 6◦ displayed in zoomed windows have proved not to
be precisely evaluated when using the standard quadratic elements.
9
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Fig. 4. Exact and FE solutions of the refection and transmission coefficients versus incident angle θ .

Fig. 5. Exact and FE solutions of the refection and transmission coefficients computed with p = 4 and p = 6.

In Figs. 5(a,b), we present the R- and T− solutions of the same problem computed by employing two different orders
of interpolation functions (p = 4 and p = 6) but by keeping the same total number of degrees of freedoms to be 52 as
the one used in the previous analysis with p = 12. To clarify the comparison between different solutions, we focused
on the peak found at θ ∼ 6◦. It could be observed that the solutions computed using NURBS-based shape functions are
orrectly approached, even when using p = 4 for which both standard SAFE and GLL solutions led to inaccurate results.
Using p = 6 seems to allow improving remarkably the accuracy of solutions computed by using Lagrange elements.

Next, we examine the case of a bone plate with the same thickness but with a higher porosity (φ = 0.5) whose
poroelastic properties are given in Table 2. As the porosity is higher, the material’s stiffness decreases and the permeability
increases. Again, the FE solutions were computed by using six quadratic elements (standard SAFE) or one 12th-order
element (GLL or NURBS) when f = 1 MHz. The obtained numerical solutions of |R| and of |T | were compared to
he analytical ones as shown in Fig. 6. The results obtained with quadratic elements were shown to have a significant
ifference with respect to the analytical solution. The errors of both R and T seem to be more significant than the ones
btained when φ = 0.05 (see Fig. 5. On the contrary, the solutions obtained with only one 12th-order GLL element still
atch very well the analytical ones (see Figs. 6a). Interestingly, using NURBS-based shape function with p = 2 leads to a
uch more accurate estimation of R and T (see Figs. 6b).
10
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Fig. 6. Homogeneous plate with φ = 0.5: Exact and FE solutions of the refection and transmission coefficients versus the incident angle θ .

4.2.3. Convergence study
The later examples show that the use of high-order GLL or NURBS elements may significantly reduce the numerical

errors when computing the reflection and transmission coefficients. In order to examine this feature in more detail, we
performed a convergence study of R and T computed with different interpolation function’s orders p. For estimating the
error, we introduced a function Erefl which is defined as a the mean value of the relative error estimated over the range
of incident angles from 0◦ to 90◦:

Erefl
=

⎛⎝ 1
nθ

nθ∑
i=1

⏐⏐⏐⏐RFE(θi) − Rexact(θi)
Rexact(θi)

⏐⏐⏐⏐2
⎞⎠ 1

2

, (40)

here nθ is the number of incident value considered. In Fig. 7, the relative error on R with respect to the total number
f nodes is presented in a logarithmic scale. In Fig. 7(a) and (b), we depict the error obtained by using GLL elements
spectral element method) or NURBS elements (isogeometric analysis), respectively. For both methods, the computations
ere performed with p = 2, p = 4, p = 8, p = 10 and p = 12.
Regarding the use of GLL elements (see Fig. 7(a)), one may notice that by using lower-order elements (p = 2, 4) the

slopes of the error curves are much smaller than the ones obtained with the high-order elements (p = 8, 10, 12). For a
same total number of nodes (nnode

= 25), while the mesh based on two elements with p = 12 leads to an error of order
10−6, the one based on 9 elements with p = 4 leads to an error of order 10−2. Thus, using high-order elements (p = 12)
could allow us to improve significantly the accuracy of the estimations R and T compared with the results obtained with
p = 2 or p = 4. However, the accuracy gains are not so significant if we compare the results obtained with p = 8, p = 10
and p = 12, even the one obtained with p = 12 is still the best.

When using NURBS-base shape functions (see Fig. 7(b)), further increasing the order p more than 8 does not lead to a
significant improvement of the convergence, similarly to the previous remark on the use of GLL elements. However, the
convergence could be achieved much faster by using NURBS. For example, in the case p = 4, while using GLL elements
required a mesh of 25 nodes to get E(R) ∼ 10−3, using IGA only requires a mesh with only 15 nodes (control points)
to achieve the same precision. This advantage feature may be explained by the fact that by using NURBS, C1-continuity
condition was always fulfilled over the domain Ω̄ = [−h, 0].
11
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Fig. 7. Error of reflection and transmission coefficients versus the total number of nodes.

Fig. 8. Profile of poroelastic properties with respect to the depth-coordinate x2 .

4.3. Cases of poroelastic plates with linear gradient of porosity

In this section, the bone plate has a functionally-graded porosity variation. To do so, the porosity at the upper surface
is fixed at the value φ1 = 0.05. A linear-gradient of porosity is defined by giving a value φ2 at the lower surface as follows:

φ(x2) =
1
h
(φ1 − φ2)x2 + φ1. (41)

hen, one can estimate the physical parameters of the poroelastic material depending on the depth-coordinate x2
ollowing the procedure presented in Appendix B. For example, Fig. 8 depicts the profiles of the components of the
lasticity tensor (given in Voigt notation Cij), the Biot coefficients (αij, M) and the permeability κij.
As it can be observed in Fig. 9 in which the cases φ2 = 0.2, φ2 = 0.5 and φ2 = 0.8 are considered, the reflection

coefficient is shown to strongly depend, not only on the porosity at the upper surface, but also on the gradient of the
porosity in the in-depth direction. Moreover, this effect is more significant in the high frequency range. In Fig. 10, the
graphs of R versus θ computed at two frequencies given at f = 0.25 MHz and f = 1 MHz are plotted. At each frequency,
the comparison between the homogeneous case φ2 = 0.05 and the linear gradient cases (φ2 = 0.2, φ2 = 0.5) confirms
that at a low frequency (f = 0.25 MHz), the porosity gradient slightly affects the behavior of the reflection coefficient R.
The minima’s locations of the case φ = 0.5 are nearly unchanged compared with the homogeneous plate case. However,
the graphs of R(θ ) are completely changed when regarding a higher frequency (f = 1 MHz) for which the wavelengths
are shorter and are more sensitive to the porosity variation.

The convergence study has also been carried out for these functionally-graded poroelastic plates in order to check
the performance of the proposed numerical methods. Similarly to the convergence study previously performed for the
homogeneous plate (see Section 4.2.3), in Figs. 11(a) and (b), numerical errors obtained by using GLL and NURBS-based
discretizations, respectively, are presented. As exact solutions are not available for the functionally-graded cases, standard
SAFE solutions using overkill meshes are served as the reference solutions. Once again, using high-order shape functions
(p ≥ 8) for both methods has proved to be efficient to reduce the numerical errors. Moreover, the IGA solutions have
proved to be converged faster than the ones computed by using GLL discretization.
12
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Fig. 9. Reflection coefficient |R| versus θ and f for functionally-graded plates (φ1 = 0.05).

Fig. 10. Reflection coefficient |R| versus incident angle θ : influence of a porosity gradient.

Fig. 11. Case of a functionally-graded-porosity plate: Error on reflection and transmission coefficients versus the total number of nodes.

5. Conclusion

In this paper, an approach based on the semi-analytical high-order finite element method is proposed for the
determination of the reflection and transmission coefficients of a two-dimensional poroelastic waveguide wherein the
material properties could be heterogeneous and anisotropic. Two strategies have been proposed for the discretization
and approximation of solutions: the first one employs the spectral elements based on Gauss–Lobatto-Legendre (GLL)
13
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odes and the second one uses the NURBS-based shape functions. The convergence analysis shows that the standard SAFE
ethod with quadratic Lagrange elements has a relatively slow rate of convergence, especially at the high frequency

ange. Using high-order elements has proved to be interesting as it allows us to significantly improve the accuracy of
umerical solutions of R and T . Both proposed methods were shown to be efficient in this context. Even so, the NURBS-

based approximation is likely to lead to faster convergence compared with the one obtained by using spectral element
approximations. For the computation, using a spectral element method, the use of elements with an order more than 8
would be recommended to get a significant effectiveness. When using IGA, the use of a NURBS-based shape function with
p = 4 would be already sufficient to achieve the same accuracy.

It is worth noting that the numerical procedure proposed in this paper is not only limited for long bone ultrasound
characterization but also for other applications in acoustical engineering, in which the functionally-graded material
properties should be taken into account. For example, the proposed methods could be useful for studies on the acoustic
absorption optimization of poroelastic composites [20,21].
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ppendix A. Analytical solution of reflection and transmission coefficients for a homogeneous layer

If the poroelastic layer is homogeneous, the solution of the system given by Eq. (19) may be analytically derived [48,49].
ere, we present a simple procedure for calculating the analytical solution of reflection and transmission coefficients by
sing the displacement-based equation (see (19)):

− ω2A1v + k21A2v − ik1
(
A3 + AT

3

)
∂2v − A4∂

2
2v = 0. (A.1)

Assuming that v has the form v = D exp (γ x2), where D and γ are constants to be determined. The condition for a
non-trivial solution of Eq. (A.1) leads to a characteristic equation:

D(γ ) := det
(
−ω2A1 + k21A2 − ik1γ

(
A3 + AT

3

)
+ γ 2A4

)
= 0, (A.2)

where det is the determinant operator.
The analytical expression of D(γ ) may be found without difficulties with the help of symbolic software. In this paper,

Matlab Symbolic Toolbox has been used. It has been shown that although the size of matrices in Eq. (A.1) is 4-by-4, the
derived expression for D(γ ) is a 6th-order polynomial:

D(γ ) := b0γ 6
+ b1γ 4

+ b2γ 2
+ b3, (A.3)

where bj (j = 0, . . . , 3) are constants. Eq. (A.3) allows us to determine 6 roots γj, (j = 1, . . . , 6) verifying γ4 = −γ1,
γ5 = −γ2, γ6 = −γ3 and 6 associated to normalized eigenvectors Bj, (j = 1, . . . , 6). As a consequence, the general
solution v may be expressed by the linear combination v =

∑6
j=1 Dj exp (γjx2), where Dj = AjBj (j = 1, . . . , 6). The

uantities Aj are six unknown constants which will be determined by using the boundary conditions. Without loss of
enerality, we may assume that Re(γj) > 0 for j = 1, 2, 3 where Re(γj) stands for the real part of γj.
To solve this problem with the boundary conditions given in (24a)–(24c), we first use the solution of v to calculate

he general solutions of concerning displacement and stress components û1, û2, ŵ2 and σ̂12, σ̂22, p̂ respectively. Then, by
aking some algebraic manipulations, we are able to write the general solution of these terms under matrix form as

ollows:(
v̄
t̄

)
=

[
B11 B12
B21 B22

][
e− 0
0 e+

](
A−

A+

)
, (A.4)

here v̄ = (û1, û2, ŵ2)T , t̄ = (σ̂12, σ̂22, −p̂)T , B11,B12,B21 and B22 are the 3-by-3 matrices which are extracted from Dj
see Eq. (20)). The quantities e+ and e− are defined by:

e+
= diag(exp γ1x2, exp γ2x2, exp γ3x2), e−

= diag(exp−γ1x2, exp−γ2x2, exp−γ3x2), (A.5)

here A+
= (A1, A2, A3)T and A−

= (A4, A5, A6)T .
Noting that û2 + ŵ2 = d̄T v̄ with d̄ = (0, 1, 1)T , the continuity conditions (see Eq. (24a)) read:

d̄T v̄|x2=0 =
ik(1)2 (PI − PR), t̄|x2=0 = −d̄(PI + PR), (A.6a)

ρ1ω2
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d̄T v̄|x2=−h = −
ik(2)2

ρ2ω2 PT , t̄|x2=−h = −d̄PT (A.6b)

which becomes

β (1)PR + d̄TB11A−
+ d̄TB12A+

= α(1)PI , (A.7a)

d̄PR + B21A−
+ B22A+

= −d̄PI , (A.7b)

β (2)PT + d̄TB11e+

h A
−

+ d̄TB12e−

h A
+

= 0, (A.7c)

d̄PT + B21e+

h A
−

+ B22e−

h A
+

= 0, (A.7d)

where

β (1)
=

ρ1ω
2

ik(1)2

, β (2)
=

ρ2ω
2

ik(2)2

, e+

h = diag(exp γ1h, exp γ2h, exp γ3h), e−

h =
(
e+

h

)−1
. (A.8)

In order to avoid numerical difficulties due to the exponential term with large values of Re(γj), we make some
arrangements in (A.7a)–(A.7d) to obtain a system of linear equations as follows:⎡⎢⎢⎣

β (1) d̄TB11e−

h d̄TB12e−

h 0
d̄ B21e−

h B22e−

h 0
0 B21 B22e−

2h d̄
0 d̄TB11 d̄TB12e−

2h β (2)

⎤⎥⎥⎦
⎛⎜⎝ PR
e+

h A
−

e+

h A
+

PT

⎞⎟⎠ =

⎛⎜⎝β (1)PI
−PI d̄
0
0

⎞⎟⎠ . (A.9)

he amplitudes of reflected and transmitted waves PI and PR may be obtained by solving the linear system of equations
(see Eq. (A.9)). Consequently, the reflection and transmission coefficients may be computed by:

R =
PR
PI

and T =
PT
PI

. (A.10)

ppendix B. Determination of poroelastic parameters

To describe the behavior of the poroelastic bone plate, the drained elasticity tensor C as well as Biot’s effective
oefficients α and M should be provided. For this study, these parameters are derived from the characteristics of the
nterstitial fluid and solid skeleton phases by using a continuum micro-mechanics model proposed by Hellmich et al. [45].
ccording to this model, the micro-pores at the micro-structural scale are regarded as cylindrical pores with a circular
ross section. In drained conditions, the constitutive behavior of the material inside the pores does not possess stiffness.
ence, the estimated drained micro-structural stiffness of the bone whose solid bone matrix’s elasticity tensor is Cm reads:

C = (1 − φ)Cm
:

{
(1 − φ)I + φ

[
I − Pcyl

: Cm]−1
}−1

, (B.1)

here I denotes the fourth-order identity tensor; Pcyl the fourth-order tensor is Hill’s tensor for materials with periodical
ylindrical inclusions, which may be derived in closed form [45]. The tensor α the constant M can be then evaluated by
50]:

α = I − C : (Sm
: I), −

1
M

= C − α : S : α , (B.2)

where S = (C)−1 and Sm = (Cm)−1 are respectively the drained and solid material compliance tensors, I designates the
second-order tensor identity and the scalar C denotes the effective compressibility of porous matrix material, which is
given by

C =
1
K

−
1
Km

+ φ

(
1
Kf

−
1
Km

)
, (B.3)

where K = (I : S : I)−1, Kf and Km = (I : Sm : I)−1 are the bulk moduli of the drained porous matrix and of the interstitial
fluid and of the poroelastic material, respectively.
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