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June 22, 2022

Abstract

We consider an Allen-Cahn equation with nonlinear diffusion, motivated by the study of the scaling
limit of certain interacting particle systems. We investigate its singular limit and show the generation
and propagation of an interface in the limit. The evolution of this limit interface is governed by mean
curvature flow with a novel, homogenized speed in terms of a surface tension-mobility parameter
emerging from the nonlinearity in our equation.

MSC 2020: 35K57, 35B40.
keywords: Allen-Cahn equation, Mean curvature flow, Singular limit, Nonlinear diffusion, Interface,

Surface tension

1 Introduction

The Allen-Cahn equation with linear diffusion

ut = ∆u− 1

ε2
F ′(u)

was introduced to understand the phase separation phenomena which appears in the construction of
polycrystalline materials [4]. Here, u stands for the order parameter which describes the state of the
material, F is a double-well potential with two distinct local minima α± at two different phases, and the
parameter ε > 0 corresponds to the interface width in the phase separation process. When ε is small, it
is expected that u converges to either of the two states u = α+ and u = α−. Thus, the limit ε ↓ 0 creates
a steep interface dividing two phases; this is a phase separation phenomenon and the limiting interface is
known to evolve according to mean curvature flow; see [1, 7].
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In this paper, we prove generation and propagation of interface properties for an Allen-Cahn equation
with nondegenerate nonlinear diffusion. More precisely, we study the problem

(P ε)


ut = ∆ϕ(u) +

1

ε2
f(u) in D × R+

∂ϕ(u)

∂ν
= 0 in ∂D × R+

u(x, 0) = u0(x) for x ∈ D

where the unknown function u denotes a phase function, D is a smooth bounded domain in RN , N ≥ 2,
ν is the outward unit normal vector to the boundary ∂D and ε > 0 is a small parameter. The nonlinear
functions ϕ and f satisfy the following properties.

We assume that f has exactly three zeros f(α−) = f(α+) = f(0) = 0 where α− < 0 < α+, and

f ∈ C2(R), f ′(α−) < 0, f ′(α+) < 0, f ′(0) > 0 (1)

so that

f(s) > 0 for s < α−, f(s) < 0 for s > α+. (2)

The conditions (1)-(2) express the fact that f is a bistable function, so that the α± are the stable steady
states of the corresponding ordinary differential equation, whereas 0 is an unstable steady state. We
suppose that

ϕ ∈ C4(R), ϕ′ ≥ Cϕ (3)

for some positive constant Cϕ, so that the partial differential equation (P ε) is uniformly parabolic. We
impose a relation between f and ϕ, namely∫ α+

α−

ϕ′(s)f(s)ds = 0. (4)

This condition implies the existence of the standing wave solution, which we will use extensively in the
proof of Theorem 1.2. An experimental example is the case that ϕ(s) = es, f(s) = e−ss(1 − s2) [19].
Note that in the case of the standard Allen-Cahn equation with linear diffusion, the condition (4) becomes∫ α+

α−
f(s)ds = 0.

As for the initial condition u0(x) we assume that u0 ∈ C2(D). Throughout the paper, we define C0 and
C1 as follows:

C0 := ||u0||C0(D) + ||∇u0||C0(D) + ||∆u0||C0(D) (5)

C1 := max
|s|≤I
|ϕ(s)|+ max

|s|≤I
ϕ′(s) + max

|s|≤I
|ϕ′′(s)|, I = C0 + max(|α−|, α+). (6)

Furthermore, we define Γ0 by

Γ0 := {x ∈ D : u0(x) = 0}.

In addition, we suppose Γ0 is a C4+ν , 0 < ν < 1 hypersurface without boundary, which is needed such that

Γ0 b D,∇u0(x) · n(x) 6= 0 if x ∈ Γ0 (7)

u0 > 0 in D+
0 , u0 < 0 in D−0 , (8)

where D−0 denotes the region enclosed by Γ0, D+
0 is the region enclosed between ∂D and Γ0, and n is the

outward normal vector to D−0 . It is standard that the above formulation, referred to as Problem (P ε),
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possesses a unique classical solution uε. The regularity of the hypersurface Γ0 is needed to insure the
existence, up to a certain time, of a smooth interface Γt which moves according to mean curvature (13).

The present paper is originally motivated by the study of the scaling limit of a Glauber+Zero-range
particle system. In this microscopic system of interacting random walks, the Zero-range part governs the
rates of jumps, while the Glauber part prescribes creation and annihilation rates of the particles. In a
companion paper [9], we show that the system exhibits a phase separation and, under a certain space-
time scaling limit, an interface arises, in the limit macroscopic density field of particles, evolving in time
according to the motion by mean curvature. The system is indeed well approximated from macroscopic
viewpoint by the Allen-Cahn equation with nonlinear diffusion (P ε), or more precisely by its discretized
equation. Although, in this paper, we study (P ε) under the Neumann boundary conditions, the formulation
under periodic boundary conditions, used in the particle system setting in [9], can be treated similarly;
see Remark 1 below.

In some other physical situations, it is expected that the mathematical modeling also involves nonlinear
diffusion. In the experimental article [19], Wagner suggested that for metal alloys the diffusion depends on
the concentration. In [2, 8], the authors considered degenerate diffusion such as porous medium diffusion
instead of linear diffusion. In [11], Fife and Lacey generalized the Allen-Cahn equation, which leads them
to a parameter dependent diffusion Allen-Cahn equation. Recently, [12] considered an Allen-Cahn equation
with density dependent diffusion in 1 space dimension and showed a slow motion property. However, no
rigorous proof on the motion of the interface in the nonlinear diffusion context has been given for larger
space dimensions N ≥ 2.

In this context, the purpose of this article is to study the singular limit of uε as ε ↓ 0. We first present
a result on the generation of the interface. We use the following notation:

tε = ε2| ln ε|/f ′(0), η0 = min(|α−|, α+). (9)

Theorem 1.1. Let uε be the solution of the problem (P ε), η be an arbitrary constant satisfying 0 < η < η0.
Then, there exist positive constants ε0 and M0 such that, for all ε ∈ (0, ε0), the following holds:

(i) for all x ∈ D

α− − η ≤ uε(x, tε) ≤ α+ + η; (10)

(ii) if u0(x) ≥ +M0ε, then

uε(x, tε) ≥ α+ − η; (11)

(iii) if u0(x) ≤ −M0ε, then

uε(x, tε) ≤ α− + η. (12)

After the interface has been generated, the diffusion term has the same order as the reaction term. As
a result the interface starts to propagate. Later, we will prove that the interface moves according to the
following motion equation:

(IP )

{
Vn = −(N − 1)λ0κ on Γt

Γt|t=0 = Γ0,
(13)

where Γt is the interface at time t > 0, Vn is the normal velocity on the interface, κ denotes its mean
curvature, and λ0 is a positive constant which will be defined later (see (26) and (30)). A typical example
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is a case of spherical symmetry, where we assume that Γ0 is the circle, namely Γ0 = {x ∈ RN , |x| = 1}.
Then the circle shrinks with the motion equation

dR

dt
= −(N − 1)λ0

R
,

R(0) = 1,

where R(t) denotes the radius of the circle. It is well known that Problem (IP ) possesses locally in time
a unique smooth solution. Fix T > 0 such that the solution of (IP ), in (13), exists in [0, T ] and denote
the solution by Γ = ∪0≤t<T (Γt×{t}). From Proposition 2.1 of [7] such a T > 0 exists, and one can deduce

that Γ ∈ C4+ν, 4+ν
2 in [0, T ], given that Γ0 ∈ C4+ν .

The second main theorem states a result on the generation and the propagation of the interface.

Theorem 1.2. Under the conditions given in Theorem 1.1, for any given 0 < η < η0 there exist ε0 > 0
and C > 0 such that

uε ∈


[α− − η, α+ + η] for x ∈ D
[α+ − η, α+ + η] if x ∈ D+

t \ NCε(Γt)
[α− − η, α− + η] if x ∈ D−t \ NCε(Γt)

(14)

for all ε ∈ (0, ε0) and t ∈ [tε, T ], where D−t denotes the region enclosed by Γt, D
+
t is enclosed between ∂D

and Γt, and Nr(Γt) := {x ∈ D, dist(x,Γt) < r}.

This theorem implies that, after generation, the interface propagates with a width of order O(ε). Note
that Theorems 1.1 and 1.2 extend similar results known for linear diffusion Allen-Cahn equations [1].

Figure 1: The interface of time t

We now state an approximation result inspired by a similar result proved in [3].

Theorem 1.3. (i) Let the assumptions of Theorem 1.2 hold and ρ > 1. Then, the solution uε of (P ε)
satisfies

lim
ε→0

sup
ρtε≤t≤T, x∈D

∣∣∣∣uε(x, t)− U0

(
dε(x, t)

ε

)∣∣∣∣ = 0, (15)

where U0 is the standing wave solution defined in (20) and dε denotes the signed distance function
associated with Γεt := {x ∈ D : uε(x, t) = 0}, defined by

dε(x, t) =

{
dist(x,Γεt) if x ∈ Dε,+

t

−dist(x,Γεt) if x ∈ Dε,−
t

where Dε,−
t denotes the region enclosed by Γεt and Dε,+

t denotes the region between ∂D and Γεt .

(ii) For small enough ε > 0 and for any t ∈ [ρtε, T ], Γεt can be expressed as a graph over Γt.
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Remark 1. Theorems 1.1, 1.2 and 1.3 hold not only for the Neumann boundary condition of Problem
(P ε) but also for periodic boundary conditions with D = TN , with similar proofs as given in Sections 3, 4
and 5.

The paper is organized as follows. In Section 2, the interface motion (IP ) is formally derived from
the problem (P ε) as ε ↓ 0. In particular, the constant λ0 is obtained. Section 3 studies the generation
of interface and gives the proof of Theorem 1.1. In a short time, the reaction term f governs the system
and the solution of (P ε) behaves close to that of an ordinary differential equation. Section 4 discusses
the propagation of interface and Theorem 1.2 is proved. The sub- and super-solutions are constructed
by means of two functions U0 and U1 formally introduced in asymptotic expansions in Section 2. Section
5 gives the proof of Theorem 1.3. Finally, in the Appendix, we define the mobility µAC and the surface
tension σAC of the interface, especially in our nonlinear setting, and show the relation λ0 = µACσAC .

2 Formal derivation of the interface motion equation

In this section, we formally derive the interface motion equation corresponding to the Problem (P ε) by
applying the method of matched asymptotic expansions. To this purpose, we first define the interface Γt
and then derive its motion equation.

Suppose that uε converges to a step function u where

u(x, t) =

{
α+ in D+

t

α− in D−t .

Let

Γt = D+
t ∩D−t , D+

t ∪D−t = D, t ∈ [0, T ].

Let also d(x, t) be the signed distance function to Γt defined by

d(x, t) :=

{
−dist(x,Γt) for x ∈ D−t
dist(x,Γt) for x ∈ D+

t .
(16)

Assume that uε has the expansions

uε(x, t) = α± + εu±1 (x, t) + ε2u±2 (x, t) + · · ·

away from the interface Γ and that

uε(x, t) = U0(x, t, ξ) + εU1(x, t, ξ) + ε2U2(x, t, ξ) + · · · (17)

near Γ, where ξ =
d

ε
. Here, the variable ξ is given to describe the rapid transition between the regions

{uε ' α+} and {uε ' α−}. In addition, we normalize U0 and Uk so that

U0(x, t, 0) = 0

Uk(x, t, 0) = 0. (18)

To match the inner and outer expansions, we require that

U0(x, t,±∞) = α±, Uk(x, t,±∞) = u±k (x, t) (19)
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for all k ≥ 2.
After substituting the expansion (17) into (P ε), we collect the ε−2 terms, to obtain

ϕ(U0)zz + f(U0) = 0.

Since this equation only depends on the variable z, we may assume that U0 is only a function of the
variable z, that is U0(x, t, z) = U0(z). In view of the conditions (18) and (19), we find that U0 is the
unique increasing solution of the following problem{

(ϕ(U0))zz + f(U0) = 0

U0(−∞) = α−, U0(0) = 0, U0(+∞) = α+.
(20)

In order to understand the nonlinear effect more clearly, we set

g(v) := f(ϕ−1(v)),

where ϕ−1 is the inverse function of ϕ and define V0(z) := ϕ(U0(z)); note that such a transformation is
possible by the condition (3). Substituting V0 into equation (20) yields{

V0zz + g(V0) = 0

V0(−∞) = ϕ(α−), V0(0) = ϕ(0), V0(+∞) = ϕ(α+).
(21)

Condition (4) then implies the existence of the unique increasing solution of (21).
Next we collect the ε−1 terms in the asymptotic expansion. In view of the definition of U0(z) and the

condition (18), we obtain the following problem{
(ϕ′(U0)U1)zz + f ′(U0)U1 = dtU0z − (ϕ(U0))z∆d

U1(x, t, 0) = 0, ϕ′(U0)U1 ∈ L∞(R).
(22)

To prove the existence of solution to (22), we consider the function V1 = ϕ′(U0)U1, which satisfies the
problem V1zz + g′(V0)V1 =

V0z

ϕ′(ϕ−1(V0))
dt − V0z∆d

V1(x, t, 0) = 0, V1 ∈ L∞(R).
(23)

Now, Lemma 2.2 of [1] implies the existence and uniqueness of V1 provided that∫
R

(
1

ϕ′(ϕ−1(V0))
dt −∆d

)
V 2

0z = 0.

Substituting V0 = ϕ(U0) and V0z = ϕ′(U0)U0z yields

dt =

∫
R V

2
0z∫

R
V 2
0z

ϕ′(ϕ−1(V0))

∆d =

∫
R(ϕ′(U0)U0z)

2∫
R ϕ
′(U0)U2

0z

∆d. (24)

It is known that dt = −Vn, where Vn is the normal velocity of the interface Γt, and ∆d is equal to (N−1)κ,
where κ is the mean curvature of Γt. Thus, we obtain the motion equation Γt,

Vn = −(N − 1)λ0κ on Γt, (25)
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with

λ0 =

∫
R(ϕ′(U0)U0z)

2∫
R ϕ
′(U0)U2

0z

. (26)

In the appendix, the constant λ0 is interpreted as the surface tension σAC multiplied by the mobility µAC
of the interface. In particular, (IP ) coincides with the equation (1) in [4].

Finally, we derive an explicit form of λ0. Indeed, we multiply the equation (20) by ϕ(U0)z, yielding

ϕ(U0)zzϕ(U0)z + f(U0)ϕ(U0)z = 0 .

Integrating from −∞ to z, we obtain

1

2

[
ϕ(U0)z

]2
(z) +

∫ z

−∞
f(U0)ϕ(U0)zdz = 0

or alternatively
1

2

[
ϕ(U0)z

]2
(z) +

∫ U0(z)

α−

f(s)ϕ′(s)ds = 0 .

Hence,
ϕ(U0)z(z) =

√
2
√
W (U0(z)) , (27)

where W is given by

W (u) = −
∫ u

α−

f(s)ϕ′(s)ds =

∫ α+

u

f(s)ϕ′(s)ds, (28)

where the last equality holds by (4). It follows that∫
R
ϕ(U0)zU0z(z)dz =

√
2

∫
R

√
W (U0(z))U0z(z)dz

so that also ∫
R
ϕ′(U0)U2

0z(z)dz =
√

2

∫ α+

α−

√
W (u)du.

Similarly, since ∫
R
(ϕ′(U0)U0z)

2dz =
√

2

∫
R
(ϕ′(U0)

√
W (U0(z))U0z)dz,

we get ∫
R
(ϕ′(U0)U0z)

2dz =
√

2

∫ α+

α−

ϕ′(u)
√
W (u)du, (29)

so that we finally obtain the formula

λ0 =

∫ α+

α−
ϕ′(u)

√
W (u)du∫ α+

α−

√
W (u)du

. (30)

Note that if ϕ(u) = u, the case of the linear diffusion Allen-Cahn equation, we recover the value λ0 = 1 as
expected.

3 Generation of the interface

In this section, we prove Theorem 1.1 on the generation of the interface. The main idea, based on the
comparison principle Lemma 1, is to construct suitable sub- and super-solutions. The proof of Theorem
1.1 is given in Section 3.4.
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3.1 Comparison principle

Lemma 1. Let v ∈ C2,1(D × R+) satisfy

(P )


vt ≥ ∆ϕ(v) +

1

ε2
f(v) in D × R+

∂ϕ(v)

∂ν
= 0 in ∂D × R+

v(x, 0) ≥ u0(x) for x ∈ D.

Then, v is a super-solution of Problem (P ε) and we have

v(x, t) ≥ uε(x, t), (x, t) ∈ D × R+.

If v satisfies the opposite inequalities in Problem (P ), then v is a sub-solution of Problem (P ε) and we
have

v(x, t) ≤ uε(x, t), (x, t) ∈ D × R+.

Proof. Consider the inequality satisfied for the difference of a super-solution v and a solution uε. Apply
the maximum principle to the function w := v − uε to deduce that it is positive.

3.2 Solution of the corresponding ordinary differential equation

In the first stage of development, we expect that the solution behaves as that of the corresponding ordinary
differential equation:

{
Yτ (τ, ζ) = f(Y (τ, ζ)) τ > 0

Y (0, ζ) = ζ ζ ∈ R.
(31)

We deduce the following result from [1].

Lemma 2. Let η ∈ (0, η0) be arbitrary. Then, there exists a positive constant CY = CY (η) such that the
following holds:

(i) There exists a positive constant µ such that for all τ > 0 and all ζ ∈ (−2C0, 2C0),

e−µτ ≤ Yζ(τ, ζ) ≤ CY e
f ′(0)τ . (32)

(ii) For all τ > 0 and all ζ ∈ (−2C0, 2C0),∣∣∣∣Yζζ(τ, ζ)

Yζ(τ, ζ)

∣∣∣∣ ≤ CY (ef
′(0)τ − 1).

(iii) There exists a positive constants ε0 such that, for all ε ∈ (0, ε0), we have

(a) for all ζ ∈ (−2C0, 2C0)

α− − η ≤ Y (f ′(0)−1| ln ε|, ζ) ≤ α+ + η; (33)

(b) if ζ ≥ CY ε, then

Y (f ′(0)−1| ln ε|, ζ) ≥ α+ − η; (34)
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(c) if ζ ≤ −CY ε, then

Y (f ′(0)−1| ln ε|, ζ) ≤ α− + η.

Proof. These results can be found in Lemma 4.7 and Lemma 3.7 of [1], except for (32). To prove (32), we
follow similar computations as in Lemma 3.2 of [1]. Differentiating (31) by ζ, we obtain{

Yζτ (τ, ζ) = f ′(Y (τ, ζ))Yζ , τ > 0

Yζ(0, ζ) = 1,

which yields the following equality,

Yζ(τ, ζ) = exp

[∫ τ

0

f ′(Y (s, ζ))

]
. (35)

Hence, for ζ = 0,

Yζ(τ, 0) = exp

[∫ τ

0

f ′(Y (s, 0))

]
= ef

′(0)τ ,

where the last equality follows since Y (τ, 0) = 0. Also, for ζ = α±, by (1), we have

Yζ(τ, α±) ≤ ef
′(0)τ .

For ζ ∈ (α− + η, α+ − η) \ {0}, Lemma 3.4 of [1] guarantees the upper bound of Yζ in (32). We only need
to consider the case that ζ ∈ (−2C0, 2C0) \ (α− + η, α+ − η). It follows from (1) that we can choose a
positive constant η and η such that

f ′(s) < 0 , s ∈ I, (36)

where I := (α− − η, α− + η) ∪ (α+ − η, α+ + η). Moreover, (1) and (2) imply

Y (τ, ζ) ∈ J, (37)

for ζ ∈ J where J := (min{−2C0, α− − η}, α− + η) ∪ (α+ − η,max{2C0, α+ + η}). Thus, (35), (36) and
(37) guarantee the upper bound of (32) for ζ ∈ I, which only leaves the case ζ ∈ (−2C0, 2C0) \ I.

We consider now the case ζ ∈ (α+ +η, 2C0); the case of ζ ∈ (−2C0, α−−η) can be analysed in a similar
way. By (3.13) in [1], we have

lnYζ(τ, ζ) = f ′(α+)τ +

∫ Y (τ,ζ)

ζ

f̃(s)ds, and f̃(s) =
f ′(s)− f ′(α+)

f(s)
. (38)

Note that f̃(s)→ f ′′(α+)

f ′(α+)
as s→ α+, so that f̃ may be extended as a continuous function. We define

F̃ := ‖f̃‖L∞(α+,max{2C0,α++η}).

Since (2) yields Y (τ, ζ) > α+ for ζ ∈ (α+ + η, 2C0), by (38) we can find a constant CY large enough such
that

Yζ(τ, ζ) ≤ CY e
f ′(α+)τ ≤ CY e

f ′(0)τ .

Thus, we obtain the upper bound of (32).
For the lower bound, we first define

µ := −min
s∈I′

f ′(s), I ′ = [−2C0, 2C0] ∪ [α−, α+].

Note that µ > 0 by (1). Thus, by (35), we obtain

Yζ(τ, ζ) ≥ e−µτ .
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3.3 Construction of sub- and super-solutions

We now construct sub- and super-solutions for the proof of Theorem 1.1. For simplicity, we first consider
the case where

∂u0

∂ν
= 0 on ∂D. (39)

In this case, we define sub- and super- solution as follows:

w±ε (x, t) = Y

(
t

ε2
, u0(x)± ε2C2

(
eµt/ε

2 − 1
))

= Y

(
t

ε2
, u0(x)± P (t)

)
for some the constant C2. In the general case, where (39) does not necessarily hold, we need to modify w±ε
near the boundary ∂D. This will be discussed later in the proof of Theorem 1.1; see after equation (41).

Lemma 3. Assume (39). Then, there exist positive constants ε0 and C2, C2 independent of ε such that,
for all ε ∈ (0, ε0), w±ε satisfiesL(w−ε ) < −C2e

− µt
ε2 < C2e

− µt
ε2 < L(w+

ε ) in D × [0, tε]
∂w−ε
∂ν

=
∂w+

ε

∂ν
= 0 on ∂D × [0, tε].

(40)

Proof. We only prove that w+
ε is the desired super-solution; one can show that w−ε is a sub-solution in a

similar way. The assumption (39) implies

∂w±ε
∂ν

= 0 on ∂D × R+.

Define the operator L by

Lu = ut −∆ϕ(u)− 1

ε2
f(u).

Then, direct computation with τ = t/ε2 gives

L(w+
ε ) =

1

ε2
Yτ + P ′(t)Yζ −

(
ϕ′′(w+

ε )|∇u0|2(Yζ)
2 + ϕ′(w+

ε )∆u0Yζ + ϕ′(w+
ε )|∇u0|2Yζζ +

1

ε2
f(Y )

)
=

1

ε2
(Yτ − f(Y )) + Yζ

(
P ′(t)−

(
ϕ′′(w+

ε )|∇u0|2Yζ + ϕ′(w+
ε )∆u0 + ϕ′(w+

ε )|∇u0|2
Yζζ
Yζ

))
.

By the definition of Y , the first term on the right-hand-side vanishes. By choosing ε0 sufficiently small,
for 0 ≤ t ≤ tε, we have

P (t) ≤ P (tε) = ε2C2(eµt
ε/ε2 − 1) = ε2C2(ε−1 − 1) < C0.

Hence, |u0 + P (t)| < 2C0. Applying Lemma 2, (5) and (6) gives

Lw+
ε ≥ Yζ

(
C2µe

µt/ε2 − (C2
0C1CY e

µt/ε2 + C0C1 + C2
0C1CY (eµt/ε

2 − 1))
)

= Yζ

(
(C2µ− C2

0C1CY − C2
0C1CY )eµt/ε

2

+ C2
0C1CY − C0C1

)
.

By (32), for C2 large enough, we can find a positive constant C2 independent of ε such that

Lw+
ε ≥ C2e

− µt
ε2 .

Thus, w+
ε is a super-solution for Problem (P ε).
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3.4 Proof of Theorem 1.1

We deduce from the comparison principle Lemma 1 and the construction of the sub- and super-solutions
that

w−ε (x, tε) ≤ uε(x, tε) ≤ w+
ε (x, tε) (41)

under the condition (39).
If (39) does not hold, one can modify the functions w± as follows: from condition (8), there exist

positive constants d0 and ρ such that (i) the distance function d(x, ∂D) is smooth enough on {x ∈ D :
d(x, ∂D) < 2d0} and (ii) u0(x) ≥ ρ if d(x, ∂D) ≤ d0. Let ξ be a smooth cut-off function defined on [0,+∞)
such that 0 ≤ ξ ≤ 1, ξ(0) = ξ′(0) = 0 and ξ(z) = 1 for z ≥ d0. Define

u+
0 := ξ(d(x, ∂D))u0(x) + [1− ξ(d(x, ∂D))] max

D
u0

u−0 := ξ(d(x, ∂D))u0(x) + [1− ξ(d(x, ∂D))] ρ.

Then, u−0 ≤ u0 ≤ u+
0 and u±0 satisfy the homogeneous Neumann boundary condition (39). Thus, by using

a similar argument as in the proof of Lemma 3, we may find sub- and super-solutions as follows,

w±ε (x, t) = Y

(
t

ε2
, u±0 (x)± ε2C2

(
ef
′(0)t/ε2 − 1

))
.

We now show (10), (11) and (12). By the definition of C0 in (5), we have

−C0 ≤ min
x∈D

u0(x) < ρ.

Thus, for ε0 small enough, we have that

−2C0 ≤ u±0 (x)± (C2ε− C2ε
2) ≤ 2C0 for x ∈ D

holds for any ε ∈ (0, ε0). Thus, the assertion (10) is a direct consequence of (33) and (41).
For (11), first we choose M0 large enough so that M0ε−C2ε+C2ε

2 ≥ CY ε. Then, for any x ∈ D such
that u−0 (x) ≥M0ε, we have

u−0 (x)− ε2C2

(
ef
′(0)t/ε2 − 1

)
≥ u−0 (x)− (C2ε− C2ε

2) ≥M0ε− C2ε+ C2ε
2 ≥ CY ε.

Therefore, with (34) and (41), we see that

uε(x, tε) ≥ α+ − η

for any x ∈ D such that u−0 (x) ≥M0ε, which implies (11). Note that (12) can be shown in the same way.
This completes the proof of Theorem 1.1.

4 Propagation of the interface

The main idea of the proof of Theorem 1.2 is that we proceed by imbrication: By the comparison principle
Lemma 1, we show at the generation time that u+(x, 0) ≥ w+(x, tε) and u−(x, 0) ≤ w−(x, tε) so that
we can pass continuously from the generation of interface sub- and super-solutions to the propagation of
interface sub- and super-solutions.

To this end, we first introduce a modified signed distance function, and several estimates on the
functions U0 and U1 useful in the sub- and super-solution construction, before showing Theorem 1.2 in
Section 4.4.
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4.1 A modified signed distance function

We introduce a useful cut off signed distance function d as follows. Recall the signed distance function d
defined in (16), and interface Γt satisfying (13). Choose d0 > 0 small enough so that the signed distance
function d is smooth in the set

{(x, t) ∈ D × [0, T ], |d(x, t)| < 3d0}

and that
dist(Γt, ∂D) ≥ 3d0 for all t ∈ [0, T ].

Let h(s) be a smooth non-decreasing function on R such that

h(s) =


s if |s| ≤ d0

−2d0 if s ≤ −2d0

2d0 if s ≥ 2d0.

We then define the cut-off signed distance function d by

d(x, t) = h(d(x, t)), (x, t) ∈ D × [0, T ].

Note, as d coincides with d in the region

{(x, t) ∈ D × [0, T ] : |d(x, t)| < d0},

that we have

dt = λ0∆d on Γt.

Moreover, d is constant near ∂D and the following properties hold.

Lemma 4. There exists a constant Cd > 0 such that

(i) |dt|+ |∇d|+ |∆d| ≤ Cd,

(ii) |dt − λ0∆d| ≤ Cd|d|

in D × [0, T ].

4.2 Estimates for the functions U0, U1

Here, we give estimates for the functions which will be used to construct the sub- and super-solutions.
Recall that U0 (cf. (20)) is a solution of the equation

(ϕ(U0))zz + f(U0) = 0.

We have the following results.

Lemma 5. There exists constants Ĉ0, λ1 > 0 such that for all z ∈ R,

(i) |U0|, |U0z|, |U0zz| ≤ Ĉ0,

(ii) |U0z|, |U0zz| ≤ Ĉ0 exp(−λ1|z|).

12



Proof. Recall that V0 = ϕ(U0) satisfies the equation (21) with ϕ ∈ C4(R). Lemma 2.1 of [1] implies that
there exist some positive constants C0 and λ1 such that, for all z ∈ R,

|V0|, |V0z|, |V0zz| ≤ C0;

|V0z|, |V0zz| ≤ C0 exp(−λ1|z|),

and therefore similar bounds hold for U0.

In terms of the cut-off signed distance function d = d(x, t), for each (x, t) ∈ D × [0, T ], we define
U1(x, t, ·) : R→ R as the solution of the following problem:{

(ϕ′(U0)U1)zz + f ′(U0)U1 = (λ0U0z − (ϕ(U0))z)∆d

U1(x, t, 0) = 0, ϕ′(U0)U1 ∈ L∞(R).
(42)

Existence of the solution U1 can be shown in the same way as that for U1 in (22). Finally, we give the
following estimates for U1 = U1(x, t, z).

Lemma 6. There exist positive constants Ĉ1 and λ1 such that for all z ∈ R

(i) |U1|, |U1z|, |U1zz|, |∇U1z|, |∇U1|, |∆U1|, |U1t| ≤ Ĉ1,

(ii) |U1z|, |U1zz|, |∇U1z| ≤ Ĉ1 exp(−λ1|z|).

Here, the operators ∇ and ∆ act on the variable x.

Proof. Define V1(z) := ϕ′(U0(z))U1(z). As in (22), we obtain an equation for V1:V1zz + g′(V0)V1 =
[
λ0

V0z

ϕ′(ϕ−1(V0))
− V0z

]
∆d

V1(x, t, 0) = 0, V1 ∈ L∞(R).
(43)

Applying Lemmas 2.2 and 2.3 of [1] to (43) implies the boundedness of V1, V1z, V1zz. Moreover, since d is
smooth in D× [0, T ], we can apply Lemma 2.2 of [1] to obtain the boundedness of ∇V1,∆V1. The desired
estimates for the function U1 now follows via the smoothness of ϕ as in the proof of Lemma 5.

4.3 Construction of sub- and super-solutions

We construct candidates sub- and super-solutions as follows: Given ε > 0, define

u±(x, t) = U0

(
d(x, t)± εp(t)

ε

)
+ εU1

(
x, t,

d(x, t)± εp(t)
ε

)
± q(t) (44)

where

p(t) = −e−βt/ε2 + eLt +K,

q(t) = σ
(
βe−βt/ε

2

+ ε2LeLt
)
,

in terms of positive constants ε, β, σ, L,K. Next, we give specific conditions for these constants which will
be used to show that indeed u± are sub- and super-solutions. We assume that the positive constant ε0

obeys

ε2
0Le

LT ≤ 1, ε0Ĉ1 ≤
1

2
. (45)

We first give a result on the boundedness of f ′(U0(z)) + (ϕ′(U0(z))zz.
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Lemma 7. There exists b > 0 such that f ′(U0(z)) + (ϕ′(U0))zz < 0 on {z : U0(z) ∈ [α−, α− + b] ∪ [α+ −
b, α+]}.

Proof. We can choose b1,F > 0 such that

f ′(U0(z)) < −F

on {z : U0(z) ∈ [α−, α− + b1] ∪ [α+ − b1, α+]}.
Note that (ϕ′(U0))zz = ϕ′′′(U0)U2

0z + ϕ′′(U0)U0zz. From Lemma 5, we can choose b2 > 0 small enough
so that

|(ϕ′(U0))z| < F , |(ϕ′(U0))zz| < F

on {z : U0(z) ∈ [α−, α− + b2] ∪ [α+ − b2, α+]}. Define b := min{b1, b2}. Then, we have

f ′(U0(z)) + (ϕ′(U0))zz < F − F = 0.

Fix b > 0 which satisfies the result of Lemma 7. Denote J1 := {z : U0(z) ∈ [α−, α− + b] ∪ [α+ −
b, α+]}, J2 = {z : U0(z) ∈ [α− + b, α+ − b]}. Let

β := − sup

{
f ′(U0(z)) + (ϕ′(U0(z)))zz

3
: z ∈ J1

}
. (46)

The following result plays an important role in verifying sub- and super-solution properties.

Lemma 8. There exists a constant σ0 small enough such that for every 0 < σ < σ0, we have

U0z − σ(f ′(U0) + (ϕ′(U0))zz) ≥ 3σβ.

Proof. To show the assertion, it is sufficient to show that there exists σ0 such that, for all 0 < σ < σ0,

U0z

σ
− (f ′(U0) + (ϕ′(U0))zz) ≥ 3β. (47)

We prove the result on each of the sets J1, J2.
On the set J1, note that U0z > 0 on R. If z ∈ J1, for any σ > 0 we have

U0z

σ
− (f ′(U0) + (ϕ′(U0))zz) > − sup

z∈J1
(f ′(U0) + (ϕ′(U0))zz) = 3β.

On the set J2, which is compact in R, there exist positive constants c1, c2 such that

U0z ≥ c1, |f ′(U0) + (ϕ′(U0))zz| ≤ c2.

Therefore, we have

U0z

σ
− (f ′(U0) + (ϕ′(U0))zz) ≥

c1

σ
− c2 →∞ as σ ↓ 0,

which implies (47) on J2 for σ small enough.
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Before we present the rigorous proof that u± are sub- and super-solutions, we first give detailed com-
putations needed in the sequel. Recall (44). First, note, with U0 and U1 corresponding to u+, that

ϕ(u+) = ϕ(U0) + (εU1 + q)ϕ′(U0) + (εU1 + q)2

∫ 1

0

(1− s)ϕ′′(U0 + (εU1 + q)s)ds

f(u+) = f(U0) + (εU1 + q)f ′(U0) +
(εU1 + q)2

2
f ′′(θ(x, t)), (48)

where θ is a function satisfying θ(x, t) ∈ (U0, U0 + εU1 + q(t)). Straightforward computations yield

(u+)t = U0z

(
dt + εpt

ε

)
+ εU1t + U1z(dt + εpt) + qt

∆ϕ(u+) = ∇ ·
(

(ϕ(U0))z
∇d
ε

+ U1zϕ
′(U0)∇d+ ε∇U1ϕ

′(U0) + (εU1 + q)(ϕ′(U0))z
∇d
ε

+∇R
)

= (ϕ(U0))zz
|∇d|2

ε2
+ (ϕ(U0))z

∆d

ε

+ (U1zϕ
′(U0))z

|∇d|2

ε
+ U1zϕ

′(U0)∆d+ 2∇U1zϕ
′(U0) · ∇d+∇U1(ϕ′(U0))z · ∇d+ ε∆U1ϕ

′(U0)

+ (U1ϕ
′(U0)z)z

|∇d|2

ε
+ q(ϕ′(U0))zz

|∇d|2

ε2
+∇U1(ϕ′(U0))z · ∇d

+ (εU1 + q)(ϕ′(U0))z
∆d

ε
+ ∆R (49)

where R(x, t) = (εU1 + q)2
∫ 1

0
(1−s)ϕ′′(U0 +(εU1 + q)s)ds. Define r(x, t) =

∫ 1

0
(1−s)ϕ′′(U0 +(εU1 + q)s)ds.

Then, we have

∆R(x, t) = ∇ · ∇
[(

(εU1)2 + 2εqU1 + q2
)
r
]

= ∇ ·
[(

2εU1 (U1z∇d+ ε∇U1) + 2q (U1z∇d+ ε∇U1)
]
r(x, t) +

(
(εU1)2 + 2εqU1 + q2

)
∇r(x, t)

]
=

[
2 (U1z∇d+ ε∇U1)2 + 2εU1

(
U1zz
|∇d|2

ε
+ U1z∆d+ 2∇U1z · ∇d+ ε∆U1

)]
r(x, t)

+ 2q

(
U1zz
|∇d|2

ε
+ U1z∆d+ 2∇U1z · ∇d+ ε∆U1

)
r(x, t)

+ 2
[
2εU1 (U1z∇d+ ε∇U1) + 2q (U1z∇d+ ε∇U1)

]
∇r(x, t)

+
(

(εU1)2 + 2εqU1 + q2
)

∆r(x, t) (50)

where

∇r(x, t) =

∫ 1

0

(1− s)ϕ′′′(U0 + (εU1 + q)s)

(
(U0 + εU1s)z

∇d
ε

+ ε∇U1s

)
ds

∆r(x, t) =

∫ 1

0

(1− s)ϕ′′′(U0 + (εU1 + q)s)

(
(U0 + εU1s)z

∆d

ε

+(U0 + εU1s)zz
|∇d|2

ε2
+ (2∇U1z · ∇d+ ε∆U1)s

)
ds

+

∫ 1

0

(1− s)ϕ(4)(U0 + (εU1 + q)s)

(
(U0 + εU1s)z

∇d
ε

+ ε∇U1s

)2

ds.
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Define l(x, t), ri(x, t) for i = 1, 2, 3 as follows:

l(x, t) = U1zz
|∇d|2

ε
+ U1z∆d+ 2∇U1z · ∇d+ ε∆U1

r1(x, t) =
[
2 (U1z∇d+ ε∇U1)2 + 2εU1l(x, t)

]
r(x, t) + 4εU1 (U1z∇d+ ε∇U1)∇r(x, t) + (εU1)2∆r(x, t)

r2(x, t) = 2ql(x, t)r(x, t) + 4q (U1z∇d+ ε∇U1)∇r(x, t) + 2εqU1∆r(x, t)

r3(x, t) = q2∆r(x, t).

Thus,

∆R = r1 + r2 + r3. (51)

We have the following properties for ri.

Lemma 9. There exists Cr > 0 independent of ε such that

|r1| ≤ Cr, |r2| ≤
q

ε
Cr, |r3| ≤

q2

ε2
Cr. (52)

Proof. Note that, by Lemmas 5, 6 and (45) the term Ua := U0 + (εU1 + q)s is uniformly bounded. Hence,
the terms ϕ′′(Ua), ϕ

′′′(Ua), ϕ
(4)(Ua) are uniformly bounded, and in particular r is bounded. By a similar

reasoning for ∇r and ∆r, it follows that there exists some positive constants c∇, c∆ such that

|∇r| ≤ c∇
ε
, |∆r| ≤ c∆

ε2
.

Moreover, by Lemmas 5, 6 there exists a positive constant cl such that

|l(x, t)| ≤ cl
ε
.

Combining these estimates yields (52).

Let σ a fixed constant satisfying

0 < σ ≤ min{σ0, σ1, σ2}, (53)

where σ0 is the constant defined in Lemma 8, and σ1 and σ2 are given by

σ1 =
1

2(β + 1)
, σ2 =

β

(F + Cr)(β + 1)
, F = ||f ′′||L∞(α−−1,α++1). (54)

Note that, since σ < σ1 and (45), we have

α− − 1 ≤ |u±| ≤ α+ + 1.

Lemma 10. Let β be given by (46) and let σ satisfy (53). Then, there exists ε0 > 0 and a positive constant
Cp, which does not depend on ε, such thatL(u−) < −Cp < Cp < L(u+) in D × [0, T ]

∂u−

∂ν
=
∂u+

∂ν
= 0 on ∂D × [0, T ]

(55)

for every ε ∈ (0, ε0).
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Proof. In the following, we only show that u+ is a super solution; one can show that u− is a sub-solution
in a similar way.

Combining the computations above in (48), (49), (50) and (51), we obtain

Lu+ = (u+)t −∆(ϕ(u+))− 1

ε2
f(u+)

= E1 + E2 + E3 + E4 + E5 + E6,

where

E1 = − 1

ε2

(
(ϕ(U0))zz|∇d|2 + f(U0)

)
− |∇d|

2 − 1

ε2
q(ϕ′(U0))zz −

|∇d|2 − 1

ε
(U1ϕ

′(U0))zz

E2 =
1

ε
U0zdt −

1

ε
((ϕ(U0))z∆d+ (U1zϕ

′(U0))z + (U1ϕ
′(U0)z)z + U1f

′(U0))

E3 = [U0zpt + qt]−
1

ε2

[
qf ′(U0) + q(ϕ′(U0))zz +

q2

2
f ′′(θ)

]
− r3(x, t)

E4 = εU1zpt −
q

ε

[
(ϕ′(U0))z∆d+ U1f

′′(θ)
]
− r2(x, t)

E5 = εU1t − ε∆U1ϕ
′(U0)

E6 = U1zdt − 2∇U1zϕ
′(U0) · ∇d− 2∇U1(ϕ′(U0))z · ∇d− (U1ϕ

′(U0))z∆d− r1(x, t)− (U1)2

2
f ′′(θ).

Estimate of the term E1. Using (20) we write E1 in the form

E1 = −|∇d|
2 − 1

ε2

(
(ϕ(U0))zz + q(ϕ′(U0))zz

)
− |∇d|

2 − 1

ε
(U1ϕ

′(U0))zz.

We only consider the term e1 :=
|∇d|2 − 1

ε
(U1ϕ

′(U0))zz ; the other terms can be bounded similarly. In the

region where |d| ≤ d0, we have |∇d| = 1 so that e1 = 0. If, however |∇d| 6= 1, we have

|(U1ϕ
′(U0))zz|
ε

≤ Ĉ1

ε
e−λ1|

d
ε

+p(t)| ≤ Ĉ1

ε
e−λ1[

d0
ε
−p(t)] ≤ Ĉ1

ε
e−λ1[

d0
ε
−(1+eLT+K)].

Choosing ε0 small enough such that

d0

2ε0

−
(

1 + eLT +K
)
≥ 0,

we deduce
|(U1ϕ

′(U0))zz|
ε

≤ Ĉ1

ε
e−λ1

d0
2ε → 0 as ε ↓ 0.

Thus, 1
ε
|(U1ϕ

′(U0))zz| is uniformly bounded, so that there exists Ĉ2 independent of ε, L such that

|e1| ≤ Ĉ2.

Finally, as a consequence, we deduce that there exists C̃1 independent of ε, L such that

|E1| ≤ C̃1. (56)

Estimate of the term E2. Using (42), we write E2 in the form

E2 =
1

ε
U0zdt −

1

ε
λ0U0z∆d =

U0z

ε
(dt − λ0∆d).
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Applying Lemma 4, 5 and 6 gives

|E2| ≤ CdĈ0
|d|
ε
e−λ1|

d
ε

+p| ≤ CdĈ0 max
ξ∈R
|ξ|e−λ1|ξ+p|.

Note that maxξ∈R |ξ|e−λ1|ξ+p| ≤ |p|+ 1
λ1

(cf. [13]). Thus, there exists C̃2 such that

|E2| ≤ C̃2(1 + eLT ). (57)

Estimate of the term E3. Substituting pt =
q

ε2σ
and then replacing q by its explicit form (cf. (44))

gives

E3 =
q

ε2σ

[
U0z − σ(f ′(U0) + (ϕ′(U0))zz)− σq

(
1

2
f ′′(θ) +

ε2

q2
r3

)]
+ qt

=
1

ε2

(
βe−

βt

ε2 + ε2LeLt
)[

U0z − σ(f ′(U0) + (ϕ′(U0))zz)− σ2(βe−
βt

ε2 + Lε2eLt)

(
1

2
f ′′(θ) +

ε2

q2
r3

)]
− 1

ε2
σβ2e−

βt

ε2 + ε2σL2eLt

=
1

ε2
βe−

βt

ε2 (I − σβ) + LeLt[I + ε2σL]

where

I := U0z − σ(f ′(U0) + (ϕ′(U0))zz)− σ2(βe−
βt

ε2 + Lε2eLt)

(
1

2
f ′′(θ) +

ε2

q2
r3

)
.

Applying Lemma 8, using (45) and (53), yields

I ≥ 3σβ − σσ2

(
β + Lε2eLt

)(
|f ′′(θ)|+ ε2

q2
|r3|
)

≥ 3σβ − σσ2 (β + 1)

(
|f ′′(θ)|+ ε2

q2
|r3|
)

≥ 2σβ,

where the last inequality follows from (54). This implies that

E3 ≥
σβ2

ε2
e−

βt

ε2 + 2σβLeLt. (58)

Estimate of the term E4. Substituting again pt =
q

ε2σ
, with q in its explicit form (44) gives

E4 =
q

εσ

(
U1z − σ((ϕ′(U0))z∆d+ U1f

′′(θ))− σε
q
r2

)
=

1

ε

(
βe−

βt

ε2 + ε2LeLt
)(

U1z − σ((ϕ′(U0))z∆d+ U1f
′′(θ))− σε

q
r2

)
.

Applying Lemma 4, 5, 6 and 9 gives the uniform boundedness of the last factor in parenthesis. Thus, there
exists a constant C̃4 such that

|E4| ≤ C̃4
1

ε

(
βe−

βt

ε2 + ε2LeLt
)
. (59)

Estimate of the terms E5 and E6. Applying Lemma 4, 5 and 6, it follows that there exists C̃5 such that

|E5|+ |E6| ≤ C̃5. (60)
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Combination of the above estimates. Collecting the estimates (56),(57),(58),(59),(60), we obtain

L(u+) ≥
[
σβ2

ε2
− C̃4

β

ε

]
e−

βt

ε2 +
[
2σβL− εC̃4L− C̃2

]
eLt − C̃1 − C̃2 − C̃5

≥
[
σβ2

ε2
− C̃4

β

ε

]
e−

βt

ε2 +

[
2σβL

3
− εC̃4L

]
eLt

+

[
2σβL

3
− C̃2

]
eLt +

[
2σβL

3
− C̃6

]
where C̃6 = C̃1 + C̃2 + C̃5. Choose ε0 small enough and L large enough so that

σβ > 3C̃4ε0, σβL > 3 max{C̃2, C̃6}.

Then, we deduce that there exists a positive constant Cp, independent of ε, such that L(u+) ≥ Cp.

4.4 Proof of Theorem 1.2

The proof of Theorem 1.2 is divided in two steps: (i) For large enough K > 0, we prove that u−(x, t) ≤
uε(x, t+ tε) ≤ u+(x, t) for x ∈ D, t ∈ [0, T − tε] and (ii) we employ (i) to show the desired result.

Step 1. Let η ∈ (0, η0) be arbitrary. Fix σ, β that satisfy (46), (53) and

σβ <
η

2
.

Theorem 1.1 implies the existence of constants ε0 and M0 such that (10)-(12) are satisfied with the constant
η replaced by σβ/4. Conditions (7) and (8) imply that there exists a positive constant M1 such that

if d(x, 0) ≤ −M1ε, then u0(x) ≤ −M0ε,

if d(x, 0) ≥M1ε, then u0(x) ≥ +M0ε.

Hence, we deduce, by applying (10), (12), that

uε(x, tε) ≤ H+(x) :=


α+ +

σβ

4
if d(x, 0) ≥ −M1ε

α− +
σβ

4
if d(x, 0) < −M1ε.

Also, by applying (10), (11),

uε(x, tε) ≥ H−(x) :=


α+ −

σβ

4
if d(x, 0) > M1ε

α− −
σβ

4
if d(x, 0) ≤M1ε.

Next, we fix a sufficient large constant K such that

U0(M1 −K) ≤ α− +
σβ

4
and U0(−M1 +K) ≥ α+ −

σβ

4
.

For such a constant K, Lemma 10 implies the existence of coefficients ε0 and L such that the inequalities
in (55) holds. We claim that

u−(x, 0) ≤ H−(x) ≤ H+(x) ≤ u+(x, 0). (61)
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We only prove the last inequality since the first inequality can be proved similarly. By Lemma 6, we have

|U1| ≤ Ĉ1. Thus, we can choose ε0 small enough so that, for ε ∈ (0, ε0), we have εĈ1 ≤
σβ

4
. Then, noting

(44),

u+(x, 0) ≥ U0

(
d(x, 0) + εp(0)

ε

)
− εĈ1 + σβ + ε2σL

> U0

(
d(x, 0)

ε
+K

)
+

3

4
σβ.

In the set {x ∈ D : d(x, 0) ≥ −M1ε}, the inequalities above, and the fact that U0 is an increasing function
imply

u+(x, 0) > U0(−M1 +K) +
3

4
σβ ≥ α+ +

σβ

2
> H+(x).

Moreover, since U0 ≥ α− in the set {x ∈ D : d(x, 0) < −M1ε}, we have

u+(x, 0) > α− +
3

4
σβ > H+(x).

Thus, we proved the first inequality in (61) above.
The inequalities (61) and Lemma 10 now permit to apply the comparison principle Lemma 1, so that

we have

u−(x, t) ≤ uε(x, t+ tε) ≤ u+(x, t) for x ∈ D, t ∈ [0, T − tε]. (62)

Step 2. Choose C > 0 so that

U0(C − eLT −K) ≥ α+ −
η

2
and U0(−C + eLT +K) ≤ α− +

η

2
.

Then, we deduce from (62), noting (44), that

if d(x, t) ≥ εC, then uε(x, t+ tε) ≥ α+ − η
if d(x, t) ≤ −εC, then uε(x, t+ tε) ≤ α− + η

and since α± ± η are respectively sub- and super-solutions of (P ε), we conclude that

uε(x, t+ tε) ∈ [α− − η, α+ + η]

for all (x, t) ∈ D × [0, T − tε], ε ∈ (0, ε0).

Remark 2. These sub and super solutions guarantee that uε ' α+(respectively, uε ' α−) for d(x, t) ≥
c(respectively, d(x, t) ≤ −c) with t > ρtε, ρ > 1 and ε > 0 small enough. In fact, by the definition of q(t),
we expect

εU1 ± q(t) = O(ε)

for t > (ρ− 1)tε. Also, by Lemma 5, we expect

0 < U0(z)− α− < c̃ε for z >
c

ε
, 0 < α+ − U0(z) < c̃ε for z < −c

ε
.

These estimates yield that there exists a positive constant c′ such that

|uε(x, t)− α+| ≤ c′ε for d(x, t) > c, |uε(x, t)− α−| ≤ c′ε for d(x, t) < −c

for t > ρtε.
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5 Proof of Theorem 1.3

We now introduce the concept of an eternal solution. A solution of an evolution equation is called eternal
if it is defined for all positive and negative times. In our problem, we study the nonlinear diffusion problem

wτ = ∆ϕ(w) + f(w), ((z′, z(N)), τ) ∈ RN × R, (63)

where z′ ∈ RN−1 and z(N) ∈ R. In order to prove Theorem 1.3, we first present two lemmas.

Lemma 11. Let S be a domain of RN × R and let u be a bounded function on S satisfying

ut = ∆ϕ(u) + f(u), (x, t) ∈ S, (64)

where ϕ, f satisfy conditions (1), (3). Then, for any smooth bounded subset S ′ ⊂ S separated from ∂S by
a positive constant d̃ we have

‖u‖C2+θ,1+θ/2(S′) ≤ C ′, (65)

for any positive constants 0 < θ < 1 and C ′ which depends on ‖u‖L∞(S), ϕ, f , d̃, θ and the size of S ′, where

‖u‖Ck+θ,k′+θ′ (S′) = ‖u‖Ck,k′ (S′) +
N∑

i,j=1

sup
(x,t),(y,t)∈S′,x 6=y

{
|Dk

xu(x, t)−Dk
xu(y, t)|

|x− y|θ

}

+ sup
(x,t),(x,t′)∈S′,t6=t′

{
|Dk′

t u(x, t)−Dk′
t u(x, t′)|

|t− t′|θ′
}

where k, k′ are non-negative integers and 0 < θ, θ′ < 1.

Proof. Since S ′ is separated from ∂S by a positive distance, we can find subsets S1, S2 such that S ′ ⊂
S2 ⊂ S1 ⊂ S and such that ∂S, ∂S ′, ∂Si are separated by a positive distance less than d̃. By condition (3)
the regularity of u(x, t) is the same as the regularity of v(x, t) = ϕ(u(x, t)). Note that by (64) v satisfies

vt = ϕ′(ϕ−1(v))[∆v + g(v)] , g(s) = f(ϕ−1(s))

on S. By Theorem 3.1 p. 437-438 of [15], there exists a positive constant c1 such that

|∇v| ≤ c1 in S1

where c1 depends only on N,ϕ, ||u||L∞(S) and the distance between S and S1. This, together with Theorem
5, p 122 of [10], imply that

‖v‖W 2,1
p (S2) ≤ c2(‖v‖Lp(S1) + ‖ϕ′(ϕ−1(v))g(v)‖Lp(S1))

for any p > N + 2 where c2 is a constant that depends on c1, p,N, ϕ. With this, by fixing p large enough,
the Sobolev embedding theorem in chapter 2, section 3 of [15] yields

‖v‖C1+θ,(1+θ)/2(S2) ≤ c3‖v‖W 2,1
p (S2)

where 0 < θ < 1 − N+2
p

and c3 depends on c2 and p. This implies that ϕ′(ϕ−1(v)), g(v) are bounded

uniformly in C1+θ,(1+θ)/2(S2). Therefore, by Theorem 10.1 p 351-352 of [15] we obtain

‖v‖C2+θ,1+θ/2(S′) ≤ c4‖v‖C1+θ,(1+θ)/2(S2)

where c4 depends on c2, f and ϕ.
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Remark 3. Lemma 11 implies the uniform C2,1 boundedness of the entire solution w in the whole space.
This can be derived as follows: Let

S(a,b) = {(x, t) ∈ RN × R, |x− a|2 + (t− b)2 ≤ 2}, S ′(a,b) = {(x, t) ∈ RN × R, |x− a|2 + (t− b)2 ≤ 1}

where (a, b) ∈ RN × R. Then, Lemma 11 implies the uniform C2,1 boundedness of w within S ′(a,b) where

the upper bound is fixed by (65). Since this upper bound is independent to the choice of (a, b), we have
uniform C2,1 bound of w in the whole space.

Next, we present a result inspired by a similar one in [5].

Lemma 12. Let w((z′, z(N)), τ) be a bounded eternal solution of (63) satisfying

lim inf
z(N)→−∞

inf
z′∈RN−1,τ∈R

w((z′, z(N)), τ) = α−, lim sup
z(N)→∞

sup
z′∈RN−1,τ∈R

w((z′, z(N)), τ) = α+, (66)

where z′ = (z(1), z(2), · · · z(N−1)). Then, there exists a constant z∗ ∈ R such that

w((z′, z(N)), τ) = U0(z(N) − z∗).

Proof. We prove the lemma in two steps. First we show w is an increasing function with respect to the
z(N) variable. Then, we prove that w only depends on z(N), which means that there exists a function
ψ : R→ (α−, α+) such that

w((z′, z(N)), τ) = ψ(z(N)), ((z′, z(N)), τ) ∈ RN × R.

From the increasing property with respect to z(N), this allows us to identify ψ as the unique standing wave
solution U0 of the problem (20) up to a translation factor z∗.

We deduce from (66) that there exist A > 0 and η ∈ (0, η0) such that{
α+ − η ≤ w((z′, z(N)), τ) ≤ α+ + η, z(N) ≥ A

α− − η ≤ w((z′, z(N)), τ) ≤ α− + η, z(N) ≤ −A
(67)

where η0 is defined in (9).
Let τ̃ ∈ R, ρ ∈ RN−1 be arbitrary. Define

ws((z′, z(N)), τ) := w((z′ + ρ, z(N) + s), τ + τ̃)

where s ∈ R. Fix χ ≥ 2A and define

b∗ := inf
{
b > 0 : ϕ(wχ) + b ≥ ϕ(w) in RN × R

}
. (68)

We will prove that b∗ = 0, which will imply that wχ ≥ w in RN×R since ϕ is a strictly increasing function.
To see this, we assume that this does not hold, that is b∗ > 0. Note, by (66) and (67) we have

wχ ≥ α+ − η > α− + η ≥ w if z(N) = −A, lim
z(N)→±∞

ϕ(wχ)− ϕ(w)→ 0. (69)

Let E = {(x, t) ∈ RN × R, ϕ(w)− ϕ(wχ) > 0}. Define a function Z on E as follows

Z((z′, z(N)), τ) := e−CZτ [ϕ(w)− ϕ(wχ)]((z′, z(N)), τ),

CZ := max

(
sup
x∈E

[ϕ′(w)− ϕ′(wχ)]∆ϕ(w) + [ϕ′(w)f(w)− ϕ′(wχ)f(wχ)]

ϕ(w)− ϕ(wχ)
, 0

)
≥ 0.
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Note that CZ is bounded, since wχ is bounded uniformly in C2,1(E) by Remark 3 and in view of (1) and
(3) we have

lim
x→y

ϕ′(x)− ϕ′(y)

ϕ(x)− ϕ(y)
=
ϕ′′(y)

ϕ′(y)
<∞, lim

x→y

ϕ′(x)f(x)− ϕ′(y)f(y)

ϕ(x)− ϕ(y)
=

(ϕ′f)′(y)

ϕ′(y)
<∞. (70)

Direct computations give

Zτ − ϕ′(wχ)∆Z = e−CZτϕ′(w)[∆ϕ(w) + f(w)]− e−CZτϕ′(wχ)[∆ϕ(wχ) + f(wχ)]

− CZZ − e−CZτϕ′(wχ)[∆ϕ(w)−∆ϕ(wχ)]

=
(

[ϕ′(w)− ϕ′(wχ)]∆ϕ(w) + [ϕ′(w)f(w)− ϕ′(wχ)f(wχ)]
)
e−Czτ − CZZ

≤ CZZ − CZZ = 0

in E. Then, the maximum principle [17] Theorem 5 p.173 yields that the maximum of Z is located at the
boundary of E. By the definition of E, Z = 0 on the boundary of E which implies Z ≤ 0 in E. This
contradicts the definition of E. Thus, we conclude that b∗ = 0.

Next, we prove that w ≤ wχ for any χ > 0 (see (73) below). For this purpose, define

χ∗ := inf
{
χ ∈ R, wχ̃ ≥ w for all χ̃ ≥ χ

}
. (71)

Then, our goal can be obtained by proving that χ∗ ≤ 0. By the previous argument, we already know that
χ∗ ≤ 2A. Since w((z′,−∞), τ) = α−, it follows from (66) that χ∗ > −∞, since otherwise we would have

α− = w−∞((z′, z(N)), τ) ≥ w,

leading to a contradiction since w((z′,+∞), τ) = α+ > α−. Thus, we conclude that −∞ < χ∗ ≤ 2A.
Assume that χ∗ > 0, and define E ′ := {((z′, z(N)), τ) ∈ RN × R; |z(N)| ≤ A}. If infE′(w

χ∗ − w) > 0,
then there exists δ0 ∈ (0, χ∗) such that w ≤ wχ

∗−δ in E ′ for all δ ∈ (0, δ0). Since w ≤ wχ
∗−δ on ∂E ′,

we deduce from a similar argument as above that w ≤ wχ
∗−δ in {((z′, z(N)), τ) ∈ RN × R; |z(N)| ≥ A}.

This contradicts the definition of χ∗ in (71) so that infE′(w
χ∗ − w) = 0. Thus, we must have a sequence

((z′n, zn), tn) and z̃∞ ∈ [−A,A] such that

w((z′n, zn), tn)− wχ∗((z′n, zn), tn)→ 0, zn → z∞ as n→∞.

Define wn((z′, z(N)), τ) := w((z′ + z′n, z
(N)), τ + tn). Since wn is bounded uniformly in C2+θ,1+θ/2(RN ×R)

by Lemma 11, wn converges in C2,1
loc to a solution w∞ of (63). Define Z̃ by

Z̃((z′, z(N)), τ) := [ϕ(wχ
∗

∞ )− ϕ(w∞)]((z′, z(N)), τ).

Since ϕ is strictly increasing, by (71) we have{
Z̃((z′, z(N)), τ) ≥ 0 in RN × R
Z̃((0, z∞), 0) = limn→∞[ϕ(wχ

∗
n )− ϕ(wn)]((0, zn), 0) = limn→∞[ϕ(wχ

∗
)− ϕ(w)]((z′n, zn), tn) = 0.

(72)

Then, direct computation gives

Z̃τ − ϕ′(wχ
∗

∞ )∆Z̃ = ϕ′(wχ
∗

∞ )[∆ϕ(wχ
∗

∞ ) + f(wχ
∗

∞ )]− ϕ′(w∞)[∆ϕ(w∞) + f(w∞)]

− ϕ′(wχ∗∞ )[∆ϕ(wχ
∗

∞ )−∆ϕ(w∞)]

= [ϕ′(wχ
∗

∞ )− ϕ′(w∞)]∆ϕ(w∞) + [ϕ′(wχ
∗

∞ )f(wχ
∗

∞ )− ϕ′(w∞)f(w∞)],

23



If Z̃ = 0 we obtain Z̃τ − ϕ′(wχ
∗
∞ )∆Z̃ = 0. If Z̃ > 0, we obtain

Z̃τ − ϕ′(wχ
∗

∞ )∆Z̃ =

(
[ϕ′(wχ

∗
∞ )− ϕ′(w∞)]∆ϕ(w∞) + [ϕ′(wχ

∗
∞ )f(wχ

∗
∞ )− ϕ′(w∞)f(w∞)]

ϕ(wχ
∗
∞ )− ϕ(w∞)

)
Z̃

≥ −CZ̃,

for some positive constant C, where the last inequality follows from (70) and the fact that ∆ϕ(w∞) is
uniformly bounded in the whole space. Since by (72) Z̃ attains a non-positive minimum at ((0, z∞), 0), we
deduce from the maximum principle applied on the domain RN × (−∞, 0] that Z̃ = 0 for all (z′, z(N)) ∈
RN , τ ≤ 0. Hence, Z̃ ≡ 0 in RN × R. This implies that

w∞((0, 0), 0) = w∞((ρ, χ∗), τ̃) = w∞((2ρ, 2χ∗), 2τ̃) = · · · = w∞((kρ, kχ∗), kτ̃)

for all k ∈ Z, contradicting the fact that w∞((kρ, kχ∗), kτ̃)→ α+ as k →∞ and w∞((kρ, kχ∗), kτ̃)→ α−
as k → −∞.

Thus, we have χ∗ ≤ 0, and therefore

w((z′, z(N)), τ) ≤ w0((z′, z(N)), τ) = w((z′ + ρ, z(N)), τ + τ̃) (73)

hold for any ρ ∈ RN−1, τ̃ ∈ R.
We now show that w only depends on z(N). Suppose w depends on z′ and τ . Then, there exist

z′1, z
′
2 ∈ RN−1, z(N) ∈ R and t′1, t

′
2 ∈ R such that

w((z′1, z
(N)), t′1) < w((z′2, z

(N)), t′2). (74)

Then, by letting z′ = z′2, ρ = z′1 − z′2 and τ = t′2, τ̃ = t′1 − t′2 in the inequality (73), we deduce

w((z′2, z
(N)), t′2) ≤ w((z′1, z

(N)), t′1),

contradicting (74). This implies that w only depends on z(N), namely w((z′, z(N)), τ) = ψ(z(N)). Finally,
from the definition of χ∗, we have that ψ is increasing.

Proof of Theorem 1.3. We first prove (i). Recall that d(x, t) is the cut-off signed distance func-
tion to the interface Γt moving according to equation (13), and dε(x, t) is the signed distance function
corresponding to the interface

Γεt := {x ∈ D, uε(x, t) = 0}.

Let T1 be an arbitrary constant such that T
2
< T1 < T . Assume by contradiction that (15) does not

hold. Then, there exist η > 0 and sequences εk ↓ 0, tk ∈ [ρtεk , T ], xk ∈ D such that α+ − η > 0 > α− + η
and ∣∣∣∣uεk(xk, tk)− U0

(
dεk(xk, tk)

εk

)∣∣∣∣ ≥ η. (75)

For the inequality (75) to hold, by Theorem 1.2 and U0(±∞) = α±, we need

dεk(xk, tk) = O(εk).

With these observations, and also by Theorem 1.2, there exists a positive constant C̃ such that

|d(xk, tk)| ≤ C̃εk (76)

for εk small enough.
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If xk ∈ Γεktk , then the left-hand side of (75) vanishes, which contradicts this inequality. Since the sign
can either be positive or negative, by extracting a subsequence if necessary we may assume that

uεk(xk, tk) > 0 for all k ∈ N, (77)

which is equivalent to

dεk(xk, tk) > 0 for all k ∈ N.

By (76), each xk has a unique orthogonal projection pk := p(xk, tk) ∈ Γtk . Let yk be a point on Γεktk
that has the smallest distance from xk, and therefore uεk(yk, tk) = 0. Moreover, we have

uεk(x, tk) > 0 if ‖x− xk‖ < ‖yk − xk‖. (78)

We now rescale uεk around (pk, tk). Define

wk(z, τ) := uεk(pk + εkRkz, tk + ε2
kτ), (79)

where Rk is a orthogonal matrix in SO(N,R) that rotates the z(N) axis, namely the vector (0, · · · , 0, 1) ∈
RN onto the unit normal vector to Γtk at pk ∈ Γtk , say

xk − pk
‖xk − pk‖

. To prove our result, we use Theorem

1.2 which gives information about uεk for tk + ε2
kτ ≥ tεk . Then, since Γt is separated from ∂D by some

positive distance, wk is well-defined at least on the box

Bk :=

{
(z, τ) ∈ RN × R : |z| ≤ c

εk
, −(ρ− 1)

| ln εk|
f ′(0)

≤ τ ≤ T − T1

ε2
k

}
,

for some c > 0. We remark that Bk ⊂ Bk+1, k ∈ N and limk→∞Bk = RN × R. Writing Rk = (rij)1≤i,j≤N ,
we remark that R−1

k = RT
k , which implies that

N∑
i=1

r2
`i = 1,

N∑
i=1,j 6=m

rjir`i = 0. (80)

Since

∂2
zi
ϕ(wk) = ε2

k

N∑
j=1

N∑
`=1

rjir`i∂x`xjϕ(uεk),

we have

∆ϕ(wk) = ε2
k

N∑
i=1

∂2
zi
ϕ(wk)

= ε2
k

N∑
i=1

N∑
`=1

r2
`i∂

2
x`
ϕ(uεk) + ε2

k

N∑
i=1

N∑
j,`=1,j 6=`

rjir`i∂x`xjϕ(uεk)

= ε2
k∆ϕ(uεk).

Thus, we obtain

wkτ = ∆ϕ(wk) + f(wk) in Bk.

From the propagation result in Theorem 1.2 and the fact that the rotation matrix Rk maps the z(N) axis
to the unit normal vector of Γt at pk, there exists a constant C > 0 such that

z(N) ≥ C ⇒ wk(z, τ) ≥ α+ − η > 0, z(N) ≤ −C ⇒ wk(z, τ) ≤ α− + η < 0 (81)
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as long as (z, τ) ∈ Bk.
It follows from the first line of (14) that α−− η0 ≤ wk ≤ α+ + η0 for k large enough. Then, by Lemma

11 we can find a subsequence of (wk) converging to some w ∈ C2,1(RN × R) which satisfies

wτ = ∆ϕ(w) + f(w) on RN × R.

From Remark 2 we can deduce (66). Then, by Lemma 12, there exists z∗ ∈ R such that

w(z, τ) = U0(z(N) − z∗). (82)

Define sequences of points {zk}, {z̃k} by

zk :=
1

εk
R−1
k (xk − pk), z̃k :=

1

εk
R−1
k (yk − pk). (83)

From (76) and Theorem 1.2, we have

|d(xk, tk)| = ‖xk − pk‖ = O(εk),

‖yk − pk‖ ≤ ‖yk − xk‖+ ‖xk − pk‖ = |dεk(xk, tk)|+ |d(xk, tk)| = O(εk)

(see Figure 2), which implies that the sequences zk and z̃k are bounded. Thus, there exist subsequences
of {zk}, {z̃k} and z∞, z̃∞ ∈ RN such that

zkn → z∞, z̃kn → z̃∞, as k →∞.

(a) Points xk, yk, pk and interfaces Γtk ,Γ
εk
tk

in-
side the box Bk.

(b) Points z∞ and z̃∞ and hyperplanes z(N) =

z∗, z(N) = z
(N)
∞ .

Figure 2: In (a) the distance between Γtk and Γεktk is of O(εk). In (b), since we rescale space by ε−1, the
distance between two hyperplanes is of O(1).

Since the normal vector to Γtk at pk is equal to xk − pk, and the mapping R−1
k sends the unit normal

vector to Γtk at pk to the vector (0, · · · 0, 1) ∈ RN , we conclude z∞ must lie on the z(N) axis so that we
can write

z∞ = (0, · · · , 0, z(N)
∞ ).

Since, by (77),

w(z∞, 0) = lim
kn→∞

wkn(zkn , 0) = lim
kn→∞

uεkn (xkn , tkn) ≥ 0,

we deduce from (82) and the fact that U0 is an increasing function that

w(z∞, 0) = U0(z(N)
∞ − z∗) ≥ 0⇒ z(N)

∞ ≥ z∗.
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From the definition of ykn and (79), we have

w(z̃∞, 0) = lim
k→∞

wkn(z̃kn , 0) = lim
k→∞

uεkn (ykn , tkn) = 0. (84)

Next, we show that

w(z, 0) ≥ 0 if ‖z − z∞‖ ≤ ‖z̃∞ − z∞‖. (85)

Choose z ∈ RN satisfying ‖z− z∞‖ ≤ ‖z̃∞− z∞‖ and a sequence akn ∈ R+ such that akn → ‖z− z∞‖ and
εknakn ≤ ‖xkn − ykn‖ as k →∞. Then, we define sequences nkn and bkn by

nkn =
z − zkn
‖z − zkn‖

, bkn = aknnkn + zkn .

Note that bkn → z as k →∞. Then, by (83), we obtain

w(z, 0) = lim
kn→∞

wkn(bkn , 0) = lim
kn→∞

uεkn (pkn + εknRkn(aknkn + zkn), tkn)

= lim
kn→∞

uεkn (εknaknRknnkn + xkn , tkn) ≥ 0,

where the last inequality holds by (78).
Note that (82) implies {w = 0} = {(z, τ) ∈ RN × R, z(N) = z∗}. Thus, we have either z∞ = z̃∞ or, in

view of (82) , (84) and (85), that the ball of radius ||z̃∞− z∞|| centered at z∞ is tangent to the hyperplane
z(N) = z∗ at z̃∞. Hence, z̃∞ is a point on z(N) axis. With this observation and (82), we have

z̃∞ = (0, · · · , 0, z∗).

This last property implies

dεkn (xkn , tkn)

εkn
=
‖xkn − ykn‖

εkn
= ‖Rkn (zkn − z̃kn) ‖ = ‖zkn − z̃kn‖ → ‖z∞ − z̃∞‖ = z(N)

∞ − z∗. (86)

We have therefore reached a contradiction since, by (76), (82) and (86),

0 = |w(z∞, 0)− U0(z(N)
∞ − z∗)|

=

∣∣∣∣ lim
kn→∞

[
wkn(zkn , 0)− U0

(
dεkn (xkn , tkn)

εkn

)]∣∣∣∣
=

∣∣∣∣ lim
kn→∞

[
uεkn (xkn , tkn)− U0

(
dεkn (xkn , tkn)

εkn

)]∣∣∣∣ ,
contradicting (75).

For the proof of (ii), we use the same method as in [3].

Appendix: Mobility and surface tension

Mobility is defined as a linear response of the speed of traveling wave to the external force. More precisely,
motivated by (4.1) and (4.2) in [18], let us consider the nonlinear Allen-Cahn equation with external force
δ on R for small enough |δ|:

ut = ϕ(u)zz + f(u) + δ, z ∈ R, (87)

and the corresponding traveling wave solution U = Uδ(z) with speed c(δ):

ϕ(Uδ)zz + c(δ)Uδz + f(Uδ) + δ = 0, z ∈ R, (88)

Uδ(±∞) = α±,δ,
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where α±,δ are the two stable solutions of f(u) + δ = 0. Then, we define the mobility by

µAC := − c′(0)

α+ − α−
,

with a normalization factor α+ − α− as in [18]; compare (4.6) and (4.7) in [18] noting that the boundary
conditions at ±∞ are switched so that we have a negative sign for µAC .

To derive the formula for µAC , we multiply ϕ(Uδ)z to (88) and integrate it over R to obtain

c(δ)

∫
R
Uδzϕ(Uδ)zdz + δ(ϕ(α+)− ϕ(α−)) = O(δ2), (89)

by noting that ∫
R
ϕ(Uδ)zzϕ(Uδ)zdz =

1

2

∫
R

{(
ϕ(Uδ)z

)2}
z
dz = 0,∫

R
ϕ(Uδ)zdz = ϕ(α+,δ)− ϕ(α−,δ) = ϕ(α+)− ϕ(α−) +O(δ),∫

R
f(Uδ)ϕ(Uδ)zdz =

∫
R
f(Uδ)ϕ

′(Uδ)Uδzdz = −
∫ α+,δ

α−,δ

W ′(u)du = O(δ2).

The last line follows by the change of variable u = Uδ(z), W ′(u) = −f(u)ϕ′(u) (recall (28)),
∫ α+

α−
W ′(u)du =

0 and W ′(α±) = 0, W ′ ∈ C1. However, since one can at least formally expect Uδ = U0 +O(δ) (recall (20)
for U0), by (27), ∫

R
Uδzϕ(Uδ)zdz =

∫
R
U0zϕ(U0)zdz +O(δ)

=

∫
R
U0z

√
2W (U0(z))dz +O(δ)

=

∫ α+

α−

√
2W (u)du+O(δ),

by the change of variable u = U0(z) again. This combined with (89) leads to

c′(0) = − ϕ(α+)− ϕ(α−)∫ α+

α−

√
2W (u)du

.

Thus, the mobility is given by the formula

µAC =
ϕ∗±∫ α+

α−

√
2W (u)du

=
ϕ∗±∫

R ϕ
′(U0)U2

0z(z)dz
, (90)

where

ϕ∗± =
ϕ(α+)− ϕ(α−)

α+ − α−
.

On the other hand, surface tension is defined as a gap of the energy of the microscopic transition
surface from α− to α+ in the normal direction and that of the constant profile α− or α+. More precisely,
define the energy of a profile u = {u(z)}z∈R by

E(u) =

∫
R

{1

2

(
ϕ(u)z

)2
+W (u)

}
dz.
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Recall that the potential W is defined by (28), and W ≥ 0 and W (α±) = 0 hold. In particular, W is
normalized as minu∈RW (u) = 0 so that minu=u(·) E(u) = 0. Then, the surface tension is defined as

σAC :=
1

ϕ∗±
min

u:u(±∞)=α±
E(u),

by normalizing the energy by ϕ∗±. We observe that E is defined through ϕ.
Note that the nonlinear Allen-Cahn equation, that is (87) with δ = 0, is a distorted gradient flow

associated with E(u):

ut = −δE(u)

δϕ(u)
, z ∈ R,

where the right hand side is defined as the functional derivative of E(u) in ϕ(u), which is given by

δE(u)

δϕ(u)
= −ϕ(u)zz − f(u(z)).

Indeed, to see the second term −f(u(z)), setting v = ϕ(u), one can rewrite W (u) = W (ϕ−1(v)) as a
function of v so that (

W (ϕ−1(v))
)′

= W ′(ϕ−1(v))
(
ϕ−1(v)

)′
= −f(ϕ−1(v))ϕ′(ϕ−1(v))

1

ϕ′(ϕ−1(v))

= −f(ϕ−1(v)) = −f(u).

We call the flow “distorted”, since the functional derivative is taken in ϕ(u) and not in u. One can

rephrase this in terms of the change of variables v(z) = ϕ(u(z)). Indeed, we have E(u) = Ẽ(v) under this
change, where

Ẽ(v) =

∫
R

{1

2
v2
z +W (ϕ−1(v))

}
dz,

and
δẼ
δv

= −vzz − f(ϕ−1(v)) = −vzz − g(v).

Therefore, in the variable v(z), the nonlinear Allen-Cahn equation can be rewritten as

vt = ϕ′(u)ut = −ϕ′(ϕ−1(v)) · δẼ
δv

= ϕ′(ϕ−1(v))
{
vzz + g(v)}.

This type of distorted equation for v is sometimes called Onsager equation; see [16].
Now we come back to the computation of the surface tension σAC . In fact, it is given by

σAC =
1

ϕ∗±

∫
R
V 2

0zdz =
1

ϕ∗±

∫ α+

α−

ϕ′(u)
√

2W (u)du, (91)

where V0 = ϕ(U0) and satisfies (21). Indeed, the second equality follows from (29). To see the first equality,
by definition,

σAC =
1

ϕ∗±
min

u:u(±∞)=α±
E(u) =

1

ϕ∗±
min

v:v(±∞)=ϕ(α±)
Ẽ(v)

and the minimizers of Ẽ under the condition v(±∞) = ϕ(α±) are given by V0 and its spatial shifts. Thus,

σAC =
1

ϕ∗±
Ẽ(V0) =

1

ϕ∗±

∫
R

{1

2
V 2

0z +W (ϕ−1(V0))
}
dz.

However, since V0z =
√

2W (U0(z)) by (27), we have
∫
RW (ϕ−1(V0))dz =

∫
R

1
2
V 2

0zdz. In particular, this
implies the first equality of (91).

By (30) combined with (90) and (91), we see that λ0 = µACσAC .
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Remark 4. The linear case ϕ(u) = Ku is discussed by Spohn [18], in which K is denoted by κ. In this

case, since ϕ′ = K and ϕ∗± = K, by (90) and (91), we have µAC =
[ ∫

R U
2
0zdz

]−1
and σAC = K

∫
R U

2
0zdz.

These formulas coincide with (4.7) and (4.8) in [18] by noting that U0 is the same as w in [18] in the
linear case except that the direction is switched due to the choice of the boundary conditions.
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