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Connected subgraphs, matching, and

partitions

Mohamed Didi Biha ∗ Hervé L.M. Kerivin †

Abstract

Given an undirected graph G and a real edge-weight vector, the connected subgraph

problem consists of finding a maximum-weight subset of edges which induces a connected

subgraph of G. In this paper, we establish a link between the complexity of the connected

subgraph problem and the matching number. We study the separation problem associated

with the Matching-partition inequalities wich are introduced by Didi Biha et al. [4] for the

connected subgraph polytope.

keywords connected subgraph, polytope, matching, partition, separation

1 Introduction

Let G = (V,E) be a simple, connected, and undirected graph having at least one

edge. A non-empty edge subset F ⊆ E induces a connected subgraph of G if the

subgraph G[F ] := (V [F ], F ) of G induced by F is connected, where V [F ] corresponds

to all the vertices in V incident with an edge in F . Given an edge-weight vector

w ∈ IRE , not necessarily non-negative, the Maximum-Weight Connected-Subgraph

Problem (MWCSP) consists of finding a non-empty subset F ⊆ E of edges so that

the subgraph G[F ] is connected and w(F ) =
∑
e∈F

we is maximum.
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MWCSP was first considered by Kerivin and Ng [18] who focused on its com-

plexity. They showed that it is a new NP-hard combinatorial optimization problem

even on planar or bipartite graphs; they proceeded by reducing the Steiner tree

problem to MWCSP. Kerivin and Ng [18] also proved that the MWCSP and the

prize-collecting Steiner tree problem, as defined in Johnson et al. [16] and in Goe-

mans and Williamson [11], are equivalent optimization problems. Using a similar

approach as Feigenbaum et al. [9], they showed that it is NP-hard to approximate

MWCSP to within a constant factor.

MWCSP may appear as an underlying problem in many optimization problems.

As an illustration of the practical interest of MWCSP, one may mention a peer-

to-peer (P2P) video-streaming problem in under-provisioned networks [2]. From a

combinatorial-optimization viewpoint, this P2P problem consists of finding a packing

of rooted trees (i.e., independent delivery trees from a specific source peer) which

spans as many vertices (i.e., peers) as possible while satisfying some bounds on the

cumulative vertex’s degrees (i.e., the upload capacity of each peer is not exceeded).

Since one does not know a priori the subsets of vertices spanned by each rooted tree,

the problem aims at finding a packing of acyclic connected subgraphs spanning the

source vertex.

The essence of MWCSP consists of having to simultaneously deal with positive

and negative edge weights. This matter makes MWCSP be a nontrivial optimization

problem on classes of graphs where the Steiner tree problem is trivial. For instance,

the optimal solutions to STP on trees correspond to the subtrees which are induced

by all the edges belonging to paths between terminal nodes. On a cycle C, solving

STP reduces to picking out the minimum-weight paths among the |T | paths obtained

from C by removing all the edges between two consecutive terminal vertices. In [18],

Kerivin and Ng derived quadratic algorithms, based on the purposely-introduced

prize-collecting connected-subgraph problem, to solve MWCSP on trees and cycles.

In [4], Didi Biha, Kerivin and Pe studied the connected subgraph polytope. They

strengthtened a cut-based formulation by considering some partition inequalities and

studied the separation problem associated with these inequalities. They also gave a

complete polyhedral characterization of the connected subgraph polytope on cycles

and trees.
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This article is organized as follows. In Section 2, we establish the link, in terms of

complexity, between the MWCSP and the matching number. Section 3 present the

matching-partition inequalities wich are introduced in [4] for the so-called Connected

Subgraph Polytope. In Section 4, we investigate the separation problem associated

with the Matching-partition inequalities. Finally, some concluding remarks are given

in Section 5.

We conclude this introduction with some definition and notation, which have

been mainly taken from [5] and [21].

Let G = (V,E) be a simple, connected, and undirected graph. The order n of G

is its number of vertices, that is, n := |V |. The number of edges of G is denoted by

m. If e ∈ E is an edge with extremities u and v, we also write uv to denote e.

A path, cycle, and, complete graph of order n are denoted Pn, Cn, and Kn,

respectively.

Let U be a subset of V . The set of edges having one extremity in U and the

other one in U := V \U is called a cut and is denoted by δ(U). If U = {v} for some

v ∈ V , then we write δ(v) for δ({v}). We denote by E[U ] the set of edges having

both extremities in U and G[U ] the subgraph induced by U (i.e., G[U ] = (U,E[U ])).

Given W ⊂ V with W ∩U = ∅, [U,W ] denotes the set of edges having one extremity

in U and the other one in W . If π = {V1, . . . , Vp}, p ≥ 2, is a partition of V , then

we denote by E(π) the set of edges having their extremities in different classes of π.

We may also write δ(V1, . . . , Vp) for E(π).

Let F ⊆ E. Given x ∈ RE , x(F ) will denote
∑
e∈F

x(e).

2 MWCP and matching number

In the next theorem, we will show that MWCP is polynomial when the matching

number of G (i.e., maximum size of a matching in G) is bounded by a fixed integer

k. In order to do that, we will prove that MWCP can be solved using a sequence of

polynomial time Steiner tree problems.

Let G = (V,E) be a graph and weights w(e) associated with the edges e ∈ E.

Given a set of p distinguished vertices S = {s1, . . . , sp} ⊂ V , called terminals, the
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Steiner tree problem (STP) is to find a minimum weight tree spanning S. Altought

this problem is NP-hard in general, it is solvable in polynomial time when p is fixed

[6]

Theorem 1. Let G = (V,E) be a graph and an weight function w on E that asso-

ciates with an edge e ∈ E the weight W (e) ∈ IR. Let k ≥ 1 be a fixed integer.If G has

a maching number of value at most k, then MXCP is solvable in polynomial time.

Proof. Let E− = {e ∈ E : w(e) < 0}, G+ = (V,E\E−) andG+
1 = (V1, E

+
1 ), , . . . , G+

q =

(Vq, E
+
q ) be the non-trivial connected components of G+. Since the matching num-

ber of G is at most k, we have q ≤ k.

Let Ḡ = (V̄ , Ē) be the graph obtained from G by contracting every subset vertex Vi

into ti, i = 1, . . . , q, adding q new vertices s1, . . . , sq and q new edges ei = (siti). IF

F is a solution of MWCP, then we have E+
i ∩F = ∅ or E+

i ∩F = E+
i for i = 1, . . . , q.

Also it is easy to see that if e = (uv) ∈ E− such that u, v ∈ Vi for some i, then e /∈ F .

Thus, MWCP can be solved by solving for every fixed S ⊂ {s1, . . . , sq} the instance

I(S) = (Ḡ, S, w̄) of STP where w̄(ei) = w(Ei) for i = 1, . . . , q, and w̄(e) = −w(e) if

e ∈ Ē∩E−. So, to solve MWCP, we need to solve (2q−1) polynomial time instances

of TSP.

3 Matching-partition inequalities

Given any edge set F ⊆ E, its incidence vector is the vector xF in {0, 1}E so that

xFe = 1 if and only if e ∈ F . The convex hull of the incidence vectors of edge sets

inducing connected subgraphs of G is called the connected subgraph polytope and is

denoted CSP(G), that is,

CSP(G) := conv{xF ∈ {0, 1}E : (V [F ], F ) is connected}.

The maximum-weight connected subgraph then consists of solving max{wTx : x ∈

CSP(G)}, where w ∈ IRE is a weight vector on the edges of G.

The concept of partition has played an important role towards designing facet-

defining inequalities of many polyhedra. (See Bäıou et al. [1] for a recent survey on
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variants of partition inequalities.)

Let M = {e1, e2, . . . , ep} be a matching of G with p ≥ 1 (i.e., a set of pairwise

non-adjacent edges in E). For any partition π = {V1, V2, . . . , Vp} of V so that

ei ∈ E[Vi] for i = 1, 2, . . . , p, the pair (M,π) is called a matching-partition of G.

Recall that the elements V1, V2, . . . , Vp are called the classes of the partition. With

any matching-partition (M,π) of G, we associate the following matching-partition

inequality

x(E(π)) ≥ x(M)− 1. (1)

Any matching-partition inequality (1) intuitively expresses the property that to con-

nect n vertices together, one needs at least n−1 edges. In [4], Didi Biha et al. proved

the validity of the inequality (1) for the polytope CSP(G) and gave necessary and

sufficient conditions to be facet-defining. They also proved that when G is a cycle

or a tree, CSP(G) is given by the trivial inequalities (i.e., 0 ≤ x(e) ≤ 1 for all e ∈ E)

and the Matching-partition inequalities.

4 Separation of the matching-partition inequalities

The Separation Problem for the Matching-Partition Inequalities (1) (SPMPI for

short) consists of deciding whether a given vector x ∈ IRE satisfies the set of in-

equalities (1), and if not, followed by finding an inequality in (1) which is violated by

x. In [4], Didi Biha, Kerivin and Pe showed that SPMI is NP-complete even when

the matching is fixed. They proved that it becomes polynomial if the cardinality of

the matching is restricted to be 2. In this section, we prove that SPMI is polynomial

on cyles and trees. We prove also that it polynomial under some restrictions on the

matching.

4.1 Technical Lemmas

We give three technical lemmas related to the inequalities (1). Those lemmas will

be useful for the forthcoming polynomial transformation.

Let MP(G) be the set composed of all the pairs (M,π) where M is a matching

of G, π is a partition of V , and (M,π) is a matching-partition of G. Given a
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vector x in IRE , consider the function gx :MP(G)→ IR which associates with each

matching-partition (M,π := {V1, V2, . . . , Vp}), p ≥ 1, the real value gx(M,π) :=

x(δ(V1, V2, . . . , Vp))−x(M). The first lemma states that, in order to lower the value

of gx overMP(G), it is more beneficial to compose the matching of the largest-valued

edges within the classes of the partition.

Lemma 1. Let (M := {e1, e2, . . . , ep}, π := {V1, V2, . . . , Vp}), p ≥ 1, be a matching-

partition of G and x be a vector in IRE. If there exists an edge f in E[Vi] so that

xf ≥ xei, for some i ∈ {1, 2, . . . , p}, we then have gx(M \ {ei} ∪ {f}, π) ≤ gx(M,π);

the inequality is strict if xf > xei.

Proof. Substituting f for ei in M straightforwardly preserves a matching-partition.

Because of xf ≥ xei , we then obtain gx(M \ {ei} ∪ {f}, π) = gx(M,π)− xei + xf ≤

gx(M,π).

Still keeping in mind a decrease of gx, the next lemma asserts that the total

x-value of the edges between two classes of a partition should not exceed the lowest

x-value of the matching edges of those classes.

Lemma 2. Let (M := {e1, e2, . . . , ep}, π := {V1, V2, . . . , Vp}), p ≥ 2, be a matching-

partition of G and x be a vector in IRE. If there exist two distinct classes Vi and Vj of

π so that x[Vi, Vj ] ≥ min{xei , xej}, we then have gx(M ′, π′) ≤ gx(M,π), where M ′ :=

M \ {argmin{xei , xej}} and π′ is the partition of V obtained from π by combining Vi

and Vj into a single class; the inequality is strict if x[Vi, Vj ] > min{xei , xej}.

Proof. (M ′, π′) clearly is a matching-partition of G. We have

gx(M ′, π′) = x(δ(V1, V2, . . . , Vp))− x[Vi, Vj ]− x(M) + min{xei , xej}

≤ gx(M,π),

the inequality coming from x[Vi, Vj ] ≥ min{xei , xej}.

Lemma 3 can be viewed as a converse of Lemma 2. In fact, splitting a class which

contains an edge set separating its matching edge from any edge whose x-value is

larger than the one of the edge set would reduce the value of gx.
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Lemma 3. Let (M := {e1, e2, . . . , ep}, π := {V1, V2, . . . , Vp}), p ≥ 1, be a matching-

partition of G and x be a vector in IRE. If there exists a class Vj of π which can be

partitioned into V l
j and V r

j so that ej ∈ E[V l
j ] and x[V l

j , V
r
j ] ≤ max{xe : e ∈ E[V r

j ]},

we then have gx(M ′, π′) ≤ gx(M,π), where M ′ := M ∪ {argmax{xe : e ∈ E[V r
j ]}}

and π′ is the partition of V obtained from π by splitting Vj into V l
j and V r

j ; the

inequality is strict if x[V l
j , V

r
j ] < max{xe : e ∈ E[V r

j ]}.

Proof. Without loss of generality, assume j = p and let ep+1 := argmax{xe :

e ∈ E[V r
p ]}. Both matching M ′ := {ei : i = 1, 2, . . . , p + 1} and partition π′ :=

{V1, V2, . . . , Vp−1, V
l
p , V

r
p } clearly form a matching-partition of G. We therefore have

gx(M ′, π′) = x(δ(V1, V2, . . . , Vp)) + x[V l
p , V

r
p ]− x(M)− xep+1

≤ gx(M,π),

the inequality coming from x[V l
j , V

r
j ] ≤ max{xe : e ∈ E[V r

j ]}.

4.2 SPMPI on cycles and trees

On trees and cycles, if a class of a vertex partition induces a connected subgraph,

then this subgraph is a tree. This straightforward fact actually happens to be very

useful while studying the optimal solutions to the optimization problem

min{gx(M,π) : (M,π) ∈MP(G)}, (2)

where x is a vector in [0, 1]E . Notice that if a polynomial-time algorithm was known

to solve (2), the separation problem for the matching-partition inequalities (1) would

be polynomially solvable.

We first give two technical lemmas which will allow us to conveniently consider

optimal solutions to (2) having partition whose classes all induce connected sub-

graphs.

Lemma 4. Let (M := {e1, e2, . . . , ep}, π := {V1, V2, . . . , Vp}), p ≥ 2, be an optimal

solution to (2) so that the subgraph G[Vj ] contains an isolated vertex v, for some

j ∈ {1, 2, . . . , p}. We then have

(i) x(δ(v)) = 0 and
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(ii) the matching-partition (M,π′) also is an optimal solution to (2), where π′ is

obtained from π by moving v to a class containing one of its neighbors in G.

Proof. Without loss of generality, suppose j = 1 and vertex v has a neighbor u in

V2 so that xuv = max{xe : e ∈ δ(v)}. Consider the partition π′ := {V1 \ {v1}, V2 ∪

{v}, V3, . . . , Vp}. It is obvious that (M,π′) is a matching-parition of G. Since x is

non-negative, we have gx(M,π′) ≤ gx(M,π) − xuv. The optimality of (M,π) then

implies xuv = 0. We therefore deduce x(δ(v)) = x[{v}, V2] = 0, and our proof is

complete.

Lemma 5. Let (M := {e1, e2, . . . , ep}, π := {V1, V2, . . . , Vp}), p ≥ 2, be an optimal

solution to (2) so that the subgraph G[Vj ] contains a connected component (U,F )

with F 6= ∅ and ej 6∈ F for some j ∈ {1, 2, . . . , p}. We then have

(i) x(F ) = 0 and

(ii) the matching-partition (M ′, π′) also is an optimal solution to (2), where M ′ :=

M ∪{ep+1} for any edge ep+1 ∈ F and π′ is obtained from π by replacing Vj by

Vj \ U and adding a new class Vp+1 := U .

Proof. Let ep+1 := argmax{xe : e ∈ F}. Since (U,F ) is a connected component

of Vj not containing ej , we have Vj \ U 6= ∅ and x[Vj \ U,U ] = 0. It is clear that

(M ′, π′) is a matching-partition of G, and then gx(M ′, π′) = gx(M,π)− xep+1 . The

optimality of (M,π) implies xep+1 = 0, which combines with the non-negativity of x

gives x(F ) = 0, and consequently (ii).

A direct consequence of Lemmas 4 and 5 is the following when non-connected

graphs are considered in problem (2).

Corollary 1. Suppose graph G contains k ≥ 0 connected components of size at least

two (U1, F1), (U2, F2), . . . , (Uk, Fk) and q ≥ 0 isolated vertices W := {v1, v2, . . . , vq}.

If (Mi, πi) represents an optimal solution to (2) with respect to (Ui, Fi), i = 1, 2, . . . , k,

an optimal solution to (2) with respect to G is (∪ki=1Mi, (∪k−1
i=1 πi) ∪ π′), where π′ is

the partition obtained from πk by adding W to any of its classes.

In the following lemma, we focus on the connected classes of a matching-partition

minimizing (2) whenever G is a tree or a cycle. We state that if Vj is such a class, any
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path in G[Vj ] between ej and some edge g in δ(Vj) is a sequence of non-increasing

edges (with respect to their x-values), the one adjacent to g having a x-value at least

xg.

Lemma 6. Suppose that G is a tree or a cycle. Let (M := {e1, e2, . . . , ep}, π :=

{V1, V2, . . . , Vp}), p ≥ 2, be an optimal solution to (2) so that the subgraph G[Vj ] is

connected for some j ∈ {1, 2, . . . , p}. Consider any edge g in δ(Vj) and let P (ej , g) :=

(ej , f1, f2, . . . , ft, g), t ≥ 0, be the unique path between ej and g in the subgraph

G[Ej ∪ {g}]. We then have xej ≥ xf1 ≥ xf2 ≥ . . . ≥ xft ≥ xg.

Proof. Assume without loss of generality that j = 1 and g = u1u2 with u1 ∈ V1

and u2 ∈ V2. Since G is a tree or a cycle, the subgraph G[V1] is a tree. We remark

that by Lemma 1 we must have xe1 ≥ xe for all e ∈ E1, and by Lemma 2 we also

must have xe1 ≥ xg. We then need to only consider the case t > 0. Suppose first

there exist i1 and i2 in {1, 2, . . . , t} so that i1 < i2 and xfi1 < xfi2 . Let U ⊆ V1 be

the vertex set of the connected component of G[V1] \ {fi1} containing fi2 (and not

e1). We then can partitioned V1 into V1 \U and U where e1 ∈ E[V1 \U ], fi2 ∈ E[U ],

and fi1 = [V1 \U,U ]. Since xfi1 < xfi2 ≤ max{xe : e ∈ U}, Lemma 3 with respect to

the foregoing partition of V1 provides a contradiction to the optimality of (M,π) to

(2). Consequently, we have xej ≥ xf1 ≥ xf2 ≥ . . . ≥ xft . Finally, suppose xft < xg

and consider the partition π′ := {V1 \ {u1}, V2 ∪ {u1}, V3, . . . , Vp}. Pair (M,π′)

clearly is a matching-partition of G, and g(M,π′) = g(M,π)− xg + xft < g(M,π), a

contradiction to the optimality of (M,π) to (2).

In Lemma 6 lies the essence of our linear-time algorithm which solves the sepa-

ration problem for the matching-partition inequalities (1) on trees or cycles. This

algorithm works by first seeking the (inclusionwise) maximal subtree which contains

a largest x-valued edge and whose paths having this edge as an extremity satisifies

the order specified in Lemma 6; then the algorithm proceeds in the similar way on

the graph induced by the remaining edges, and so on.

Theorem 2. Let G = (V,E) be a tree or a cycle and let x̄ ∈ [0, 1]E. The SPMPI

can be solved in linear time.
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Proof. we consider the problem

min{x̄(δ(V1, V2, . . . , Vp))− x̄(M) : (M, δ(V1, V2, . . . , Vp)) ∈MP(G)}, (3)

that is, problem (2) with respect to x̄. If the optimal value to problem (3) is lower

than −1, any optimal solution to (3) induces a most-violated inequality (1) at x̄. Let

E+(x̄) := {e ∈ E : x̄e > 0} and G+ := G[E+(x̄)]. From Corollary 1, we may suppose

that G+ is connected, for otherwise one may decompose the separation problem for

(1) to as many problems (3) as connected components of size at least 2 are in G+. Let

e1 denote a largest x̄-valued edge in E, that is, x̄e1 ≥ x̄e for all e ∈ E. Notice first that

gx̄({e1}, {V }) = xe1 ≥ 0; in other words, one can only focus on matching-partition

whose matching is of cardinality at least 2. Moreover, problem (3) clearly has an

optimal solution, say (M∗ := {e∗1, e∗2, . . . , e∗p}, π∗ := {V ∗1 , V ∗2 , . . . , V ∗p }). Without loss

of generality, suppose e∗1 = e1.

From Lemmas 4 and 5, (M∗, π∗) can be chosen so that each subgraph G+[Vi] is

connected, i = 1, 2, . . . , p. We can also add the assumption that for any i = 1, 2, . . . , p

and any edge g in δ(V ∗i ), the path P (e∗i , g) in G+[E∗i ∪{g}] satisfies the order specified

in Lemma 6. Consequently, for any edge g = uv with u ∈ V ∗1 and v 6∈ V ∗1 , we have

x̄g ≤ max{x̄e : e ∈ δ(v) \ {g}}. We now claim that (M∗, π∗) can be chosen so that

for any edge g = uv with u ∈ V ∗1 and v 6∈ V ∗1 , we have x̄g < max{x̄e : e ∈ δ(v)}.

Assume, to the contrary, x̄g = x̄f where f := argmax{x̄e : e ∈ δ(v) \ {g}}. Without

loss of generality, we suppose v ∈ V ∗2 and f ∈ E+[V ∗2 ], the latter due to Lemma 6.

We consider two cases.

Case 1. If x̄f = x̄e∗2 , the matching-partition (M \ {e∗2}, {V ∗1 ∪ V ∗2 , V ∗3 , . . . , V ∗p }) then

is an optimal solution to problem (3) by Lemma 2.

Case 2. If x̄f < x̄e∗2 , because of Lemma 3, f can then be chosen so that it belongs

to the only path P (v, e∗2) in G+[V ∗2 ] between v and e∗2, that is, P (v, e∗2) := (f :=

f0, f1, . . . , ft, e
∗
2) with t ≥ 0. Let τ be the largest integer in {0, 1, . . . , t} so that x̄fτ =

x̄f . Consider the partition {U, V2} of V ∗2 so that U is the vertex set of the connected

component of G+[E+
2 \ {fτ}] containing v. We obviously have e∗2 ∈ E+[V2]. The

matching-partition (M, {V ∗1 ∪ U, V2, V
∗

3 , . . . , V
∗
p }) clearly is also an optimal solution

to problem (3).
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We remark that the order specified in Lemma 6 is preserved in all the classes of the

partitions considered in both cases. Consequently, the separation problem for the

matching-partition (1) on trees and cycles can be first reduced to looking for V ∗1 so

that e∗1 = e1, V ∗1 satisfies Lemma 6, and for any edge g in δ(V ∗1 ) there exists an ad-

jacent edge, not in E[V ∗1 ] whose x̄-value is larger than x̄g. An algorithm to find such a

set V ∗1 is as follows.

Step 0 Set V ∗1 ← V [{e1}]; F ← δ(V ∗1 );

Step 1 While F 6= ∅

Choose f := uv in F with v 6∈ V ∗1 ;

Set F ← F \ {f};

If (δ(v) = {f}) or (x̄f ≥ x̄e for all e ∈ δ(v)) then

Set V ∗1 ← V ∗1 ∪ {v}; F ← F ∪ (δ(v) \ {f});
Using a breadth-first-search type approach on G+ from either endvertex of e1,

Steps 0 and 1 can be implemented so that the only considered edges are those in

E+[V ∗1 ] ∪ δ(V ∗1 ). Moreover, those edges are considered at most twice, one time in

the conditional test, and a second time for those belonging to F .

The separation problem for (1) now is equivalent to solving problem (3) with respect

to graph G+[V \ V ∗1 ]. This graph may not be connected, yet using Corollary 1, the

latter problem (3) can be solved by considering it with respect to each connected

component of G+[V \ V ∗1 ]. Notice that, because of the conditional test in Step 1,

all the connected components of G+[V \ V ∗1 ] are of size at least 2. A subproblem

(3) with respect to a connected component (U,F ) can be solved in a similar way

as described above, that is, by first looking for a maximal vertex set V ∗j contain-

ing a largest x̄-valued edge in F , and then by solving problems (3) with respect to

the connected components of G+[U \ V ∗j ]. Consequently, the separation problem

for the matching-partition inequalities (1) can be solved in O(n) time on trees and

cycles.

4.3 SPMPI when the matching is maximal

Since the SPMPI is NP-complete, we have to settle a heuristic approach for the

SPMPI if we want to use the matching-partition inequalities within a cutting-plane

framework. The following propositions can be used to devise such heuristic.
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Proposition 1. If M is required to be a perfect matching, then the SPMPI can be

solved in polynomial time.

Proof. Let x ∈ [0, 1]E and M := {e1 = u1w1, . . . , ep = upwp}, p ≥ 3, be a perfect

matching. Let Vi := {ui, wi} for i = 1, . . . , p. The partition πM := {V1, . . . , Vp}

is the unique partition of V so that (M,πM ) is a matching-partition. We have

x(E(πM )) − x(M) = x(E) − 2x(M). Thus, finding a perfect matching M so that

x(E(πM ))−x(M) is minimum, is equivalent to finding a perfect matching M so that

x(M) is maximum. This latter problem is well-known to be polynomial [7, 8].

Proposition 2. When M is a fixed maximal matching, then the SPMPI can be

solved in polynomial time.

Proof.

Let x ∈ [0, 1]E and M := {e1 = u1w1, . . . , ep = upwp}, p ≥ 3, be a fixed maximal

matching. We can find a partition πM := {V1, . . . , Vp} so that ei ∈ E[Vi] for i =

1, . . . , p, and x(E(πM ))−x(M) is minimum. In fact, since M is maximal, the vertices

not covered by M form a stable set SM . We can then construct πM := {V1, . . . , Vp}

as follows: set Vi := {ui, wi} for i = 1, . . . , p; for every v ∈ SM choose i ∈ {1, . . . , p}

so that x([{v}, {ui, wi}]) = cMv , where cMv = max{x([{v}, {ui, wi}]) : i = 1, . . . , p},

and add v into Vi.

Let π := {V ′1 , . . . , V ′p} be a partition of V such that ei ∈ E[Vi] for i = 1, . . . , p, and

(M,π) is a matching-partition of G. We will proof that x(E(πM )) ≤ x(E(π)). For

every v ∈ SM , let i(v) ∈ {1, . . . , p} such that v ∈ V ′i(v). Let F = E[V [M ]] \M =

{e = uiwj ∈ E : i, j ∈ {1, . . . , p}, i 6= j}. We have

x(E(π)) = x(F ) +
∑
v∈SM

(x(δ(v))− x([{v}, {ui(v), wi(v)}]))

= x(F ) +
∑
v∈SM

x(δ(v))−
∑
v∈SM

x([{v}, {ui(v), wi(v)}])

≥ x(F ) +
∑
v∈SM

x(δ(v))−
∑
v∈SM

cMv

= x(E(πM )),

implying that x(E(πM ))− x(M) ≤ x(E(π))− x(M).
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Now, we will show that for all possible pairs of maximum x-valued matching and

vertex partition in a graph G, the SPMPI can be solved in polynomial time. Let

x ∈ IRE
+ and Mx := {M ⊆ E : M is a matching, x(M) is maximum}. Consider

then the following optimization problem:

min{x(E(π))− x(M) : (M,π) ∈MP(G) with M ∈Mx}. (4)

Proposition 3. The optimization problem (4) is polynomial.

Proof. We shall use the same notation as in the proof of the previous proposition.

We can suppose, without loss of generality, that x > 0. Let α := max{x(M) :

M is a matching} and M := {e1 = u1w1, . . . , ep = upwp}, p ≥ 3, be a fixed matching

with x(M) = α. Since x(M) is maximum and x > 0, M is a maximal matching. As

we have seen in Proposition 2, x(E(πM )) is minimum, implying that x(E(πM )) −

x(M) = x(E(πM ))− α is minimum. We have

x(E(πM )) = x(E)− x(M)−
∑
v∈SM

cMv ,

and hence

x(E(πM ))− x(M) = x(E)− 2x(M)−
∑
v∈SM

cMv = x(E)− 2α−
∑
v∈SM

cMv .

Thus, the optimisation problem (4 ) is equivalent to

max{
∑
v∈SM

cMv : M is a matching with x(M) = α}.

For every v ∈ V define cv = max{x([{v}, V ({e})]) : e /∈ δ(v)}. By convention,

x([{v}, V ({e})]) = 0 if [{v}, V ({e})] = ∅. Thus, if M is a matching so that x(M) = α

and v ∈ SM then cMv = cv. Let B be a sufficiently large positive number. The above

discussion and the characterization of matching polytope [7] lead to the following

linear program:

(LP )



max B
∑
e∈E

xexe +
∑
v∈V

cvyv

s.t.

x(δ(v)) + yv = 1 for all v ∈ V,

x(E(S)) ≤ |S|−1
2 for all S ⊂ V with |S| odd,

(x,y) ≥ 0.
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It is clear that if we add integrality constraints (i.e., (x,y) ∈ INE × INV ) to (LP ),

then x corresponds to a matching and y corresponds to a stable set so that no edge

in the matching is adjacent to a vertex in the stable set. The optimal solution of

the resulting integer-programming problem will correspond to a matching M so that

x(M) = α and x((E(πM ))− x(M) is minimum.

Let P be the polyhedron defined by the feasible solution set of (LP ). We now claim

that P is integral. In fact, let (x, y) be an extreme point of P . If x is integer, then

obviously y is integer. Suppose that x is not integer. Since x ∈ Pmatching(G), where

Pmatching(G) is the matching polytope, and Pmatching(G) is integral [7], then there

exists an extreme point x̄ ∈ Pmatching(G) so that every constraint of Pmatching(G)

binding at x is also binding at x̄. Note that if yv = 0, then x(δ(v)) = 1 and hence

x̄(δ(v)) = 1. Let ȳ ∈ IRV defined as ȳv = 1 − x̄(δ(v)) for all v ∈ V . It is clear

that every constraint of P binding at (x,y) is also binding at (x̄, ȳ). Since x̄ is

integer [7], we have (x̄, ȳ) 6= (x,y). This is a contradiction with the fact that (x,y)

is an extreme point of P . Thus, problem (4) is equivalent to the linear program

(LP ). And, so P is integral.

Since the separation problem associated with P is polynomially solvable [20], so is

the linear program (LP ), and hence the optimization problem (4) can be solved in

polynomial time.

5 Conclusions

In this article, we have considered the maximum-weight connected subgraph problem

(MWCSP). We have showed that this problem is polynomial when the matching

number is less or equal some fixed integer. We have studied the separation problem

associated with the so-called Matching-partition inequalities introduced in [4]. In

particular,we have showed that it is polynomial on cycles and trees. It would be

interesting first to identify more classes of graphs on which the separation problem

for the matching-partition inequalities can be solved in polynomial time, and second

to devise approximate separation routines. The latter may be handled through

additional properties on the matchings (e.g., perfect, maximal, maximum) which we

have already considered in this article. It would be interesting to use the results of
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this article in the framework of a branch-and-cut algorithm for the NWCSP.

MWCSP is closely related to the Steiner tree problem, and any algorithm for the

first problem can be used to resolve the second one. An obvious question is whether

our results can be used to improve the resolution of the Steiner tree problem.
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