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Hyperspectral imaging allows the classification and localization of materials for diverse applications. The existing datasets are either limited to a single image or created for specific applications. In our work, we need a dataset of urban materials for classification. However, the illumination and acquisition conditions are varying over time. This impacts the images and their corresponding raw signal and drives the need of making images independent from the acquisition conditions. To deal with it, classical approaches are based on the conversion of raw images to radiance and reflectance. Though many studies have been conducted on reflectance images and on ways to improve their robustness to such changes, the construction of unbiased radiance images has yet to be studied. In this paper, we first describe the creation of a dataset, then study two methods for correcting the calibration and comment the results of the proposed process.

Introduction

Hyperspectral imaging (HSI) combines the spatial aspect of imaging and the spectral aspect of spectrometry to produce a 3D data cube. This combination allows for localizing objects and materials from their chemical components and physical properties. HSI has been growing rapidly in many fields such as vegetation monitoring [START_REF] Schlerf | Remote sensing of forest biophysical variables using HyMap imaging spectrometer data[END_REF][START_REF] Govender | A review of hyperspectral remote sensing and its application in vegetation and water resource studies[END_REF][START_REF] Bondi | Calibration of UAS imagery inside and outside of shadows for improved vegetation index computation[END_REF][START_REF] Erudel | Criteria Comparison for Classifying Peatland Vegetation Types Using In Situ Hyperspectral Measurements[END_REF] or surveillance [START_REF] Bergman | The utility of hyperspectral data to detect and discriminate actual and decoy target vehicles[END_REF][START_REF] Yuen | An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition[END_REF][START_REF] Li | BAE-NET: A BAND ATTENTION AWARE ENSEMBLE NETWORK FOR HY-PERSPECTRAL OBJECT TRACKING[END_REF], including in urban areas [START_REF] Heiden | Analysis of Spectral Signatures of Urban Surfaces for their Identification Using Hyperspectral HyMap Data[END_REF][START_REF] Herold | Spectrometry for urban area remote sensing -Development and analysis of a spectral library from 350 to 2400 nm[END_REF].

The increasing demand for numerous applications has created the need for suited hyperspectral images datasets. However, few hyperspectral datasets are publicly available, and the results are often over-fitting [START_REF] Ghamisi | Advances in Hyperspectral Image and Signal Processing: A Comprehensive Overview of the State of the Art[END_REF][START_REF] Li | Deep Learning for Hyperspectral Image Classification; An Overview[END_REF].

In the context of our work, we wish to discriminate between materials from urban areas independently of the illumination. However, the spectra obtained depend on the camera and the acquisition conditions (camera angle, light angle, light intensity, shade) [START_REF] Healey | Models and Methods for Automated Material Identification in Hyperspectral Imagery Acquired Under Unknown Illumination and Atmospheric Conditions[END_REF][START_REF] Zaman | Retrieval of spectral reflectance of high resolution multispectral imagery acquired with an autonomous unmanned aerial vehicle: Aggieair™[END_REF][START_REF] Uezato | Illumination invariant hyperspectral image unmixing based on a digital surface model[END_REF]. To obtain more robust data, our material hyperspectral database is created under multiple sessions with different acquisition conditions. We applied the calibration procedure given in [START_REF] Burger | Hyperspectral NIR image regression part I: Calibration and correction[END_REF][START_REF] Wendel | Illumination compensation in ground based hyperspectral imaging[END_REF][START_REF] Shaikh | Calibration of a hyper-spectral imaging system using a low-cost reference[END_REF] to correct the spectra and allow comparisons between spectra acquired in different sessions.

As mentioned by [START_REF] Jung | Overview of Experimental Setups in Spectroscopic Laboratory Measurements -the SpecTour Project[END_REF][START_REF] Berra | Commercial Off-the-Shelf Digital Cameras on Unmanned Aerial Vehicles for Multitemporal Monitoring of Vegetation Reflectance and NDVI[END_REF][START_REF] Aasen | Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correctionworkflows[END_REF], this calibration procedure is not sufficient to eliminate all biases in the data and further improvements of calibration are still a work in progress. It should be noted that most studies focus on the last steps of the calibration, namely the measurement of reflectance targets and the computation of reflectance [START_REF] Geladi | Hyperspectral imaging: Calibration problems and solutions[END_REF][START_REF] Miura | Performance of three reflectance calibration methods for airborne hyperspectral spectrometer data[END_REF].

In this paper, we thus specifically focus on the first steps of the calibration. We highlight a problem that can occur if these steps are not properly conducted. Then, we propose multiple solutions to alleviate this problem.

In Section 2, the material and conditions of the data acquisition are presented, followed by the fundamentals of the calibration procedure. Section 3.1 presents a description of the radiance problem encountered in the acquired data. Sections 3.2 and 3.3 present two methods to tackle the radiance problem. This paper concludes in Section 4 with acquisition and processing recommendations for improvement of the quality of the calibrated data.

Dataset acquisition and calibration

Dataset

Most of the online hyperspectral datasets contain either pre-calibrated data or a single image of a scene with little information about the acquisition conditions. In contrast, this dataset aims at verifying the quality of hyperspectral image calibration in controlled conditions. This dataset also aims at exploiting the results of this calibration to improve the analysis of hyperspectral images acquired in uncontrolled conditions.

Camera description

A Headwall SWIR-384 camera is used in our experiments. This pushbroom camera acquires lines of 384 spatial pixels at a line rate up to 450Hz. It is mounted over a rotating head to scan the scene and convert the time dimension to a second spatial dimension. The scanning angle of the camera is set from -15 to 15 degrees, resulting in an image width (along the scanning dimension) oscillating between 452 and 454 due to imprecisions in the acquisition process. These approximately 384 by 453 pixels images are acquired in 169 spectral bands in the 900-2500nm spectral domain (i.e. roughly 1 band every 9.55nm) with a 10nm spectral resolution.

Acquisitions setup

All images are taken in a closed room to prevent external light. We use a halogen lamp of 400W to provide constant illumination in the spectral domain of the camera, and a Spectralon ® target to use as white reference during the calibration (see Sec. 2.2).

The camera is set at a distance of 80cm from the designed location of the objects of interest, with approximately 35cm elevation and a 24 degrees downward angle (see Fig. 1a). These values are selected due to constraints of the equipment, in particular the extreme line of sight allowed by the maximum value of the rotating head on which the camera is fixed. The goal is to always keep the entire object inside every image taken by the camera.

In order to acquire data of the same objects with various illumination conditions, we conduct five sessions illustrated in Fig. 1b. The differences between the sessions are the orientation of the objects, laying on a surface (sessions 1, 2 and 3) or facing the camera (sessions 4 and 5), and the position of the lamp. Some hyperspectral images acquired during session 5 are presented in Fig. 2. In session 1, the lamp is positioned in front of the camera, on the opposite side of the objects from the camera. For this reason, very high specular reflectance saturated the values of the camera in most of the images so this session is not considered in the rest of this article.

The objects are selected to represent common types of materials present in the urban environments (metal, wood, cement, concrete, bricks, roof tiles).

Image calibration

The unprocessed acquisitions produce raw images of the energy sensed by the sensor. These images, of size X × Y × L, are acquired along the scanning dimension of the camera which acquires lines of pixels in rapid succession. Concretely, the index of each pixel constitutes a first spatial dimension X. For every pixel, the camera acquires a value through every available spectral band to constitute the spectral dimension L. Finally, the second dimension Y of the image is reconstituted by concatenating the lines acquired. Examples of X × Y spatial slices at band 55 (1424nm) can be seen in Fig. 2.

The raw images are subject to many biases, including the noise of the camera or the amount of light in the scene. However, these biases have an important impact on the data and make it near-impossible to compare the data acquired in different conditions. It is thus a standard practice to calibrate the images to remove these biases. The first step of calibration is the measurement of the quantity of Dark Current (DC), which is the amount of current detected without any light source. The DC images were acquired by obstructing the camera with the lid to prevent any light to reach the sensor. The lid was chosen accordingly to the camera. Then, the DC is given by: DC(x, y, λ),

where x ∈ X, y ∈ Y and λ ∈ L.

The second step of image calibration is the conversion of the raw images to radiance images. Considering that the raw image is given by I raw (x, y, λ), every pixel of the radiance data cube is defined as:

I rad (x, y, λ) = I raw (x, y, λ) -DC(x, y, λ). (2) 
The obtained radiance image corresponds to the amount of light perceived by the sensor. This image is no longer affected by the noise of the sensor, but it still depends on the camera sensitivity, the exposure time, and the light intensity.

To apply the next step of the calibration, a measurement of the illumination in the scene is necessary. This measurement is provided by using a white reference, which is a nearly-lambertian surface with reflectance close to 100% in all considered wavelengths. The white reference should appear in part of a hyperspectral image. After computing the white reference's radiance image I w rad , the white reference should appear nearly homogeneous. A single representative L-sized vector of the white reference is then selected:

w rad (λ) = Vw v I w rad (v, λ) ||V w || , (3) 
with V w ⊂ (X ×Y ) the subset of the image values where the white reference target appears and v = (x, y) tuples. The last step is to compute the reflectance images I ref , defined as:

I ref (x, y, λ) = I rad (x, y, λ) w rad (λ) . (4) 
The resulting reflectance image contains the proportion of light reflected in each pixel. The reflectance is more robust to both the noise of the camera and the illumination conditions and makes it possible to compare spectra acquired under other conditions.

3 Experimented calibration limits and correction proposals

Negative radiance values

To conduct the calibration procedure described from Sec. 2.2 on the data from Sec. 2.1, multiple DC measurements are acquired during each session (see Fig. 2). The white reference measurements are conducted twice for each session, at the start and the end. For each image to calibrate, the DC image with the smallest time difference to the image to calibrate is used in Eq. 2. Likewise, the white reference with the smallest time difference is used in Eq. 3 and 4. However, this calibration results in negative values in some radiance and reflectance spectra. Negative values indicate a negative amount of illumination, which should not be possible. These negative values have a double impact on the calibrated reflectance images, because they affect both the samples radiance images I rad and the white reference radiance spectrum w rad extracted from it. To understand the cause of these negative values, an investigation of the values in the I raw and DC images was conducted.

We first extracted the histograms of the bands of the DC images to see the distribution of values. T was selected for this analysis due to the high sensitivity of the camera in these wavelengths. As shown in Fig. 3, the values of the DC images increase over time. For simplicity of presentation, only band 55 (1424nm) is presented here, but it can be noted that the 168 other bands follow a similar evolution over time. Furthermore, we computed the Kullback-Leibler (KL) distances between the histograms of the DC images. The expression of the Kullback-Leibler (KL) divergence between two discrete probability densities P (.) and Q(.) is given by: i P (i)log

P (i) Q(i) . (5) 
For each pair of DC images to compare, Q is computed from the image acquired at the latter time. This allows us to ignore the asymmetrical property of the KL distance.

Due to the small overlap of the histograms, we compare them using the following procedure. We first compute the mean of each distribution (cf Fig. 4a). The mean is used to center the histograms around zero. A value ϵ is added to each bin of each histogram to prevent values of zero in Q. We then compute the KL distance between the probability densities of the zero-centered histograms. The results are presented in Fig. 4b. If the evolution of the values in the DC images was linear, the KL distances would be constant over time given a same ∆t. However, with a same ∆t, when the time of acquisition increases, the KL distances decrease. This means that the evolution of values in the DC images is non-linear. This result is consistent with the increase of mean values presented in Fig. 4a, which slows over time.

Then, we conducted the same analysis on the raw images of samples. To prevent biases from the samples, we selected multiple areas in the background of the images. In the histograms of these areas, the values again increased over time. This increase appeared within the same orders of magnitude as in DC images, indicating that these value variations were likely not due to the quantity of light in the scene, because it would have had a lower impact on the DC images with the lid on. This led us to suppose that the heat emitted by the halogen lamp impacted the heat of the camera, which caused this increase in values.

Use the previous Dark Current image

Instead of the previous strategy to use in Eq. 2 the closest DC image in time independently of the order of the acquisitions, we decide to always use the previous DC image. This method has the effect of eliminating most of the negative values in the radiance images. However, this method has two problems. First, negative values are still appearing in images acquired shortly after the DC measurement. Second, this does not fix the main problem. We know from Sec. 3.1 that the values in images increase over time and that using the previous DC image lowers the quality of the calibration by leaving part of the sensor noise in the radiance images.

Linear interpolation

The calibration methods used previously have strong drawbacks and it is necessary to find a more suitable method. To improve the quality of the calibration, and despite the non-linearity of the evolution of the DC shown in Sec. 3.1, we decide to use the interpolation of multiple DC images in Eq. 2. This method results in an improved calibration with very low sensor noise. Some negative values appear, though mostly in extreme bands which have a low Signal to Noise Ratio and in areas with either low illumination (i.e. background) or low reflectance properties. 

Conclusion

This paper presents the acquisition of a dataset of hyperspectral images, including the camera specifications and a description of our acquisition conditions. We then use the Dark Current image closest in time to apply a classical calibration step, which results in negative values in the radiance images. An analysis shows that these negative values are caused by a non-linear augmentation of the DC values over time. We experiment with two possible correction methods for this problem. The usage of the preceding Dark Current image results in both abnormal values and incomplete normalization. Interpolating between multiple Dark Current images acquired during the same session significantly improved the result of the calibration. However, further improvements of this method are still required. In the future, we will consider the acquisition of more Dark Current images and the use of a cooling system on the camera for further analyses.
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 1 Figure 1: Acquisition setup. (a) Photo of the setup in session 1. (b) Illustration of the setup with pushbroom camera in the five sessions. The position of the lamp during each of the five sessions is indicated by its number.

Figure 2 :

 2 Figure 2: Time chart of images acquired during session 5, which lasted 75 minutes. Vertical black bars indicate the acquisition of Dark Current images, three of which are portrayed above the time axis. Three images of objects are presented below the time axis. For all images, only band 55 (1424nm) is shown for simplicity. All images are colorized using the viridis colormap.

  (a) Histogram at time t 0 . (b) Histogram at time t 2 = t 0 + 37min. (c) Histogram at time t 5 = t 0 + 75min.
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 3 Figure 3: Distribution of the values in band 55 (1424nm) of three DC images acquired at different steps in time.

Figure 4 :

 4 Figure 4: (a) Intensity mean values of a band of DC images and (b) KL distances between DC images, plotted as function of acquisition time. KL distances calculated with starting time t 0 are shown in blue, t 1 in yellow, t 2 in orange, t 3 in red, t 4 in gray.