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Abstract: Lamb wave dispersion curves are useful for optimizing the inspection scanning distance
that can be covered with good sensitivity in many current applications. However, one of the main
problems concerning this calculation lies in selecting a numerical method that is computationally
accurate and efficient. In this paper, Lamb waves dispersion curves are generated by the Scaled
Boundary Finite Element Method, and by the Rayleigh-Lamb equation. For the semi-analytical case,
waveguide cross-section discretization was performed using isoparametric elements and high-order
spectral elements. The semi-analytical formulations lead to an eigenvalue problem that can be solved
efficiently by calculating the couples of wavenumbers and frequencies that guarantee the wave mode
propagation, the basis for generating the dispersion curves. These are compared with those obtained
from the analytical solution for the symmetric and antisymmetric modes; in both cases, homogeneous
plates of constant thickness are considered. The numerical results show good agreement when using
a low number of isoparametric elements, or a single spectral element with shape functions of the
order of six for computing the dispersion curves and wave structure. The calculation is given with
low computational effort, and the relative variation with respect to the analytical reference values is
less than 2%.

Keywords: dispersion curves; scaled boundary finite element method (SBFEM); guided waves
ultrasonic testing (GWUT); high-order spectral elements; computational effort

1. Introduction

Lamb waves are waves whose material boundary is constrained and generated by the
specimen’s elastic micro-deformations, which propagate in parallel plate-like structures at
ultrasonic frequencies with wavelengths A, generally greater than the plate-thickness [1].
These waves have been of great interest in recent years in the field of nondestructive testing
(NDT) [2—4], surface corrosion damage in plates [5,6], Structural Health Monitoring (SHM) [7],
Lamb wave interaction with defects [8], and materials characterization [9]. It is possible to
inspect over long distances, covering the entire cross-section of the plate from a single probe
position, including isolated or embedded areas, which are of interest in many engineering
applications for corrosion monitoring [10], monitoring stress levels [11], or aerospace compos-
ites [12]. Multiple symmetric Sn or antisymmetric An (1 =0, 1,2, ... ) modes are generated
for specific plate thicknesses, frequency ranges, and material properties [13]. Despite this,
there are difficulties related to interpreting the information of the reflected waves given the
discontinuities and the limited scanning distance covered by the wave with good sensitiv-
ity [14]. The high attenuation of guided waves occurs mainly because the propagated wave is
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highly dispersive, producing wave packets that spread out in space and time through plate
structures. Physically, the dispersions of the ultrasonic pulse as a consequence of the spectral
components propagate at different phase velocities [15]. Thus, according to [1], this causes
the attenuation of the pulse due to the dispersion or leakage of energy, and increases the
complexity of the received signal due to the multiple mode generation [16-18].

Most of the Lamb wave problems are associated with obtaining appropriate disper-
sion curves and corresponding wave structures [19,20]. There are different analytic and
semi-analytic approaches for dispersion curve generation, all of them with different imple-
mentation complexities and limitations [20]. This information provided by the dispersion
curves includes phase and group velocities, wave number, cut-off frequencies, and the
modes with the highest and lowest associated dispersion, among other properties for
different propagation modes. Dispersion curves can be obtained experimentally [21-25],
numerically [26,27], analytically, and semi-analytical. For instance, the Semi-Analytical
Scaled Boundary Finite Element Method (SBFEM) [27,28] is one of the latest approaches
defined in the literature. SBFEM is versatile, accurate, and computationally efficient [29]. In
the case of the semi-analytic scheme, the waveguide is discretized along the cross-section by
using different finite elements and shape functions, while an analytical solution is adopted
in the wave propagation direction [30,31].

The spectral elements in the study of guided waves have already been proposed in
the literature. Rekatsinas et al. [32-35] investigated the propagation of guided waves in
metallic, composite, and sandwich strips with the time-domain spectral finite element
method (TDSFE). See [36-38], for instance, which discusses the application of spectral
elements as an approach to the study of guided wave propagation.

The application of the SBFEM method to estimate dispersion curves is based on the
fact that only the boundary of the computational domain is discretized with finite elements.
As indicated in Figure 1, the appropriate one-dimensional functions N are defined by the
coordinate 7. Few studies on using SBFEM for guided waves’ dispersion curve estimations
have been reported [36]. The main concerns related to the algorithm’s implementation
are the associated computational costs and the accuracy for high-order and isoparametric
interpolation approaches.

Wave propagation direction

Spectral Gundew;
clements

lsoparametric
clements

Figure 1. Schematic representation of the plate and SBFEM model.

The contribution of the present work is in investigating the performance of the SBFEM
approach in capturing the wave dynamic when isoparametric and high-order spectral
elements are used in the discretization of the plate cross-sections. The accuracy in the
estimation of the dispersion curves and the wave structure of the wave is evaluated by
the comparison between the obtained results using the SBFEM approach (isoparametric
and spectral) with the analytical solutions of characteristic equations for symmetric and
antisymmetric modes [37]. We also compare the computational time with the number of
elements, or the order of interpolation for the spectral elements in functions of the thickness.
We present numerical results and infer the performance of the SBFEM method when using
spectral elements with Gauss—Lobatto-Legendre nodal distribution. Our results suggest
that the method could be useful in terms of performance and effectivity when estimating
the dispersion curves for more complex applications associated with different materials,
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such as composites and multilayers. Additionally, there is the possibility of considering
the effect of viscoelastic properties or embedded materials. However, their performances
have not been reported in the literature, and these materials have not been included in the
present work.

2. SBFEM for Lamb Waves in Plates

The foundation of the semi-analytic approach is obtaining the wave governing equa-
tion by the principle of the virtual work applied to the generation and propagation of the
micro-deformation in the material.

Applying the governing equation of linear elastodynamic, the displacements (1), strain
(¢), and stress (o) are expressed by Equation (1),

Uz = [uy uz}T, &= [ey €2 Vyz ]T = Lu, (1)

where (L) is a three-dimensional differential operator and is used to define the compatibility
of Equation (2),

9 21" 10 0" 00 1"
£ = {LzaZJrLyay} u;where L, = {O 0 J Ly = {0 1 0} . 2)
The constitutive equation is expressed as follows,
o= loy0; TyZ]T = Ee=ELu, 3)

where, E is the elasticity matrix, the real symmetric matrix for isotropic specimen, defined
by the following Equation (4), where G is the shear modulus and v is Poisson’s ratio:

1—v v 0
=20 |y 12y 0 | @)
(1-2v) 0 0o (1—221/)

In SBFEM, a transformation of global coordinates to local coordinates (y, z)—(1, &)
is performed as shown in Figure 1. The principle of virtual work is applied to obtain the
governing equation with respect to the coordinate 77, where 77 denotes a parameterization of
the boundary of the domain. Lastly, & defines the coordinate that points from the origin of
the system to the boundary [38]. Based on a variational scheme established by inserting the
kinetic and potential energies into Hamilton’s equation, a system of linear equations can be
constructed with the circular frequency and wavenumber as unknowns under stress-free
boundary conditions. Hence, the unknowns can be solved using standard eigenvalue
routines. The solution satisfying the eigen equation corresponds to a couple of rotational
frequency and wavenumber values (w, k) obtained using standard eigenvalue routines.

The Scaled Boundary Finite Element Method (SBFEM) is a semi-analytical method that
the combines advantages of finite element and boundary element methods simultaneously.
The SBFEM equation is solved analytically in the longitudinal direction and exactly con-
verges in the finite-element sense in the thickness direction by using the shape functions.
The dimensionless radial coordinate # can be interpreted as a scaling factor. As already
mentioned, & =1 corresponds to the surface finite element on the boundary. The geometry
of the plate is defined by the coordinates of the scaled boundary &, 77, with 0 < & <1, so
that the dimensionless coordinate £ can be interpreted as a scaling factor [39]. The local
coordinate 7 is the one-dimensional representation of a local coordinate system as used
in traditional FEM, parallel to the y-axis in this case. Those local coordinates range from
1 and —1 at the edges of the isoparametric and spectral elements (Figure 1). The scaling
direction, &, is chosen along with the propagation direction, z, obtaining the displacements,
within the limit (z = 0) as a function of 77 and &, to the z-axis. The cross-sectional domain of
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the plate, (3, may be represented by a system of unidimensional finite elements, due to the
simplification attributed to the waveguide symmetry.

3. Implementation
3.1. Discretization Using Isoparametric and High-Order Spectral Elements in the SBFEM

The displacement expressions, discretized over the element domain, can be written in
terms of the shape functions Ni(1) as shown in Equation (5), in which the displacements of
each point along the z-axis is a function of the vertical position of the plate thickness, and
the nodal unknown displacements, (U,;, U;), are expressed in cartesian coordinates,

u(z, ) = NQpun(2). ®)

Because the shape functions depend only on 7, the derivatives can be separated
in terms of the two spatial coordinates for the strain (Equation (6)) and for the stress—
displacement relationship (Equation (7),

e(z,1) = Biuz(z) + Bauu(z), (6)

0 = D(Byupz(z) + Boun(z), (7)

where By and B, include the shape functions:

1
By =b1N,By = —baN,, (8)
Yn

_[Ni(n) 0 No(y) 0 Nz(y) 0
0 Ni(y) 0 Na(my) 0 Ns(n))

with N1, Ny and N3 expressed in the local coordinates #. Isoparametric elements with
three nodes equally spaced are located at local coordinates 70 = —1, 1 = 0 and #2 = +1,
so that an element of order p contains p + 1 nodes. The curves in Figure 2 illustrate the
Lagrange shape functions of a one-dimensional isoparametric element corresponding to
the polynomial of order p = 2 and the quadratic interpolation functions used as indicated
in Equation (10),

N(n) )

1 1
Ny =507 =), No = (1= %), N3 = 5.(° + 7). (10)

Although Lagrange interpolation polynomials may, in principle, be defined for any
set of distinct nodes, their properties are critically dependent on node positions. On the
other hand, other different nodal distributions can be proposed, so this study employs
an example of the Gauss-Lobatto-Legendre nodal distribution, as shown in Figure 2. In
this case, the two nodes are located at the extremes 71 = —1and 7, ;1 =1[31]. Thep — 1
nodes, which correspond to internal points according to Gauss—-Lobatto-Legendre, GLL,
are obtained when they meet the condition of Equation (11),

%Pp(’?i) =0,i=2...p, (11)
where P, denotes the Legendre polynomial of order p. The Gauss-Lobatto-Legendre
quadrature points are calculated for an element of the given order as follows: For a one-
dimensional element of order p with local coordinates 7, ranging from —1 to 1, the internal
GLL nodes are the roots of the Lobatto polynomial (L) of order p — 1, which is defined as
the first derivative of the Legendre polynomial (P) of order p, so that:

d
Lo, (1) = %Pp(ﬂi) (12)
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The derivative of the Legendre polynomial Py, of order p — 1 yields the Lobatto
polynomial, and its roots correspond to the location # of the nodes—Equation (12). These
Legendre polynomials for the given order can be obtained as follows, in Equations (13)—(15),

Py(n) =1, (13)
Pi(y) =1, (14)
Pi(y) = ZkT_lWLH(ﬂ) - k_Tlkaz(n),k =234... (15)

Once the location of the nodes is known, the corresponding shapes functions N;(#) of
p order can be constructed using the Lagrange interpolation polynomials [40], obtained
from Equation (16),

-
NG = J] —ZLi=12...p+1 (16)
S M
j=1
j#i
According to the proposed scheme, the first five Legendre polynomials and the cor-
responding Lobatto polynomials have been obtained as examples. The 7 roots of the
Lobatto polynomial corresponding to the location of the nodes were found by using GLL
quadrature points, and these points are included in Table 1. For an element of order p, the
p + 1 GLL quadrature points are the roots of the polynomial (1—7)2L"p(17), where Lp(1)
is the Legendre polynomial of order p. For another order, the same procedure would
be repeated.

Isoparametric 3 Noded-Order 2

.—Hl
M2
o5 | L=

Nifn)

Figure 2. Lagrange shape functions for GLL quadrature points.



Appl. Sci. 2023, 13, 1706 60f17

Table 1. Six Legendre polynomials (L), Lobatto polynomials of order p — 1, and roots (nodes) 7.

P Legendre Polynomial Lobatto Polynomials Roots (Nodes) i

1 Lo(n) =1 0 +

2 Li() =1 Lo(n) =1 =10

3 Ly(n) = 3372 ~ 1) Li(7) = 3y =10447

4 Ls(17) = 3 (51> = 3)1 La() = 351 = 1) F120.6540

5 Ly(n) = L(357* — 3092 +3 Lsy(n) = 3(7% -3 +1+0.765
4(n) = (357 n*+3) 3(n) = 3(7n° =3)n 0085

6 Ls(n) = (637* — 7012 + 15 Ly(n) = 2 21p* — 1472 +1 +1+0.830
5(17) = (637 Ul ) La(n) = 521y 7 +1) 04680

The shape functions” order of interpolation for spectral elements is evaluated by
comparing the computational time and effectiveness (relative error with respect to analytical
solution) for equivalent or better results to those obtained with isoparametric elements of
order two.

Table 2 shows the shape functions of one spectral element with four nodes (p = 3), and
Figure 2 shows an example of Lagrange interpolation for order three (1 = 4) and order six
(n =7), based on the GLL approach. The shape functions can be determined for the desired
number of nodes, discretizing the entire thickness with a single element.

Table 2. Shape functions for p = 3 and 4 nodes (order 3).

1 Shape Functions N

4 Ni(n) = (Ziosr ) (Lroae ) (40)
—0.447 Na(i7) = (70}.741;%1) (4742%32147) (707471;71 )
0.447 N3(17) = (0.23711) <0.Z£%%Z47) (0.2477171>

A Ny = (1) (120 ) (104

If the order of one element is increased by one, a new additional node should be
inserted, and all internal nodes must be repositioned.

To calculate N, 7 with the transformation of coordinates for each element, we use the
Jacobian matrix described in Equation (17),

dyy 9yz
agy agz

dyy 9yz
0,y 0:2

|f|=]

0

In the case of the plate, the transformation of coordinates for an element is performed

via Equation (18),
)
y=5(+1), (18)

where [ is the length of the element.

3.2. Equations of Motion
The guided wave dynamic in the specimen is formulated using an energetic approach
by inserting the kinetic and potential energies into the conservative form of Hamilton’s
principle—Equation (19):
oU 40K = 0. (19)
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In Equation (20), U is the internal deformation energy and strain energy, and K is the
kinetic energy given by Equation (21),

ou = sel gdQ), (20)
/]
0K = /5uZ(Z)M0(Z)dZ, (21)
0
1
Mo = / NToN|J| dy, 22)
-1

with p as the material density and M, the mass matrix in Equation (22). By replacing
Equation (6) and solving the integral, the strain energy in Equation (23) is obtained,

[e9)

—oul(z) [ (Eouza(z) + (BT = Eunz(2) — Eaua(2)) dz 4 6ul (0)a(0),  (23)
0

Here, Ey, E1 and E, in Equations (24)—(26) are the coefficient matrices of the SBFEM
scheme, while superscript T denotes the matrix transpose,

1

Eo= [ BIDBilJ| 4y, @)
-1
1

Ei = /B2TD81|]| dy, (25)
-1
1

E, = /BZTDBZU\ dy. (26)
-1

Substituting Equations (21) and (23) in Equation (19) yields Equation (27) of the
SBFEM, with semi-analytical equations for the displacements in the cross-section, since the
nodal displacements 1,,(z) can be arbitrary analytic functions of z, while the y-direction is
discretized along the element direction,

(o]

—5ul(2) / (Eotza(2) + (ET = E1Juna(2) — Eatn(2) — Mo(2)) dz=0.  (27)
0

The solutions of the displacement functions in Equation (27) yield:
un(z) = 711, (28)

where w is the angular frequency, t is the time, i is the imaginary unit, and # is the complex
displacement vector. The modes that can propagate are defined by Equation (29),

A =K, (29)

where K is the wave number in the z-direction for a particular wave mode. Substituting
Equation (29) into Equation (27) yields Equation (30). The generalized SBFEM governing
equation for a stress-free plate is obtained as

(A2Eg + A(Ef — E1) — Ey + w?Mp) 61, = 0 (30)
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For a given specific frequency w, Equation (30) establishes a second-order polynomial
eigenvalue problem for the eigenvalues A and the eigenvectors i, which can be solved
numerically by standard procedures.

The wave structures of each mode are the eigenvectors #,,, and are the vectors of the
global displacement amplitudes of all nodes of the discretization. The wave structure is
useful when investigating sensitivity for certain defects and scanning distances.

3.3. Algorithm for Computing Dispersion Curves by SBFEM

Figure 3 shows a schematic representation of the proposed algorithm for estimatingthe
dispersion curves by SBFEM. The first step is to set the model parameters by defining the
plate thickness ¢, the material, and the density p, as well as the elasticity matrix E, which
includes the shear modulus G and Poisson’s ratio v.

Coordnate E E E.M
Ky Ky el

L] L
transformation % Single spectral
l | element

L. Model 2. Cross section 3. Numarical *| loparamatric i
. ™ Approximation of
paramieters rmaeghing !
SBFEM Coufficient ¥
Integraly
- Assembly of
v tha global
|zoparametric number of elements. matrix

Spectral: Order of the interpolation functiona.

4. Compute sigenvalues A and sigemecton dn for each value of wavenumber & [«

Figure 3. Schematic diagram of the proposed algorithm for plotting dispersion curves by SBFEM.

The second step is the meshing of the plate cross-section. So, the number of isopara-
metric elements and the order of the shape functions in the case of spectral elements
are determined.

The third step is the calculation of the coefficient matrices Ey, E1, E;, and My using
integration and the Gaussian quadrature method of approximation for the isoparametric
and spectral methods, respectively. The coefficient or elementary matrices are assembled
into a global matrix with size as a function of the number of elements used.

The fourth step is to solve the eigenvalue problem to find the eigenvalues w and their
corresponding eigenvectors A for each value of the wavenumber k. as a solution, we obtain
the (w,k) couples that are the basis for generating the dispersion curves, according to the
following equations:

Cp= %,where w =2rnrf, (31)
dw
C, = T (32)

The numerical results of the two discretization schemes are compared with the an-
alytical solution to verify the accuracy of the method. The maximum frequency of the
dispersion curves is approximated to obtain a wavelength A equal to or greater than the
structural thickness.

3.4. Analytical Solution of Lamb Waves

The analytical estimation of the dispersion curves is performed by the Rayleigh-Lamb
equations for plates considering only real values for wavenumbers k. This is determined by
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the following implicit equations: for symmetrical S Lamb waves, Equation (33), and for
antisymmetric A Lamb waves, Equation (34),

tan(qh) N 4k%p tan(ph)

, ey " for (8), (33)

(42— K*)” tan(ph)
4k2p

where the p and g parameters are presented by the following set of equations:

q tan(gh) + =0 for (A), (34)

w?
=,/= —K?, 35
p c (35)
w?
- g 36
q 2 (36)

The solutions to Equations (33) and (34) are obtained via an implicit k and w equation
problem. Thus, the real roots are computed with a MATLAB program set up using the
findAllZeros function with a tolerance of 1 x 101°. The in-plane and out-of-plane particle
motions across the plate thickness are described by the wave structures, and are obtained
for symmetric and antisymmetric modes from the following equations.

Symmetric solution:

1y = —2k*q cos(qd) cos(py) + q(k* — 4°) cos(pd) sin(qy), (37)

uy = —2ikpq cos(qd) sin(py) — ik(k* — g*) cos(pd) sin(qy) (38)
Antisymmetric solution:

uy = —2k?q sin(qd) sin(py) + q(k* — ¢*) sin(pd) sin(qy), (39)

uy = —2ikpq sin(qd) cos(py) + ik(k* — g%) sin(pd) cos(qy). (40)

Figure 4 shows the direction of in-plane and out-of-plane displacement for modes A
and S with respect to the plane of symmetry at the center of the plate. The amplitude along
the thickness is fully described by the wave structures.

Antisymmetric Symmetric
v=+d motion motion
&8
U > u:
__________ SO
HJ‘ u z
U. 4—1 Zl‘_I -
y = —d - o J

Figure 4. Symmetric and antisymmetric particle motion across the plate thickness.

4. Results and Discussion

In this section, the dispersion curves for several plates are calculated by the approaches
of the SBFEM and the analytic equations. In the first case, the two meshing schemes,
isoparametric and spectral elements are considered, and in the second case the Rayleigh-
Lamb equations are considered. In both cases, the dispersion curves are generated for an
ASTM A106-B steel plate E = 212 GPa, Poisson’s ratio 0.289, mass density 7750 kg/ m?3, and
shear velocity 3185 m/s.
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4.1. Numerical Results for Isoparametric Elements

The SBFEM performance in terms of computing time and accuracy is strongly related
to the discretization of the cross-section. In the absence of a criterion for optimum dis-
cretization, calculations are performed using six to twelve nodes per wavelength (3) for
isoparametric elements and different interpolation orders for spectral elements. The results
are used to estimate the number of nodes required to ensure the efficiency and convergence
of the SBFEM. The accuracy for the mode of interest with the highest frequencies (Amin)
according to Equation (41) will be considered,

Cr Amin

bin = (nodes per unit of A) fmax 0 (1)

Numerical results with different numbers of nodes were obtained and compared with
the analytical solution. In Figure 5, the phase velocity versus frequency for the S and A
modes are plotted. In Figure 5, red is used for the isoparametric elements, black for the
analytical ones, and green for the spectral elements. A good agreement is observed for
the given frequency range for both the curves calculated with isoparametric and spectral
elements as shown in Table 3.

_ .10* Analytical (Black), Spectral p=6 (Gren), Isoparametric 5=6 (Red)
2r ' 1

™

Jjulllu-u:rnurulll:r

o
=

Phase velocity [m/s]

=
-

] 500 1000 1500

f [KHz]

Figure 5. Phase velocity dispersion curves were calculated by SBFEM with isoparametric and spectral
elements for a 3 mm-thick isotropic plate. Symmetric Sn and antisymmetric An (n =0, 1, 2, ...) modes.

Small deviations are observed for the S and A modes at high frequencies, f > 900 kHz.
This is to be expected, since the higher the frequency of the mode, the shorter its wavelength,
requiring a greater number of nodes to capture the dynamics of the system.

Figure 6 shows the group velocity dispersion curves of the modes that can propagate
in the steel plate. Using the SBFEM with six nodes per wavelength (3) for isoparametric
and only one element of order six for spectral elements has been done for the discretization
of the cross-section. The results obtained from both approaches are in excellent agreement
with the analytical solution.
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Table 3. Percentage of variation of Cp (m/s) for modes S0, S1, A0 and Al for specific frequencies as a
function of the number of elements n. Frequency f in kHz.

Number of Elements (1) S0 at S0 at S1 at S1 at S2 at S2 at A0 at Alatf = Al at Alat
f =400 f=800  f=1000 f=1200 f=1200 f=1400  f =400 800 £ =1000 f =1400
6 5258.14 4193.82 6527.95 5933.52 16,736.26  10,080.50 2447.16 2771.13 6118.18 4843.82
Percentage of variation 0.46 0.26 3.25 1.65 1.69 1.88 0.16 0.05 0.08 0.41
28 5258.13 4192.55 6524.64 5931.94 16,672.32  10,053.50 2446.88 2770.32 61,160.62 4836.97
Percentage of variation 0.46 0.23 3.30 1.67 2.06 2.14 0.17 0.05 0.11 0.26
Order (p)
4 5358.32 4316.36 7020.75 6178.83 16,076.90  10,204.81 2476.76 2807.94 6271.53 4979.68
Percentage of variation 1.44 3.19 4.06 242 5.56 0.67 1.05 1.28 243 322
6 5358.31 4312.78 6981.31 6143.07 18,798.51 10,724.92 2476.47 2805.44 6261.02 4952.14
Percentage of variation 1.43 3.11 3.47 1.83 4.30 4.39 1.04 1.19 2.26 2.65
8 5358.36 4312.78 6981.25 6142.48 18842 10,740.53 2476.47 2805.44 6260.99 4952.05
Percentage of variation 1.44 3.11 347 1.82 4.54 4.54 1.04 1.19 2.26 2.65
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Figure 6. Group velocity dispersion curves calculated by SBFEM with isoparametric and spectral
elements for a 3 mm-thick isotropic plate. Symmetric Sn and antisymmetric An (1 =0, 1,2, ...) modes.

4.2. Spectral Elements

In this case, the dispersion curves have been generated with a six-order spectral el-
ement with the nodes located at the GLL points in the material. The results have been
compared with the isoparametric elements and with the analytical solution. The phase ve-
locity and group velocity dispersion curves generated with a spectral element are presented
in Figures 5 and 6 for modes S and A. The curves generated with spectral elements are in
good agreement with those generated with isoparametric elements and analytically. The
performance, computing time and accuracy of the spectral approach for a six-order element
is preserved even when a 50 mm-thick plate is considered, as shown in Figure 7a,b. As a
result, it can be concluded that the spectral elements showed a fast convergence, leading
to excellent results with good accuracy. To illustrate numerical results for the spectral
element approach, one six-order spectral element is required for obtaining convergence
in the S1 mode estimation. Selecting the appropriate element order is fundamental, since
the benefit of increasing the element order is imperceptible when convergence is achieved.
These results reveal a comparable performance in the dispersion curves’ estimation when
fewer nodes per wavelength in the spectral scheme are implemented, compared with the
isoparametric elements approach.
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4.3. Quantitative Evaluation of SBFEM Method

Once the dispersion curves

are generated, a quantitative study of convergence is per-

formed for the SBFEM method with isoparametric and spectral elements. The discretization

is set up as described in Figure 1
mode S1 and a plate thicknesses

. The phase velocities are presented in Figure 8 for wave
t between 1 mm and 100 mm. Figure 8 shows the phase

velocity estimation for different nodes per wavelength, where the curves converge for six
nodes per wavelength () for all studied plate thicknesses. The same convergence is evident
for high-frequency modes, such as the S3 mode in a 1 mm-thick plate.
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Figure 8. Number of nodes per wavelength required for convergence with plate thicknesses up to

100 mm.

On the other hand, in Figure 9, the plate thickness is independent of the order of

interpolation for spectral element

s greater than six for the phase velocity estimations. The
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same behavior is observed for the rest of the dispersion curves. In the same figure, a
higher slope for orders less than p = 4 is seen. Based on the previous results, the spec-
tral discretization is independent of the plate thickness in terms of computational time
and accuracy. For lower-order modes, convergence is achieved with fewer nodes. The
computational efficiency is improved by implementing the spectral elements, which is
much more noticeable with increasing plate thickness. Once the method presents con-
vergence, the value obtained does not present modifications due to the increase in the
interpolation order.

Spectral
= & =51 t=1 mm, 3000 KHz
= v =51 =5 mm, TOOKHz |4
—+—351 1=10 mm, 400 KHz
€ =51 1=50 mm, 70 KHz
—i— 51 =100 mm, 60 KHz
3
—mel e Amememmscaa. e R e &
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z o e S AT Wit .- - = Prmmmm = ¥
& 8000 § ~a - > » +
& - - e e T e 4
o \‘
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300 F
e e - — e -l
F | 3 i ] L ) T L] ¥

Order of interpolation p

Figure 9. Comparison of the convergence curves for spectral elements of different orders of interpola-
tion p and thicknesses between 1 mm and 100 mm.

The combined results of Figures 9 and 10 provide an appropriate basis for formulating
a guideline to generate an efficient discretization. In all cases in this work, a selection
of more than six nodes per wavelength, or an interpolation order greater than eight, are
adequate to generate the dispersion curves. However, in the present work, a relationship
to determine the interpolation order as a function of frequency for higher-order modes is
not included because, in practical terms, integrity evaluation by guided waves is always
preferred to launch the lowest-mode waves, due to the possibility of multimode activation
at high frequencies.

Figure 10 summarizes the behavior of the semi-analytical and analytical methods
studied in this work, where the computational time is related to the thickness of the plate
in the case of the semi-analytical approach. The two approaches were tested on a PC
(Intel Ci7-6820HQ CPU at 2.7 GHz, 8 GB RAM) with one stepwise increment of k for the
SBFEM approaches. As expected, as the thickness increases in the SBFEM isoparametric
scheme, the number of elements increases, increasing the running time for the calculation
of the dispersion curve. The minimum number of isoparametric elements required for
the calculation of the dispersion curves in this study is six nodes per wavelength, which
corresponds to an optimized value of the number of elements. The numerical results show
a quadratic relationship between the number of elements and the running time, as shown
in Figure 10.

On the other hand, the spectral elements have a good convergence, which is inde-
pendent of the plate thickness. The computational time is the same across the range of
thicknesses studied.

Since our objective is to investigate the performance of the SBFEM method in cap-
turing the wave dynamics, the spectral elements within the Gaussian-Lobatto-Legendre
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quadrature yield achievable computational times for the practical range of plate thicknesses,
making this a recommendable option.
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Figure 10. Interpolation order required for convergence with plate thicknesses up to 100 mm.

4.4. Wave Structure across the Plate Thickness

As noted above, the wave modes’ characteristics can be very different for the same
waveguide and frequency range. For this reason, wave structures for the S and A modes are
generated with the SBFEM method from the studied models, and are compared with the
analytical solution for validation. This information is helpful for the selection of possible
points of dispersion curves, leading to a valid test. The wave structures are generated, with
semi-analytical methods using isoparametric and spectral elements, from the eigenvectors
of Equation (30). These wave structures are compared with those generated analytically
using Equations (37) to (40). Figure 11 shows the good agreement of the results, calculated
with low computational cost. Figure 11 shows the in-plane (uz) and out-of-plane (uy)
displacement for SO mode at frequency f = 400 kHz. The results in Figure 11a were
generated analytically, those in Figure 11b semi-analytically using isoparametric elements,
and those in Figure 11c using spectral elements.

Thickness (mm)

Displacement (uz, uy)
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(b) (©

Figure 11. The wave structure of S0 mode at 500 kHz. (a) Analytical solution. (b) SBFEM isoparamet-
ric elements. (c) SBFEM spectral elements.
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5. Conclusions

The results of the benchmark tests show that spectral finite element methods are
an efficient numerical tool, requiring fewer nodes to calculate reliable dispersion curves
of ultrasonic guided waves on plates. The benchmark test results demonstrate that the
spectral finite element method applied to dispersion curve calculation in plates requires
fewer nodes than the isoparametric method, achieving convergence with a total of eight
nodes. Greater plate thickness requires a larger number of isoparametric elements, thus
demanding a longer computational time. A quadratic relationship between the increase
in the running time and the increase in the thickness was found for the dispersion curves’
estimation in the isoparametric elements approach.

The Scaled Boundary Finite Element Method implemented with spectral elements
required lower computational times than the quadratic isoparametric elements. Despite
this, the generated dispersion curves show good agreement for the frequency range of
interest. Consequently, the spectral elements yield reliable data, and could be implemented
in more complex conditions, as they do not require the construction of a global matrix.

Isoparametric elements and spectral elements show good convergence of properties
with a similar quality of results. In general, the spectral elements under the Gaussian—
Lobatto-Legendre quadrature schemes achieve better performance by efficiently solving
the coefficient integrals and not requiring the assembly of a global matrix. These results are
in agreement with those published by Gravenkamp et al. [30] and Willberg et al. [31]. An
advantage of the Gaussian-Lobatto-Legendre scheme is that it concentrates the nodes near
the surface, where the wave profiles register high displacements, giving a possible physical
meaning to the better performance of the approach.

In general, it can be concluded that spectral elements require a lower number of nodes
per wavelength, which is independent of the plate thickness. In isoparametric approaches,
however, the number of nodes required increases with increasing thickness in order to
achieve a similar performance in calculating the dispersion of ultrasonic guided waves for
the nondestructive inspection of plates.
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