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Abstract: In this paper, we investigate the stochastic evolution equations (SEEs) driven by a
bounded log-Whittle-Matérn (W-M) random diffusion coefficient field and Q-Wiener multiplicative
force noise. First, the well-posedness of the underlying equations is established by proving the
existence, uniqueness, and stability of the mild solution. A sampling approach called approximation
circulant embedding with padding is proposed to sample the random coefficient field. Then a spatio-
temporal discretization method based on semi-implicit Euler-Maruyama scheme and finite element
method is constructed and analyzed. An estimate for the strong convergence rate is derived. Numerical
experiments are finally reported to confirm the theoretical result.
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1. Introduction

Stochastic partial differential equations (SPDEs) appears in many fields of science and engineering,
and have been subject of many theoretical and numerical investigations. It is commonly believed that
incorporating noise and/or uncertainty into models is closer to reality in mathematical modeling, due
to the existence of uncertainty stemming from various sources such as thermal fluctuation, impurities
of materials and so on. As an active area of research, numerical study of stochastic evolution equations
(SEEs) has attracted increasing attention in the past decades; see, e.g., monographs [33, 40, 45, 53, 56,
70] and references therein. Although much progress has been made, it is still far from being satisfactory
due to the numerical approximations of SEEs, especially for the SEEs with non-globally Lipschitz
nonlinearity, encounter all the difficulties that may arise in solving deterministic differential equations
on one hand, and caused by the effect of nonlinearity, infinite dimensional operator and driving noise
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on the other hand, see, e.g., [7, 11, 13–16] and references therein. The present work focus on the SEEs
perturbed by a smooth random diffusion coefficient field as well as multiplicative force noise, and aims
to propose and analyze an efficient numerical method for this equation.

When considering the numerical approaches for SEEs with various noises, two categories of
convergence errors may be involved, namely weak error and strong error. The former is related
to the approximation of the probability law of the solution. Concerning weak convergence error of
numerical methods for SEEs, we refer to, for instance, [2, 6, 8, 12, 16, 19–21, 27, 32, 41, 42, 50, 58, 66]
and references therein for a list of literature in this direction. Unlike weak convergence error, the
strong convergence error measures the deviation from the trajectory of an exact solution. It has been
extensively investigated in various types of SPDEs, see, e.g., [1, 5, 7, 9, 11, 13–15, 18, 24, 26, 29, 30,
34–36, 39, 43, 44, 51, 52, 59, 63–65, 69] and references therein. We mention here some works on
strong convergence of the numerical schemes for linear SEEs with additive or multiplicative noise.
For example, Allen et al. [1] described, analyzed and compared the finite element and difference
methods for parabolic SPDEs driven by additive white noise. Du et al. [24] investigated numerical
solutions of linear SEEs perturbed by special additive noises, ranging from the space time white
noise to colored noises generated by some infinite dimensional Brownian motions with a prescribed
covariance operator. Yan [69] studied the finite element method for linear SEEs with multiplicative
noise in multidimensional case. The case of strong convergence of nonlinear SEEs is generally more
subtle and challenging, and has received widely attention in the research community in recent years.
For instance, Kloeden et al. [35, 39] proposed a discretization based on the Galerkin method in space
and exponential integrator in time for the nonlinear SEEs with cylindrical additive noise. Kruse [44]
analyzed the strong convergence error for a finite element method/linear implicit Euler spatio-temporal
discretization of semilinear SEEs with multiplicative noise and Lipschitz continuous nonlinearities,
and deduced the optimal error estimates. Wang [64] derived strong convergence results for a spatio-
temporal discretization of the semilinear SEEs with additive noise, where the approximation in space
was performed by a standard finite element method and in time by a linear implicit Euler method.
Moreover it was shown how exactly the strong convergence rate of the full discretization relies on
the regularity of the driven process. Kovács et al. [43] used Euler type splitstep method to study
the semidiscretisation in time of the stochastic Allen-Cahn equation perturbed by smooth additive
Gaussian noise, and showed that the strong convergence rate is 1/2 with respect to the step size.
Cui et al. [11, 13, 14] analyzed and obtained the strong convergence rate of the finite difference
approximation and splitting scheme of the stochastic nonlinear Schrödinger equation. Bréhier et
al. [7] derived the optimal strong convergence rate for the explicit splitting schemes of the stochastic
Allen-Cahn equation. Liu et al. [52] proposed a general theory of optimal strong error estimation for
some drift-implicit Euler schemes of a second-order nonlinear SPDE with monotone drift driven by a
multiplicative infinite-dimensional Wiener process.

In this paper, we consider the SEEs with both multiplicative force noise and random diffusion
coefficient field, which has not yet been addressed in the literature to the best of our knowledge. The
main contributions/novelties of this paper are as follows:
• The well-posedness of the considered stochastic equation is established. That is, the existence,

uniqueness, and stability of the mild solution is proved.
• The diffusion coefficient considered in the current work is a bounded log-Whittle-Matérn Gaussian

random field with a parametrized covariance function whose regularity can be controlled by a
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parameter. Therefore different cases can be tested and compared in a convenient way.
• A sampling approach called approximation circulant embedding with padding [23, 57, 67] is

employed to render the equation solvable. Then for each sample diffusion coefficient, a time-stepping
scheme based on a semi-implicit Euler-Maruyama approach is constructed for the resulting equation.
The standard piecewise linear finite element method is employed for the spatial discretization. The
main theoretical result is the proof of the strong convergence rateO(h2−ε0 +∆t

1
2 ) of the full discretization

under certain assumptions, where ε0 is an infinitesimal positive number, h and ∆t are respectively the
spatial and temporal mesh sizes.

The paper is organised as follows. In Section 2, we establish the well-posedness of the considered
problem under given assumptions. The sampling method for the random diffusion coefficient field
as well as the spatio-temporal full discretization are presented in Section 3. We devote to deriving
the strong error estimate of the proposed fully discrete scheme by using semigroup approach and the
stochastic calculus tools in Section 4, and validate the theoretical results by numerical experiments in
Section 5.

2. Problem and its well-posedness

We start by defining our problem. Let T > 0, D ∈ Rd, d ∈ {1, 2, 3}, be a bounded open spatial
domain with smooth boundary. To be specific, we consider D := (0, 1)d in this work. Let L2(D) and
Hγ

0 (D) be classical Sobolev spaces, γ ≥ 0. L(L2(D)) represents the space of bounded linear operators

A: L2(D) → L2(D) equipped with operator norm ‖A‖
L(L2(D))

= sup
u,0

‖Au‖
L2(D)

‖u‖
L2(D)

. (Ω,F , {Ft}t≥0,P) is a filtered

probability space with a normal filtration {Ft}t≥0. Additionally, we denote v(x, ω) ∈ L2(Ω, L2(D)) if

‖v‖
L2(Ω,L2(D))

< +∞,

where the norm ‖v‖
L2(Ω,L2(D))

is defined by

‖v‖
L2(Ω,L2(D))

:= [E‖v(·, ω)‖2
L2(D)

]
1
2 (2.1)

with E[·] being the expectation in the probability space (Ω,F ,P). L2(Ω, L2(D)) is also known as the
space of the mean-square integrable random variables. Let W(t, x) be a Ft-adapted Hγ

0 (D)-valued
Wiener process with covariance operator Q, where Q is a positive definite and symmetric operator
with orthonormal eigenfunctions {φ j(x) ∈ Hγ

0 (D) : j ∈ N} and corresponding positive eigenvalues {q j};
see, e.g., [44, 64, 69] for more details.

Let Q
1
2 (Hγ

0 (D)) := {Q
1
2 v : v ∈ Hγ

0 (D)}. Let LQ be the set of linear operators B : Q
1
2 (Hγ

0 (D)) →
L2(D), which satisfies ( ∞∑

j=1

‖BQ
1
2φ j‖

2
L2(D)

) 1
2
< +∞.

LQ endowed with the norm ‖B‖LQ :=
(∑∞

j=1‖BQ
1
2φ j‖

2
L2(D)

) 1
2 is the space of Hilbert-Schmidt operators

[28]. We will also use the space L2(Ω,LQ) of all random Hilbert-Schmidt operators B : Ω → LQ,
equipped with the norm

‖B(ω)‖
L2(Ω,LQ)

:= E[‖B(ω)‖2
LQ

]
1
2 .
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Throughout the paper we use c, with or without subscripts, to mean generic positive constants
(independent of ω in particular), which may not be the same at different occurrences.

Our point of interest is the SEE with random diffusion coefficient and multiplicative noise, written
in the abstract form:

du(x, t) = (−Lu + f (u))dt + G(u)dW(x, t), 0 < t < T, x ∈ D,

u(x, t) = 0, 0 ≤ t ≤ T, x ∈ ∂D,

u(x, 0) = u0(x), x ∈ D̄,

(2.2)

where L := −∇ · (a(x, ω)∇) is the elliptic operator with the coefficient a(x, ω) being a bounded log-
Gaussian random field with the scale parameter ε, i.e., there exists two constants amin and amax such
that: for almost every x ∈ D̄ and ω ∈ Ω,

0 < amin ≤ a(x, ω) = εez(x,ω) ≤ amax < ∞. (2.3)

Clearly the satisfaction of (2.3) relies on the uniform boundedness of the Gaussian random variable
z(x, ω). Notice that (2.3) does not hold if z(x, ω) is Gaussian random variable without any restriction.
Here we assume that for any x ∈ D̄, z(x, ω) is a truncated Gaussian random variable [10, 37], such that
zmin ≤ z(x, ω) ≤ zmax with zmin and zmax representing two constants. Therefore (2.3) holds under this
assumption. Furthermore, we assume z(x, ω) is a F0-measurable, mean-zero, Whittle-Matérn Gaussian
random field, which is a stationary random field with the covariance function

cq(‖x‖2) :=
g(‖x‖2)

2q−1Γ(q)
, x ∈ D̄, q > 2, (2.4)

where Γ(·) is the Gamma function, and g(·) stands for the inverse Fourier transform of ĝ(ξ) := 2q− 1
2 Γ(q+ 1

2 )

(1+ξ2)q+ 1
2

.

It is known that the parameter q shown in (2.4) controls the regularity of the random field z(x, ω) [53].
Therefore, by taking different q value, it’s easy to numerically test and compare different cases. Notice
that the covariance function and mean function uniquely determine a Gaussian random field [53].

Remark 2.1. The problem (2.2) is a combination of an uncertainty quantification (UQ) problem
with random diffusion coefficient field [47,68] and a stochastic model with multiplicative noise, which
is a new problem in the sense that it involves two types of noise. We believe that such a problem can
be applied to numerically investigate the effect of different types of perturbations on many physical
models [47, 48]. The log-Gaussian random field has received a lot of attention in the study of UQ
problems [3, 53], and appeared in some applications, e.g., geostatistical modelling [38, 62]. The
uniform boundedness condition imposed on the random variable z(x, ω) guarantees that the constants
produced in the subsequent analysis is independent of ω. We note that the so called trajectory rejection
method proposed by Milstein et al. [55] uses similar idea of “truncation”.

The theoretical result established in this paper depends on the following assumption on the nonlinear
drift term f (·):

‖ f (v)‖
L2(D)
≤ c(1 + ‖v‖

L2(D)
), ∀v ∈ L2(D), (2.5)

‖ f (v1) − f (v2)‖
L2(D)
≤ c(‖v1 − v2‖L2(D)

), ∀v1, v2 ∈ L2(D). (2.6)

AIMS Mathematics Volume 7, Issue 12, 20684–20710.
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These assumptions are often used to prove the existence and uniqueness of the solution for SPDEs,
see, e.g., [44, 53].

We are interested in the mild solution of problem (2.2) in the Itô sense [17], defined by

u(t) = S (t)u0 +

∫ t

0
S (t − τ) f (u(τ))dτ +

∫ t

0
S (t − τ)G(u(τ))dW(τ), (2.7)

where S (t) := e−tL is a semigroup generated by the operator L [25]. The well-posedness of the problem
(2.2) thus consists in verifying that the integrals in (2.7) are well defined and a function u satisfying the
integral equation (2.7) uniquely exists. We first notice that the realization of the random field a(x, ω)
given in (2.3) is 2 times mean-square differentiable due to q > 2 [53]. Thus, almost surely (P-a.s.),
a(x, ω) ∈ C2(D). One verifies readily thatD(L) = H2(D)∩H1

0(D) almost surely [4], whereD(L) is the
domain of the operator L.

We also need some assumptions on the nonlinear term G, which are collected below:
- LsG(·), 0 ≤ s ≤ 1

2 , is a mapping from L2(D) to LQ such that:

‖LsG(v)‖
LQ
≤ c

(
1 + ‖v‖

L2(D)

)
, ∀v ∈ L2(D), (2.8)

∥∥∥Ls(G(v1) −G(v2)
)∥∥∥
LQ
≤ c‖v1 − v2‖L2(D)

, ∀v1, v2 ∈ L2(D). (2.9)

- {G(v(τ)) : τ ∈ [0,T ]} is a predictable LQ-valued process, such that∫ T

0
E[‖G(v)‖2

LQ
] dτ < +∞, ∀v ∈ L2(D). (2.10)

Remark 2.2. The assumptions (2.8) and (2.9) impose some restrictive conditions on the nonlinear
term G(·), which include a combination of the nonlinear term G(·), the elliptic operator L, and the
covariance operator Q. Notice that the similar or more general assumptions have been considered
in [2, 31, 69].

We define the space Lt
2 for t ∈ [0,T ], which is the Banach space of L2(D)-valued predictable

processes {v(τ) : τ ∈ [0, t]}, equipped with the norm

‖v‖Lt
2

:= sup
τ∈[0,t]

‖v(τ)‖
L2(Ω,L2(D))

< +∞.

Now we are in a position to state and prove the well-posedness of the mild solution to (2.2).

Theorem 2.1. Suppose that the initial value u0 ∈ L2(Ω, L2(D)) is an F0-measurable random
variable. Then, there exists a unique mild solution u ∈ LT

2 to (2.2). Furthermore, the following stability
inequality holds

sup
t∈[0,T ]

‖u(t)‖
L2(Ω,L2(D))

≤ cT (1 + ‖u0‖L2(Ω,L2(D))
). (2.11)

Proof. We define the integral operatorM by: for all v ∈ Lt
2, 0 ≤ t ≤ T ,

(Mv)(t) := S (t)u0 +

∫ t

0
S (t − τ) f (v(τ))dτ +

∫ t

0
S (t − τ)G(v(τ))dW(τ). (2.12)

AIMS Mathematics Volume 7, Issue 12, 20684–20710.
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Obviously if there is a fixed point u ∈ LT
2 for the operatorM, then this fixed point is a mild solution

defined by (2.7). The proof basically consists of two steps: 1) prove that the integral operator M is
well-defined under the assumptions given above; 2) use the Fixed Point Theorem [53, Theorem 1.10]
to establish the existence of a unique mild solution. This can be done by following the same lines
as in [53, Theorem 10.26], using the imposed assumptions and a number of known results including
the Karhunen-Loève (K-L) expansion of Q-Wiener process W(s), Itô isometry, and the semigroup
inequality [53, Exercise 10.7]: for w ∈ L2(Ω, L2(D)), τ ∈ (0,T ),

‖S (τ)w‖
L2(Ω,L2(D))

≤ ‖e−τL‖
L(L2(D))

‖w‖
L2(Ω,L2(D))

≤ ‖w‖
L2(Ω,L2(D))

. (2.13)

We emphasize here that S (τ) involves the random diffusion coefficient, thus the inequality (2.13) must
be understood in the sense of almost surely. This, compared to the case of deterministic diffusion
coefficient (see, e.g., [53, Theorem 10.26] for details), causes no essential difficulty in establishing the
desired results. �

3. Random field sampling and fully discrete scheme

Our first goal in this section is to employ a method called approximation circulant embedding
with padding [67] to uniformly sample the random diffusion coefficient a(x, ω). It is notable that
some other sampling methods are available, such as turning bands method [22, 54] and quadrature
sampling method [60, 61]. However the turning bands method is only applicable to isotropic Gaussian
random fields, and the quadrature sampling method needs to know the spectral density function of the
covariance function of random fields. One of the advantages of the sampling method we employ here
is its applicability to stationary Gaussian random fields including isotropic random fields, and does not
require prior knowledge of the spectral density function of the covariance function.

It is obvious from (2.3) that if we want to sample a(x, ω), we only need to sample z(x, ω). Notice
that when d = 1, the resulting covariance matrix is Toeplitz, when d = 2 it is block Toeplitz, and when
d = 3, it is nested block Toeplitz. The crucial ingredient of the circulant embedding sampling is that
the target covariance matrix can be embedded into a large circulant matrix or a (nest) block circulant
matrix, which can be decomposed by discrete Fourier transform. Then a new random field based on the
combination of decomposition factors is constructed, which will be used to obtain the approximations
of z(x, ω) for x ∈ D̄. To be specificity and convenience, we briefly describe this approach by taking
one-dimensional sampling as an example in this section.

Another purpose in the section is to present semi-implicit Euler-Maruyama scheme and finite
element method to discrete problem (2.2) in time and space, respectively. We start by random field
sampling.

3.1. One-dimensional approximation circulant embedding with padding

Consider uniform sampling of random field z(x, ω) for x ∈ [0, 1]. Let P be a positive integer. Set

0 = x1 ≤ ... ≤ xP = 1, xp+1 − xp =
1

P − 1
, p = 1, ..., P − 1.

AIMS Mathematics Volume 7, Issue 12, 20684–20710.
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Let C := (ci j) denote the P × P covariance matrix with respect to z(xp, ω) for p = 1, ..., P, where
ci j := cov(z(xi, ω), z(x j, ω)) = cq(|xi − x j|) for i, j = 1, ..., P. Let ci− j := ci j, then

C =


c0 c−1 · · · c1−P

c1 c0 · · · c2−P
...

. . .
. . .

...

cP−1 · · · c1 c0

 . (3.1)

One verifies readily that C is a symmetric Toeplitz matrix, and it can be well defined by its first column
c1 = (c0, ..., cP−1)T ∈ RP. If we define c̄1 :=

(
c1
0

)
∈ RP+M with 0 ∈ RM be a zero padding vector, a new

symmetric Toeplitz matrix denoted by C̄ ∈ R(P+M)×(P+M) can be generated from c̄1. Next, we carry out
the minimal circulant extension [53, Definition 6.48] to C̄ such that it can be embeded into a bigger
circulant matrix denoted by ˜̄C ∈ R2P̃×2P̃ for P̃ := P + M − 1. Let ˜̄c1 be the first column of ˜̄C, W∗

represent the conjugate transpose of discrete Fourier matrix W ∈ C2P̃×2P̃, and d j be the j-th entry of
√

2P̃W∗ ˜̄c1. Then by Fourier representation, the circulant matrix ˜̄C can be decomposed as follows:
˜̄C = W(Λ+ − Λ−)W∗,

where Λ± represents the diagonal matrix whose j-th diagonal element is ±λ j := max{0,±d j}, i.e.,

Λ± = diag(±λ1, . . . ,±λ2P̃). (3.2)

Let z :=
(
z(x1, ω), . . . , z(xP, ω)

)T . Our main goal is to take the sample approximations to the random
vector z. To this end, we construct a new random field vector Z, defined by

Z := WΛ
1
2
+ξ, ξ ∼ CN(0, 2I2P̃), (3.3)

where CN(·, ·) denotes the complex Gaussian distribution [53, Definition 6.15]. It’s readily to deduce
that Z ∼ CN(0, 2( ˜̄C + ˜̄C−)) with ˜̄C− := WΛ−W∗, which means both real and imaginary parts of Z
obey real Gaussian distribution N(0, ( ˜̄C + ˜̄C−)). Notice that ‖ ˜̄C−‖2 ≤ ρ(Λ−) with ρ(Λ−) representing
the spectral radius of Λ−, and it is known that ρ(Λ−) can be small enough by increasing the dimension
M of zero padding vector [67]. Therefore ˜̄C can be approximately treated as a non-negative definite
matrix when the dimension M is large enough, which is crucial for obtaining a good approximation
of the random vector z. Then the sample approximations of the random vector z can be provided by
truncating the real or imaginary part of Z.

The sampling procedure is summarized as follows:
i) Embed C shown in (3.1) into the padded circulant matrix ˜̄C ∈ R2(P+M−1)×2(P+M−1) with dimension

M large enough;
ii) Compute Λ+ by (3.2);
iii) Construct a new random field vector Z by (3.3) and take its real or imaginary part, denoted by

Z1 ∈ R
2(P+M−1);

iv) Truncate the first P terms of Z1 and use it as an approximation to the random vector z.
It is worthwhile to point out that the sampling method described above is convenient in the sense

that it can simultaneously produce two sets of independent and identically distributed (i.i.d) samples in
one sampling.

The sampling description for d = 2 or d = 3 is omitted here, and we refer to [67] for details.
Notably, for each of the sampling data of the random diffusion coefficient, the problem (2.2) becomes
a SEE with randomness only on the G-term.

AIMS Mathematics Volume 7, Issue 12, 20684–20710.
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3.2. Spatio-temporal discretization

In this subsection we propose and analyze a discretization method for the problem (2.2). The
proposed method is based on a finite element discretization in space and semi-implicit Euler-Maruyama
approach in time.

We first briefly describe the P1 finite element method for spatial discretization. Let Th be a shape-
regular uniform partition of the domain D such that D = ∪K∈Th K, K are intervals in the case d = 1,
triangles in the case d = 2 and tetrahedrons for d = 3. Let hK be the diameter of the element K and h
be the maximum of {hK}K∈Th . Assume that the partition Th also equips the following characteristics:

• For different dimension d, the intersection of two different elements of Th, if not empty, is a
vertex, a whole edge or a whole face of both of them;
• For d = 2 or d = 3, the ratio of the diameter hK of any element K to the diameter of its inscribed

circle (d = 2) or ball (d = 3) is smaller than a constant independent of h.

Define the finite element space Vh by

Vh := {v ∈ C0(D̄) with v = 0 on ∂D and v|K ∈ P1(K) for all K ∈ Th},

where P1(K) denotes the space of the polynomials of degree ≤ 1 defined in K. Let Ph be the orthogonal
projection from L2(D) to Vh, and Pw

J be the projection from Hγ
0 (D) to the finite-dimensional space

span{φ1, . . . , φJ}. The spatial semi-discrete scheme of the problem (2.2) reads: find finite element
approximation uh(t) ∈ Vh such that

duh(t) =
(
− Lhuh(t) + Ph f (uh(t))

)
dt + Ph

(
G(uh(t))Pw

J dW(t)
)
, ∀ 0 < t ≤ T,

uh(0) = Phu0,
(3.4)

where Lh: Vh → Vh is the finite-dimensional operator defined by

(Lhw, v) := (a(x, ω)∇w,∇v), ∀w, v ∈ Vh

with (·, ·) be the L2(D)-inner product.
We now describe the temporal discretization. Let N be a positive integer, ∆t := T/N be the uniform

time step. Then the spatio-temporal full discretization of the problem (2.2), called hereafter the finite
element method/semi-implicit Euler Maruyama scheme, reads:

(I + ∆tLh)un+1
h = un

h + ∆tPh f (un
h) + Ph

(
G(un

h)Pw
J ∆Wn), n = 0, ...,N − 1,

u0
h = Phu0,

(3.5)

where Pw
J ∆Wn :=

∑J
j=1
√q j(β j(tn+1) − β j(tn))φ j with β j(t) be the i.i.d Ft-Brownian motions.

In actual calculation, we will use the average of the sampled values at the nodes of the element K
to approximate a(x, ω) for x ∈ K. Therefore, the overall cost of the scheme (3.5) is roughly equal to
solving a linear equation with random variable coefficients of the form (I + ∆tLh)x = b at each time
step.

AIMS Mathematics Volume 7, Issue 12, 20684–20710.
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4. Error estimate

This section is devoted to analyzing the strong convergence error of the spatio-temporal full
discretization (3.5) to the mild solution (2.7). Here, strong convergence is understood in the sense
of convergence with respect to the norm ‖ · ‖L2(Ω,L2(D)). We first note that the full-discrete scheme (3.5)
can be rewritten under form:

un+1
h = (I + ∆tLh)−1

(
un

h + ∆tPh f (un
h) + PhG(un

h)Pw
J ∆Wn

)
, n = 0, . . . ,N − 1. (4.1)

It is readily seen that Lh is reversible in Vh, i.e., L−1
h vh is well defined for all vh ∈ Vh. We now extend the

definition of L−1
h to all v ∈ L2(D) by L−1

h v = L−1
h Phv. By the assumption on a(x, ω), we know that for

almost every ω ∈ Ω, L−1
h is a non-negative definite operator from L2(D) to Vh. In fact, for all v ∈ L2(D),

there exists wh ∈ Vh such that Lhwh = Phv, and thus

(L−1
h v, v) = (L−1

h Phv, v) = (L−1
h Phv,Phv) = (L−1

h Lhwh, Lhwh)
= (wh, Lhwh) =

(
a(x, ω)∇wh,∇wh

)
≥ 0.

Let S n
h,∆t := (I + ∆tLh)−n. The fully discrete approximation can be expressed under the form:

un
h = S n

h,∆tPhu0 +

n−1∑
k=0

∆tS n−k
h,∆tPh f (uk

h) +

n−1∑
k=0

∫ tk+1

tk
S n−k

h,∆tPhG(uk
h)Pw

J dW(τ). (4.2)

Subtracting (4.2) from the mild solution (2.7) gives

u(tn) − un
h = θ1 + θ2 + θ3 (4.3)

with θi, i = 1, 2, 3, representing

θ1 := S (tn)u0 − S n
h,∆tPhu0, (4.4)

θ2 :=
n−1∑
k=0

( ∫ tk+1

tk
S (tn − τ) f (u(τ))dτ − ∆tS n−k

h,∆tPh f (uk
h)
)
, (4.5)

θ3 :=
n−1∑
k=0

∫ tk+1

tk

(
S (tn − τ)G(u(τ)) − S n−k

h,∆tPhG(uk
h)Pw

J
)
dW(τ). (4.6)

Our goal in the following is to estimate θ1, θ2, θ3 separately in the sense of strong convergence. To
this end, we first give some preliminaries that will be used in subsequent analysis.
• If the initial value u0 ∈ L2(Ω,D(L)) is an F0-measurable random variable, then there exists a

constant c depended on u0 such that the mild solution u defined in (2.7) satisfies the following temporal
Hölder regularity:

‖u(τ2) − u(τ1)‖
L2(Ω,L2(D))

≤ c(τ2 − τ1)
1
2 , ∀ 0 ≤ τ1 ≤ τ2 ≤ T . (4.7)

The proof of (4.7) can be done by following the same lines as in [53, Lemma 10.27], which is omitted
here. Basically, it makes use of the properties of the operator L and its associated semigroup S (t),
satisfied in the sense of almost surely.
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• The operator L and the induced semigroup S (t) satisfy the following estimates, which is a
straightforward extension of the classical results (see, e.g., [44, 64]) to the sense of almost surely:

- For each α ≥ 0, there exists a constant c such that

‖LαS (t)‖
L(L2(D))

≤ ct−α, ∀t > 0. (4.8)

- For α ∈ [0, 1], there exists a constant c such that

‖L−α(I − S (t))‖
L(L2(D))

≤ ctα, ∀t ≥ 0. (4.9)

• The nonlinear term G satisfies

‖G(v1)Pw
J −G(v2)Pw

J ‖LQ
≤ c‖v1 − v2‖L2(D)

, ∀v1, v2 ∈ L2(D). (4.10)

In fact, it follows from the assumption (2.9): for all v1, v2 ∈ L2(D),

‖G(v1)Pw
J −G(v2)Pw

J ‖LQ
=

[ ∞∑
j=1

∥∥∥(G(v1) −G(v2)
)
Pw

J Q1/2φ j

∥∥∥2

L2(D)

] 1
2

=
[ J∑

j=1

∥∥∥(G(v1) −G(v2)
)
Q1/2φ j

∥∥∥2

L2(D)

] 1
2

≤
∥∥∥G(v1) −G(v2)

∥∥∥
LQ
≤ c‖v1 − v2‖L2(D)

.

4.1. Strong error estimate

We first focus on strong error estimate for the term θ1. It is worth pointing out that, although our
analysis is inspired by the work [44] based on the rational function approach, our proof makes full use
of the standard framework of the finite element approximation to the linear parabolic equation as well
as the fact that operator L−1

h is non-negative definite from L2(D) to Vh. Let

Tn :=
(
e−tnL − (I + ∆tLh)−nPh

)
. (4.11)

Then it follows from the definition (4.4) that θ1 = Tnu0.

Lemma 4.1 (Error estimate of θ1). Suppose u0 ∈ L2(Ω,D(L)) is anF0-measurable random variable.
Then there exists a constant c independent of h and ∆t (but depends on u0), such that

‖θ1‖L2(Ω,L2(D))
≤ c(∆t + h2),

where θ1 is given in (4.4).

Proof. Obviously, θ1 characterizes the error between the exact solution e−tnLu0 and the full discrete
solution (I + ∆tLh)−nPhu0, which can be splited into two parts:

θ1 = en
1 + en

2, (4.12)

where

en
1 := e−tnLu0 − e−tnLhPhu0
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is the spatial discretization error, while

en
2 :=

(
e−tnLh − (I + ∆tLh)−n)Phu0

is the temporal discretization error. Clearly, we have en
1 = y(tn) − yh(tn), where y(t) ∈ H1

0(D) and
yh(t) ∈ Vh are the solutions of the parabolic equation

∂y(t)
∂t

+ Ly(t) = 0, y(0) = u0

and its finite element semi-discrete equation

∂yh(t)
∂t

+ Lhyh(t) = 0, yh(0) = Phu0

respectively. Let

e1(t) := y(t) − yh(t), ρ(t) := L−1
h
∂e1(t)
∂t

+ e1(t).

It can be verified that

ρ(t) = (L−1 − L−1
h )Ly(t).

Using the non-negative definite of the operator L−1
h as well as the standard error analysis of the finite

element approximation to the parabolic equation [53, Lemma 3.51] gives: for almost every ω ∈ Ω,

‖e1(t)‖
L2(D)
≤ c sup

0≤τ≤t

(
‖ρ(τ)‖

L2(D)
+ τ

∥∥∥∥∂ρ(τ)
∂τ

∥∥∥∥
L2(D)

)
.

According to y(τ) = e−Lτu0, and the standard analytical framework for the finite element approximation
to the linear parabolic equation, the terms in the right-hand side can be bounded by:

‖ρ(τ)‖
L2(D)

= ‖(L−1 − L−1
h )Ly(τ)‖

L2(D)
≤ ch2‖Le−Lτu0‖L2(D)

≤ ch2,

τ
∥∥∥∥∂ρ(τ)
∂τ

∥∥∥∥
L2(D)

= τ‖(L−1 − L−1
h )L2y(τ)‖

L2(D)
≤ cτh2‖L2e−Lτu0‖L2(D)

≤ ch2‖Lu0‖L2(D)
≤ ch2.

Thus
‖en

1‖L2(D)
= ‖e1(tn)‖

L2(D)
≤ ch2, n = 0, 1, . . . ,N. (4.13)

We now turn to estimate the temporal discretization error en
2. A direct calculation gives

‖en
2‖L2(D)

=
∥∥∥(e−n∆tLh − (I + ∆tLh)−n)L−1

h LhPhu0

∥∥∥
L2(D)

≤
∥∥∥(e−n∆tLh − (I + ∆tLh)−n)L−1

h

∥∥∥
L(L2(D))

‖LhPhu0‖L2(D)
.

Noticing that the operator Lh is symmetric, and the L(L2(D))-norm of the operator
(
e−n∆tLh − (I +

∆tLh)−n)L−1
h is equal to its spectral radius, i.e.,

sup
j=1,...,K

∣∣∣(e−n∆tλh
j − (1 + ∆tλh

j)
−n)/λh

j

∣∣∣,
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where λh
j > 0, j = 1, ...,K, are the eigenvalues of Lh. Note that |(e−nx − (1 + x)−n)/x| is bounded for

x > 0, therefore taking x = λh
j∆t gives

sup
j=1,...,K

∣∣∣(e−n∆tλh
j − (1 + ∆tλh

j)
−n)/λh

j

∣∣∣ ≤ c∆t.

This proves
‖en

2‖L2(D)
≤ c∆t, n = 0, 1, . . . ,N. (4.14)

Combining (4.12), (4.13), and (4.14) gives

‖θ1‖L2(D)
≤ c(∆t + h2).

The above estimate holds for almost all ω ∈ Ω. Therefore

‖θ1‖L2(Ω,L2(D))
≤ c(∆t + h2).

�

Remark 4.1. If the F0-measurable random variable u0 ∈ L2(Ω, L2(D)). Then we have only [44,53]:
for almost every ω ∈ Ω,

‖θ1‖L2(D)
= ‖Tnu0‖L2(D)

≤ c‖u0‖L2(D)

∆t + h2

tn
, n = 1, . . . ,N. (4.15)

We next derive the error estimate for the term θ2, which is based on the standard error analysis for
the deterministic semilinear evolution equation, the semigroup property, and the temporal regularity of
the mild solution.

Lemma 4.2 (Error estimate of θ2). Suppose u0 ∈ L2(Ω,D(L)) is anF0-measurable random variable.
Then there exists a constant c independent of h and ∆t (but depends on ‖u0‖L2(Ω,D(L))), such that

‖θ2‖L2(Ω,L2(D))
≤ c

[
∆t

1
2 + (∆t + h2) ln(∆t−1) +

n−1∑
k=0

‖u(tk) − uk
h‖L2(Ω,L2(D))

∆t
]
, n = 1, . . . ,N,

where θ2 is given by (4.5).

Proof. The term to be bounded can be expressed by

θ2 =

n−1∑
k=0

∫ tk+1

tk

(
S (tn − τ) f (u(τ)) − S n−k

h,∆tPh f (uk
h)
)
dτ,

which can be decomposed into

θ2 = θ1
2 + θ2

2 + θ3
2 + θ4

2

with

θ1
2 =

n−1∑
k=0

∫ tk+1

tk

(
S (tn − τ) − S (tn − tk)

)
f (u(τ))dτ, θ2

2 =

n−1∑
k=0

∫ tk+1

tk

(
S (tn − tk) − S n−k

h,∆tPh
)
f (u(τ))dτ,
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θ3
2 =

n−1∑
k=0

∫ tk+1

tk
S n−k

h,∆tPh
(
f (u(τ)) − f (u(tk))

)
dτ, θ4

2 =

n−1∑
k=0

∫ tk+1

tk
S n−k

h,∆tPh
(
f (u(tk)) − f (uk

h)
)
dτ.

For the part θ1
2, it follows from the norm definition (2.1):

‖θ1
2‖L2(Ω,L2(D))

≤

n−1∑
k=0

∫ tk+1

tk
E
[
‖S (tn − τ) − S (tn − tk)‖2

L(L2(D))
‖ f (u(τ))‖2

L2(D)

] 1
2 dτ.

According to (4.8) and (4.9), the operator norm ‖S (tn − τ) − S (tn − tk)‖
L(L2(D))

is bounded P-a.s. by:

‖S (tn − τ) − S (tn − tn−1)‖
L(L2(D))

≤ c,

‖S (tn − τ) − S (tn − tk)‖
L(L2(D))

≤ ‖LS (tn − τ)‖
L(L2(D))

‖L−1(I − S (τ − tk))‖
L(L2(D))

≤ c
τ − tk

tn − τ
, τ ∈ (tk, tk+1), k = 0, . . . , n − 2.

We further use (2.5) and (2.11) to derive

‖θ1
2‖L2(Ω,L2(D))

≤ c
(
∆t +

n−2∑
k=0

∫ tk+1

tk

∆t
tn − tk+1

dτ
)
≤ c∆t

(
1 +

n∑
k=1

1
k

)
≤ c∆t(1 + ln n) ≤ c∆t(1 + ln(∆t−1)).

The estimate of θ2
2 follows from (4.11), (4.15), (2.5), and (2.11):

‖θ2
2‖L2(Ω,L2(D))

≤

n−1∑
k=0

∫ tk+1

tk
‖Tn−k f (u(τ))‖

L2(Ω,L2(D))
dτ

≤

n−1∑
k=0

∫ tk+1

tk
E
[
‖Tn−k‖

2
L(L2(D))

‖ f (u(τ))‖2
L2(D)

] 1
2 dτ

≤ c
n−1∑
k=0

∫ tk+1

tk

∆t + h2

tn−k
dτ = c(∆t + h2)

n−1∑
k=0

1
n − k

≤ c(∆t + h2) ln(∆t−1).

For the part θ3
2, by ‖S n−k

h,∆t‖L(L2(D))
≤ 1 (P-a.s.), ‖Ph‖

L(L2(D))
≤ 1, (2.6), and (4.7), we have

‖θ3
2‖L2(Ω,L2(D))

≤

n−1∑
k=0

∫ tk+1

tk

∥∥∥ f (u(τ)) − f (u(tk))
∥∥∥

L2(Ω,L2(D))
dτ

≤ c
n−1∑
k=0

∫ tk+1

tk
‖u(τ) − u(tk)‖L2(Ω,L2(D))

dτ

≤ c
n−1∑
k=0

∫ tk+1

tk
(τ − tk)

1
2 dτ ≤ c∆t

1
2 .
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The part θ4
2 can be estimated similarly:

‖θ4
2‖L2(Ω,L2(D))

≤

n−1∑
k=0

∫ tk+1

tk
‖ f (u(tk)) − f (uk

h)‖
L2(Ω,L2(D))

dτ

≤ c
n−1∑
k=0

∫ tk+1

tk
‖u(tk) − uk

h‖L2(Ω,L2(D))
dτ

= c
n−1∑
k=0

‖u(tk) − uk
h‖L2(Ω,L2(D))

∆t.

Finally, we conclude by combining all above estimates with the triangle inequality. �

In order to estimate the error contribution term θ3, we need to derive an estimate related to the
nonlinear term G.

Lemma 4.3. Suppose u0 ∈ L2(Ω,D(L)) is a F0-measurable random variable, and the eigenvalues
of Q satisfy q j = O( j−(2γ+1+ε)) for some γ ≥ 0 and ε > 0. Then it holds: for 0 ≤ τ1 ≤ τ2 ≤ T,∥∥∥Ph

(
G(u(τ2)) −G(u(τ1))Pw

J
)∥∥∥

L2(Ω,LQ)
≤ c(|τ2 − τ1|

1
2 + J−γ). (4.16)

Proof. Using the triangle inequality:∥∥∥Ph
(
G(u(τ2)) −G(u(τ1))Pw

J
)∥∥∥

L2(Ω,LQ)
≤

∥∥∥Ph
(
G(u(τ2)) −G(u(τ1))

)∥∥∥
L2(Ω,LQ)

+
∥∥∥Ph

(
G(u(τ1)) −G(u(τ1))Pw

J
)∥∥∥

L2(Ω,LQ)
,

we are led to estimate the two terms in the right-hand side. First, employing (2.9) and (4.7) gives:∥∥∥Ph
(
G(u(τ2)) −G(u(τ1))

)∥∥∥
L2(Ω,LQ)

≤
∥∥∥G(u(τ2)) −G(u(τ1))

∥∥∥
L2(Ω,LQ)

≤ c‖u(τ2) − u(τ1)‖
L2(Ω,L2(D))

≤ c|τ2 − τ1|
1
2 .

Then under the assumptions (2.8) and (2.11), we have

∥∥∥Ph
(
G(u(τ1)) −G(u(τ1))Pw

J
)∥∥∥

L2(Ω,LQ)
≤ E

[ ∞∑
j=1

∥∥∥G(u(τ1))(I − Pw
J )Q

1
2φ j

∥∥∥2

L2(D)

] 1
2

≤ cE
[∥∥∥G(u(τ1))

∥∥∥2

L(L2(D))

∞∑
j=1

∥∥∥(I − Pw
J )q

1
2
j φ j

∥∥∥2

L2(D)

] 1
2

≤ c(1 + ‖u0‖L2(Ω,L2(D))
)
( ∞∑

j=J+1

q j

)1/2

≤ cJ−γ.

This proves (4.16). �
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Lemma 4.4 (Error estimate of θ3). Under the assumptions of Lemma 4.3, further assume ∆t =

O(h2) = O(J−γ). Then there exists a constant c independent of ∆t and h, such that

‖θ3‖
2
L2(Ω,L2(D))

≤ c
[
(∆t

1
2 + h2)2 +

n−1∑
k=0

‖u(tk) − uk
h‖

2
L2(Ω,L2(D))

∆t
]
, n = 1, . . . ,N, (4.17)

where θ3 is given by (4.6).

Proof. Split θ3 as θ3 =
∑4

i=1 θ
i
3, where

θi
3 :=

n−1∑
k=0

∫ tk+1

tk
XidW(τ)

with

X1 :=
(
S (tn − τ) − S (tn − tk)

)
G(u(τ)), X2 :=

(
S (tn − tk) − S n−k

h,∆tPh
)
G(u(τ)),

X3 := S n−k
h,∆tPh

(
G(u(τ)) −G(u(tk))Pw

J
)
, X4 := S n−k

h,∆tPh
(
G(u(tk))Pw

J −G(uk
h)Pw

J
)
.

For the part θ1
3, it follows from the Itô isometry:

‖θ1
3‖

2
L2(Ω,L2(D))

=

n−1∑
k=0

∫ tk+1

tk
E[‖X1‖

2
LQ

]dτ

≤

∫ tn

tn−1

E
[∥∥∥S (tn − τ) − S (tn − tn−1)

∥∥∥2

L(L2(D))

∥∥∥G(u(τ))
∥∥∥2

LQ

]
dτ

+

n−2∑
k=0

∫ tk+1

tk
E
[∥∥∥(S (tn − τ) − S (tn − tk)

)
L−

1
2
∥∥∥2

L(L2(D))
‖L

1
2 G(u(τ))‖2

LQ

]
dτ.

We are led to estimate the two terms on the right-hand side of the inequality. First using
∥∥∥S (tn − τ) −

S (tn − tn−1)
∥∥∥2

L(L2(D))
≤ c (P-a.s.), (2.8), and (2.11) yields∫ tn

tn−1

E
[∥∥∥S (tn − τ) − S (tn − tn−1)

∥∥∥2

L(L2(D))

∥∥∥G(u(τ))
∥∥∥2

LQ

]
dτ ≤ c∆t.

Then employing (4.8) and (4.9) gives∥∥∥(S (tn − τ) − S (tn − tk)
)
L−

1
2
∥∥∥2
L(L2(D))

=
∥∥∥L

1
2 S (tn − τ)L−1(I − S (τ − tk)

)∥∥∥2

L(L2(D))

≤
∥∥∥L

1
2 S (tn − τ)

∥∥∥2

L(L2(D))

∥∥∥L−1(I − S (τ − tk)
)∥∥∥2

L(L2(D))

≤ c
(τ − tk)2

tn − τ
.

Making use of (2.8), (2.11) gives
n−2∑
k=0

∫ tk+1

tk
E
[∥∥∥(S (tn − τ) − S (tn − tk)

)
L−

1
2
∥∥∥2

L(L2(D))
‖L

1
2 G(u(τ))‖2

LQ

]
dτ

≤ c
n−2∑
k=0

∫ tk+1

tk

∆t2

tn − tk+1
dτ ≤ c∆t2 ln(∆t−1).
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Therefore
‖θ1

3‖
2
L2(Ω,L2(D))

≤ c(∆t + ∆t2 ln(∆t−1)).

The estimate for θ2
3 follows from Itô isometry, (4.11), and (4.15):

‖θ2
3‖

2
L2(Ω,L2(D))

=

n−1∑
k=0

∫ tk+1

tk
E[‖X2‖

2
LQ

]dτ =

n−1∑
k=0

∫ tk+1

tk
E[‖Tn−kG(u(τ))‖2

LQ
]dτ

≤ c
n−1∑
k=0

∫ tk+1

tk
E
[(∆t + h2

tn−k

)2∥∥∥G(u(τ))
∥∥∥2

LQ

]
dτ.

We further use (2.8), (2.11), and ∆t = O(h2) to get

‖θ2
3‖

2
L2(Ω,L2(D))

≤ c
(∆t + h2)2

∆t

n−1∑
k=0

1
(n − k)2 ≤ c

(∆t + h2)2

∆t
≤ c∆t.

For the part θ3
3, employing O(h2) = O(J−γ), ‖S n−k

h,∆t‖L(L2(D))
≤ 1 (P-a.s.), and (4.16) gives

‖θ3
3‖

2
L2(Ω,L2(D))

=

n−1∑
k=0

∫ tk+1

tk
E[‖X3‖

2
LQ

]dτ ≤ c
n−1∑
k=0

∫ tk+1

tk

(
|τ − tk|

1
2 + J−γ

)2dτ

≤ c
n−1∑
k=0

∫ tk+1

tk

(
|τ − tk|

1
2 + h2)2dτ

≤ c(∆t
1
2 + h2)2.

The last part θ4
3 can be estimated by using Itô isometry, ‖S n−k

h,∆t‖L(L2(D))
≤ 1 (P-a.s.), and (4.10):

‖θ4
3‖

2
L2(Ω,L2(D))

=

n−1∑
k=0

∫ tk+1

tk
E[‖X4‖

2
LQ

]dτ =

n−1∑
k=0

∫ tk+1

tk
E
[∥∥∥S n−k

h,∆tPh
(
G(u(tk))Pw

J −G(uk
h)Pw

J
)∥∥∥2

LQ

]
dτ

≤ c
n−1∑
k=0

∫ tk+1

tk
E
[
‖u(tk) − uk

h‖
2
L2(D)

]
dτ

= c
n−1∑
k=0

‖u(tk) − uk
h‖

2
L2(Ω,L2(D))

∆t.

Finally we combine all above estimates and keep only the leading order to conclude. �

Thanks to the results established in the previous lemmas, we are now in a position to derive the full
discretization error bound, which is stated in the following theorem.

Theorem 4.1. Let u be the mild solution defined in (2.7), and un
h be the numerical solution of (3.5).

Then under the assumptions stated in Lemmas 4.1–4.4, there exists a constant c independent of ∆t and
h, such that

‖u(tn) − un
h‖L2(Ω,L2(D))

≤ c
(
∆t

1
2 + (∆t + h2) ln(∆t−1)

)
, n = 1, . . . ,N.
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Proof. It follows from (4.3), Lemmas 4.1-4.4, and the triangle inequality:

‖u(tn) − un
h‖

2
L2(Ω,L2(D))

≤ c
[(

∆t
1
2 + (∆t + h2) ln(∆t−1)

)2
+

n−1∑
k=0

‖u(tk) − uk
h‖

2
L2(Ω,L2(D))

∆t
]
, n = 1, . . . ,N.

Then the discrete Gronwall inequality yields

‖u(tn) − un
h‖

2
L2(Ω,L2(D))

≤ c
(
∆t

1
2 + (∆t + h2) ln(∆t−1)

)2
, n = 1, · · · ,N.

This ends the proof. �

Remark 4.2. Notice that the term ∆t
1
2 dominates the term ∆t ln(∆t−1), the estimate given in Theorem

4.1 can be simplified by

‖u(tn) − un
h‖L2(Ω,L2(D))

≤ c
(
∆t

1
2 + h2 ln(∆t−1)

)
, n = 1, . . . ,N.

Also notice that ∆t−ε0 dominates ln(∆t−1) for arbitrarily small ε0 > 0, we have

‖u(tn) − un
h‖L2(Ω,L2(D))

≤ c(∆t
1
2 + h2∆t−ε0), n = 1, . . . ,N,

or, since ∆t = O(h2),

‖u(tn) − un
h‖L2(Ω,L2(D))

≤ c(∆t
1
2 + h2−ε0), n = 1, . . . ,N.

5. Numerical results

Several numerical experiments are presented in this section to validate our theoretical estimates and
show the effect of stochastic factors on numerical solutions. We start by testing the convergence orders
of time and space.

Example 5.1 (Accuracy Test). We take the one-dimensional stochastic Langmuir reaction equation
with random diffusion coefficient field and multiplicative force noise as a numerical example to test the
temporal and spatial convergence orders. The underlying equation is expressed as:

du(x, t) = ε∂x
(
ez(x,ω)∂xu

)
dt −

u
1 + u2 dt + G(u)dW(x, t), 0 < t < T, x ∈ (0, 1),

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,

u(x, 0) = u0(x), x ∈ [0, 1],

(5.1)

where z(x, ω) is a bounded Gaussian random field with mean-zero and covariance function cq(x), and
W(x, t) is a Hγ

0 -valued Wiener process defined by

W(t, x) =

∞∑
j=1

√
q j sin( jπx)β j(t),

where q j = O( j−(2γ+1+ε)) with arbitrary small positive ε.
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We first test the effectiveness of the sampling method used in this work. It is known from [67]
that if the spectral radius ρ(Λ−) of the diagonal matrix Λ− defined in (3.2) is bigger than zero, then
it will rapidly decrease to zero as the dimension M of the zero padding vector increases. We run
the sampling method presented in Subsection 3.1 to produce an approximation of the random vector
z =

(
z(x1, ω), . . . , z(xP, ω)

)T by taking P = 100 and q = 3. Table 1 shows the spectral radius of Λ− as
a function of M. As expected, we observe that ρ(Λ−) rapidly decreases to a level close to the machine
precision as M increases. Furthermore, taking M = 4000, we calculate the mean values of the sampled
values of z for different sample numbers. The obtained result is given in Figure 1, from which we
observe that as the sampling number increases, the mean value of the sampling approximation of the
random field z will gradually approach the theoretical mean-zero function. For each x ∈ D̄, we denote
by µm(x) the approximation of E[z(x, ω)] under m samples. We calculate µm(x) for x = 0.1, 0.5, 0.9
by taking q = 3,M = 4000. The obtained results for m = 10, 20, 50, 100 are shown in Figure 1, from
which we observe that |µm(x)| converges to the theoretical mean-zero as the sampling number increases,
and convergence rate is roughly O(m−

1
2 ).

The strong convergence rate in space and time is measured in terms of mean-square approximation
errors at the endpoint T = 0.1, caused by the spatial and temporal discretizations. The expected value
of error is approximated by computing the mean of 200 samples. Note that the exact solution of the
problem (5.1) is unknown, and we will use the reference solution computed in the fine space-time mesh
size as an approximation to the exact solution. If we denote by uref

j the reference solution of the j-th
sample of the exact solution u(T ), and denote by uN

j,h the value of the j-th sample of the fully discrete
numerical solution uN

h . Then the mean-square error ‖u(T ) − uN
h ‖L2(Ω,L2(D))

is approximately calculated by

‖u(T ) − uN
h ‖L2(Ω,L2(D))

≈
( 1
200

200∑
j=1

‖uref
j − uN

j,h‖
2
L2(D)

) 1
2

=: uerror.

We first test the time accuracy with different nonlinear terms G. Take the numerical solution computed
by spatial mesh h = 1/128 and time step size ∆t = 10−6 as the reference solution for every sample.
The approximation error uerror under different time step size is calculated by taking u0(x) = sin(2πx),
ε = 10−3, γ = 1 and q = 2. Tables 2 and 3 respectively show the results for the cases where G(u) =

(1 − u2)/2 and G(u) = u/2, from which we observe that this is as predicted by the theory.

Next, we test the spatial accuracy. Now take the numerical solution computed by h = 1/512 and
∆t = 10−5 as the reference solution for every sample. We compute the approximation error uerror under
different spatial mesh size by taking u0(x) = sin(2πx), ε = 10−3, γ = 1 and q = 2 again. Tables 4 and 5
separately shows the relevant error and spatial convergence order for G(u) = (1−u2)/2 and G(u) = u/2,
which is also consistent with the theoretical result.

Table 1. ρ(Λ−) changes with respect to M.

M 100 500 1000 2000 3000 4000
ρ(Λ−) 5.19 7.26E-01 4.27E-03 2.68E-08 1.58E-13 3.14E-14

AIMS Mathematics Volume 7, Issue 12, 20684–20710.



20702

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

-3

-2

-1

0

1

2

3

4

Figure 1. Mean of sample values |µm(x)| as function of m in log-log scale.

Table 2. Time accuracy test.

∆t uerror Order
1.00E-2 4.00E-3 –
5.00E-3 2.73E-3 0.55
2.50E-3 1.86E-3 0.55
1.25E-3 1.30E-3 0.52
6.25E-4 9.21E-4 0.50

Table 3. Time accuracy test.

∆t uerror Order
1.00E-2 5.17E-3 –
5.00E-3 3.81E-3 0.44
2.50E-3 2.82E-3 0.44
1.25E-3 1.90E-3 0.57
6.25E-4 1.31E-3 0.54

Table 4. Spatial accuracy test.

h uerror Order
1/16 1.20E-2 –
1/32 3.38E-3 1.83
1/64 9.76E-4 1.79
1/128 2.84E-4 1.78
1/256 7.32E-5 1.95

Table 5. Spatial accuracy test.

h uerror Order
1/16 1.15E-2 –
1/32 3.17E-3 1.85
1/64 9.30E-4 1.77
1/128 2.41E-4 1.95
1/256 6.48E-5 1.89

Example 5.2 (One-dimensional phenomenon comparison). In this example, the time evolution of
the numerical solution of the stochastic Allen-Cahn equation is compared to that of the deterministic
Allen-Cahn equation to show the effect of random perturbations, where the deterministic version is
expressed by:

ut(x, t) = ε∂xxu + u − u3, 0 < t < T, x ∈ (0, 1),
u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,

u(x, 0) = u0(x), x ∈ [0, 1].

We first show the effect of random field a(x,w) = εez(x,w) on the numerical solution in the absence of
the nonlinear term G (i.e., G(u) = 0), where z(x, ω) is a bounded mean-zero Gaussian random field
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with covariance function cq(x). Given a sample point, by taking u0 = sin(4πx), T = 0.1, ∆t = 10−5,
h = 1/128 and ε = 10−2, we plot in Figure 2 the contour maps of the numerical solution under different
cases, where figure (a) represents the deterministic case and figures (b) and (c) denote the random case
with q = 0.1 and q = 2, respectively. Compared to the deterministic model, it is seen from figures
(b) and (c) that the random diffusion coefficient makes the diffusion process uncertain. Moreover, it’s
known that the larger the parameter q, the more regular the random field z(x, ω) [53], which results in
the diffusion process shown in figure (c) is more uniform than that in figure (b).

Then we give a demonstration of the case with both random diffusion coefficients as well as
multiplicative force noise. Given a sample point, by taking u0 = sin(4πx), T = 4, ∆t = 10−4, h = 1/128,
q = 2, ε = 10−5 and G(u) = 1

2 (1 − u2), we plot the time evolution of the numerical solution in Figure
3, where figure (a) denotes the deterministic model and figures (b) and (c) represent the case with
γ = 0.5 and γ = 1, respectively. Compared to figure (a), it can be seen from figures (b) and (c) that
there are small-scale structures resulted from noise, which are not present in the deterministic model.
Notably, the static kink corresponding to the deterministic model varies greatly after the incorporation
of noise and random diffusion coefficient fields. The kinks can interact, even annihilate each other, and
some new kinks may arise. One more thing to point out that the larger the regularity parameter γ, the
smoother the noise and the smaller the kink variation, which seems to be observed between figures (b)
and (c).

(a) (b) (c)

Figure 2. Time evolution of numerical solution with different diffusion coefficients. (a):
deterministic case, (b): random case with q = 0.1, (c): random case with q = 2.

Example 5.3 (Two-dimensional phenomenon comparison). In this example, numerical simulations
of surfaces evolving according to the mean curvature of two-dimensional deterministic and stochastic
Allen-Cahn (AC) equation are presented to show the perturbing effects of random factors on the
numerical solution. The underlying equations of deterministic and random versions are shown as
below:

ut(x, t) = 4u +
u − u3

ε2 ,

du(x, t) = ∇ ·
(
ez(x,ω)∇u

)
dt +

u − u3

ε2 dt + G(u)dW(x, t),
t ∈ (0,T ), x ∈ (0, 1)2, (5.2)

where z(x, ω) stands for a bounded two-dimensional Gaussian random field with mean-zero and
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(a) (b) (c)

Figure 3. Time evolution of numerical solution with different noise. (a): deterministic case,
(b): random case with γ = 0.5, (c): random case with γ = 1.

covariance function cq(x). Let x = (x1, x2)T , x1, x2 ∈ (0, 1). Denote W(x, t) by

W(x, t) := W(x1, x2, t) =

∞∑
j1, j2=1

√
q j1, j2 sin( j1πx1) sin( j2πx2)β j1, j2(t),

where q j1, j2 = exp(− j21+ j22
200 ) and β j1, j2(t) are the i.i.d Brownian motions. The equations shown in (5.2)

are supplemented with the initial condition u(x, 0) = u0(x), and the homogeneous Neumann boundary
condition.

For the deterministic AC equation, it is known that as ε → 0, the zero level set of u, which is
denoted by Γεt := {x ∈ D : u(x, t) = 0}, approaches a surface Γt whose evolution follows the geometric
law:

V = −
1
R

= −κ, (5.3)

where V is the normal velocity of the surface Γt at each point, κ is its mean curvature, and R is the
principal radii of curvature at the point of the surface [46, 49]. If we denote the radius at time t by R(t)

and set the initial radii to be R0, then R(t) =

√
R2

0 − 2t due to V(t) =
dR(t)

dt = − 1
R(t) .

The first row of the Figure 4 shows the evolution of a star-shaped interface in a curvature-driven
flow of the deterministic AC model on the computational domain D = (0, 1) × (0, 1) with a 512×512
mesh and ε = 7.5 × 10−4, ∆t = 5 × 10−5. The initial configuration is defined by:

u(x, 0) = u(x1, x2, 0) = tanh 1.5+1.2 cos(6θ)−2πr
√

2ε
,

θ = arctan x2−0.5
x1−0.5 ,

r =
√

(x1 − 0.5)2 + (x2 − 0.5)2.

It is observed that the tips of the star move inward, while the gaps between the tips move outward, and
the whole shape shows a trend of shrinking towards the center.

Given a sample point, the second row of Figure 4 shows the effect of the random diffusion coefficient
field on the numerical solution for the case of q = 0.5 and G(u) = 0. We see that the evolution of the
initial star interface is no longer shrink regularly, and its shape changes randomly.

Finally, for a fixed sample point, we show on the third row of Figure 4 the evolution of the star
interface for the case with q = 0.5 and G(u) = 10(1 − |u|). It is seen that noise plays a significant role,
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it changes the properties of the solutions. Similar to the case in one-dimensional, there are small-scale
structures generated by noise. The kinks can interact or even annihilate each other and some new kinks
appear.

Figure 4. Evolution of a star-shaped interface for t = 0, 0.001, 0.005. The first row:
deterministic case. The second row: random case with q = 0.5 and G(u) = 0. The third
row: random case with q = 0.5 and G(u) = 10(1 − |u|).

6. Conclusions

In this paper we study a stochastic evolution equation driven by a bounded log-Whittle-Matérn
random diffusion coefficient field and Q-Wiener multiplicative force noise. The well-posedness of the
underlying equations is established, and an efficient numerical method is proposed and analyzed. The
proposed method makes use of a circulant embedding approach with padding to sample the random
coefficient field, and semi-implicit Euler-Maruyama scheme and finite element method for the spatio-
temporal discretization. An estimate for the strong convergence rate is derived. Several numerical
examples are provided to validate the proposed method.
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