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Abstract—Stream Processing Systems (SPSs) can present sig-
nificant fluctuation in input rate. To address this issue, some
existing solutions propose reconfiguring the SPS by replicating
its operators. However, such reconfiguration usually induces a
high system downtime cost. Moreover, reconfiguration decisions
are based only on resource utilization without balancing the load
between replicas.

We propose in this paper a predictive SPS that dynamically
defines the necessary number of replicas of each operator based
not only on the current resource utilization and input rate
variation but also on the events that, due to the operator’s
overloading, could not be processed yet and are, thus, kept in
the operator’s queue. In addition, our SPS implements a load
balancer that distributes incoming events more evenly among
replicas of an operator. Our solution has been integrated into
Storm. To avoid system reconfiguration downtime, our SPS pre-
allocates a pool of replicas where each of them can be activated or
deactivated based on per operator input load predictions. Using
real traffic traces with different applications, we have conducted
experiments on Google Cloud Platform (GCP), evaluating our
SPS and comparing it with Storm and DABS-Storm.

Index Terms—Stream processing, Adaptive SPS, Predictive
algorithm, Replication, Google Cloud Platform

I. INTRODUCTION

There is fast growth in the volume of data created by
existing applications or systems on the Web due to large-
scale user interactions (e.g., Twitter streaming data, real time
stock trades, multiplayer game iterations, etc.). Consequently,
processing such data in real-time, and delivering helpful in-
formation results in short periods, is increasingly requested
by companies in different areas such as trading, security,
and research, among others. To this end, Stream Processing
Systems (SPSs) are intensely used [1]. The aim is to process
the largest amount of information (number of events), avoiding
as much as possible the loss of processing data which can
decrease the quality of the delivered results.

SPSs are based on directed acyclic graphs (DAG) where
vertices and unidirectional edges correspond to operators and
event data flows, respectively [2]. An external source provides
data continuously. Operators are based on light programming
tasks (such as filters, counters, storage, etc.) that process
the desired information in short periods in a pipeline way.
Deployed in a processing infrastructure (e.g., Clouds, clusters,
etc.), resources (e.g., VMs) are allocated to operators and

often replicated for performance sake. However, in most SPSs,
the number of replicas per operator is defined beforehand
and does not change during execution. This static behavior
might induce bottlenecks in processing events due to the
dynamic nature of the data flows that usually present input
rate fluctuations. Sudden traffic up spikes may overload some
operators, increasing end-to-end processing latency. Increasing
the number of such operators replicas is necessary to overcome
this issue. On the other hand, in the case of down spikes,
resources may become underloaded and, therefore, the number
of replicas should be reduced to save resources.

Another critical feature of SPSs is the shuffle grouping
technique which is responsible for sharing the input load
among operators’ replicas. For instance, the round-robin policy
is one of the most common approaches to implementing
shuffle grouping. However, the latter does not consider the
input load of each replica, i.e., current queued events waiting
to be processed.

By focusing on stateless operators, this article proposes a
predictive DAG-based SPS algorithm that dynamically defines
the current number of per operator replicas necessary to
process the input stream. The flow of events is divided into
time intervals, and our SPS defines, for each operator O, the
events that O should process within each time interval. These
events concern not only the ones that O’s direct operator
predecessors sent to it but also those related to previous time
intervals that O could not process yet and are thus kept in
a queue. In order to process these events, the ideal number
O’s replicas should be estimated at each time interval by
taking into account both the number of such events as well
as the average event execution time. Hence, the number of
O’s replicas dynamically increases or decreases over time
according to its input rate. A new grouping technique that
considers the current input load of operator replicas is also
proposed.

Our SPS extends Apache Storm [1] and uses a predictive
algorithm that follows a MAPE model [3], which relies on a
four-stage control loop widely used in autonomic systems.

In order to avoid the downtime cost of stopping and re-
starting Storm when the number of an operator replicas needs
to be reconfigured, our SPS allocates, at initialisation phase,
a pool of per operator replicas where each of them can be



either in active or inactive state. An inactive replica of an
operator consumes a negligible percentage of CPU and can
be dynamically activated when the system detects the need to
increase the current number of its replicas.

Experiments have been conducted on the Google Cloud
Platform (GCP) with applications that process Twitter or DNS-
traffic stream traces. We have evaluated our predictive adaptive
SPS with different configurations and compared it with the
original Storm and the predictive SPS DABS-Storm [4], which
also adjusts resource usage dynamically. Results related to
metrics, such as latency, resource utilization, and the number
of processed events, are presented and discussed.

The next sections are organized as follows. Section II
summarizes some SPS concepts and definition. Section III
introduces adaptive SPS using predictive system adaptation
models. Section IV presents our adaptive SPS. Results of
experiments carried out on GCP are presented and discussed
in Section V while some existing adaptive SPS works from
the literature. Finally, Section VI concludes the article and
presents some future directions.

II. STREAM PROCESSING SYSTEMS

The goal of SPS is to process high volumes of data in
real-time [5]. The DAG defines the processing logic of the
SPS where each vertex represents an operator, and unidirec-
tional edges represent the data flow. An operator is usually
a lightweight task (e.g., filtering, counting, etc.) that, based
on the DAG, receives one or more dataflow, processes them,
and sends the processed data over its output DAG edges. An
operator can be classified as either stateless or stateful. The
former handles each event completely independent from the
preceding ones while the latter keeps a state based on previous
processed events and, therefore, past events can influence the
way current events are processed. Furthermore, an operator
can have several replicas, and each replica of the operator is
associated with a thread. Thus, they can process the data in
parallel. A data source provides the input raw data stream to
be processed by the operators over the DAG. Raw data are
homogeneous [6], i.e., a set of structures (tuples) identified by
key-values.

In the presence of replicas, the data flow is partitioned and
shared among them. For instance, in the Shuffle Grouping
approach, tuples are sent randomly to each replica, while
in the Field Grouping approach, the tuple’s key determines
which replica will receive it. The drawback of this approach
is the potential lack of load balance. To cope with such a
problem, other existing SPS propose hash-based data partition
[7], partial-key based [8] or executor-centric [9] solutions.

Figure 1 shows an SPS logical design (DAG) example,
composed of an input data source, three replicated operators,
and three edges. The source is in charge of sending the raw
data to the operator O1 by distributing the stream data input
to each of O1’s replicas, based on some partition approach.
After processing the data, O1 sends the result data to O2,
its neighbor in the oriented DAG. Every operator processes
the received data and sends the processed output data to the
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Fig. 1: The SPS logical architecture.

next, based on the grouping technique. If there is no adjacent
neighbor, the data flow is terminated. The last operator that
processes the data in the figure is O3.

The processing logic (DAG) must be mapped to a physical
environment for its execution, usually nodes (machines, cores,
VMs) of a distributed platform such as a Grid, Cluster, or
Cloud. The scheduling algorithm is in charge of performing
the mapping. In this process, load balance problems may arise.
For instance, when a random policy is applied (as Storm does),
there is no guarantee that the workload will be homogeneously
distributed among the operators since an operator may be
more complex than another one [10] and machine resources
could be heterogeneous. Even with homogeneous computation
nodes, unbalance issues can also arise [11]. According to some
scheduling algorithms, each operator replica is placed in an
available node.

A. Storm

Storm [12] is an SPS framework implemented in Java that
enables the processing of unbounded data flows. A Storm
application is a DAG, denoted topology.

There are three types of components in a topology: Streams,
Spouts, and Bolts. Streams or data flows are shared among
operators following the DAG model. They are composed of
key-value tuples. Spouts are responsible for capturing the input
data of the topology from external sources. They structure
the tuples sending them through one or more Streams to the
next components of the topology. Bolts are the operators.
Similarly to Spouts, Bolts can send the processed tuples
through one or more Streams. At runtime, operators of the
topology are executed by several threads called executors,
which are instances of the operators.

The architecture comprises Storm and Zookeeper clusters.
The Storm cluster contains a master node, called Nimbus,
and Supervisor nodes. The latter provides a fixed number of
processes, called workers, that run executors. The Nimbus is
responsible for distributing the application code across the
cluster, scheduling executors to available workers, monitoring
the state of nodes, and detecting failures. Zookeeper provides
a distributed coordination service enabling communication
among Storm cluster nodes, load balance, and fault tolerance.

III. RELATED WORK

In this section, we focus on existing works of the literature
that, similar to ours, propose predictive SPS solutions.



DABS-Storm, a congestion prevention SPS, is presented in
[4]. Its aim is to reduce the degradation of the quality of the
results. To this end, a metric is used to estimate the level of
activity of the operators. A monitor gathers statistics about
the operators activity and then, based on a metric, decides if
the amount of resource allocated to each operator should be
modified or not. Such a metric is defined by predicting the
system input by using a regression function as well as taking
into account pending events. The capacity of the operators
is also estimated, considering both the physical capacity of
the machine where the operator is located and the latency of
the system. As DABS-Storm has been implemented in Storm,
its operators reconfiguration approach carries the drawback of
Storm reconfiguration downtime cost, contrarily to our SPS
that avoids it with the pre-allocated pool of inactive replicas.

The authors in [13] propose a predictive model implemented
in Borealis SPS [14], taking into account not only the input
rate as a metric, but also the capacity of the nodes as well
as data processing complexity. Then, the model provides an
equation that characterizes the workload of the system and
determines the amount of required parallelism for processing
events. Therefore, its objective is both the balance of the
workload between the nodes and the reduction of latency.
Although the system is capable of scaling-out, it does not
perform scale-in, so it does not consider the reduction of
allocated resources that our SPS provides.

Based on look-ahead approach, PLAStiCC is a predictive
scheduling proposed by [15]. Its model analyzes the sys-
tem performance through the balance of resource overload.
Furthermore, as it is conceived to run on clouds, allocated
resources can have different costs. Therefore, the model con-
siders not only the workload of the system, but also the costs
associated with the increase in resources. Contrarily to our
experiments which were conducted on the public cloud GCP
with real Twitter traces, the work uses for evaluation the cloud
simulator CloudSim [16], as well as synthetic dataflows.

The Elastic-PPQ SPS [17] proposes to analyze the system
at short-term and medium/long-term levels. The first one
performs an analysis on the events that arrive in a time
interval while the second one takes into account longer periods
to perform a more complex analysis, using Fuzzy Logic
Controller. To this end, an autonomous system, based on QoS,
manages the system resources according to a runtime strategy,
which considers the complexity of the system components. In
this way, the parallelism of the tasks, associated with a set
of threads, can increase or decrease. For the evaluation and
validation of system load analysis, both synthetic and real
data were used. Although the solution is quite robust, since
it is implemented in FastFlow [18] framework, its focus is
more on high performance processing than on distributed data
processing.

The predictive MEAD SPS [19] was implemented in Flink
[20]. Operator auto-scaling takes place based Markovian Ar-
rival Processes approach, where the system load is analysed
according to a queuing model. The SPS proposes a MAPE-K
for the control flow. Evaluation experiments used both syn-

thetic and real environments. However, if the authors state that
the MEAD supports operators scaling-out, such a feature has
not been implemented. On the other hand, similar to our SPS
and other works that use Flink, such as [21], reconfiguration
does not induce performance degradation.

IV. OUR PREDICTIVE STORM-BASED SPS

Our predictive model aims to process all input events,
reacting quickly and dynamically to system adaptation require-
ments due to input data fluctuation.

Based on DAGs composed of stateless operators, our SPS
provides a predictive algorithm that dynamically estimates, for
each operator, the current number of replicas necessary for
processing as much as possible the received incoming events.
The prediction of an operator number of replicas depends both
on the dynamics of event input rate and the operator capacity
to process events.

At initialization, our SPS assigns, for each operator, a set
(pool) of replicas deployed by the Storm scheduler.
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(a) One active replica per operator.
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(b) Activation of a replica.

Fig. 2: Per operator replica pool example.

Replicas can be either in active or inactive state. An inactive
(resp., active) replica consumes negligible (resp., consumes)
CPU power and can be dynamically activated (resp., deac-
tivated) whenever the prediction model of our SPS detects
the need for increasing (resp., decreasing) the resources for
the operator in question. Figure 2 considers a DAG with the
operators OA and OB and their respective replica pools. In
Figure 2 (a), there is only one active replica per operator while
in Figure 2 (b), a inactive replica of OA has been activated.

ri(t+ 1) =
λ̂i(t+ 1)× eti

td
(1)

λ̂r
i (t+ 1) = λG(t)× θi(t) (2a)

θi(t) =
∑

p∈pred(Oi)

θpi (t)× θp(t) (2b)

θpi (t) =
λp
i (t)

µp(t)
(2c)

λ̂q
i (t+ 1) = |qi(t)| (3)

λ̂i(t+ 1) = λ̂r
i (t+ 1) + λ̂q

i (t+ 1) (4)

Table I summarizes all the notations used by our predictive
model where v̂ designates a predicted value of variable v.



Execution time is divided into equal intervals identified by t
whose duration is td in which the statistics of all the operators
are collected. The value of value must be greater than the
average DAG execution time of one event.

At the end of each interval, the number of active replicas
of an operator Oi for the next time interval is dynamically
recalculated by Equation 1. The objective of this equation is
to estimate how many active replicas would be necessary for
Oi to process all λ̂i(t + 1) estimated events within t + 1,
considering that Oi processes each event in eti units of time.
The value of eti has been calculation with a benchmark at the
beginning of the deployment of the application.

Parameter Description
Oi operator i
t time interval number
td time interval duration
eti average execution time of one event by Oi

qi(t) queue of events received and not processed by Oi

at the end of t
λG(t) number of events sent by input data during t
λr
i (t) number of events received by Oi during t

λp
i (t) number of events received by Oi sent from Op during t

µi(t) number of events processed by Oi during t
θx(t) percentage of events processed of λG(t) by Ox during t
Op

i predecessor operator of Oi in the SPS DAG
θpi (t) percentage of events produced by Op

i sent to Oi during t

λ̂i(t+ 1) predicted number of events to process by Oi during t+ 1

λ̂r
i (t+ 1) predicted number of events received by Oi during t+ 1

λ̂q
i (t+ 1) predicted number of queued events to be processed

by Oiduring t+ 1
ri(t+ 1) number of replicas of Oi computed at the end of t

TABLE I: Parameters notation and their description.

For instance, let’s consider that the time interval duration
(td) equals to 1000 ms. Figure 3 shows an example composed
by three independent operators (O1, O2, and O3) which
receive the same input number of events λ̂i(t+1) to process.
However, they have different event execution time eti. Initially,
at the beginning of t, all the three operators have two replicas.
However, due to eti’s differences, Equation 1 will render
r1(t + 1) = 2, r2(t + 1) = 1, and r3(t + 1) = 4 at
the end of t. Such results inform that the number of O1’s
active replicas should not change but that of O2 (resp., O3) is
overestimated (resp., underestimated) and should be reduced
(resp., increased) to one (resp., four).

Note that the input number of events λ̂i(t) will be dis-
tributed among the active replicas ri(t) of Oi by applying our
grouping policy (see Section IV-A). The value of λ̂i(t + 1)
is determined by Equation 4, which in turn is determined by
Equation 2.

O1 O2 O3O1 O2 O3

 

 

 

 

 

 

Fig. 3: Example of the number of replicas calculation, accord-
ing Equation 1

Since operators of the SPS are related to each other by the
DAG, there exists a dependency between sent and processed
events, as shown in Figure 4, a linear SPS DAG with two
operators, O1 and O2, and their respective values of λr

i (t)
and µi(t). (See Table I). µ1(t) and λr

2(t) are equal since
operator O1 has sent all the events it has processed to its
single successor O2. If i is the initial single DAG operator,
then λr

p(t) = λG(t) (λr
1(t) = λG(t)). Note that the increase of

Op’s number of active replicas at the end of the interval t has a
direct impact in Op’s successors, since, in this case, µp(t+1)
increases and thus, λr

i (t + 1) too, inducing a domino effect
that the prediction formulations should avoid. For example, in
Figure 4, if µ1(t+1) increased from 5 to 10 events due to repli-
cation of O1 at the end of t, λr

2(t+1) would increase as well.
Hence, if the operators process all received events during t+1,
we have that λG(t+ 1) = λr

1(t+ 1) = µ1(t+ 1) = λr
2(t+ 1)

and, consequently, all operators Oi are dependent on λG(t).

Input 
Data

O1 O2

Fig. 4: DAG operators dependence example.

In a SPS execution, not always all the output processed
events of Op

i , the predecessor operator of Oi, will be sent to
the latter. It might happen that Op

i splits, filters, or replicates
the events into several streams, sending each of them to one of
its different successor operators in the DAG. The θpi parameter
informs the percentage of processed events of Op

i sent to Oi.
Its value is calculated by Equation 2c.

Figure 5 shows a DAG SPS with the respective values of
Equation 2a for each operator. We observe that, since θ1 is
equal to 1, O1 receives all the events sent from the input date
and then splits them among O2 and O3. As these two operators
do not receive all the events from its predecessor O1, θ1 and
θ1 have values 0.7 and 0.3 respectively. Finally, operator O4

receives the events of its predecessor O2 and O3. However, O2

does not send all its processed events to O4, but only θ24 = 0.4,
unlike O3 which sends all processed events to O4 (θ24 = 1).
The value of θ4 is, therefore, 0.58, according to Equation 2b.

Events received and not processed by Oi are kept in qi(t).
Hence, the number of input events λi(t) that Oi should
actually process in t is composed not only of received events
λr
i (t) but also the events queued in Oi, which correspond to

λq
i (t). λq

i (t) is defined as the number of events queued to
process in Oi during t, considering there is one queue per
operator. Thus, the predicted value of λ̂q

i (t+ 1) is defined by
the events queued by Oi at the end of the time interval t as
defined in Equation 3.

Figure 6 shows a linear DAG SPS, with operators O1, O2,
and O3. The values of the parameters obtained in the time
interval t are presented in Table II (a). The calculation of
ri(t+1) (Equation 1) requires the value of λ̂i(t+1) (Equation
4), which in its turn is defined by λ̂r

i (t+1) (Equation 2a) and
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O1 O2 O3 O4

λ̂r
i (t+ 1) 100 70 30 58

Fig. 5: DAG example of predicted received number of events,
according to Equation 2

.
λ̂q
i (t+1) (Equation 3). In order to obtain the value of λ̂r

i (t+1),
the value of θi(t) for each Oi needs to be computed. Therefore,
given the dependence between the operators, it is necessary to
start from the initial operators to the last one. The value of each
θpi is defined in Figure 6, which were calculated according
to Equation 2c. Finally, having obtained the predicted values,
the number of replicas ri(t+ 1) for each operator Oi can be
calculated. Such values are presented in Table II (b).

O1 O2 O3
Input 
Data

Fig. 6: Predictive analysis example for the SPS DAG.
eti λr

i (t) λq
i (t) µi(t) qi(t) θi(t)

O1 16.6 ms 100 40 140 0 1.0
O2 25 ms 117 10 120 7 0.833
O3 100 ms 90 20 90 20 0.625

(a) Parameters values calculated for a time interval t.

λ̂r
i (t+ 1) λ̂q

i (t+ 1) λ̂i(t+ 1) ri(t+ 1)
O1 100 0 100 2
O2 84 7 91 3
O3 63 20 83 9

(b) Parameters values predicted using Equation 1.

TABLE II: Analysis example for DAG presented in Figure 6.

A. Grouping

In shuffle grouping, the received input events are evenly
distributed among active replicas without considering that the
loaded replicas can receive new events while pending events
are in their queue. A replica j of an operator i is defined as
Oi.j

Parameter Description
µi.j(t) number of events processed by Oi.j during t
Ui.j(t) utilization rate of Oi.j computed at the end of t

TABLE III: Parameters notations of the grouping algorithm.

Ui.j(t) =
µi.j(t)× eti

td
(5)

To overcome such a constraint, we propose the Load bal-
ancing grouping strategy, which considers the load of active

replicas in each time interval (t). In this way, the distribution of
events is proportional to the load of active replicas, computed
using Equation 5, where U is a value between 0 and 1: 0
informs that the replica has no load, and 1 the 100% utilization
of the replica. If the value of U is the same for all replicas, the
subsequent events are sent in round-robin. If not, these new
events are sent to the replica with the lowest load. Algorithm 1
shows the pseudo-code of the Load balancing grouping which
selects the active replica that will process the next event. We
point out that the grouping implementation in Storm requires
an independent queue for each active replica of an operator.

Algorithm 1 Load balancing grouping for operator Oi.

Require: Statistics of ri replicas of Oi in interval t.
Ensure: Replica Oi.m that should process the event.

1: m← 0
2: for j : 1→ ri do
3: if Ui.j < Ui.m then
4: m← j
5: end if
6: end for
7: if Ui.m = 1 then
8: m← getReplicaRoundRobin(Oi)
9: else

10: Ui.m ← Ui.m + eti
td

11: end if
12: sendEvent(Oi.m)

B. MAPE implementation

The MAPE loop control is in charge of providing the
self-adaptation feature of our SPS. Each of the four MAPE
modules performs a specific task:

1) Monitor: a module in charge of gathering and centraliz-
ing statistics from the DAG. At each time interval, the
monitor requests the values of λi(t), eti, and the number
of queued events qi.

2) Analysis: a module in charge of computing Equation
4 in order to get λi(t). Note that the analysis will be
performed from the beginning of the graph till the last
operator.

3) Plan: module that, based on the previous analysis and
the current number of active replicas of an operator,
defines whether it is necessary to modify the operator’s
current number of active replicas. Algorithm 2 shows
the pseudo-code of the Plan module, responsible for
increasing/decreasing the current number of active repli-
cas, if necessary. The getReplicas(Oi) function returns
the number of current active replicas of Oi.

4) Execute: a module which is in charge of carrying out the
change in the current number of replicas of an operator,
if required by the Plan module.

V. PERFORMANCE EVALUATION

This section presents performance results related to the
evaluation of our predictive SPS and its ability to adapt to



Algorithm 2 Adaptive Plan algorithm for operator Oi.

Require: Statistics Operator Oi in time interval t.
Ensure: Modifying the current number of active replicas of

operator Oi.
1: ri(t+ 1)← computeReplicas(λ̂i(t+ 1) , eti, td)
2: ki ← ri(t+ 1) - getReplicas(Oi)
3: if ki > 0 then
4: Add ki active replicas to Oi

5: else if ki < 0 then
6: Remove ki active replicas from Oi

7: end if

the dynamics of the event stream, without reducing the rate of
processed events, as well as comparisons with other SPSs of
the literature. In Section V-A, we introduce our system settings
and the use-case application which analyses tweets streaming.

The evaluation is composed of five parts: (1) an analysis
of the impact of the system parameters (Section V-B); (2)
a comparison of different grouping strategies (Section V-C);
(3) a comparison of our system with both the original Storm
using a fix number of replicas (Section V-D) and with (4) the
DABS-Storm adaptive solution proposed by [4] (Section V-F);
and finally (5) evaluation results of two other applications: a
tweet-based more complex application and a second one that
has DNS traffic as input streaming (Section V-G).

A. Testbed and experimental settings

1) Testbed: Experiments were conducted on Google Cloud
Platform (GCP) using eleven Virtual Machines (VMs): three in
charge of Zookeeper, seven as Supervisor nodes, and one for
running both the Nimbus and our SPS. Two types of machines
were used: a n1-standard-1 (1 CPU, 2.2 GHz, 3.75 GB of
RAM) machine for hosting Zookeeper VMs, the Nimbus, and
the adaptive system, and a n1-highcpu-8 (8 CPU, 2.2GHz,
7.2GB of RAM) machine for the Supervisors VMs.

2) Application and scenario: The same input rate has been
used and applied for all the experiments except the last one.
We deployed an application composed of four operators in
charge of analyzing and classifying tweet events, as shown in
Figure 7. The events (tweets) were previously collected from
Twitter and extracted with Twitter API. Events classification
is based both on the content of the tweets and the identity of
the person who has published the tweet. The analysis of the
tweets are stored in the database

Stopword Sentiment 
classifier

User
classifier

Database
store

Twitter 
streaming

Fig. 7: Twitter application in SPS.

The traffic model is based on data from Twitter related to
COVID-19 with 237 million tweets [22]. However, for our
experiments, we have used only a sample of these tweets. The
sample of selected tweets considers periods of the datasets that
present high variation. In other words, we select a combination

of traffic spikes and under spikes. The methodology for the
creation of the testing data set is presented in [23].

3) Metrics: We have defined four evaluation metrics.
• Saved resources: proposed in [24], this metric expresses

the proportion of resources (active replicas) saved with
respect to a statically over-provisioned configuration.. It is
defined by 1− r

rover
, with r the number of active replicas,

and rover the overestimated number of replicas. rover is
the number of replicas needed to process all the events
during the highest input rate peak of the benchmark. Note
that if the value of the metric is close to 1, a high number
of resources has been saved.

• Throughput degradation: this metric, also described
in [24], aims at analyzing the behavior of the sys-
tem in terms of throughput stability. It is defined by
|inputrate−outputrate|

inputrate
. If the metric value is close to 0,

the system has a good stability. On the other hand, if it is
close to 1, the system is not capable to process the input
rate and the system is unstable.

• Latency: is the average time taken by an event between
the moment it enters and leaves the SPS (end-to-end
latency). This metric is relevant since SPSs are supposed
to deliver real-time processed events.

• Difference in the number of processed events: is the
difference between the total number of processed events
and the total number of received events. It is an important
metric since SPSs are used to process high volumes of
data.

B. Impact of the parameters

Aiming at tuning their value, we propose in this section to
discuss the impact of the three SPS parameters in the metrics.
The parameters are: time interval duration (td), timeout to
detect the failure of an event (tout), and queue size (qsize).

We consider that an event has failed when its processing
time on all operators exceeds the end-to-end timeout, tout.
This parameter removes events that have been queued for a
long time, reducing the load on an operator’s replicas.

By Analyzing the Twitter dataset, the value of rover was
set to 32.

Table IV shows the values of the four metrics when the
value of td varies. We set the value of tout to 30s and of qsize
to 100000. Note that the greater the time interval, the greater
the number of samples used for calculating Equation 1. We
observe an improvement in the results when the time interval is
small, which is also in accordance with the dynamic behavior
of the input rate. Latency and throughput degradation confirm
the latter, given that by increasing td the system needs to wait
longer to adjust the number of replicas and stabilize.

It is important to highlight that, unlike Storm’s traditional
solution, which must restart the application to reconfigure
the number of resources of each operator, our SPS should
only activate or deactivate replicas in the pool. Therefore,
the reconfiguration downtime does not exist. Furthermore, the
computational cost of calculating the equations is minimal
since they are basic operations carried out by the system.



Consequently, even if reconfiguration occurs quite often, we
do not observe a decrease in the number of processed events.

Time interval Saved
Resources

Throughput
Degradation

Diff. Proc.
Events Latency

td = 30s 0.5617 0.1831 0.9987 2098.91
td = 60s 0.5390 0.4332 0.9979 5271.01
td = 120s 0.5219 0.9221 0.9976 17068.33
td = 180s 0.5563 0.8028 0.9992 22364.86

TABLE IV: System metric values with different time intervals.

Having set the value of td to 30s and of qsize to 100000,
Table V shows the four metrics, when the value of tout varies.
We observe that tout has an impact in both latency and loss
of processed events. For example, a tout = 1s improves the
latency in 82.40% when compared to tout = 30s but, at the
same time, there is a decrease of 9.5% in the difference of
processed events. Therefore, on the one hand, if the proposed
application does not require full data processing but low
latency, one solution is to set the timeout to a low value
for system deployment. On the other hand, if the application
requires full event processing, it is recommended to use a high
timeout value.

Timeout Saved
Resources

Throughput
Degradation

Diff. Proc.
Events Latency

tout = 1s 0.6164 0.1000 0.9030 369.35
tout = 5s 0.5875 0.1038 0.9303 946.69
tout = 10s 0.5633 0.1056 0.9529 1298.45
tout = 30s 0.5617 0.1831 0.9987 2098.91

TABLE V: System metric values with different timeout.

Table VI summarizes the four metrics values for different
sizes of the pending message queue, qsize when td = 30s and
tout = 30s. The greater the queue size, the higher the number
of queue events, thus reducing the loss rate and increasing the
number of processing events (Diff. Proc. Events), as we
can observe in the table.

On the other hand, since many incoming events are dropped
when using small queues, operators are less loaded and we
observe an increase of the saved resources (the number of
replicas computed by Equation 1 is then smaller than the ones
with big queue sizes).

For example, with qsize = 100, we observe a 19.61%
improvement in saved resources and a 98.57% decrease of the
latency compared to qsize = 100000. However, the number
of dropped events highly increases, inducing a decrease of
46.12% in processed events.

Queue size Saved
Resources

Throughput
Degradation

Diff. Proc.
Events Latency

qsize = 100 0.6719 0.1919 0.6835 29.91
qsize = 1000 0.6656 0.1375 0.6922 311.93
qsize = 10000 0.6602 0.1687 0.7249 1394.56
qsize = 100000 0.5617 0.1831 0.9987 2098.91

TABLE VI: System metric values with different queue size.

Based on the current study, in the following sections, we se-
lect parameter values for which our SPS processes the greatest
number of events without significantly degrading latency. This
means that td = 30s, tout = 30s and qsize = 100000.

C. Grouping

This section compares our load balancing grouping strategy
with the shuffle grouping where events are randomly dis-
tributed among the replicas.

Table VII shows the metrics for both grouping strategies.
There is no significant difference in terms of processed events
and only an increase of 4.04% in saved resources using
our grouping strategy. Regarding the use of VMs resources,
CPU utilization increases by 0.9% with respect to a random
distribution and the difference in memory usage is negligible.

On the other hand, there is a great difference in latency and
throughput metrics of the two strategy since shuffle grouping
does not take into account replicas’ load. When a new replica
is activated, the old loaded replica must process both the new
events that arrive and the ones it previously queued, which
explains a decrease of 60.18% in latency and 57.73% in
throughput degradation.

Grouping Saved
Resources

Throughput
Degradation

Diff. Proc.
Events Latency

Shuffle 0.5390 0.4332 0.9979 5271.01
Load balancing 0.5617 0.1831 0.9987 2098.91

TABLE VII: System metric values with different grouping.

D. Comparison with Storm

We have compared our SPS, denoted Predictive SPS (PSPS)
with the original Storm where the number r of replicas per
operator is fixed. We have considered three configurations for
Storm: no replication (r = 1); four replicas (r = 4); eight
replicas (r = 8). The latter corresponds to the overprovisioning
configuration where the total number of replicas, rover, is
equal to 32 in our SPS.

Table VIII summarizes the results of the different configura-
tions. When comparing the values for each metric, we observe
considerable difference.

In configuration with no replication (r = 1), the input rate of
events is too high and, therefore, Storm can not process all the
events without additional replicas. Operators are overloaded,
inducing a high average latency. Although few resources are
used, such a configuration is not suitable to cope with the input
rate.

On the other hand, in the configuration with r = 4, Storm
can process a large number of events within each time interval,
presenting a decrease of only 1.1% when compared to PSPS.
Latency is 87.14% lower than PSPS since a constant number
of replicas is always available. The difference in latency can
be explained since in Storm the distribution of events is
homogeneous whereas in PSPS events are distributed based
on the load among the dynamic set of replicas where some of
them may have queued events which will then take more time
to be processed. However, in this case, Storm is more unstable
compared to PSPS as shown by the throughput degradation
which is much higher even if a great number of events can be
processed. We also observe an increase of 10.98% in resource
usage compared to PSPS.



Finally, in configuration with r = 8, Storm is able to
process all incoming events within each time interval, which
is reflected by a 0 throughput degradation. Since there are
never queued events, Storm latency is lower than PSPS one.
However, this configuration uses much more resources than
the others and PSPS.

System Saved
Resources

Throughput
Degradation

Diff. Proc.
Events Latency

PSPS 0.5617 0.1831 0.9987 2098.91
r = 1 0.8750 0.5153 0.3319 196962.95
r = 4 0.5 0.8559 0.9874 269.75
r = 8 0.00 0.00 1.00 153.51

TABLE VIII: System metric values with DPSP and Storm.

Figure 8 shows the ability of PSPS to dynamically modify
the number of operator replicas. The latter follows the evolu-
tion of the events input rate as we can see in the inflection
points at t = 200s, t = 500s, and t = 900s. At t = 900s,
PSPS increases the number of replicas above rover = 32 to
process not only input events but also events queued on loaded
operators.

The number of events processed per time interval in the
three Storm configurations and PSPS is presented in Figure
9. As explained above, the configuration with r = 1 has
a limited amount of resources. Consequently, the throughput
rate is constant since it is impossible to process more events
with the available resources. The same behaviour is observed
in configuration with r = 4 at t = 120s, t = 420s, and
t = 800s. The throughput rate is constant until replicas have
ended to process the queued events, as seen at t = 350s
or t = 700s. However, in configuration with r = 8, the
throughput rate is similar to the input rate because there are
always enough available resources to process all events. On
the other hand, PSPS tolerates peaks of load by queuing events
during periods of adaptation and then processing them later,
as we can observe at t = 200, t = 500, or t = 950. Therefore,
our SPS dynamically adapts the number of active replicas to
the input rate fluctuation in order to process the largest number
of events.
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Fig. 8: Total number of replicas of Storm and PSPS.

E. Twitter raw stream
In order to evaluate the impact of having used in the

previous experiments Twitter smoothed traces instead of the
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Fig. 9: Throughput of Storm and PSPS.

original one (raw data, described in V-A), we conducted an
experiment with the same application but with Twitter raw
data as input. We have considered rover = 32 and r = 1
for Storm. Table IX shows the obtained results, which are
globally consistent with those of Table VIII with smoothed
data. However, in the case of raw data, PSPS is less stable
and, therefore, many reconfigurations take place, inducing an
increase of the throughput degradation as well as a decrease
of the number events processed.

Nevertheless, we observe that PSPS improves by 246.95%
the proportion of processed events compared to Storm with
no replication (r = 1). Also, PSPS is more stable, since the
throughput degradation has an improvement of 40.35%. As
the system is more stable, PSPS processes a larger amount of
queued events, thus, the latency decreases by 94.82%.

System Saved
Resources

Throughput
Degradation

Diff. Proc.
Events Latency

PSPS 0.745 0.4 0.9791 2501.46
r = 1 0.875 0.6706 0.2822 48379.95

TABLE IX: Twitter raw stream metric values.

F. Comparison with DABS-Storm

Table X gathers the metric values related to PSPS and
DABS-Storm, the SPS proposed in [4] (see Section III).
Regarding the used resources, PSPS improves the number of
them by 41.77% when compared to DABS-Storm. In addition,
the throughput degradation of PSPS is 35.73% lower than
DABS. The most important differences are in latency and the
number of processed events. As DABS needs to restart the
system at every reconfiguration, operator queues are emptied
and their events are dropped. On the other hand, in PSPS, there
exists a pool of replicas and it is only necessary to activate or
deactivate the pre-allocated replicas at each reconfiguration,
keeping the existing pending events of the queues. Hence,
since in DABS-Storm the queued events are not processed
during reconfiguration, we observe a decrease in both the
number of processed events and latency: DABS processes
17.06% fewer events than PSPS and latency is decreased by
33.71%.

Figure 10 shows the number of replicas used by the two
SPS. DABS and PSPS can dynamically adapt the number of
replicas according to the input rate. However, DABS downtime



System Saved
Resources

Throughput
Degradation

Diff. Proc.
Events Latency

PSPS 0.5617 0.1831 0.9987 2098.91
DABS 0.3962 0.2849 0.8283 1391.28

TABLE X: PSPS and DABS-Storm metric values.

at each reconfiguration has a direct impact in the throughput,
as we can observe in Figure 11, inducing a higher instability
and a decrease in the number of processed events.
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Fig. 10: Total number of replicas of PSPS and DABS-Storm.
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G. Other applications

1) Complex application: We have also evaluated PSPS with
a more complex application, whose DAG is represented in
Figure 12. It analyzes Twitter streaming containing informa-
tion such as news or opinions. Depending on the type of
information, the flow can be splitted. Result are stored in a
database. In the experiments, rover = 40.

Table XI shows evaluation results obtained with DPS and
Storm with a fixed per operator number of replicas of five
(r = 5) for Storm. In PSPS, we observe a high reduction of
used resources with 74.5% fewer active replicas, when com-
pared to Storm. Such a decrease has an impact on the physical
used resources: CPU consumption of PSPS (resp. Storm) is
in average, 8.41% (resp. 14.66%). This difference happens
because each replica is associated with a thread. Therefore,
having a fixed number of 5 replicas, Storm requires more CPU
than PSPS where the number of replicas dynamically varies.
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Fig. 12: A Twitter more complex application in PSPS.

Complex App Saved
Resources

Throughput
Degradation

Diff. Proc.
Events Latency

PSPS 0.745 0.0911 0.9970 219.13
r = 5 0.0 0.0 1.0 31.99

TABLE XI: Complex application metric values.

2) DNS traffic data stream: We deployed an application
composed of four operators for analyzing and classifying
events based on DNS traffic, as shown in Figure 13. In the
experiments, we use the dataset presented in [25] and fixed
rover = 12 (i.e., ri = 3).

Detect
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Latency
Classification 

Weight
Rating

Database
store
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Traffic

Fig. 13: DNS application in PSPS.

The aim of the experiment is to verify that PSPS also
adapts to other types of input rates. Table XII summarizes the
obtained results, which are in accordance with PSPS proposal
to process the greatest number of events: the percentage of
unprocessed events is only 1.16%. PSPS also improves latency,
decreasing it by 29.44% when compared to Storm with no
replication (r = 1). We also observe an improvement in system
stability, since the throughput degradation of PSPS is 17.40%
lower than the latter.

Scenario Saved
Resources

Throughput
Degradation

Diff. Proc.
Events Latency

r = 1 0.6666 0.4521 0.9759 476.12
PSPS 0.6062 0.3734 0.9884 335.95

TABLE XII: DNS scenario metric values.

Figure 14 shows both the input rate and the throughput
of PSPS. Despite the high dynamics of the input rate, PSPS
is able to adapt its resources in order to process the largest
number of events in each time interval. Such adaptation ability
is positively reflected on the throughput degradation, whose
value is closer to 0 (see Table XII) which confirms the stability
of PSPS. There is also an improvement in the use of resources
with a decrease of 60.62% compared to an overestimated
replica configuration.

VI. CONCLUSION

We have presented in this article a predictive Storm-based
SPS, which, in order to cope with input data fluctuation,
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DNS traffic.

dynamically adapts the number of active replicas of the DAG
operators. To do this end, we have proposed a set of equations
that, firstly deduce the number of incoming events and then
predict the number of such replicas, as well as the Load
Balancing grouping strategy which is based on current replicas
load. Evaluation results confirm the effectiveness of both our
predictive and grouping approaches and that our SPS out-
performs Storm and DABS-Storm SPSs. In the experiments,
the Load Balancing grouping reduced latency by 60.18%,
when compared to the traditional Storm grouping, while PSPS
reduced used resources by 41.77% and increased the number
of processed events by 20.57%, when compared to DABS-
Storm.

In future work, we intend to evaluate our solution against
an existing benchmark, such as [26] and also predict the
input rate, exploiting a mathematical model. In this case, the
estimation of the number of active replicas would be based on
values given by the model, using two intervals for the analysis
of the SPS, as well as the queued events of the predecessor
operators for the prediction.
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