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Abstract

Since the discovery of superconductive twisted bilayer graphene which initiated the
field of twistronics, moiré systems have not ceased to exhibit fascinating properties. We
demonstrate that in boron nitride twisted bilayers, for a given moiré periodicity, there
are five different stackings which preserve the monolayer hexagonal symmetry (i.e. the
invariance upon rotations of 120◦) and not only two as always discussed in literature.
We introduce some definitions and a nomenclature that identify unambiguously the twist
angle and the stacking sequence of any hexagonal bilayer with order-3 rotation symme-
try. Moreover, we employ density functional theory to study the evolution of the band
structure as a function of the twist angle for each of the five stacking sequences of boron
nitride bilayers. We show that the gap is indirect at any angle and in any stacking, and
identify features that are conserved within the same stacking sequence irrespective of
the angle of twist.
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Initiated by twisted bilayer graphene, moiré systems formed of 2D atomic layers have20

recently been established as a unique playground for highlighting novel and fascinating prop-21

erties [1]. A tiny twist between the two van der Waals atomic layers can modify deeply their22

electronic properties as a consequence of the flattening of the band dispersion. In graphene, a23

flat moiré mini-band appears at specific “magic angles" [2,3] whose occupation drives super-24

conductive/insulating transitions which open new perspectives on the investigation of strong25

correlation in 2D systems [4–6]. In gapped twisted bilayers (e.g. semiconducting transition26

metal dichalcogenides) the moiré bands have an impact on the optical properties. For instance,27

by varying the twist angle it is possible to modulate the exciton lifetime [7], or the energy and28

intensity of emitted light [8–11]. In these systems, flat bands give rise to intriguing phenomena29

without the need of being twisted by specific “magic" angles [12–14].30

Hexagonal boron nitride (hBN) is a cardinal compound in 2D materials research. Used31

mostly as encapsulating layer, it has nonetheless attracting properties on its own respect,32

mainly because of its large band gap (> 6 eV) [15, 16] which is at the origin of a strong33

UV emission [17,18], single photon emission [19–24] and its application as gating layer in 2D34

electronics [25–28]. Recently ferroelectricity has been enabled in twisted hBN bilayers, thus35

expanding further its range of applications [29, 30]. In the bulk phase and in thin layers its36

optical properties are driven by excitons [31]. In hBN moiré systems, Lee and coworkers [32]37

observed an increase of the luminescence intensity and a decrease of the sub-band gapwidth38

for increasing twist angles. From the standpoint of atomistic simulations, geometries with39

small rotation angles require very large periodic cells (order of thousands of atoms) which40

are out of reach for most self-consistent numerical approaches [33]. As for graphene [2, 34],41

tight-binding or continuous models based on the k · p approximation are more adapted to deal42

with very large systems and have therefore been developed [6, 14, 35, 36]. However these43

studies are incomplete on two aspects. First, the very nature of the band gap is still not elu-44

cidated while it obviously rules the optical and excitonic properties of monolayer and bulk45

hBN [15,16,37]. Second, the stacking sequence in bilayers is seldom considered and, when it46

has been, only two geometries were taken into account [33, 36]. Yet, it has been shown that47

the stacking sequence strongly influences the character of the gap [31, 38, 39] through long48

range interplanar interactions.49

In this Letter, we investigate the electronic structure of twisted hBN bilayers by taking into50

account fully and on the same footing its dependence on the twist angle and the stacking51

sequence. As a first step, we demonstrate the existence of five and only five different stacking52

possibilities to construct hBN bilayers with hexagonal symmetry and provide a non-ambiguous53

2

https://scipost.org
https://scipost.org/SciPostPhys.?.?.???


SciPost Phys. ?, ??? (20??)

nomenclature applicable to untwisted configurations as well and to any other homobilayer54

formed of hexagonal 2D materials. Stemming from this symmetry analysis, we employed55

density functional theory (DFT) to investigate the evolution of the band structure as a function56

of the twist angle for each of the five stackings.57

1 Geometrical analysis58

To construct a tiling of rotated bilayers preserving long range translational symmetries, we first59

define coincident supercells [40, 41]. Let us take a honeycomb lattice with primitive vectors60

a1 and a2 forming an angle of 60◦ and with the two atoms of the cell separated by τ. Then we61

define the (q, p) hexagonal supercell as resulting from the vectors A(q,p)
i =
∑

j M (q,p)
i j a j defined62

by means of the matrix63

M(q,p) =

�

q p
−p p+ q

�

. (1)

Similarly we use equation (1) to introduce the (p, q) and the (−q, p + q) supercells. The re-64

sulting twist angles are given respectively by the formulae:65

tanθ =
p

3(p2 − q2)
p2 + q2 + 4pq

or tanθ ′ =
p

3(q2 + 2pq)
2p2 − q2 + 2pq

.

The supercells defined above and the resulting twist angles are sketched in Figure 1.a.66

The p and q integers obey to some constraints: they must be different and non zero,67

otherwise they lead to twist angles of 0◦ or 60◦, they must have no common divisor, and the68

case p−q multiple of 3 has to be excluded as it corresponds to non-primitive moiré supercells.69

Moreover, since twist angles are defined modulo 60◦, the definition of the M matrix is not70

unique. We will then restrict ourselves arbitrarily to cases p > q which imply that angles are71

positive and θ+θ ′ = 60◦. Note finally that the notation introduced here for twisted bilayers can72

be employed also for untwisted structures taking q = 0 and p = 1. Despite these constraints73

and arbitrary choices, we demonstrate in Appendix E that all twisted angles corresponding to74

periodic moiré patterns can be expressed through an appropriate choice of the (q, p) pair.75

Stacking the correct supercells is not enough to construct moiré hexagonal bilayers because76

the respective alignment is also crucial. Let us introduce a subscript labelling the origin of the77

supercell (B = boron, N = nitrogen, H = hexagon center). Without loss of generality we will78

always consider the supercell of the lower layer as being (q, p)B (cfr. Figure 1b) while that79

Figure 1: a) Graphical representation of θ and θ ′ angles according to the {p, q} inte-
gers. b) The lower layer supercell is (q, p)B. c) d) and e) The supercells of the upper
layer (p, q)X with X= B, N or H respectively are drawn in blue, and the corresponding
(−q, p+ q)X supercells in yellow. High symmetry points are reported as red dots. In
the examples p = 2 and q = 1.
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of the upper layer can be any of (p, q)B,N,H or (−q, p + q)B,N,H. As a consequence, one ends80

up with six bilayers listed in Table 1 and sketched in panels c), d) and e) of Figure 1 for the81

case p = 2, q = 1. In each supercell there are three direct-space high-symmetry points (red82

bullets in Figure 1): the points (0 0), (1/3 1/3) and (2/3 2/3) in the supercell reduced83

coordinates. Depending on the coincident atoms in these points, one can distinguish between84

(i) two geometries with a double sublattice coincidence per cell, the (p, q)N and the (−q, p+q)B85

ones, with a twist angle −θ ′, and (ii) the remaining four geometries with a single sublattice86

coincidence per cell and an angle of twist θ . However it is trivial to demonstrate that the87

bilayers resulting from the stacking of (−q, p + q)N,H on the (q, p)B are related by a simple88

inversion and are therefore identical. All this boils down to five hexagonal stackings for the89

generic twisted hBN bilayer. It is important to stress that these stacking sequences are not90

related to the moiré periodicity and do not impose any constraint on the mutual orientation of91

the two layers. The orientation and the stacking are two independent degrees of freedom in the92

design of the bilayer structure. As a consequence, we will designate univocally a twisted bilayer93

by the notation STACK(q, p) where the {p, q} pair relates to the supercell and hence the moiré94

periodicity and angles, and STACK = BBNN, BNNB, BB, BN or NN relates to the atoms in the95

coincident sites. Images of these stackings, their layer symmetry group and the transformations96

to be applied to the upper layer to switch from one stacking to another (swapping of B/N97

atoms or translation by ±τ) are summarized in Figure 2 and Table 1. It is worth recalling that98

with our conventions the angles are positive. Their sign comes from the chirality of twisted99

bilayers and is defined according to the screw angle separating B-N bonds at the atom-on-atom100

coincidence sites of the supercell, as depicted in the insets of the Figure 2.101

From this analysis, it appears that the five possible stackings of untwisted bilayers (and102

bulk) reported in literature [42, 43] are actually special cases of a more general scheme, in103

agreement with the fact that the mutual orientation and the stacking sequence are two in-104

dependent degrees of freedom. However it is also important to stress that some “special"105

structures, typically the untwisted bilayers, have higher symmetries than those reported in106

Table 1 and Figure 2.107

For comparison, in the case of graphene bilayers both B and N labels become C, so the108

possible stackings are only two, but they have higher symmetry. The first belongs to the p321109

layer group and to the odd bilayer graphene (BLG) set [34,41,44,45], has a single sublattice110

vertical coincidence per cell and the twist angle is θ . The second belongs to the p622 layer111

group and to the even BLG set with hexagon-on-hexagon or double sublattice coincidence.112

Its rotation angle is −θ ′. Finally, if we swap the values of p and q, we will obtain five new113

stackings which are the mirror images of the pristine structures. They will have the same114

electronic structure, and the twist angles will be +θ ′ for the BNNB and BBNN and −θ for the115

BB, BN and NN stackings. Complete definitions and demonstrations are given in Appendices A116

to F.117

Table 1: The geometry of the five stackings of hBN twisted bilayers. The lower layer
is based on the (q, p)B supercell.

upper twist symm. stacking double
layer angle group sequence coincidence
(p, q)B +θ 68 (p321) BB no
(p, q)N −θ ′ 68 (p321) BNNB yes
(p, q)H +θ 68 (p321) NN no

(−q, p+ q)B −θ ′ 67 (p312) BBNN yes
(−q, p+ q)N +θ 65 (p3) BN no
(−q, p+ q)H +θ 65 (p3) BN no

4

https://scipost.org
https://scipost.org/SciPostPhys.?.?.???


SciPost Phys. ?, ??? (20??)

Figure 2: The five stackings of hBN moiré structures, with p = 2 and q = 1. The sub-
lattice coincidences are highlighted with red circles. The reported symmetry groups
are for twisted bilayers (untwisted bilayers have different symmetry properties).

Before concluding this part, let us stress once more that the analysis we conducted on hBN118

bilayers is very general and easily applicable to any bilayer with hexagonal symmetry such as119

dichalcogenide bilayers or BN/graphene heterostructures, for instance.120

2 Electronic structure121

Based on our robust symmetry analysis, we clearly identify five different stackings of hBN122

bilayers. Zhao and coworkers [33] studied two of them (the NN and the BN one) with a DFT123

method based on a tight-binding Hamiltonian and demonstrated that the stacking sequence124

has an impact on the spatial localization of the top valence and bottom conduction states.125

On the other hand, in a previous work [38] we proved that interlayer coupling, and so the126

stacking, is crucial in the formation of the indirect band gap of the bulk phase. These elements127

clearly indicate that a complete investigation involving all the stackings is mandatory. As a128

consequence, we have performed first-principle simulations with density functional theory129

(DFT) to investigate the impact of the stacking sequence on the band gap. We scrutinized130

thirty bilayers: six {p, q} pairs per each stacking. All the pertinent calculation parameters can131

be found in Appendix G.132
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Table 2: The band splitting (meV) at M and K in the top valence and bottom conduc-
tion of the (1,2) supercells. The symbol ‘-’ indicates a band crossing. These features
are highlighted with red vertical lines in Figure 3.

Structure
Top valence Bottom conduction
@M @K @M @K

BNNB(1,2) 83 - 25 -
BN(1,2) 61 - 104 -
NN(1,2) 148 20 178 -
BB(1,2) 38 - 232 110

BBNN(1,2) 163 20 273 110

As a first step, we investigated the structural stability of the five principal untwisted bilay-133

ers and identified two main groups (see Figure 11 in Appendix H). In the three most stable134

structures (BN(0,1), BNNB(0,1) and BB(0,1)) the layers are separated by about 3.1 Å. The135

two least stable bilayers (BBNN(0,1) and NN(0,1)) are around 20 meV per formula unit at136

higher energy with larger equilibrium interlayer distances (around 3.4 Å). Regarding the elec-137

tronic properties, untwisted bilayers with a B-on-B coincidence (BBNN(0,1) and BB(0,1)) have138

an indirect band gap whereas the other structures have a direct gap. More details about the139

untwisted bilayers can be found in Appendix H.140

Figure 3: Bottom conduction and top valence of the five principal stackings in the
(1, 2) supercell. Red vertical dashed lines highlight the notable splittings at M and K
reported also in Table 2.

We now discuss twisted bilayers. We focus on the (1,2) configuration for all stackings141

because notable effects are more distinguishable. The DFT results are reported in Figure 3142

inside the Brillouin zone of the supercell. It is important to recall that the preservation of143

the hexagonal symmetry of the supercell implies the conservation of their order-3 rotation144
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Table 3: The DFT energy (eV) of the indirect band gap at different twist angles and
stacking sequences. In parenthesis: energy difference between the direct and the
indirect band gap in meV.

family (q, p) cell BNNB BN NN BB BBNN

δ = 1

(1,2) 4.325 (71) 4.318 (76) 4.296 (88) 4.299 ( 55) 4.284 (60)
(2,3) 4.221 (30) 4.217 (34) 4.211 (38) 4.203 ( 41) 4.202 (42)
(3,4) 4.153 (15) 4.153 (16) 4.151 (17) 4.145 ( 18) 4.146 (19)
(4,5) 4.102 ( 5) 4.103 ( 5) 4.101 ( 5) 4.098 ( 5) 4.099 ( 5)

δ = 2
(1,3) 4.284 (137) 4.284 (137) 4.284 (137) 4.284 (136) 4.284 (136)
(3,5) 4.240 ( 72) 4.241 ( 72) 4.240 ( 72) 4.240 ( 72) 4.241 ( 72)

axes without which the equivalence between the K points of the Brillouin zone would be145

lost. Interestingly, our calculations reveal that the gap is always indirect irrespective of the146

stacking with values around 4.3 eV (see first row of Table 3). Indirect band gap has been147

reported also in untwisted bilayers of different stacking [42, 43], hBN multilayers [31], and148

bulk phases of different stackings [38,42], indicating that this is indeed a robust characteristic149

of BN multilayers. By analyzing in details the electronic structure, we can distinguish the150

stackings according to characteristics at the K and M points. In the valence region we observe151

that when N atoms are on top of each other (the NN and the BBNN stackings), a band crossing152

is avoided in the top valence at K while the splitting between the HOMO and HOMO-1 at M153

is the largest. On the conduction band, the splitting between the LUMO and the LUMO+1154

at M is reduced along the sequence BBNN, BB, NN, BN and BNNB while the presence of B155

atoms on top of each other (BB and BBNN stackings) prevents a band crossing at K . All the156

features discussed here are highlighted with dashed vertical red lines in Figure 3 and reported157

in Table 2. We expect these effects to be less important at extremal twist angles (i.e. close to158

0◦ and 60◦) because the immediate surroundings of each atom change progressively.159

Let us now discuss the evolution of the band gap as a function of the twist angle. In Table 3160

and in Figure 4 we summarize our DFT results on the indirect band gap and the difference161

between direct and indirect gap. First, we observe that the gapwidth gets smaller (higher) for162

smaller θ (θ ′), demonstrating a trend opposite to what predicted by continuous models [32].163

Typically, for θ varying from 21.79◦ to 7.34◦, the gap decreases by about 5%. Secondly we164

observe that in each stacking the gap remains indirect at all angles. This finding contrasts165

with density-functional tight-binding results where direct gaps at all twist angles are obtained166

instead [33]. A possible explanation of this discrepancy resides in a bad accounting of the167

interlayer interactions. In fact, our study of the exciton dispersion [38] demonstrates that168

the interlayer hopping terms are of paramount importance for the formation of the indirect169

band gap. A more detailed analysis reported in Appendix I allows us to affirm that it is not an170

artifact coming from σ or nearly-free-electron states located at higher energies [15, 46–51].171

We should stress that these results are reliable as long as one considers energy differences and172

trends, absolute gap energies being systematically underestimated by DFT. Indeed, we expect173

hybrid potential calculations or quasiparticle corrections included via the GW approximation174

to be almost identical form one system to the other, and to have minor effect on the dispersion175

of s and p states [15,31]. We are confident on this because of the successful use of the scissor176

operator in BN compounds [16,38,39] and direct comparisons between different methods [16,177

31,37,42,52].178

We can now pass to the investigation of the evolution of the full band structure as a function179

of the twist angle. In the main text we discuss two paradigmatic stackings, the BN and the180

NN and we report the corresponding twelve band structure plots in Figure 5. We refer the181

reader to the Appendix K and Figure 15 for the other bandplots. We observe that conduction182
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Figure 4: Indirect gap (solid lines) and direct gap (dashed lines) of the five stackings
as a function of the twist angle (θ or θ ′ depending on the stacking) within the δ = 1
family.

and valence bands get flatter at smaller θ (and larger θ ′) as highlighted in Figure 5. This183

implies the progressive creation of localized valence and conduction states in agreement with184

what shown by Zhao and coworkers [33]. For example, in the BN stacking at θ =7.34◦,185

the HOMO and LUMO states are characterized by bandwidths around 0.09 eV and 0.16 eV,186

respectively. Flatter bands are not observed since this would demand much smaller angles187

which are inaccessible with our numerical resources. Because of the flattening of the bands,188

it is possible to tune the difference between indirect and direct gap through the twist angle,189

and so possibly to convert progressively the radiative decay pathway from a phonon-assisted190

emission to a direct recombination. This may have strong impact on the intensity of emitted191

light (probability of recombination), its temperature dependence (through the coupling with192

phonons) and finally the life time of excitations.193

In addition we observe that {p, q} pairs can be grouped into families defined by the param-194

eter δ = |p−q| that characterizes the interplay between crystalline structure (twist angle) and195

electronic structure (bands). In fact, the bands around the gap within the same family look196

similar but shrunk and flattened at small θ (or larger θ ′). Once more, the case δ multiple of 3197

shall be excluded. Consider the family δ = 1, corresponding to the first four plots from the left198

in the band plots of Figure 5. Here the valence bands present a maximum in K and are formed199

of two bands dispersing almost parabolically, up to M where one of the two deviates with a200

small bump. In conduction, two valleys are well discernible between K and Γ and around201

M , the latter forming the conduction band minimum. Formally, the untwisted bilayers fall in202

this very family. However, their band structure presents unique characteristics and thus differs203

from that of the twisted counterparts (cfr the untwisted band structures reported in [42]). At204

the time being, we can not identify the reason for this deviation, but we hypothesize that it205

is due to the fact that untwisted bilayers have higher symmetries than the twisted bilayers of206

the same stacking. Because of this unicity, we have not added the untwisted band structures207

to the bandplots of Figures 5 and 15.208
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Figure 5: Bottom conduction and top valence of the BN (top panel) and NN (bottom
panel) stackings at different twist angles.

The last two plots from the left in the band plots of Figure 5 belong to the δ = 2 family.209

These bandplots look very different from those of the other family, even though the gap remains210

indirect with the top valence at K . As before, one can see common features within this family211

despite the band shrinking. The valence band has a characteristic double-dome shape (with212

a dome on top of another) and a maximum in K . In the conduction band, the two bottom213

bands almost coincide in the M −K path and present two minima close to or at Γ . We verified214

that the bottom conduction in the δ = 2 family does fall in the Γ −M high symmetry line (see215

Appendix J).216
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3 Conclusions217

To conclude, we have demonstrated that in hBN bilayers there are five stackings that are in-218

variant under rotations of 120◦ like the pristine hBN monolayers. We have listed the symmetry219

groups of these stackings, shown how to construct them and how to transform one into another220

and we have introduced a physically informative nomenclature allowing to identify them un-221

ambiguously. We also have provided a precise definition of the twist angle (θ or θ ′ depending222

on the stacking). All this contrasts with graphene bilayers, where only two stackings can be de-223

fined. Our nomenclature is completely general and can be applied to any homobilayer formed224

of hexagonal 2D materials (twisted as well as untwisted). Even though corrugation and do-225

main relaxation have to be expected in experimental realization of these systems [30,53–55],226

these structural modifications will still be constrained by the stacking sequence. By performing227

DFT simulations, we have done a thorough study of the electronic structure of hBN bilayers228

taking into account both its dependence on the stacking sequence and the twist angle. In229

the first case, we have traced a correlation between the atom-on-atom coincidences and some230

characteristics of the states which form the gap. In the second case, we have shown that the231

gapwidth is always indirect irrespective of the twist angle and it decreases for decreasing θ or232

for increasing θ ′, differently from what previously predicted on the basis of less sophisticated233

simulation schemes [32]. Finally we have identified the structural parameter δ = |p−q|which234

allows to classify bilayers into families with similar band structures. The stacking- and angle-235

dependent properties discussed in this letter have special importance in possible twistronic236

applications. In fact these mechanisms are expected to have a strong impact on the optical237

properties of these bilayers and in particular on the direct manipulation of interlayer excitons238

which can be stabilized through the application of an external field.239
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A Asymetric honeycomb supercells247

As presented in the main article, we choose the two primitive vectors of the boron nitride248

monolayer a1 and a2 forming an angle of 60◦ and define the three vectors separating the249

nitrogen and the boron sublattices like:250

τ1 = +a1/3+ a2/3 , τ2 = τ1 − a1 , τ3 = τ1 − a2 .

A boron atom is located at the origin of the honeycomb and nitrogen is located at τ1. A new251

periodic super-lattice is constructed with the new translational vectors A1 and A2 written on252

the basis {a1,a2} like253

Ai =
∑

j

Mi ja j . (A.1)
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In the bilayer system, the hexagonal supercell for the lower layer has been arbitrarily chosen254

as the one produced by the matrix255

M(q,p) =

�

q p
−p p+ q

�

, (A.2)

and the upper layer is developed either with256

M(p,q) =

�

p q
−q p+ q

�

, (A.3)

or with257

M(−q,p+q) =

�

−q p+ q
−p− q p

�

. (A.4)

In all these cases, p and q are integers. The vertical mirror planes along the [11] and [1 0]258

directions of the supercell are lost only if259

p ̸= 0 , q ̸= 0 and p ̸= q ,

then, we call such supercell asymmetric. These are the supercells considered in this work260

because they lead to twisted bilayers.261

Lastly, the {p, q} integers define also the parameter length, the surface Ω and the number262

of atoms Nat of the three supercells263

|Ai|= a
Æ

p2 + q2 + pq , (A.5)

Ω= Ω0

�

p2 + q2 + pq
�

, (A.6)

Nat = 2
�

p2 + q2 + pq
�

, (A.7)

where Ω0 =
a2p3

2 is the surface, and a is the cell parameter of the honeycomb primitive cell.264

As we mention in the main article, the origin of a generic (k, s) supercell can be set either265

on an atom or on the center of a hexagon of the underlying honeycomb lattice. We want to266

analyze what happens at the direct-space high-symmetry points (0 0), (1
3

1
3) and (2

3
2
3) of the267

supercell where the axes of order-3 rotation symmetry pass (cfr. below). These points are268

highlighted with red dots in Figure 1 of the main article. Using (A.3) we write269

�

X
3

X
3

�

=
X
3

A1 +
X
3

A2 (A.8)

=
X
3
(k− s)a1 +

X
3
(k+ 2s)a2 , (A.9)

where the integer X = 1 or 2 selects the supercell high symmetry point. Let us introduce now270

the integer parameter α defined as271

k− s = 3t +α ,

with t ∈ Z, so only −1, 0 and 1 are meaningful values of α. Using it in equation (A.9), we get272

�

X
3

X
3

�

=
X
3
(3t +α)a1 +

X
3
(3t + 3s+α)a2 (A.10)

= X t a1 + X (t + s)a2
︸ ︷︷ ︸

=R

+
Xα
3
(a1 + a2) , (A.11)
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Table 4: Determination of the kind of the sublattices located at the high symmetry
points used in our construction of bilayers for a generic {p, q} pair, and the name of
the resulting bilayer.

supercell α (0 0) (1
3

1
3) (2

3
2
3) α (00) (1

3
1
3) (2

3
2
3) name of the bilayer obtained

(q, p)B −1 B H N +1 B N H by stacking on the (q, p)B
(p, q)B B N H B H N BB(q, p)

(p, q)N +1 N H B −1 N B H BNNB(q, p)

(p, q)H H B N H N B NN(q, p)

(−q, p+ q)B B H N B N H BBNN(q, p)

(−q, p+ q)N −1 N B H +1 N H B BN(q, p)

(−q, p+ q)H H N B H B N BN(q, p)

where R is a honeycomb lattice vector. Therefore, if α = −1 and X = 1, the site located in273

(1
3

1
3) of the supercell will coincide with the site located at (−1

3 −
1
3) = (

2
3

2
3) of the primitive cell274

of the honeycomb lattice, and vice-versa if X = 2. But if α= +1, the site in (1
3

1
3) will coincide275

with the site in (1
3

1
3) of the primitive cell, and the same for X = 2. Actually, we demonstrate276

below in Appendix D that the case α= 0 is irrelevant.277

Lastly, it is easy to demonstrate that if a given supercell (p, q) has a α = +1 parameter,278

then the supercells (q, p) and (−q, p+ q) have a α= −1 parameter (and inversely).279

B Stacking geometries280

As we mentioned in the main article, our construction of the moiré geometries requires two in-281

tegers {p, q} and follows the rules: (i) the lower layer is always defined by the (q, p)B supercell282

(origin at boron) and (ii) the upper layer is either defined by the (p, q)X cell or the (−q, p+q)X283

cell, where X labels the origin of the supercell (B = boron, N = nitrogen, H = hexagon cen-284

ter). As shown in the previous section, the (p, q)-on-(q, p) constructions will always be made285

of supercells with opposite α parameters, whereas the (−q, p+ q)-on-(q, p) constructions will286

always result from supercells with the same α. The Table 4 lists the kind of sublattice (boron287

atom, nitrogen atom, or hexagon center) that occurs at the high symmetry points for both288

values of α of the lower layer (q, p)B.289

For any choice of p and q, the six possible stackings are:290

1. The (p, q)B-on-(q, p)B is a single coincidence structure, with B-on-B at the origin, N-on-291

hexagon at one of the two high-symmetry points and a hexagon-on-N at the other one.292

There is no hexagon-on-hexagon vertical alignment for the single coincidence structures.293

We call this structure the BB(q, p) bilayer.294

2. The (p, q)N-on-(q, p)B is a double coincidence structure, with N-on-B at the origin, B-on-295

N at one of the two high-symmetry points and an hexagon-on-hexagon at the other one.296

We call it the BNNB(q, p) bilayer.297

3. The (p, q)H-on-(q, p)B is again a single coincidence structure, with a hexagon-on-B at298

the origin, B-on-hexagon at one of the two high-symmetry points and an N-on-N at the299

other one. We call it the NN(q, p) bilayer.300

4. The (−q, p + q)B-on-(q, p)B is another double coincidence structure, with B-on-B at the301

origin, N-on-N at one of the two high-symmetry points and an hexagon-on-hexagon at302

the other one. We call it the BBNN(q, p) bilayer.303
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5. The (−q, p + q)N-on-(q, p)B is a single coincidence structure, with N-on-B at the origin,304

N-on-hexagon at one of the two high-symmetry points and an B-on-hexagon at the other305

one. We call it the BN(q, p) bilayer.306

6. The (−q, p+q)H-on-(q, p)B is a single coincidence structure, with a hexagon-on-B at the307

origin, N-on-hexagon at one of the two high-symmetry points and an B-on-N at the other308

one. It is the same geometry than the BN(q, p) above.309

Finally, since the stacking 6 leads actually to the same structure as stacking 5, for each {p, q}310

pair of integer we construct five and only five different structures that preserve the atom-on-311

atom vertical alignments.312

C Moiré stacking angles313

The easiest way to derive the twist angle between two bilayers is by representing the vectors of314

the honeycomb lattice with discrete complex numbers. Here, we adopt the notation [41, 45]315

Z(m, n) = mz1+nz2 with z1 = 1 and z2 =
1
2+
p

3
2 i. The angles are just the arguments calculated316

like317

exp(iθ ) =
Z(q, p)
Z(p, q)

, (C.1)

exp(iθ ′) =
Z(−q, p+ q)

Z(q, p)
, (C.2)

and depend only on the {p, q} pair of integers. This leads to318

tanθ{p,q} =
p

3
p2 − q2

p2 + q2 + 4pq
, (C.3)

tanθ ′{p,q} =
p

3
q2 + 2pq

2p2 − q2 + 2pq
, (C.4)

which are given in the main article. Since the p and q indices can take any integer value, the319

angles are always defined modulo 60◦. The constructed supercells and the resulting angles θ320

and θ ′ are drawn in Figure 6.a.321

So far, the vectors defined by (A.1) have been developed on the {a1,a2} honeycomb lattice322

basis, but we could have chosen either to develop them on the {a2 − a1,−a1} basis and then323

work with the {−p−q, p} pair, or on the {−a2,a1−a2} basis, and work with the {q,−p−q} pair.324

So, definitions (C.3) and (C.4) are not unique and the angles could have also been defined as325

tanθ{−p−q,p} =
p

3
q2 + 2pq

−2p2 + q2 − 2pq
, (C.5)

tanθ ′{−p−q,p} =
p

3
−p2 − 2pq

−p2 + 2q2 + 2pq
, (C.6)

or326

tanθ{q,−p−q} =
p

3
p2 + 2pq

−p2 + 2q2 + 2pq
, (C.7)

tanθ ′{q,−p−q} =
p

3
−p2 + q2

p2 + q2 + 4pq
, (C.8)
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Figure 6: a) The angles θ and θ ′, based on the (q, p) geometries (that are used in
the main article). b) The angles θ̃ and θ̃ ′ corresponding to the mirror images of the
previous ones. They are based on the (p, q) geometries.

which are also valid formulations. It is trivial to show that for any θ of equations (C.3), (C.5),327

or (C.7) and for any θ ′ of equations (C.4), (C.6), or (C.8), the following equality328

θ ′ = −θ +
nπ
3

,

holds for an integer n ∈ Z. In order to avoid confusion and give a non ambiguous definitions of329

our moiré structures, we decide arbitrarily to adopt definitions (C.3) and (C.4), and to impose330

p > q > 0 .

In this situation, the vectors pa1+qa2 and qa1+ pa2 lie in the {a1,a2} angular sector, and the331

vector −qa1 + (p+ q)a2 lie in the {a2,a2 − a1} angular sector. As a consequence332

θ ,θ ′ ∈
i

0,
π

3

h

and θ + θ ′ =
π

3
,

implying that BB(q, p), BN(q, p) et NN(q, p) have an angle+θ > 0 and BBNN(q, p), BNNB(q, p)333

have an angle −θ ′ < 0. These five stackings are chiral structures, that we decide to name334

“right-hand” moiré bilayers.335

To construct the enantiomers of the “right-hand” moiré bilayers above, we have to trans-336

form the vectors A1 defining the hexagonal supercells (A.1). They are mirrored respect the337

[11] crystallographic direction of the primitive honeycomb lattice cell, as shown in the Fig-338

ure 6.b. The lower layer of a “left” moiré is now carried by the supercell M(p,q) and the upper339

layer is developed either on the M(q,p) or the M(p+q,−q) one, still within the constraint p > q > 0.340

The corresponding twist angles are now341

exp(iθ̃ ) =
Z(p, q)
Z(q, p)

, (C.9)

exp(iθ̃ ′) =
Z(p+ q,−q)

Z(p, q)
, (C.10)

leading to θ̃ = −θ and θ̃ ′ = −θ ′ then342

θ̃ , θ̃ ′ ∈
i

−
π

3
, 0
h

and θ̃ + θ̃ ′ = −
π

3
.
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As a result, the “left” BB(p, q), BN(p, q) and NN(p, q) have an angle −θ < 0, and the “left"343

BBNN(p, q) and BNNB(p, q) have an angle +θ ′ > 0.344

In absence of any magnetic field, the “right-hand” and “left-hand” corresponding stackings345

exhibit exactly the same electronic properties. That is why we restricted our study to the346

“right-hand” ones.347

D Redundancy of the case (p− q = 3t)348

v1 =
2
3
A1 − 1

3
A2

A1 = p a1 + q a1

A2 = −q a1 + (p + q)a1

v2 =
1
3
A1 +

1
3
A2

v3 = −1
3
A1 +

2
3
A2

Figure 7: The upper layer asymmetric supercell (p, q) with p = q + 3t. It is always
possible to construct a smaller supercell since v1, v2 and v3 are vectors of the hon-
eycomb lattice. In other words, the twisted bilayer geometries constructed from the
(q, q+ 3t) supercell are not primitive cells of the moiré.

The case α= 0 corresponds to moiré (p, q) supercells where p−q = 3t and t is an integer.349

So350
�

q+ 3t q
−q 2q+ 3t

�

= (q+ 3t, q) supercell . (D.1)

As we sketched in Figure 7, starting from the vectors A1 and A2, we can define new shorter351

vectors352

v1 =
2
3

A1 −
1
3

A2 = (q+ 2t)a1 − t a2 , (D.2)

v2 =
1
3

A1 +
1
3

A2 = t a1 + (q+ t)a2 , (D.3)

v3 = −
1
3

A1 +
2
3

A2 = (−q− t)a1 + (q+ 2t)a2 , (D.4)

and since q and t are integers, the vectors vi are honeycomb bravais lattice vectors. In this353

situation, the supercell defined by the indices of the vector v3 (for example) is354

�

−q− t q+ 2t
−q− 2t t

�

= (−q− t, q+ 2t) supercell , (D.5)

which is also an asymetric hexagonal supercell, three times smaller than the original (q+3t, q)355

one.356
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Figure 8: a) Construction of the moiré bilayer based on the (1,4) supercell for the
lower layer and the (−1,5) for the upper layer. b) The lower supercell can be tes-
sellated by the (2, 1) smaller supercell. c) The upper one is also a tessellation of the
(1, 2) supercell. d) The angle of the “left-hand” small moiré is the same as that of the
large non-primitive moiré θ̃{2,1} = −θ ′{1,4}.

Moreover, the twist angles (C.3) calculated with p and q indices (when p = q+ 3t) are357

tanθ{q+3t,q} =
p

3
3t2 + 2qt

2q2 + 3t2 + 6qt
,

tanθ ′{q+3t,q} =
p

3
q2 + 2qt

q2 + 6t2 + 6qt
,

and it is staightforward to verify than these two tangents are exactly the same if we calculate358

them with the −q− t and q+ 2t indices.359

To summarize, (i) the {q + 3t, q} set leads to non primitive moiré supercells, and (ii) it is360

always possible to use the {−q− t, q+ 2t} pair which gives the same twist angles but in three361

times smaller supercells. As an illustration of it, in Figure 8 we have drawn the example of the362

construction of the (−1,5)-on-(1,4) moiré and its reduction to the (1, 2)-on-(2,1) “left-hand”363

moiré bilayer.364

E Completeness of the description with (q, p) pairs365

In this section we show that all possible hexagonal supercells can be expressed by an appro-366

priate choice of the (q, p) pair of integers.367
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p3 p321

p622

mz

p6

mz

p6/m

p312

Imp. rotation 6

Rotation 6/m

Rotation 3

Rotation 2

Rotation 2/m

Screw axis 21

Rotation 2

Rotation 6

Key:

Figure 9: The graphene and hBN moiré bilayers belong to one of these layer groups
(adapted from [56]). The trivial group p1 is not shown.

Let us first highlight the relation between the (q, p) pair and the translational symmetry368

of the bilayer. The bottom layer is generated by the two vectors a1 and a2 spanning an an-369

gle of 60◦. On top of it, another hexagonal layer is rotated by some angle around a pivotal370

point which is placed at the origin of the axes for sake of simplicity. Its primitive vectors are371

c1 = Ra1 and c2 = Ra2 defined through the rotation matrix R. If the resulting structure372

has translational symmetry, there must be replicas of the pivotal point and they must form a373

supercrystall generated by a unitary supercell with hexagonal symmetry. By definition, it must374

be possible to express the unitary supercell as an integer linear combination of the unitary375

vectors of each layer. Let it be A = qa1 + pa2 if expressed in the lower layer unitary vectors,376

then it coincides either to C = pc1 + qc2 or to C = −qc1 + (p + q)c2 in the the upper layer,377

depending on weather it is rotated by θ or θ ′, as explained in the previous appendices.378

In the main text we limited our study to “right-hand" bilayers for which p > q > 0, and379

twist angles are +θ and −θ ′. These two angles are defined inside the open interval ]0◦, 60◦[380

and their tangents are comprised in the interval ]0,
p

3[. Let us introduce the real number381

ξ ∈]0, 1[. Formulae (C.3) and (C.4) can be expressed in terms of this quantity382

tanθ =
p

3
1− ξ2 − 1
ξ2 + 4ξ+ 1

, (E.1)

tanθ ′ =
p

3
ξ2 + 2ξ
−ξ2 + 2ξ+ 2

. (E.2)

These two expressions are bijective relations mapping ]0,1[ to ]0,
p

3[. Therefore, one can in-383

vert these relations and since the tangent is also invertible, it is possible to establish a bijection384

]0◦, 60◦[→]0, 1[ mapping any θ or θ ′ angle to ξ. If ξ is rational, one can always find a pair385

of integers (q, p) such that ξ= q/p. On the other hand, if it is not rational, then it will not be386

possible to find any pair of integers (q, p) corresponding to the chosen angle, but in this case387

the system will have no translation symmetry.388

F Layer groups of moiré structures389

In Figure 9, we report graphical representations of the symmetries of the layer group used in390

this Appendix. The layer group of a graphene monolayer asymmetric supercell is the p6/m,391

neglecting translations occurring inside the defined cell. For a boron nitride (or a transition392

metal dichalcogenide) supercell, the layer group is p6 [56]. Both groups contain order-3 or393
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order-6 rotations axis along z, located at the high symmetry points of the cell: (00),
�1

3
1
3

�

394

and
�2

3
2
3

�

. When stacking two supercells like described in the previous sections, these axes395

are coincident, and the rotations are always preserved. Thus the 2D crystal systems remain396

hexagonal.397

By looking at Table 4 and by replacing all occurrences of B and N by C, it is easy to derive all398

the stackings of graphene bilayers, however the result is highly redundant. Actually, by taking399

the origin of all the supercells only on the site corresponding to B atoms in hBN, it is possible to400

sort out identical geometries from the beginning. In this case, the (−q, p+q)-on-(q, p) structure401

geometry always shows one “hexagon-on-hexagon” vertical alignment with an order-6 rotation402

axis, and two atom-on-atom vertical alignments with order-3 rotation axes (double sublattice403

coincidence). The resulting layer group is the hexagonal p622, that also contains many in-404

plane order-2 rotations, oriented along [1 0] and [1 1] crystallographic directions as well as405

many 21 screw axes. Note that to comply with the definitions of layer group as defined in406

Figure 9, the supercell must have the “hexagon-on-hexagon” axis is located at the origin. This407

means that supercells constructed as we have done in our work must be translated accordingly.408

Differently, the case of (p, q)-on-(q, p) structure exhibits two “hexagon-on-atom” alignments409

and one “atom-on-atom” alignment (single sublattice coincidence) in the points where order-410

3 rotation axes pass. If the structure is constructed like proposed above in Appendix B, this411

“atom-on-atom” coincidence is correctly located at the origin. It is worth noticing that there are412

in-plane order-2 rotations axes, oriented along the [10] crystallographic directions, passing413

through the origin. The symmetry group is p321 for this case.414

Let now analyze the symmetry of the hBN moiré bilayers. As explained in the previous415

sections, the three stackings BB(q, p), NN(q, p), and BN(q, p) correspond geometrically to the416

graphene bilayer with single sublattice coincidence. Note that, as previously, the NN stacking417

must be translated in such a way that the “atom-on-atom” vertical coincidence is placed at the418

origin, while this is not needed for the other two stackings that result constructed consistently.419

The BB and the NN stacking geometries keep the in-plane order-2 rotations axes along [10].420

Therefore their layer group is also the p321. However, in the BN stacking case, the coincident421

atoms are now chemically different and the order-2 rotations are lost. The group is the simplest422

hexagonal p3.423

The last two hBN moiré stackings are the BBNN(q, p) and the BNNB(q, p)which correspond424

geometrically to the graphene double sublattice coincidence moiré. Again, we translate the425

structures to locate the “hexagon-on-hexagon” vertical axis at the origin. A careful observation426

of the BNNB(q, p) moiré geometry allows us to notice that the in-plane order-2 rotation axes427

along [1 0] and passing through the origin are conserved. The layer group of the BNNB moiré428

stacking is then again the p321. Differently, in the BBNN(q, p) structure, the in-plane order-2429

rotation axes that are preserved are oriented along the [11] crystallographic directions. The430

layer group of symmetry of BBNN stacking is then the p312.431

In this work, we have built structures paying attention to preserve the vertical atomic co-432

incidence, and consequently the order-3 rotation axes. However, we can ask ourselves what433

happens if we stack a (p, q) or a (−q, p + q) supercell on a (q, p) cell with a totally random434

translation between the layers. In this scenario, all the point symmetry operations are lost,435

and only the translations are preserved by construction. This implies that, although the su-436

percell vectors have the same length and span an angle of 60◦, the crystal system is no longer437

hexagonal. It is oblique and the layer group is the simplest p1. In the reciprocal plane, only the438

+k/− k symmetry is conserved, and consequently the high-symmetry points K are no longer439

equivalent.440
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G Computational details441

BB(1,2)

BB(2,3)

BN(1,2)
NN(1,2)
BNNB(1,2)
BBNN(1,2)

equilibrium
interlayer 
distance

Figure 10: Total energy calculation of the five stackings in the (1,2) supercell as
a function of the interlayer distance h. The BB(1,2) is the full black line with black
bullets and the BB(2,3) is the dotted line with empty circles. The other (1,2) stackings
are superimposed to the BB(1,2) curve almost exactly and are reported with different
colors and symbols.

#78 #72

#72 #72#69

Figure 11: The five hexagonal stackings in untwisted bilayers, their symmetry layer
group (#) and their stability curves with respect to the BB(1,2) twisted bilayer.

Calculations have been done with the free simulation packages Quantum ESPRESSO [57,442

58] (band structure of twisted bilayers) and ABINIT [59,60] (stability of twisted and untwisted443

bilayers).444

In both cases norm-conserving pseudopotentials have been used. We checked that switch-445

ing from one software to the other was not introducing major errors in the main characteristics446

discussed in the paper. In both groups of calculations, the cutoff energy was 30 Ha and we447

sampled the Brillouin zone with a Monkorst-Pack grid of 5 × 5 × 1 k-points in all supercells448

(9×9×1 in the untwisted cases). We used the PBE exchange correlation potential [61] and in-449

cluded van der Waals corrections via the Grimme-D2 scheme [62]. The equilibrium interlayer450

distance has been fixed at 3.22 Å in all bilayers as detailed below. The in-plane cell param-451

eter was a = 2.23 Å and no in-plane relaxation has been done. A cell height L =15 Å has452

been used in all calculations unless specified differently. This value has been fixed by paying453
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attention to the alignment of the σ and π conduction bands. In fact, as already pointed out454

by several authors [15,46–51] the bottom conduction in Γ is composed of nearly-free-electron455

(NFE) states that extend for several Ångströms above the layer and thus converge very slowly456

with the amount of vacuum (Appendix I).457

To fix the interlayer distance, we calculated the total energy per unit formula E(h) at dif-458

ferent input values of the interlayer distance h. Results are reported in Figure 10. We took the459

BB(1,2) and the BB(2,3) bilayers as reference structures. For these bilayers, we sampled h on460

a fine grid. Both bilayers have the energy minimum at h = 3.22 Å, with a negligible energy461

difference (∼ 0.1 meV per formula unit). Then we computed E(h) for the BN(1,2), NN(1,2),462

BNNB(1,2) and BBNN(1,2) bilayers on a coarser grid and found that the points fell basically463

on top of the BB(1,2) curve. Following this analysis, we deduced that we can safely fix the464

equilibrium distance at h = 3.22 Å irrespective of the stacking or the twist angle. We note465

however that this value may be inaccurate for very small twist angles that are not investigated466

in this work.467

H Untwisted bilayers468

It is possible to extend the nomenclature we introduced in the main text to untwisted bilayers.469

In this case, only the stacking label is meaningful, the (q, p) pair being trivially 0 and 1. Note470

however that at fixed stacking, the symmetry group of the untwisted bilayers (reported in471

Figure 11) differ from that of the twisted ones. In Figure 11 we report an image of the structure472

of the five untwisted stackings and their stability curve E(h) together with that of the BB(1,2)473

bilayer. We observe that the three most stable untwisted structures, i.e. the BN(0,1), the474

BNNB(0,1) and the BB(0,1) have a smaller equilibrium distance, whereas for the two most475

unstable, the NN(0,1) and the BBNN(0,1), the equilibrium h is larger, so that the twisted476

bilayers fall somewhat between the two groups. This makes sense if one reckons that inside477

the same twisted bilayer one can find domains with a local stacking intermediate to the five478

untwisted ones.479

In experiments it is observed that, far from certain angles, it is pretty easy to move or twist480

a BN flake on top of another, and this is consistent with the negligible energy differences we481

calculated between different stackings at fixed angle and between the two reference calcu-482

lations with the same stacking sequence. However when the twist angle gets close to some483

specific values, the flake gets stuck and no further twist is possible. In fact, the large energy484

differences with the untwisted configurations (order of 10 meV per unit formula) suggest that485

when approaching small twist angles the bilayer falls into one of the energetically more favor-486

able configurations, possibly undergoing large in-plane deformation to maximize the size of487

the untwisted domains. [30,53,54,63].488

The equilibrium distances, the total energy per BN pair with respect to the BB(1,2) bilayer489

and the values of the DFT direct (at K) and indirect band gaps (between valleys close to K and490

the point M) are reported in Table 5.491
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I Nearly-free-electron states492

s
pz

L=30 Å

h=3.22 Å

Figure 12: Orbital momentum component of the conduction bands of the BN(1,2)
bilayer (fat bands).

As already pointed out by Blase and coworkers in the case of bulk hBN [15], the conduc-493

tion states at Γ converge very slowly with the amount of vacuum because they correspond to494

some unoccupied N-centered nearly-free-electron (NFE) state extending for several Ångströms495

above the BN layer [15,46–51]. These NFE states have a neat 3s orbital component, as shown496

in the fat-band plot reported in Figure 12.497

Their alignment with respect to the π bands is a delicate issue on the purpose of this article498

because the energy difference between the bottom of the unoccupied σ band and the bottom499

of the unoccupied π band are very close in energy and they may compete in determining the500

indirect nature of the gap. Therefore, it is worth paying much attention to their convergence.501

To this aim, we made a series of two test calculations in a BN(1,2) bilayer. First we tested the502

evolution of these states as a function of the height of the simulation cell at fixed interlayer503

distance (the three panels of Figure 13.a). This test shows that by reducing the cell height,504

the NFE states are pushed toward higher energies because of fictitious cell-to-cell interactions.505

Replicas of the system must be separated of around L ∼ 20 Å for the band dispersion and506

alignment to be converged. Note that we decided on purpose to carry out our simulations with507

Table 5: Equilibrium interlayer distance h (Å), total energy per formula unit EBN with
respect to the BB(1,2) bilayer (in meV), smallest indirect gap Eind (eV) and energy
of the smallest direct transition Edir (eV) (direct gap).

System h EBN Eind Edir

BBNN(0,1) 3.425 8.7 3.957 4.037
NN(0,1) 3.375 6.8 4.345 4.037
BB(2,3) 3.220 0.1 4.217 4.251
BB(1,2) 3.220 0 4.318 4.394
BB(0,1) 3.150 -8.3 3.950 4.436

BNNB(0,1) 3.125 -11.1 4.649 4.398
BN(0,1) 3.100 -12.8 4.463 4.438
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a2
L=30 Å
h=3.22 Å

L=20 Å
h=3.22 Å

L=15 Å
h=3.22 Åa1 a3

a: Varying the cell height L

L=60 Å
h=20 Åb1

bilayer
monolayer

b: Varying the interlayer distance h (fix L-h)

L=50 Å
h=10 Åb2 b3

L=47.5 Å
h=7.5 Å

Figure 13: The evolution of the NFE states as a function of the simulation parameters
in the BN(1,2) bilayer. a: evolution as a function of the cell height L at fixed interlayer
dsitance (h = 3.22 Å). L = 30, 20 and 15 Å in panels a1, a2 and a3 respectively. b:
evolution as a function of the interlayer dsitance h at fixed vacuum (L − h = 40 Å).
h = 20, 10 and 7.5 Å in panels b1, b2 and b3 respectively. In panel b1, the band
structure of the BN(1,2) bilayer (flashy green) is compared with that of the isolated
monolayer (black).

a slightly lower value (15 Å) because the fact of pushing the NFE states to higher energies is508

not detrimental to our investigation and allows us to reduce the computational workload.509

Then we tested the evolution of the NFE states as a function of the interlayer distance510

leaving a constant amount of vacuum (L−h) of 40 Å, which is largely enough to prevent cell-511

to-cell interactions. In the panels of Figure 13.b, we report three calculations of the BN(1,2)512

bilayer with a varying interlayer distance (20, 10 and 7.5 Å respectively in panels b1, b2 and513

b3). In the b1 panel, we also plot in black the conduction band of the isolated monolayer in514

the (1,2) supercell and we verify that it coincides with the h = 20 Å bilayer calculation. This515

test demonstrates that moving two layers closer to each other induces a bonding/antibonding516

splitting of the NFE states which increases as the layers get closer.517

Since there is no difference between the interlayer distance separating two layers inside518

the cell and the space separating replicas of the simulated system, one should pay attention519

that these two effects (pushing to higher energies and band splitting) happen at the same time.520
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J Band gap of the δ = 2 family521

In the main text we give the values of the gapwidth of the five stackings of the (1,3) and522

(3,5) supercells. The values have been extracted from the corresponding band plots, so they523

refer to gapwidths calculated along specific high symmetry paths in the Brillouin zone. In524

this section we report a more complete mapping of the band structure of the top valence and525

bottom conduction of the BN stacking, chosen as representative of the bilayers. In Figure 14526

we report the energy surface of the highest occupied states and the lowest unoccupied states in527

the BN(1,3) and BN(3,5) bilayers. With this analysis we demonstrate that the values reported528

in the main text are meaningful because the bottom of the conduction and the top of the529

valence fall indeed on the high symmetry lines.530

For this analysis we acknowledge F. Paleari who kindly provided us with a dedicated anal-531

ysis post-processing tool.532

Figure 14: Energy surface of the lowest empty band (top panels) and the highest
occupied band (bottom panels) of the BN(1,3) and the BN(3,5) bilayers from left to
right. The top valence and the bottom conduction states are highlighted with red
hexagons.
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K Band structure of the other stackings533

Here below we report the band plots missing in the main text corresponding to stackings BBNN,534

BB and BNNB from top to bottom.535

δ=1 δ=2

Figure 15: Band structure as a function of the twist angle of the BBNN, BB and BNNB
stackings from top to bottom.
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