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Abstract. We present the atomic autoencoder architecture, which de-
composes an image as the sum of elementary parts that are parametrized
by simple separate blocks of latent codes. We show that this simple archi-
tecture is induced by the de�nition of a general low-dimensional model
of the considered data. We also highlight the fact that the atomic au-
toencoder achieves disentangled low-dimensional representations under
minimal hypotheses. Experiments show that their implementation with
deep neural networks is successful at learning disentangled representa-
tions on two di�erent examples: images constructed with simple para-
metric curves and images of �ltered o�-the-grid spikes.

Keywords: low dimensional models · autoencoders · disentanglement.

1 Introduction

The autoencoder is a well-known neural network architecture whose goal is to
project data to and from a latent space, which is usually of much smaller dimen-
sionality than the original data space, this feature being useful for a wide variety
of tasks. Given a collection of samples X = (x1, . . . , xN ) in Rn, autoencoders
aim at providing a low dimensional representation of the xi by using an en-
coder/decoder pair: the autoencoder f is the composition of an encoder fE and
a decoder fD and is typically trained by minimizing the quadratic reconstruction
loss LX(f) :=

∑N
i=1 ∥f(xi)− xi∥22, i.e.

f∗ = f∗D ◦ f∗E ∈ argmin
f∈F

LX(f) (1)

where F is the set of autoencoders having a given architecture. Typically, the
encoder fE projects samples to a low-dimensional �latent� space Rd, and the
decoder fD performs the opposite operation, producing data in Rn from a latent
code. In practice, estimating f∗ as a deep neural network parametrized by its
weights and biases has shown a huge number of applications from solving inverse
problems [18] to photo realistic image rendering which employs this architecture
in recent di�usion models.

The intermediate latent representation can be used to create a generative
model of the considered data, i.e. data points can be generated as the image of
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low dimensional points by the decoder in the latent space. However, we can not
only generate but also edit or manipulate data by moving in the latent space.
Towards this goal, several fundamental questions arise: how can one navigate
the latent space with the guarantee that the chosen path does not leave the
latent set? Is it possible to manipulate latent codes in a meaningful way? Such
questions are linked to what is known as the �disentanglement� problem. Indeed,
the ultimate goal of generative models is to establish a latent space where each
coordinate corresponds to a given feature of the data, thus disentangling these
features. For example, for facial images, this could be high-level attributes such
as an expression. Thus, editing an image would correspond simply to moving
along a coordinate in the latent space.

Moreover, we remark that autoencoders are heavily linked to the theory of
low-dimensional representation of data that has seen much development in the
past twenty years with the theory of sparse recovery and compressed sensing and
its extensions (see [10] for an overview). Thus, it appears natural to consider the
disentanglement problem from the viewpoint of this theory.

Contributions In this paper, we consider a widely-used class of low-dimensional
models (in particular for signal and image processing) and then design an au-
toencoder architecture tailored for the learning of such models. The resulting
design leads to disentangled interpretable low-dimensional representations that
can be manipulated in a meaningful way. We consider signals that can be rep-
resented as the sum of a few atoms from a (possibly continuous) dictionary.
Examples of such signals include sketch images and o�-the-grid sums of spikes
models (used in microscopy, astronomy, echo retrieval etc.).

We de�ne in Section 2 the autoencoder architecture that we call the atomic
autoencoder. We show how this architecture is induced by the de�nition of the
general atomic model of the data and discuss its practical implementation with
deep neural networks (DNN). We show two properties of such autoencoders:
under a perfect learning hypothesis, they provide a naturally disentangled rep-
resentation. Secondly, it should not be possible to decompose individual atoms
of the dictionary as the sum of simpler atoms if one is to de�ne meaningful atoms
of the dictionary.

In Section 3, we apply the architecture to two examples: the decomposition of
images composed of parametric curves and the estimation of o�-the-grid spikes
(�ltered by a Gaussian kernel). In these di�erent contexts, we access the disen-
tangled representation and manipulate this representation in a meaningful way:
we modify the local shape of the image in the �rst and access the position and
amplitudes of the spikes in the second example. These properties con�rm that
we have access to a disentangled latent representation with no more constraints
in the training than the speci�c shape of the atomic autoencoder.

Related work The goal of automatically discovering a hidden parametrisation
of a class of objects is the objective of representation learning. Autoencoders
are an ideal setting for this problem, and have existed for a long time, start-
ing in the 1980's [1,4,9]. The work of Cheung et al. [8], Kumar et al. [15] and
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Lezama [17] attempt to achieve disentanglement in autoencoders by incorpo-
rating a covariance loss function into the training process. Lample et al. [16]
proposed Fader networks, which try to isolate a single image characteristic in a
single latent component, with an innovative use of a discriminator network. This
produces a network where the characteristic can be e�ectively controlled with a
slider. Finally, the authors of β-VAE B [11], β-VAE H [6], FactorVAE [13] and
β-TCVAE [7], propose frameworks or regularisation to disentangle variational
autoencoders by weighting the Kullback-Leibler divergence term to encourage
factorised representations in the latent space.

An area of learning that is closely related to our approach is dictionary
learning (see e.g. [20] for an overview), where signals of interest are decomposed
on a �nite family of �xed vectors (atoms). Atomic autoencoders can be seen as a
continuous version of dictionary learning. Extension to coninuous dictionary with
DNN has been proposed using composition of autoencoders in [19]. However, this
architecture does not permit to isolate simple features in a given block of latent
code like atomic autoencoders.

Finally, recent work [21] indicates that trained DNNs can learn the simplest
model, i.e. this model can be learned with minimal distortion, even if worst
case bounds suggest that it is di�cult to achieve in practice [3]. We also note
that the general architecture proposed in this paper shares some similarities
with �branching� architectures [12], however our architecture is geared towards
disentangled latent representations, which is novel.

2 Atomic autoencoders: from sparse models to

disentangled representations with deep neural networks

In this section, we introduce the atomic autoencoder architecture as a conse-
quence of considering a class of generalized sparse models, we discuss some of
its elementary properties and their implementation with DNNs. A now almost
canonical sparsity model is the following:

ΣA,k = {x : x =

k∑
i=1

ai, ai ∈ A} (2)

where A is a set of atoms (often called a dictionnary) and k is the number of
atoms required to represent the data x. For example, in classical sparsity atoms
are weighted vectors of sparsity 1. Such models are ubiquitous in signal and
image processing and have been proven powerful for the resolution of ill-posed
inverse problems.

In the following, we consider �rst an ideal data model and its induced ideal
atomic autoencoder. We make the hypothesis that the xi belong to a model
de�ned by Equation (2). Of course, a more realistic modeling would consider
xi which approximately belong to ΣA,k (e.g. by considering that some distance
d(xi, Σ) between the xi and Σ is bounded), however the impact of this approx-
imation goes beyond the scope of this paper and is left for future work.
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Afterwards, we consider a learned neural network architecture which approx-
imates this ideal model. Obviously, in a real dataset we have no guarantee that
learned architecture perfectly recovers the ideal model. However, recent work
indicates [21] that given a large enough dataset the ideal model can be learned
up to a given distortion.

...
...

Ideal latent code

Ideal data point

Fig. 1. Atomic data model. In this data model, we consider a ideal latent space Θ.
Starting from an ideal latent code θ ∈ Θ, an ideal data point is generated by the sum
of the same function ψ applied to k sub-blocks of θ: ϕ(θ) =

∑k
i=1 ψ(θi), thus de�ning

an atomic decoder architecture.

2.1 Ideal atomic autoencoders

We consider data from the ideal model set ΣA,k ∈ Rn. We suppose that elements
x ∈ ΣA,k are generated from a vector of parameters θ, via a function ϕ, i.e.
x = ϕ(θ). We refer to θ as the ideal latent code.

In the literature of sparse representations, it is often supposed that the set of
atoms A has some additional structure. It can be parametrized using a function
ψ : Rd0 → Rn. Hence, each atom can be written ai = ψ(θi) and for any x ∈ ΣA,k,

x = ϕ(θ) =

k∑
i=1

ψ(θi) (3)

where θi ∈ Rd0 represents a sub-block of size d0 of the ideal latent code1. We
refer to a coordinate of a sub-block θi as a latent coordinate, and note θi,j the j

th

coordinate of the ith block. We have θ = (θ1, . . . , θk) ∈ Rkd0 , as in Equation (3).
We refer to ϕ as the ideal decoder : each data point x ∈ ΣA,k can be coded with
kd0 parameters, using ϕ (and ψ). The ideal atomic data model is illustrated in
Figure 1 and can be rewritten as:

1 We also refer to a sub-block θi simply as a latent block
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ΣA,k = Σψ,k := {x : x =

k∑
i=1

ψ(θi), θi ∈ Θ0}, (4)

where Θ0 ⊂ Rd0 is the set where blocks of ideal latent codes live. We suppose
that the ideal latent set is Θ = ϕ−1(Σψ,k) = Θk0 ⊂ Rkd0 (we start out with the
ideal data, and �nd the ideal latent set through ϕ−1). Note that low-dimensional
representations, i.e. kd0 << n, are often sought after; for example, to serve as a
prior model in inverse imaging problems.

To take a concrete example, for sums of o�-the-grid spikes convolved with
a Gaussian kernel, we can set ψ(θ) = ψ(a, t) = aiG(t) where θ = (a, t), G is
a Gaussian function centered at t, and ai is the amplitude of the spike. Hence
the function ψ parametrizes individual spikes with their amplitude and position.
In another case, with images of non-overlapping disks, ψ is a function which
produces an image of a disk from the position and size of the disk.

From the de�nition of Σψ,k, we see that there exists ζ : Rn → Θ, such that
ϕ ◦ ζ(x) = x for any x ∈ Σ: just de�ne ζ that arbitrarily choses one of the
representations of x in Θ (e.g. using lexicographical order). Indeed, due to the
sum in Equation (3), the ordering of the latent blocks does not matter. We call
ζ the ideal atomic encoder. We have just de�ned the ideal atomic autoencoder
ϕ ◦ ζ induced by the model with the following constraints: the latent set has a
block structure, ie θ = (θ1, . . . , θk) ∈ Rkd0 , and the decoder is the sum of the
same function ψ of di�erent blocks of latent codes (a generating sum of atoms).

To provide useful disentangled representations, the main ingredient for this
architecture is to perform encoding with the smallest dimension possible. We
formalize this by supposing that the ideal latent set is in a (smooth) bijection
with the cube [0, 1]kd0 (see Section 2.3 for a brief discussion on why the latent
set must be bounded). In other words, there is no space left around Θ for codes
that do not produce an element of Σ. This relies on the fact that there is no
smooth bijection from [0, 1]d

′
to [0, 1]d if d′ < d. Given a sets U, V , let C1(U, V )

be the set of continuously di�erentiable functions from U to V .

Assumption 1 (Filling latent set). We say an atomic autoencoder ϕ◦ζ of Σ
yields a �lling latent set Θ = ϕ−1(Σ) if there is a bijection h ∈ C1([0, 1]kd0 , Θ)
with C1 inverse between [0, 1]kd0 and Θ.

Now that we have de�ned the atomic autoencoder, we come back to one
of the initial questions posed in this paper: disentanglement. We argue that
an ideal atomic autoencoder that veri�es Assumption 1 does indeed achieve
disentanglement in the following sense: as Θk is in a smooth bijection with
[0, 1]kd0 , given a non extremal point θ in Θ there is an open set containing θ
such that all points of this set parametrize an element of Σ: we can generate
elements of Σ freely and navigate safely in all directions of the latent set, without
�falling outside�, which is a direct consequence of Assumption 1. Of course we
would need to know h to do this fully, without this knowledge we can still do
it locally. Moreover, thanks to the intrinsic atomic structure, we can modify
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individually each code to change only one �simple� feature of x at a same time.
If θ ∈ Θ and we want to modify one latent block i by a (su�ciently) small change
∆i, the previous property ensures that θ + (0, . . . , 0, ∆i, 0, . . . , 0) ∈ Θ.

We call this notion of disentanglement atomic disentanglement. Given a low-
dimensional model and an autoencoder, it is veri�ed if Assumptions 1 is veri�ed.

Lemma 1. Suppose Σ,Θ, ϕ ◦ ζ, h verify Assumption 1 and int(h−1(Θ)) ̸= ∅
(where int denotes the interior). Let θ ∈ Θ such that h−1(θ) ∈ int(h−1(Θ)).
Then there exists an open set O of Rkd0 such that θ +O ⊂ Θ.

Proof. Let u ∈ int(h−1(Θ)) such that h(u) ∈ Θ. With Assumption 1, as h ∈
C1 and is a bijection, by continuity, there is an open set Õ ∈ Rkd0 such that
h(u+ Õ) ∈ Θ. The image of u+ Õ is an open set Q ⊂ Θ, hence O = Q− h(u)
is an open set and θ +O = h(u)− h(u) +Q = Q ⊂ Θ.

We show in Section 2.2 that Assumption 1 is veri�ed for perfectly trained
atomic autoencoders.

Note that injectivity of ϕ (discussion on injectivity is out of the scope of
this paper and left for future work) is not necessarily required to provide atomic
disentanglement. Having equivalent representations does not a�ect the ability to
navigate the latent space in our de�nition. An example of an ideal autoencoder
that achieves atomic disentanglement is one which addresses the o�-the-grid
sparse spike estimation problem. Indeed, in this case, we can model the data as:

Σ =
{
aG(t1) + bG(t2), a, b ∈ [amin, amax]; t1, t2 ∈ [0, 1]

d
, t1 ̸= t2;

}
, (5)

Note that in many cases, if Σ contains an element composed of k atoms, then
any �simpler� signal composed of less atoms is still in the model (as is usually
done in classical sparsity model), i.e. for all (θi)i∈I , with I ⊂ {1, . . . , k}, we
have that

∑
i∈I ψ(θi) ∈ Σ. We observe in experiments that trained atomic DNN

autoencoders seem to have this property without any explicit constraint for this
in the training, rather it is simply induced by the training data.

2.2 Some elementary properties of learned atomic autoencoders

We consider fE the trained encoder, fD the trained decoder (we drop the star
exponent to keep notations light), and call the latent code z = fE(x) for x ∈ Σ.
Note that z is generally not the same as the ideal latent code θ. We place
ourselves in the case where an ideal atomic autoencoder ζ ◦ ϕ that achieves
atomic disentanglement is induced by Σψ,k. We also suppose that we are able
to train an autoencoder fD ◦ fE up to an arbitrary precision: in the case of a
perfectly trained autoencoder, we have fE : Rn → Rkd0 and for any z ∈ Rkd0 ,
fD(z) =

∑k
j=1 g(zj) for some g : Rd0 → Rn and for any x ∈ Σ, fD ◦ fE(x) = x.

If ϕ, ζ, fD, fE are smooth, fD ◦ fE achieves atomic disentanglement.

Proposition 1. Suppose ϕ, ζ, fD, fE ∈ C1 and ϕ ◦ ζ veri�es Assumption 1 on
Σ. Then fE ◦ fD veri�es Assumption 1 on Σ.
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Proof. De�ne T = f−1
D (Σ). Also, since ϕ ◦ ζ veri�es Assumption 1, we have that

there exists a bijection h ∈ C1 between [0, 1]kd0 and Θ.
Let h̃ = fE ◦ ϕ ◦ h, the function h̃ is C1 by composition of C1 functions and

any element of T is the image of an element of [0, 1]kd0 . Reciprocally, by de�ning
h̃−1 = h−1 ◦ ζ ◦ fD that is also C1, as fD(T ) = Σ, any element of [0, 1]kd0 is the
image of an element of T . This proves Assumption 1.

What this simple proposition tells us is that most of the desirable disentan-
glement properties are guaranteed by the structure of the autoencoder itself, and
having a latent set that ��lls� the latent space is a byproduct of smoothness of
the autoencoder given the dimensions are well chosen (i.e. small enough).

We now show that fD ◦ fE can possibly mix coordinates of the ideal latent
blocks if ψ can be broken into simpler functions. We prove this for the case of
two blocks of size 2 and Θ = [0, 1]2×2.

Proposition 2. Let ϕ ◦ ζ be an atomic autoencoder such that there exists ψ̃
such that ψ(θi) = ψ̃(θi,1) + ψ̃(θi,2) (with Θ = [0, 1]2×2). Then there exists an
atomic autoencoder fD ◦ fE such that fD(z) = g(z1) + g(z2) and for any θ =
(θ1,1, θ1,2, θ2,1, θ2,2) ∈ Θ, fE(ϕ(θ)) = (θ1,1, θ2,1, θ1,2, θ2,2), i.e. the encoder fE
mixes the ideal latent coordinates into two di�erent blocks.

Proof. For the decoder, just consider fD = ϕ and g = ψ. Now de�ne the per-
mutation p of {1, 2, 3, 4}, such that p(1, 1) = (1, 1), p(1, 2) = (2, 1), p(2, 1) =
(1, 2), p(2, 2) = (2, 2)) and the function ρ : [0, 1]2×2 → [0, 1]2×2 such that
[ρ(θ)]p(i,j) = θi,j . Now de�ne fE = ρ ◦ ζ. We have

fD ◦ fE(x) = ϕ(ρ(ζ(x))) = ϕ(ρ(θ)) = ϕ(θ11, θ2,1, θ1,2, θ2,2)

= ψ̃(θ1,1) + ψ̃(θ2,1) + ψ̃(θ1,2) + ψ̃(θ2,2) = ϕ(θ) = x.
(6)

In other words, if the function de�ning the dictionary is the sum of two elemen-
tary functions then single atoms could be coded on several blocks. This is often
not desirable because each block should modify an individual �simple� feature.
In terms of design of the autoencoder, this tells us that if ψ can be broken down
into simpler functions, then latent blocks should be chosen to be smaller. In our
two practical examples, we observe that ψ is no such function.

2.3 A tailored neural architecture

We showed that a large class of datasets can be represented with atomic auto-
encoders. In the experimental part of this article, we will train autoencoders
using (leaky) ReLu DNN architectures. We have seen that it is natural to train

autoencoders fD ◦ fE with the structure fD(z) =
∑k
i=1 g(zi), i.e. the decoder

is made of k identical blocks which approximate ϕ(z) =
∑
i=1,k ψ(zi) and the

encoder must approximate ζ. In fact, this approach is referred to in the deep
learning community as �branching� [12,14,5]. However, there are two major di�er-
ences between standard branching and the proposed approach. We are applying
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a form of branching to the di�erent blocks of code of the latent space of an
autoencoder. In other words, the branching takes place in the decoder only. In
particular, this means that we want the blocks of code to be interpretable as un-
derlying parameters of the data. Moreover the weights of our branched decoders
are the same. In the jargon of deep learning, they are said to be tied.

We highlight the fact that the decoder block g is indeed repeated, so that dur-
ing training, its parameters are the same when applied to all zi's. Note that the
symmetrical architecture proposed by early works on autoencoders does not have
any really satisfying theoretical explanation. It is known from low-dimensional
recovery that low-dimensional signals can be encoded almost universally by lin-
ear encoders while decoders are often non-convex functions that are generally
NP-hard to calculate.

Since our goal is to learn atomic parametrized representations of networks,
we note that training any atomic autoencoder cannot hope to recover a given ψ
up to more than a bijection (restricted to the latent set) from Rd0 to Rd0 , i.e if h :
Rd0 → Rd0 and h−1 are rendered possible by the NN structure, (fD◦h)◦(h−1◦fE)
achieves the same loss LX as fD ◦ fE .

With a �xed autoencoder parametrized by a leaky ReLU DNN, complex
data can only be represented on a bounded latent set in Rkd0 . We see this by
noticing that such an architecture can be seen as a piece-wise a�ne functions.
In particular, the width of unbounded a�ne regions necessarily grows when the
norm of the code increases to in�nity. Determining the bounds of the latent
set is an open question in itself. In our examples we suppose that they can be
well estimated by looking at the bounds of the latent codes of the training data
fE(xi).

Of course, the question of determining the size of the latent code is important
in itself. This question is outside the scope of this paper, but we can mention that
ideas such as sparse regularization of the atomic latent code may be useful in
estimating these parameters. Also, Proposition 2 shows that d0 must be chosen
small enough so that atoms cannot be �split� into smaller atoms.

Implementation details The DNN architecture is designed to be as simple as
possible. The encoder performs iterated 3 × 3 convolutions, with a stride of
2× 2 (subsampling by 2 at each layer), followed by a leaky ReLU non-linearity
(α = 0.2). There are four such layers.The number of convolutional channels is
divided by 2 from 32 to 8, and is kept at 8 until the �nal convolution. Finally,
two fully connected layers, with leaky ReLU (α = 0.2) are used to project the
tensors to the latent space Rkd0 , with k, d0 chosen according to application.

The decoder block g takes a latent block (in Rd0) and outputs an image. The
�rst layers of g are two fully connected layers with leaky ReLUs to reach a size
of 2× 2× 8. This is followed by a convolutional section, with 3× 3 convolutions.
The convolutional section is not symmetric with respect to the encoder, since
we go from a small 2 × 2 × 8 tensor to a full image. Each convolutional layer
contains a 3 × 3 convolution, followed by an upsampling by 2 × 2 and �nally a
leaky ReLU. The number of channels is chosen in a symmetric manner to the
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Fig. 2. Autoencoding 128× 128 mnist images on R30.

encoder: we keep 8 channels until we can increase them by multiplying by 2 until
the �nal layer, which is 32.

Again, we draw attention to the fact that the architecture is simple, with
around 300,000 parameters (depending on the exact application), which is an
extremely lightweight network. Indeed, one of the core ideas is to achieve a
latent space which is as small as possible, to try and ful�ll Assumption 1.

3 Applications

Application to images consisting of parametric curves We �rst consider the au-
toencoding process applied to the model of images x consisting of a set of para-
metric curves: we suppose x =

∑K
i=1 S(θi. S(θi) is a parametric curve, with

parameters θi (e.g. a stroke parametrized by Bezier curves). We apply this mod-
elling to the MNIST database, a good �t as each number in mnist is an amal-
gamation of small penstrokes, which are approximately simple splines convolved
with the shape of the tip of the pen. In order to have a resolution where strokes
will be meaningful, we use a high-resolution version of MNIST [2] (500 × 500),
which we downscale to 128× 128. The �nal latent space size is 30 (block size 3).

We verify that the autoencoder has indeed worked by showing the input and
output in Figure 2 (with some distortion typical of raw autoencoder architec-
tures). We show that the decomposition given by the model is meaningful in
Figure 3. In this Figure, we show both the input and output of the network, as
well as the individual decomposition images fD0

(zi)'s. We observe that the net-
work successfully separates the di�erent strokes which compose mnist. We also
remark that the network does not mix up the spatial locations of the strokes:
each one is connected and continuous. This is very satisfying behaviour, since at
no point have we shown any such examples to the autoencoder: it learns these
simple atoms on its own. In Figure 4, we perform a linear interpolation in the
latent space between two numbers. We verify that each point of the interpolation
does not leave the space of images that are sum of parametric curves.

Application to o�-the-grid sparse spike modelling An important inverse problem
with applications in microscopy, astronomy or acoustic signal processing is spike
detection in images. This corresponds to the task of estimating positions and
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Input Output

Image decomposition : fD(zi)

Fig. 3. Decomposition of an mnist image.We can see that the image of the number
5 has been broken down into several simple strokes, which are spatially localized.

Fig. 4. Interpolation with mnist images. We have interpolated linearly between
two latent codes of images from the mnist dataset. We observe that the strokes are
shortened or lengthened to go from a 6 to a 2.

amplitudes of a series of spikes in an image convolved with a �lter. We create a
synthetic database of such images. We allow for a maximum of 10 spikes, which
are convolved with a Gaussian �lter. The spikes are have minimum separation
larger than the standard deviation of the Gaussian �lter. In this situation, we
know the size of latent blocks is d0 = 3 (position and amplitude). We show in
Figure 5 the application of the trained atomic autoencoder. Again, the network
has learned, with no supervision, to separate the spikes in each image g(zi).
Futhermore, in Figure 6, we see an example of navigation in the latent space.
We have chosen a certain block i and then modi�ed each latent coordinate of
zi. This modi�es the behaviour of the third spike from the top of the image.
The network has put the amplitude of the spike in the �rst coordinate, then two
perpendicular motions in the next two. We note that there is no speci�c reason
for the network to do this: it could have mixed amplitude and positions in one
block. Finally, we observe that the motion is faster in one direction than the
other; indeed there is nothing which imposes them to be the same.

4 Conclusion

We have introduced a simple architecture for the design of autoencoders induced
by the theory of low-dimensional models. We have shown some elementary prop-
erties giving some qualitative facts about the behaviour of this architecture. We
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Input Output

Image decomposition : fD(zi)

Fig. 5. Decomposition of an image of o�-the-grid spikes convolved with a

Gaussian using 10 blocks of latent codes of dimension d0 = 3. We see that our
atomic autoencoder learns to separate each spike seperately in each latent code block,
even though our method is wholly unsupervised. This is due to its atomic structure.

show in two di�erent applications how atomic autoencoders yields disentangled
low-level interpretable parametetric representations.

Many questions arise from these works. From a practical perspective, does
this architecture achieve high level disentangled semantic representations in im-
ages? Could we further normalize latent blocks to ease navigation in the latent
space? Of course many applications could bene�t from this architecture and
adapting it to their speci�cities is an open line of work. From a theoretical point
of view, what exact behaviour can we expect from atomic autoencoders when
they learn the data model up to a given distortion? In order to better understand
the disentanglement properties of atomic autoencoders, can we further expand
the notion of functions ψ that cannot be broken down into simpler functions?
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