
HAL Id: hal-03962754
https://hal.science/hal-03962754

Preprint submitted on 1 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Nash equilibria in extensive-form games
with more than two players

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini,
Rosa Figueiredo

To cite this version:
Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo. Com-
puting Nash equilibria in extensive-form games with more than two players. 2023. �hal-03962754�

https://hal.science/hal-03962754
https://hal.archives-ouvertes.fr

Computing Nash equilibria in extensive-form games with
more than two players

PAOLO ZAPPALÀ, AMAL BENHAMICHE, MATTHIEU CHARDY, FRANCESCO DE PEL-
LEGRINI, ROSA FIGUEIREDO

Identifying efficiently the Nash equilibria of extensive-form games with perfect recall and perfect information

is a known open problem. In this paper, we introduce a new representation of a 𝑁 -player extensive-form game

as an undirected complete graph of its outcomes. The Nash equilibria can hence be characterized directly on

the graph of the outcomes, without naming the corresponding strategies. Such approach lets us introduce two

distinct algorithms for the enumeration of Nash equilibria. The first algorithm iterates over the outcomes

and determines on a subgraph whether each of them is a realisation of a Nash equilibrium. The second

one generalises the backward induction algorithm and recursively enumerates all the outcomes of the Nash

equilibria of the game. The recursive algorithm is more efficient, but it requires the exploration of the entire

game tree, while the iterative algorithm can be used to provide results on any subset of outcomes.

Manuscript submitted for review to the 24nd ACM Conference on Economics & Computation (EC'23).

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 1

1 INTRODUCTION
In extensive-form games with perfect recall and perfect information a finite set of agents, called

players, observe in turns each other’s actions and pick one of the possible subsequent actions

available to them [Kuhn and Tucker, 1953]. A strategy of a player consists of picking one action

whenever they ought to during the game. A Nash equilibrium is a combination of strategies such

that no player has an incentive to change her own strategy. Every game admits at least one Nash

equilibrium [Nash Jr, 1950], but no results have been given on the identification of all Nash equilibria

of a generic extensive-form game. Algorithms for the enumeration of Nash equilibria are provided

for two-player extensive-form games [Zappalà et al., 2023]. Extensive-form games always admit

a specific Nash equilibrium, called subgame perfect equilibrium [Kuhn and Tucker, 1953]. Such

equilibrium can be computed by the algorithm called backward induction [Cayley, 1875], but it

does not give insights on other Nash equilibria. In this paper we introduce a representation of

extensive-form games as an undirected complete graph of their outcomes. We provide a necessary

and sufficient condition for an outcome to be a realisation of a Nash equilibrium. Moreover, we

design an extension of the backward induction algorithm which can be proved to provide the

complete enumeration of all Nash Equilibria of a generic extensive-form game. Section 2 introduces

the reader to extensive-form games and all the formal definitions for the aforementioned objects.

Section 3 discusses the new graph representation of extensive-form games. Section 4 presents

an algorithm to determine if an outcome is a realisation of a Nash equilibrium. In Section 5 we

introduce an algorithm to enumerate the Nash equilibria, which is proved to be polynomial in the

size of the game. Finally, Section 6 ends the paper with possible directions of future research.

2 EXTENSIVE-FORM GAMES
In this section we provide the definitions for extensive-form games with perfect recall and perfect

information as in [Zappalà et al., 2023]. An extensive-form game develops in a finite number

of stages. At every stage there exists a designated player 𝑖 ∈ I who observes a history ℎ′, i.e.,
the sequence of actions occurring up to the stage. The designated player has available a set of

actions A(ℎ′) at this stage. We denote by 𝑃 (ℎ′) the designated player observing the history

ℎ′. When the set of available actions is empty (A(ℎ) = ∅) the game ends, i.e., the sequence of

actions leading to this stage ℎ corresponds to an outcome of the game. We call 𝐻 ′ the set of

histories and 𝐻 ⊂ 𝐻 ′ the set of the outcomes. Every outcome is evaluated by every player 𝑖 ∈ I
through a function, called utility function, 𝑢𝑖 : 𝐻 → R. We also write ℎ𝐴 ≻𝑖 ℎ𝐵 for ℎ𝐴, ℎ𝐵 ∈ 𝐻
when 𝑢𝑖 (ℎ𝐴) > 𝑢𝑖 (ℎ𝐵), or ℎ𝐴 ∼𝑖 ℎ𝐵 when 𝑢𝑖 (ℎ𝐴) = 𝑢𝑖 (ℎ𝐵). Following [Zappalà et al., 2023], we

denote by ℎ′ + ℎ′′ = (𝑎1, 𝑎2, . . . , 𝑎𝑚′ , 𝑏1, 𝑏2, . . . , 𝑏𝑚′′) the concatenation of two vectors of actions

ℎ′ = (𝑎1, 𝑎2, . . . , 𝑎𝑚′) and ℎ′′ = (𝑏1, 𝑏2, . . . , 𝑏𝑚′′). We also denote by ℎ′′′ = ℎ′ ∩ ℎ′′ the lowest

common prefix of the two vectors of actions ℎ′ and ℎ′′, shortly referred as prefix in the following.

The full definition of extensive-form game is therefore:

Definition 2.1 (extensive-form game). An extensive-form game is a tuple Γ = ⟨I,A, 𝐻 ′, 𝐻, 𝑃,𝑢⟩,
where:

• I = {1, . . . , 𝑁 } is the set of players;
• 𝐻 ′ is the set of histories with ∅ ∈ 𝐻 ′;
• A : ℎ′ ∈ 𝐻 ′ → 𝐴 is a function that provides for every history a set of actions 𝐴, i.e. for all

𝑎 ∈ 𝐴, we have ℎ′ + (𝑎) ∈ 𝐻 ′;
• 𝐻 = {ℎ ∈ 𝐻 ′ |A(ℎ) = ∅} ⊂ 𝐻 ′ is the set of outcomes;

• 𝑃 : 𝐻 ′ \ 𝐻 → I is a function that indicates which player 𝑃 (ℎ′) ∈ I acts after observing the

history ℎ′ ∈ 𝐻 ′ \ 𝐻 ;
• 𝑢 = (𝑢𝑖)𝑖∈I , with 𝑢𝑖 : 𝐻 → R the utility function of player 𝑖 ∈ I.

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 2

Since in the literature the representation of the game is the game-tree of possible histories, it

is customary to call a node a history observed by a player. Analogously, we alternatively call an

outcome the final node (or leaf) and the vector of actions leading to it. When a node is not final, the

rest of the game starting at it is itself a game called subgame. Indeed, once a player has observed a

history ℎ𝑘 ∈ 𝐻 ′ with 𝑘 ∈ {1, . . . , |𝐻 ′ |} at a given stage, we know that the alternative actions up to

this stage have not been played. We thus consider the possible histories that derive from ℎ𝑘 .

Example. Let us consider the game-tree of Fig. 1. If player 3 observes the player 1 choosing

ℎ𝑘 = (𝐿), we obtain the subgame framed in Fig. 1. Definition 2.2 formalises the concept of subgame.

Definition 2.2 (subgame). Given an extensive-form game Γ = ⟨I,A, 𝐻 ′, 𝐻, 𝑃,𝑢⟩ and a history ℎ𝑘

we call subgame the game Γ(ℎ𝑘) = ⟨I𝑘 ,A𝑘 , 𝐻 ′𝑘 , 𝐻𝑘 , 𝑃𝑘 , 𝑢𝑘⟩ where:
• I𝑘 = I, i.e., the set of players is the same as in the original game;

• 𝐻 ′𝑘 = {ℎ′𝑘 , ∃ℎ′ ∈ 𝐻 ′, ℎ′ = ℎ𝑘 + ℎ′𝑘 }, the set of histories share the same prefix ℎ𝑘 ;

• A𝑘 (ℎ′𝑘) = A(ℎ𝑘 + ℎ′𝑘);
• 𝐻𝑘 = {ℎ ∈ 𝐻 ′𝑘 |A𝑘 (ℎ) = ∅};
• 𝑃𝑘 (ℎ′𝑘) = 𝑃 (ℎ𝑘 + ℎ′𝑘);
• 𝑢𝑘 = (𝑢𝑘𝑖)𝑖∈I , with 𝑢𝑘𝑖 (ℎ) = (ℎ𝑘 + ℎ).

As in [Zappalà et al., 2023] we only consider pure strategies, from now simply called strategies,
as they are enough to compute all equilibria (cf. Theorem 1 of [Audet et al., 2009]). A strategy is a

function that maps every history observed by a player to an action.

Definition 2.3 (strategy). Given a game Γ = ⟨I,A, 𝐻 ′, 𝐻, 𝑃,𝑢⟩ and a player 𝑖 ∈ I, let 𝐻 ′
𝑃=𝑖

=

{ℎ′ ∈ 𝐻 ′ \𝐻 |𝑃 (ℎ) = 𝑖} be the histories at which the player 𝑖 acts. A strategy 𝑠𝑖 ∈ 𝑆𝑖 is a function
𝑠𝑖 : ℎ

′ ∈ 𝐻 ′
𝑃=𝑖
↦→ 𝑎 ∈ A(ℎ′) that maps every observed history ℎ′ ∈ 𝐻 ′

𝑃=𝑖
to one of the actions

𝑎 ∈ A(ℎ′) available to the player.

We call strategy profile a 𝑁 -tuple of strategies 𝑠 = ⟨𝑠1, 𝑠2, . . . , 𝑠𝑁 ⟩, one for each player. We denote

by 𝑆 = 𝑆1 × 𝑆2 × · · · × 𝑆𝑁 the set of all strategy profiles. If every player chooses a strategy, one

single action is picked at every history; therefore, given a strategy profile, the actions chosen by the

players lead to a single outcome. We denote by 𝑠 ↦→ ℎ the outcome ℎ ∈ 𝐻 of a strategy profile 𝑠 ∈ 𝑆 .
When a player picks a strategy, she limits the set of possible outcomes. We define such specific set

in Definition 2.4.

Definition 2.4 (outcomes of a strategy). Given a game Γ = ⟨I,A, 𝐻 ′, 𝐻, 𝑃,𝑢⟩ and a strategy 𝑠𝑖 ∈ 𝑆𝑖
of a player 𝑖 ∈ I, the set of outcomes 𝐻 (𝑠𝑖) ⊂ 𝐻 of strategy 𝑠𝑖 is

𝐻 (𝑠𝑖) = {ℎ ∈ 𝐻 |∃𝑠′ ∈ 𝑆, 𝑠′𝑖 = 𝑠𝑖 , 𝑠′ ↦→ ℎ}.

We also write 𝐻 (⟨𝑠 𝑗 ⟩𝑗∈ 𝐽) = ∩𝑗∈ 𝐽𝐻 (𝑠 𝑗) to indicate the possible outcomes of a vector of strategies

⟨𝑠 𝑗 ⟩𝑗∈ 𝐽 for some players 𝐽 ⊂ I. We write ⟨𝑠 𝑗 ⟩𝑗∈ 𝐽 = 𝑠−𝑖 when 𝐽 = I \ {𝑖}. Clearly for a strategy

profile 𝑠 ∈ 𝑆 the set 𝐻 (𝑠) = {ℎ} is a singleton. Furthermore, with some abuse of notation, let

𝑢𝑖 (𝑠) := 𝑢𝑖 (𝑠 ↦→ ℎ) denote the utility of player 𝑖 under a certain strategy profile 𝑠 . A strategy profile

is a Nash equilibrium if no player can increase her utility by changing unilaterally her strategy.

Definition 2.5 (Nash equilibrium). Given a game Γ = ⟨I,A, 𝐻 ′, 𝐻, 𝑃,𝑢⟩, a strategy profile ⟨𝑠𝑖⟩𝑖∈I
is a Nash equilibrium if for every 𝑖 ∈ I and for all 𝑠𝑖 ∈ 𝑆𝑖 it holds 𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖) ≥ 𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖).

The recursive algorithm proposed in this work is inspired by the backward induction (BI)

algorithm (cf. Algorithm 1), which is the most known algorithm to compute a Nash equilibrium in

extensive-form games [Cayley, 1875]. However, the backward induction algorithm provides only

a specific subset of Nash equilibria, i.e., the subgame perfect equilibria (SPE). A subgame perfect

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 3

ALGORITHM 1: Backward induction (BI)

Input: A game Γ = ⟨I,A, 𝐻 ′, 𝐻, 𝑃,𝑢⟩ and its root ℎ0 = ∅ ∈ 𝐻 ′.
Output: The set of subgame perfect equilibria 𝑆𝑃𝐸.

if |𝐻 | = 1 then
𝑆𝑃𝐸 = 𝐻 ;

else
𝑖 = 𝑃 (ℎ0) ; // The player acting at the vertex

⟨Γ𝑘 , 𝑆𝑃𝐸𝑘 , ℎ′
𝑘
⟩𝑎𝑘 ∈A(ℎ0) ← ∅;

for 𝑎𝑘 ∈ A(ℎ0) do
Γ𝑘 = Γ(ℎ0 + (𝑎𝑘)) ; // The subgame that follows actions 𝑎𝑘

𝑆𝑃𝐸𝑘 = 𝐵𝐼 (Γ𝑘) ;
ℎ′
𝑘
∈ argminℎ′∈𝑆𝑃𝐸𝑘 𝑢𝑖 (ℎ′) ; // The lowest utility 𝑢𝑖 a SPE can achieve in Γ𝑘

end
𝑆𝑃𝐸 = {ℎ ∈ ∪𝑆𝑃𝐸𝑘 |∀𝑘, ℎ ⪰𝑖 ℎ′𝑘 } ; // Outcome ℎ is preferred by player 𝑖 to any other SPE

end

equilibrium is a Nash equilibrium for every subgame [Selten, 1965]. Every extensive-form game

with perfect recall and perfect information admits a subgame perfect equilibrium in pure strategies.

The backward induction selects, starting from the leaves of the game-tree, the outcomes that are

most favourite by the player acting at a given node. The subgame perfect equilibrium might not

be unique, so the candidate outcome ℎ must be preferred among at least one possible selection of

candidate outcomes {ℎ′
𝑘
∈ 𝑆𝑃𝐸𝑘 } of the other subgames. The value of the corresponding outcomes

thus propagates upwards towards the root of the game-tree as exemplified next.

Example. Let us consider the game Γ represented by tree of Fig. 1a. The preferences of the players

w.r.t. the outcomes are indicated in the caption. Let us compute the subgame perfect equilibria of

the game by applying the BI algorithm. The algorithm starts from the leaves of the tree. Player

1 prefers ℎ2 to ℎ1 (ℎ2 ≻1 ℎ1), player 2 has no strict preference between ℎ3 and ℎ4 (ℎ3 ∼2 ℎ4) and
player 3 prefers ℎ8 to ℎ7 (ℎ8 ≻3 ℎ7). The outcomes ℎ2, {ℎ3, ℎ4} and ℎ8 are the SPE of the respective

subgames, as shown in Fig. 1b. At the second stage of the tree, players 3 and 2 prefer respectively ℎ2
to ℎ3 and ℎ4 (ℎ2 ≻3 ℎ3 ∼3 ℎ4), ℎ5 to ℎ6 and ℎ8 (ℎ5 ≻2 ℎ8 ≻2 ℎ6). Finally, at the root of the tree, player
1 prefers ℎ2 to ℎ5 (ℎ2 ≻1 ℎ5). The (here unique) subgame perfect equilibrium of the game is ℎ2.

In the following section we focus on identifying the outcomes of the Nash equilibria. Let us

consider a strategy profile 𝑠 ∈ 𝑆 . We recall that its realisation is the only element ℎ ∈ 𝐻 belonging

to the set of its possible outcomes 𝐻 (𝑠). For any strategy profile originated by a unilateral deviation
𝑠′ ∈ 𝑆 it must hold 𝑠′𝑖 ≠ 𝑠𝑖 and 𝑠

′
−𝑖 = 𝑠−𝑖 for one and only one 𝑖 ∈ I. Therefore the realisation of any

possible unilateral deviation, namely ℎ′ ∈ 𝐻 , belongs to the set of possible outcomes 𝐻 (𝑠−𝑖) of the
strategies 𝑠−𝑖 ∈ 𝑆−𝑖 = ×𝑗∈I\{𝑖 }𝑆 𝑗 of all players but the one deviating 𝑖 ∈ I. We thus characterise

the realisation of a Nash equilibrium over the sets of outcomes.

Lemma 2.6. Given a game Γ = ⟨I,A, 𝐻 ′, 𝐻, 𝑃,𝑢⟩, an outcome ℎ ∈ 𝐻 is a realisation of a Nash
equilibrium if and only if there exists a strategy profile 𝑠 ∈ 𝑆 such that 𝐻 (𝑠) = {ℎ} and for each 𝑖 ∈ I
and ℎ′ ∈ 𝐻 (𝑠−𝑖) it holds 𝑢𝑖 (ℎ) ≥ 𝑢𝑖 (ℎ′).
Proof. The direct implication is obvious. For the converse let us consider the strategy profile

𝑠 ∈ 𝑆 whose existence is assumed in the statement. Observe that set 𝐻 (𝑠−𝑖) \ {ℎ} = {ℎ′ ∈ 𝐻 |∃𝑠′𝑖 ∈
𝑆𝑖 , 𝑠 = ⟨𝑠𝑖 , 𝑠−𝑖⟩ ↦→ ℎ′, ℎ′ ≠ ℎ} is the set of the outcomes of the strategy profiles of type 𝑠′ where
𝑠′ = ⟨𝑠′𝑖 , 𝑠−𝑖⟩, 𝑠′𝑖 ≠ 𝑠𝑖 , i.e., of strategy profiles which are unilateral deviations from 𝑠 . Hence, for any

such strategy profile it holds 𝑢𝑖 (𝑠′𝑖 , 𝑠−𝑖) = 𝑢𝑖 (ℎ′) ≤ 𝑢𝑖 (ℎ) = 𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖). □

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 4

1

3

1

ℎ1 ℎ2

2

ℎ3 ℎ4

L

2

ℎ5 ℎ6
3

ℎ7 ℎ8

R

{ℎ2}

{ℎ2}

{ℎ2}

ℎ1 ℎ2

{ℎ3, ℎ4}

ℎ3 ℎ4

{ℎ5}

ℎ5 ℎ6
{ℎ8}

ℎ7 ℎ8

a) b)

Fig. 1. Example. a) 3-player game in extensive form. Preferences of the players over the outcomes are
respectively: 𝑢1 : ℎ6 ≻1 ℎ7 ≻1 ℎ8 ≻1 ℎ3 ≻1 ℎ4 ≻1 ℎ2 ≻1 ℎ1 ≻1 ℎ5, 𝑢2 : ℎ5 ≻2 ℎ8 ≻2 ℎ7 ≻2 ℎ6 ≻2 ℎ2 ≻2 ℎ3 ∼2
ℎ4 ≻2 ℎ1 and 𝑢3 : ℎ8 ≻3 ℎ7 ≻3 ℎ6 ≻3 ℎ2 ≻3 ℎ5 ≻3 ℎ3 ≻3 ℎ1 ≻3 ℎ4. A subgame is framed. b) Application of the
backward induction to the game. The subgame perfect equilibrium of the game is ℎ2.

3 GRAPH FORM
In this section we characterize the set of outcomes 𝐻 (𝑠𝑖) of a strategy 𝑠𝑖 ∈ 𝑆𝑖 of a player 𝑖 ∈ I. To
this aim we introduce a new representation of extensive-form games as an undirected graph of their

outcomes. Let us consider the game of Fig. 1. We observe that at the root the first player chooses

between going left (𝐿) and going right (𝑅). Thus, the first player cannot choose a pure strategy that
can lead to both ℎ1 and ℎ8: since two different actions must be chosen, two different strategies must

be taken. Analogously, the second player cannot choose a strategy whose outcomes include both

ℎ3 and ℎ4. With this argument we can conclude that two outcomes cannot be included in the set of

outcomes of the same strategy of a player 𝑖 ∈ I if the paths from the root to such outcomes are

separated at a node where player 𝑖 acts. Given two outcomes ℎ,ℎ′ ∈ 𝐻 , the node at which the paths

from the root to them are separated is the history corresponding to the common prefix ℎ ∩ ℎ′, and
the player acting at such node is 𝑃 (ℎ ∩ℎ′). Moreover, there is always a way for the other players to

let player 1 choose between ℎ1 and ℎ8, i.e., there is a combination of strategies 𝑠−1 ∈ 𝑆−1 = 𝑆2 × 𝑆3
such that ℎ1, ℎ8 ∈ 𝐻 (𝑠−1). We can formalise the above arguments in the following theorem.

Theorem 3.1. Given a game Γ = ⟨I,A, 𝐻 ′, 𝐻, 𝑃,𝑢⟩ and two outcomes ℎ,ℎ′ ∈ 𝐻 , the following
three propositions are equivalent:
(1) 𝑖 = 𝑃 (ℎ ∩ ℎ′);
(2) There is no 𝑠𝑖 ∈ 𝑆𝑖 such that ℎ,ℎ′ ∈ 𝐻 (𝑠𝑖);
(3) There exists a set of strategies 𝑠−𝑖 ∈ 𝑆−𝑖 such that ℎ,ℎ′ ∈ 𝐻 (𝑠−𝑖).
Proof. Let us represent outcomes ℎ and ℎ′ as the two sequences of actions leading to them, i.e.,

ℎ = (𝑎𝑘)𝑘∈{1,...,𝐾 } and ℎ′ = (𝑎′𝑘)𝑘∈{1,...,𝐾 ′ } , respectively. We denote ℎ𝑟 and ℎ′𝑟 the histories which
are the prefix of size 𝑟 of ℎ and ℎ′, respectively. By definition the prefix ℎ ∩ ℎ′, of size 𝑟 , is the
history such that ℎ𝑟 = ℎ′𝑟 for 𝑟 ≤ 𝑟 and ℎ𝑟+1 ≠ ℎ′𝑟+1.
(1) ⇒ (3). Let us consider strategy profile 𝑠 = ⟨𝑠 𝑗 ∈ 𝑆 𝑗 ⟩𝑗∈I defined as follows: 𝑠 𝑗 (ℎ𝑟) = 𝑎𝑟+1 and

𝑠 𝑗 (ℎ′𝑟) = 𝑎′𝑟+1 for all 𝑟 ≠ 𝑟 such that respectively 𝑃 (ℎ𝑟) = 𝑗 or 𝑃 (ℎ′𝑟) = 𝑗 . For all other nodes of

the game tree, the actions are chosen at random. Let us consider two strategies 𝑠𝑖 , 𝑠
′
𝑖 ∈ 𝑆𝑖 of player

𝑖 = 𝑃 (ℎ ∩ℎ′) and such that 𝑠𝑖 (𝑎𝑟) = 𝑎𝑟+1 and 𝑠′𝑖 (𝑎′𝑟) = 𝑎
′
𝑟+1. By construction ⟨𝑠1, . . . , 𝑠𝑖 , . . . , 𝑠𝑁 ⟩ ↦→ ℎ

and ⟨𝑠1, . . . , 𝑠′𝑖 , . . . , 𝑠𝑁 ⟩ ↦→ ℎ′ and thus for all 𝑗 ≠ 𝑖 it holds ℎ,ℎ′ ∈ 𝐻 (𝑠 𝑗).
(2) ⇒ (1). We prove it by contradiction. If 𝑃 (ℎ∩ℎ′) = 𝑗 ≠ 𝑖 we would have that, since (1) ⇒ (3),

there exists 𝑠𝑖 ∈ 𝑆𝑖 such that ℎ,ℎ′ ∈ 𝐻 (𝑠𝑖), against the assumptions in (2).
(3) ⇒ (2). If there is a strategy 𝑠𝑖 ∈ 𝑆𝑖 such that ℎ,ℎ′ ∈ 𝐻 (𝑠𝑖), then we have {ℎ,ℎ′} ⊆ 𝐻 (𝑠), i.e.,

strategy profile ⟨𝑠𝑖 , 𝑠−𝑖⟩ would have more than one outcome, which is absurd. □

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 5

1

2

ℎ1

c

ℎ2

d

a

3

ℎ3

e

ℎ4

f

b

ℎ1

ℎ2 ℎ3

ℎ4

2
1

1

1

1 3

a) b)

Fig. 2. Example of graph form. a) Game in extensive form. b) Game in graph form.

The expression 𝑃 (ℎ ∩ ℎ′) is capital for the following part of the analysis. Let us highlight it by
defining function

𝐼 : 𝐻 × 𝐻 → I where 𝐼 (ℎ,ℎ′) = 𝑃 (ℎ ∩ ℎ′).
It maps the pair of outcomes ℎ,ℎ′ ∈ 𝐻 with ℎ ≠ ℎ′ to the player 𝑖 = 𝐼 (ℎ,ℎ′) that separates their
paths from the root of the game tree. In order to define the set of possible outcomes 𝐻 (𝑠𝑖) of a
strategy 𝑠𝑖 ∈ 𝑆𝑖 of a player 𝑖 ∈ I, it is possible to use directly function 𝐼 to select which elements

ℎ ∈ 𝐻 can or cannot belong to 𝐻 (𝑠𝑖). We therefore represent the game as a complete graph whose

vertex set is made by the game outcomes 𝐻 and each edge (ℎ,ℎ′) ∈ 𝐻 2
is labeled with the label of

player 𝐼 (ℎ,ℎ′).

Definition 3.2. Given an extensive-form game Γ = ⟨I,A, 𝐻 ′, 𝐻, 𝑃,𝑢⟩ the graph form ⟨𝐻, 𝐼,𝑢⟩ is
described by the complete edge-labeled graph with vertex set 𝐻 , where every edge (ℎ,ℎ′) ∈ 𝐻 2

with ℎ ≠ ℎ′ has label 𝐼 (ℎ,ℎ′) = 𝑃 (ℎ ∩ ℎ′) ∈ I and the utility function 𝑢 : 𝐻 → R𝑁 .

Example. Let us observe the game of Fig. 2 with its graph form. In this game each player acts at

only one node, therefore we represent with 𝑠𝑎 the strategy that chooses action 𝑎. The paths from

the root to outcomes ℎ1 and ℎ3 are split by player 1, who can choose whether to go left (strategy

𝑠𝑎) or to go right (strategy 𝑠𝑏). We thus write 𝐼 (ℎ1, ℎ3) = 1 and we assign the label 1 to arc (ℎ1, ℎ3).
Analogously, the paths belonging to outcomes ℎ3 and ℎ4 are split by player 3 who can go either left

(strategy 𝑠𝑒) or right (strategy 𝑠 𝑓). Therefore we write 𝐼 (ℎ3, ℎ4) = 3, assigning label 3 to arc (ℎ3, ℎ4).
As anticipated, we would like to define the set of outcomes of a strategy by using the function

𝐼 : 𝐻 ×𝐻 → I. The graph form contains all the possible values of function 𝐼 (ℎ,ℎ′) for every couple
of outcomes (ℎ,ℎ′) ∈ 𝐻 × 𝐻 of the game. Let us analyse our example and then conclude how to

characterize the set of outcomes of a strategy directly on the graph of the game.

Example. For the game of Fig. 2a let us enlist all the strategies, their possible outcomes and then

observe the corresponding labelling on the graph. Player 1 has two strategies: 𝑠𝑎 and 𝑠𝑏 . If player 1

picks strategy 𝑠𝑎 the only possible outcomes are 𝐻 (𝑠𝑎) = {ℎ1, ℎ2}, while if she picks strategy 𝑠𝑏 we
have𝐻 (𝑠𝑏) = {ℎ3, ℎ4}. Player 2 has two strategies: 𝑠𝑐 and 𝑠𝑑 . If player 2 chooses strategy 𝑠𝑐 , she limits

the possible outcomes to 𝐻 (𝑠𝑐) = {ℎ1, ℎ3, ℎ4}, while if she chooses 𝑠𝑑 we have 𝐻 (𝑠𝑑) = {ℎ2, ℎ3, ℎ4}.
Finally for player 3 we have that 𝐻 (𝑠𝑒) = {ℎ1, ℎ2, ℎ3} and 𝐻 (𝑠 𝑓) = {ℎ1, ℎ2, ℎ4}. Let us consider the
graph form depicted in Fig. 2b and remove all arcs with the same label 𝑖 ∈ I. Formally, let us define

the graph ⟨𝐻, 𝐸 |≠𝑖⟩ for each player 𝑖 ∈ I, with 𝐸 |≠𝑖 = {(ℎ,ℎ′) ∈ 𝐻 2
: 𝐼 (ℎ,ℎ′) ≠ 𝑖} excluding all the

arcs (ℎ,ℎ′) ∈ 𝐸 such that 𝐼 (ℎ,ℎ′) = 𝑖 . Let us consider 𝑖 = 1 and observe the strategies 𝑠1 = 𝑠
𝑎
and

𝑠1 = 𝑠
𝑏
. Their outcomes 𝐻 (𝑠𝑎) = {ℎ1, ℎ2} and 𝐻 (𝑠𝑏) = {ℎ3, ℎ4} form cliques over ⟨𝐻, 𝐸 |≠1⟩. This is

compliant with Theorem 3.1, for which given a strategy 𝑠𝑖 for all elements ℎ,ℎ′ ∈ 𝐻 (𝑠𝑖) we have
that 𝐼 (ℎ,ℎ′) ≠ 𝑖 and thus (ℎ,ℎ′) ∈ 𝐸 |≠𝑖 . Moreover, as proved next, with an argument similar to the

one introduced in [Zappalà et al., 2023] we conclude that such cliques are maximal.

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 6

The above argument can be made stronger: not only the outcomes of a strategy 𝑠𝑖 ∈ 𝑆𝑖 form a

maximal clique over ⟨𝐻, 𝐸 |≠𝑖⟩, but also for every set 𝐶 ⊂ 𝐻 inducing a maximal clique on ⟨𝐻, 𝐸 |≠𝑖⟩
there is a corresponding strategy 𝑠𝑖 ∈ 𝑆𝑖 with such set of outcomes 𝐶 = 𝐻 (𝑠𝑖).

Lemma 3.3. Given an extensive-form game Γ = ⟨I,A, 𝐻 ′, 𝐻, 𝑃,𝑢⟩ and its graph form ⟨𝐻, 𝐼,𝑢⟩, let
us consider ⟨𝐻, 𝐸 |≠𝑖⟩ the graph with 𝐻 as vertices and 𝐸 |≠𝑖 = {(ℎ,ℎ′) ∈ 𝐻 2, 𝐼 (ℎ,ℎ′) ≠ 𝑖} for some
player 𝑖 ∈ I. There is a bijection between the set of maximal cliques of ⟨𝐻, 𝐸 |≠𝑖⟩ and the set of outcomes
of the player’s strategies 𝐻 (𝑆𝑖) = {𝐻 (𝑠𝑖) |𝑠𝑖 ∈ 𝑆𝑖 }.

Proof. Let 𝐶 ⊂ 𝐻 induce a maximal clique on graph ⟨𝐻, 𝐸 |≠𝑖⟩. Let us define a strategy 𝑠𝑖 ∈ 𝑆𝑖
such that 𝐶 ⊂ 𝐻 (𝑠𝑖). We use the same constructive argument as done in Theorem 3.1: for all ℎ ∈ 𝐶 ,
and for all 𝑘-prefix ℎ𝑘 such that 𝑃 (ℎ𝑘) = 𝑖 , we can fix 𝑠𝑖 (ℎ𝑘) = 𝑎𝑘 such that ℎ𝑘 + (𝑎𝑘) = ℎ𝑘+1; indeed,
since 𝐶 is a clique, for every other ℎ′ ∈ 𝐶 such that ℎ𝑘 is a prefix of ℎ′ we have that ℎ𝑘+1 is a prefix
also for ℎ′. For all remaining nodes of the tree, actions can be fixed at random. Let ℎ′′ ∈ 𝐻 \𝐶: by
construction there is ℎ ∈ 𝐶 such that 𝐼 (ℎ,ℎ′) = 𝑖 , so that ℎ′′ ∉ 𝐻 (𝑠𝑖) and thus 𝐻 (𝑠𝑖) = 𝐶 .
We now prove the opposite, i.e., the outcomes of a strategy of player 𝑖 ∈ I define a maximal

clique over ⟨𝐻, 𝐸 |≠𝑖⟩. Consider a strategy 𝑠𝑖 ∈ 𝑆𝑖 and the set of its outcomes 𝐻 (𝑠𝑖). We apply

Theorem 3.1: for every ℎ,ℎ′ ∈ 𝐻 (𝑠𝑖) it holds 𝐼 (ℎ,ℎ′) ≠ 𝑖 . By definition, all the elements ℎ,ℎ′ ∈ 𝐻 (𝑠𝑖)
are connected in ⟨𝐻, 𝐸 |≠𝑖⟩, i.e., 𝐻 (𝑠𝑖) forms a clique. If this clique is not maximal, there exists

𝐶 ⊂ 𝐻 with 𝐻 (𝑠𝑖) ⫋ 𝐶 that induces a maximal clique over ⟨𝐻, 𝐸 |≠𝑖⟩. As done before, we define
𝑠′𝑖 ∈ 𝑆𝑖 a strategy such that 𝐻 (𝑠′𝑖) = 𝐶 . We have thus 𝐻 (𝑠𝑖) ⫋ 𝐻 (𝑠′𝑖). This is absurd. Indeed, since
𝑠𝑖 ≠ 𝑠

′
𝑖 , there exists ℎ

𝑘 ∈ 𝐻 (𝑠′𝑖) with 𝑃 (ℎ𝑘) = 𝑖 such that 𝑠𝑖 (ℎ𝑘) ≠ 𝑠′𝑖 (ℎ𝑘). Let us consider an element

ℎ ∈ 𝐻 (𝑠𝑖) such that ℎ𝑘 + 𝑠𝑖 (ℎ𝑘) is a prefix of ℎ: such element exists because the subgame Γ𝑘 starting
from node ℎ𝑘 + 𝑠𝑖 (ℎ𝑘) must be not empty. We have that ℎ ∈ 𝐻 (𝑠𝑖) and ℎ ∉ 𝐻 (𝑠′𝑖), hence proving
the contradiction. □

The above result characterises the players’ strategies in terms of a structural property of the

graph form of the game. Let us recall that Lemma 2.6 defines a realisation of the Nash equilibria

over the set of outcomes of the strategies, which are then characterised on the graph in Lemma 3.3.

We combine the two lemmas to discuss over the graph whether a candidate outcome ℎ ∈ 𝐻 is the

realisation of a Nash equilibrium 𝑠 ∈ 𝑆 .

Theorem 3.4. Given a game in its graph form ⟨𝐻, 𝐼,𝑢⟩, let us consider ⟨𝐻, 𝐸 |≠𝑖⟩ defined for each
player 𝑖 ∈ I. An outcome ℎ ∈ 𝐻 is a realisation of a Nash equilibrium if and only if there are sets
{𝐶𝑖 ⊂ 𝐻 }𝑖∈I that induce maximal cliques respectively over the graphs {⟨𝐻, 𝐸 |≠𝑖⟩}𝑖∈I such that:

i. ℎ ∈ ∩𝑖∈I𝐶𝑖 ;
ii. ∀ℎ′ ∈ 𝐻 \ {ℎ} and 𝑖 = 𝐼 (ℎ,ℎ′) at least one of the two conditions holds: a) 𝑢𝑖 (ℎ) ≥ 𝑢𝑖 (ℎ′) or b)
ℎ′ ∉ ∩𝑗∈I\{𝑖 }𝐶 𝑗 .

Proof. Let us consider a strategy 𝑠 ∈ 𝑆 as for Lemma 2.6. First, for all 𝑖 ∈ I it must hold

ℎ ∈ 𝐻 (𝑠𝑖). Second, for any other outcome ℎ′ ≠ ℎ, if 𝐼 (ℎ,ℎ′) = 𝑖 we have that ℎ ∈ 𝐻 (𝑠𝑖) implies that

ℎ′ ∉ 𝐻 (𝑠𝑖) (cf. Theorem 3.1). Therefore the only condition that allows ℎ′ ∈ 𝐻 (𝑠−𝑖) = ∩𝑗∈I\{𝑖 }𝐻 (𝑠 𝑗)
is that 𝐼 (ℎ,ℎ′) = 𝑖 . Any outcome ℎ′ ≠ ℎ must thus fulfill at least one of the two conditions: a)

𝑢𝑖 (ℎ) ≥ 𝑢𝑖 (ℎ′) no matter if ℎ ∈ ∩𝑗𝐻 (𝑠 𝑗) or not, or b) ℎ′ ∉ ∩𝑗𝐻 (𝑠 𝑗). Finally, from Lemma 3.3 we

know that the existence of every set 𝐻 (𝑠𝑖) depends on the existence of a set 𝐶𝑖 = 𝐻 (𝑠𝑖) that forms

a maximal clique on graph ⟨𝐻, 𝐸 |≠𝑖⟩. □

Example. Let us apply Theorem 3.4 to the game-graph of Fig. 2b for outcome ℎ2 ∈ 𝐻 . Three
cliques have to be identified 𝐶1, 𝐶2 and 𝐶3. The only set inducing a maximal clique on ⟨𝐻, 𝐸 |≠1⟩
such that ℎ2 belongs to it is 𝐶1 = {ℎ1, ℎ2}. Analogously, the only maximal clique on ⟨𝐻, 𝐸 |≠2⟩

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 7

including ℎ2 is 𝐶2 = {ℎ2, ℎ3, ℎ4}. Finally, the maximal cliques on ⟨𝐻, 𝐸 |≠3⟩ are 𝐶3 = {ℎ1, ℎ2, ℎ3} and
𝐶3 = {ℎ1, ℎ2, ℎ4}. Therefore ℎ1 ∈ 𝐶1 ∩𝐶3 and the condition 𝑢2 (ℎ2) ≥ 𝑢2 (ℎ1) is necessary. On the

other hand, either ℎ3 ∈ 𝐶2 ∩𝐶3 and ℎ4 ∈ 𝐶2 or ℎ4 ∈ 𝐶2 ∩𝐶3 and ℎ3 ∈ 𝐶2. One of the two conditions

between 𝑢1 (ℎ2) ≥ 𝑢1 (ℎ3) and 𝑢1 (ℎ2) ≥ 𝑢1 (ℎ4) must be fulfilled. Finally, ℎ2 is a realisation of a Nash

equilibrium if and only if 𝑢2 (ℎ2) ≥ 𝑢2 (ℎ1) and either 𝑢1 (ℎ2) ≥ 𝑢1 (ℎ3) or 𝑢1 (ℎ2) ≥ 𝑢1 (ℎ4).
In the next sections we apply Theorem 3.4 to introduce new algorithms to identify the realisations

of the Nash equilibria of the game. Before getting to it, we state a property of the graph of the

game, which will be helpful in the following arguments.

Lemma 3.5 (Triangle property). Given a game in its graph form ⟨𝐻, 𝐼,𝑢⟩ let us consider three
outcomes ℎ,ℎ′, ℎ′′ ∈ 𝐻 . If 𝐼 (ℎ,ℎ′′) ≠ 𝐼 (ℎ′′, ℎ′), then either 𝐼 (ℎ,ℎ′) = 𝐼 (ℎ,ℎ′′) or 𝐼 (ℎ,ℎ′) = 𝐼 (ℎ′′, ℎ′).

Example. Let us consider three vertices in the graph of Fig. 2b, for instance vertices ℎ1, ℎ2 and

ℎ3. The arcs (ℎ1, ℎ3) and (ℎ2, ℎ3) have label 1, while the arc (ℎ1, ℎ2) has label 2. The outcome ℎ3
is separated at the root by ℎ1 and ℎ2 and therefore shares with them the same label 𝑖 = 1. Being

the separation held at the same stage, ℎ3 must share the same label with ℎ1 and ℎ2. With a similar

argument it is possible to show that among three outcomes there is always one which is separated

by the other two at the same stage. Formally, since it is impossible that three paths in a tree share

three different intersections, it is possible to prove that no triangle in the graph of a game has three

different labels.

4 ITERATIVE ALGORITHM
In this section we introduce a new method, namely Algorithm 4, to determine on the graph of the

outcomes of the game, from now on also game-graph, whether a tagged outcome is a realisation of

a Nash equilibrium. By iteration of Algorithm 4 on every outcome of the game, it is possible to

enumerate the realisations of Nash equilibria.

The graph form of a game labels every pair of outcomes with the unique player who can be

decisive in choosing among them. In order for an outcome ℎ ∈ 𝐻 to be the realisation of a Nash

equilibrium (cf. Theorem 3.4), any possible outcome ℎ′ ∈ 𝐻 \ {ℎ} resulting from a deviation in

terms of strategies must be either not incentivised, i.e., 𝑢𝑖 (ℎ) ≥ 𝑢𝑖 (ℎ′), or not be a realisation of an

unilateral deviation, i.e., there are at least two players having strategies that do not include ℎ′ as
possible outcome. The first condition is easily verified by checking the values of the utility function

for each tagged player 𝑖 . Let us focus on the second condition: for any other outcome ℎ′ ≠ ℎ with

𝐼 (ℎ,ℎ′) = 𝑖 we have to find sets {𝐶 𝑗 } 𝑗∈I\{𝑖 } inducing maximal cliques on the respective graphs

{⟨𝐻 |𝐸≠𝑗 ⟩} 𝑗∈I\{ 𝑗 } such that for at least one 𝑗 ∈ I \ {𝑖} we have that ℎ′ ∉ 𝐻 (𝑠 𝑗). The aim of the

Algorithm 4 is to verify the existence a set of maximal cliques such to prevent that any outcome

not meeting the first condition 𝑢𝑖 (ℎ) ≥ 𝑢𝑖 (ℎ′) at some player 𝑖 belongs to the intersection of all

cliques but the one corresponding to player 𝑖 . Algorithm 4 allows, given a graph-game ⟨𝐻, 𝐼,𝑢⟩,
precisely to determine if an outcome ℎ ∈ 𝐻 is the realisation of a Nash equilibrium. In the following

paragraphs we develop the steps that lead to the design of the algorithm:

• The graph ⟨𝐻, 𝐸⟩ is partitioned into subgraphs {⟨𝐻𝑖 , 𝐸⟩}𝑖∈I , where 𝐻 = ∪𝑖∈I{𝐻𝑖 } ∪ {ℎ} and
𝐻𝑖 = {ℎ′ ∈ 𝐻, 𝐼 (ℎ,ℎ′) = 𝑖} are the outcomes of the possible unilateral deviations of player 𝑖;

• Any set𝐶 𝑗 ⊂ 𝐻 inducing a maximal clique over ⟨𝐻, 𝐸 |≠𝑗 ⟩ is shown to be a union of sets𝐶 𝑗 =

∪𝑖∈I\{ 𝑗 }𝐶 𝑗 |𝐻𝑖
inducing maximal cliques over the respective subgraphs {⟨𝐻𝑖 , 𝐸 |≠𝑗 ⟩}𝑖∈I\{ 𝑗 }

(cf. Lemma 4.1); the problem can be thus analysed on every subgraph ⟨𝐻𝑖 , 𝐸 |≠𝑗 ⟩;
• The problem of existence of multiple sets {𝐶 𝑗 |𝐻𝑖

⊂ 𝐻𝑖 } 𝑗∈I\{𝑖 } inducing maximal cliques over

the respective subgraphs {⟨𝐻𝑖 , 𝐸 |≠𝑗 ⟩} 𝑗∈I\{𝑖 } is proved to be equivalent to the problem of

existence of a set C𝑖 ⊂ 𝐻𝑖 inducing a maximal clique over ⟨𝐻𝑖 , 𝐸 |=𝑖⟩ (cf. Lemma 4.2);

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 8

ℎ1

ℎ2

ℎ3

ℎ4 ℎ5

ℎ6

ℎ7

ℎ8

1

3

3

1

1

1

3

3

1

1

1

2
1

1

1

1

1

1

1

2

2

2 2

2

3

𝐻2

𝐻3 𝐻1

Fig. 3. Graph form of game of Fig. 1. Given ℎ = ℎ3 as designated outcome, we have 𝐻1 = {ℎ5, ℎ6, ℎ7, ℎ8},
𝐻2 = {ℎ4} and 𝐻3 = {ℎ1, ℎ2}. In the example the chosen strategy profile 𝑠 ∈ 𝑆 is such that 𝐻 (𝑠1) =

𝐶1 = {ℎ1, ℎ3, ℎ4}, 𝐻 (𝑠2) = 𝐶2 = {ℎ1, ℎ2, ℎ3, ℎ5} and 𝐻 (𝑠3) = 𝐶3 = {ℎ3, ℎ4, ℎ5, ℎ6, ℎ7}. Preferences of the
players over the outcomes are respectively: 𝑢1 : ℎ6 ≻1 ℎ7 ≻1 ℎ8 ≻1 ℎ3 ≻1 ℎ4 ≻1 ℎ2 ≻1 ℎ1 ≻1 ℎ5,
𝑢2 : ℎ5 ≻2 ℎ8 ≻2 ℎ7 ≻2 ℎ6 ≻2 ℎ2 ≻2 ℎ3 ∼2 ℎ4 ≻2 ℎ1 and 𝑢3 : ℎ8 ≻3 ℎ7 ≻3 ℎ6 ≻3 ℎ2 ≻3 ℎ5 ≻3 ℎ3 ≻3 ℎ1 ≻3 ℎ4.

• Algorithm 4 thus checks for all 𝑖 ∈ I that on every subgraph ⟨𝐻𝑖 , 𝐸 |=𝑖⟩ there is a set C𝑖 ⊂ 𝐻𝑖
inducing a maximal clique such that none of the elements that do not meet the first condition

𝑋𝑖 = {ℎ′ ∈ 𝐻𝑖 , 𝑢𝑖 (ℎ) < 𝑢𝑖 (ℎ′)} belong to C𝑖 , i.e., such that C𝑖 ∩ 𝑋𝑖 = ∅ (cf. problem of the

excluding maximal clique Algorithm 2);

• At every iteration Algorithm 4 solves a problem of the excluding clique (cf. Algorithm 3),

rather than the equivalent problem of the excluding maximal clique (cf. Algorithm 2).

Induced subgraphs of deviations. From now on the object of the inquire is a designated outcome

ℎ ∈ 𝐻 and whether or not it is the realisation of some Nash equilibrium 𝑠 ∈ 𝑆 . For the sake of
example we shall use the game-graph of Fig. 3 which corresponds to the game of Fig. 1. Let us group

all the outcomes that can be potential unilateral deviations of the same player. In the following we

call alternatively unilateral deviation the strategy 𝑠′𝑖 ≠ 𝑠𝑖 that differs from the one used at the Nash

equilibrium 𝑠 ∈ 𝑆 and the realisation ℎ′ of the new strategy profile 𝑠′ = (𝑠′𝑖 , 𝑠−𝑖) ↦→ ℎ′. Let us define
the set of potential deviations of a given player 𝑖 ∈ I from ℎ

𝐻𝑖 = {ℎ′ ∈ 𝐻 \ {ℎ}, 𝑖 = 𝐼 (ℎ,ℎ′)}.

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 9

ℎ5

ℎ6 ℎ7

ℎ8

2

2

2

2

22

3

𝐻1

ℎ1 ℎ2

ℎ4

1

𝐻2

𝐻3

a) b)

c)

Fig. 4. Induced subgraphs. The candidate outcome is ℎ = ℎ3. We show graph of Fig. 3 induced over a)
𝐻1 = {ℎ5, ℎ6, ℎ7, ℎ8} b) 𝐻2 = {ℎ4} and c) 𝐻3 = {ℎ1, ℎ2}. We recall that the chosen 𝑠 ∈ 𝑆 in the example is such
that 𝐻 (𝑠1) = 𝐶1 = {ℎ1, ℎ3, ℎ4}, 𝐻 (𝑠2) = 𝐶2 = {ℎ1, ℎ2, ℎ3, ℎ5} and 𝐻 (𝑠3) = 𝐶3 = {ℎ3, ℎ4, ℎ5, ℎ6, ℎ7}.

Example. In the game of Fig. 1 let us choose ℎ = ℎ3 and verify whether or not it is a possible

realisation of a Nash equilibrium. The possible deviations from ℎ3 for players 1, 2 and 3 are

respectively𝐻1 = {ℎ5, ℎ6, ℎ7, ℎ8},𝐻2 = {ℎ4} and𝐻3 = {ℎ1, ℎ2} (cf. Fig. 3). We split the set of possible

deviations 𝐻𝑖 = 𝑉𝑖 ∪𝑋𝑖 between those with no incentive of deviating𝑉𝑖 = {ℎ′ ∈ 𝐻𝑖 , 𝑢𝑖 (ℎ) ≥ 𝑢𝑖 (ℎ′)}
and those whose utility would increase for the player 𝑋𝑖 = {ℎ′ ∈ 𝐻𝑖 , 𝑢𝑖 (ℎ) < 𝑢𝑖 (ℎ′)}. Such division

helps us to distinguish those elements, i.e., all the outcomes in {𝑉𝑖 }𝑖∈I , that already meet the first

condition of Theorem 3.4. In the aforementioned example we have 𝑉1 = {ℎ5}, 𝑋1 = {ℎ6, ℎ7, ℎ8},
𝑉2 = {ℎ4}, 𝑋2 = ∅, 𝑉3 = {ℎ1} and 𝑋3 = {ℎ2}.

Direct application of the main theorem. Let us apply Theorem 3.4 on the graph of Fig. 3 for ℎ = ℎ3
by analysing every potential deviation ℎ′ ∈ 𝐻𝑖 for every 𝑖 ∈ I. Let us consider 𝐶1 = {ℎ1, ℎ3, ℎ4},
𝐶2 = {ℎ1, ℎ2, ℎ3, ℎ5} and 𝐶3 = {ℎ3, ℎ4, ℎ5, ℎ6, ℎ7} inducing maximal cliques respectively on ⟨𝐻, 𝐸 |≠1⟩,
⟨𝐻, 𝐸 |≠2⟩ and ⟨𝐻, 𝐸 |≠3⟩. The elements in𝑉1,𝑉2 and𝑉3 alreadymeet the first condition of Theorem 3.4.

Let us thus consider first 𝑋1 = {ℎ6, ℎ7, ℎ8} and then 𝑋3 = {ℎ2} (𝑋2 is empty). By construction, the

elements in 𝑋1 cannot belong to𝐶1. Moreover, we find out that in this case none of the outcomes of

𝑋1 neither belongs to 𝐶2. Therefore we can conclude that for 𝑖 = 1 and every ℎ′ ∈ 𝑋1 there is 𝑗 = 2

such that ℎ′ ∉ 𝐶2. It is thus possible to define strategies such that the deviation to any element

of 𝑋1 is at least bilateral (both players 1 and 2 should change their strategies). Similarly, ℎ2 ∈ 𝑋3

cannot belong to 𝐶3 because it is player 𝐼 (ℎ2, ℎ3) = 3 that can potentially deviate from ℎ3 to ℎ2.

Moreover, ℎ2 ∉ 𝐶1 and therefore player 1 guarantees that the deviation is bilateral, or formally for

𝑖 = 3 and ℎ2 ∈ 𝐶3 there is 𝑗 = 1 such that ℎ2 ∉ 𝐶1. Summing up, we admit that outcomes ℎ1, ℎ4 and

ℎ5 cannot result from unilateral deviations, because they belong to respectively to 𝑉3, 𝑉2 and 𝑉1
and therefore there is no incentive for players to deviate to them. On the other hand, there exists a

strategy profile such that all outcomes ℎ2, ℎ6, ℎ7 and ℎ8 cannot result from unilateral deviations,

since they require at least a strategy deviation from at least two players simultaneously. Finally,

Theorem 3.4 ensures that ℎ = ℎ3 is the realisation of a Nash equilibrium of the game.

In order to simplify the condition of Theorem 3.4, we analyse the relationship between maximal

cliques and the subgraphs induced by sets of possible deviations {𝐻𝑖 }𝑖∈I .
Example. Fig. 4 shows the graph of Fig. 3 induced over respectively𝐻1 = {ℎ5, ℎ6, ℎ7, ℎ8},𝐻2 = {ℎ4}

and𝐻3 = {ℎ1, ℎ2}. Let us suppose that we are given for all 𝑗 ∈ I the set of outcomes𝐶 𝑗 of a strategy

𝑠 𝑗 ∈ 𝑆 𝑗 inducing a maximal clique over graph ⟨𝐻, 𝐸 |≠𝑗 ⟩.
The first observation is that, in order for the designated ℎ ∈ 𝐻 to be an outcome of the strategy

profile 𝑠 ∈ 𝑆 , it must hold ℎ ∈ 𝐶 𝑗 for every 𝑗 ∈ I. By definition of 𝐻 𝑗 , we have that 𝐶 𝑗 ∩ 𝐻 𝑗 = ∅,
because all of its elements are incompatible with ℎ with respect to player 𝑖 .

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 10

ℎ5

ℎ6 ℎ7

ℎ8

2

2

2

2

2

𝐻1

ℎ5

ℎ6 ℎ7

ℎ8

𝐻1

a) b)

Fig. 5. Removing arcs from a induced graph. a) Induced graph ⟨𝐻1, 𝐸 |≠3⟩ b) Induced graph ⟨𝐻1, 𝐸 |=1⟩.

Example. In Fig. 4 we observe𝐶1 ∩𝐻1 = ∅,𝐶2 ∩𝐻2 = ∅ and𝐶3 ∩𝐻3 = ∅. Any set𝐶 𝑗 that verifies

the assumptions of Theorem 3.4 includes solely elements of outcome sets 𝐻𝑖 for 𝑖 ≠ 𝑗 .

The second observation is that the elements in 𝐶 𝑗 ∩ 𝐻𝑖 for any 𝑖 ≠ 𝑗 form a maximal clique also

on the induced graph ⟨𝐻𝑖 , 𝐸 |≠𝑗 ⟩, i.e., with𝐻𝑖 as set of vertices and 𝐸 |≠𝑗 = {(ℎ,ℎ′) ∈ 𝐻 2

𝑖 |𝐼 (ℎ,ℎ′) ≠ 𝑗}.
Example. Let us consider𝐶3 = {ℎ3, ℎ4, ℎ5, ℎ6, ℎ7} and let us analyse𝐶3∩𝐻1 and𝐶3∩𝐻2. The element

ℎ4 is the only element of 𝐶3 ∩𝐻2 and therefore forms a maximal clique within 𝐻2. The elements

{ℎ5, ℎ6, ℎ7} ⊂ 𝐶3 belong to𝐻1 = {ℎ5, ℎ6, ℎ7, ℎ8}. Let us observe the induced graph ⟨𝐻1, 𝐸 |≠3⟩ in Fig. 5a.
The outcomesℎ7 andℎ8 are not connected since 𝐼 (ℎ7, ℎ8) = 𝑗 = 3. The elements𝐶3∩𝐻1 = {ℎ5, ℎ6, ℎ7}
form indeed a maximal clique within ⟨𝐻1, 𝐸 |≠3⟩.

With the following lemmawe show that it is equivalent to look for amaximal clique over the graph

⟨𝐻, 𝐸 |≠𝑗 ⟩ and looking for 𝑁 − 1 maximal cliques on the 𝑁 − 1 respective graphs {⟨𝐻𝑖 , 𝐸 |≠𝑗 ⟩}𝑖∈I\{ 𝑗 } .

Lemma 4.1 (Partition). Given a game in its graph form ⟨𝐻, 𝐼,𝑢⟩, a player 𝑖 ∈ I and the
graph ⟨𝐻, 𝐸 |≠𝑗 ⟩, every set 𝐶 𝑗 inducing a maximal clique over the graph ⟨𝐻, 𝐸 |≠𝑗 ⟩ is the union
𝐶 𝑗 = ∪𝑖∈I\{ 𝑗 }𝐶 𝑗 |𝐻𝑖

of the disjoint sets 𝐶 𝑗 |𝐻𝑖
= 𝐶 𝑗 ∩ 𝐻𝑖 inducing maximal cliques over ⟨𝐻𝑖 , 𝐸 |≠𝑗 ⟩.

Proof. We recall that 𝐻𝑖 = {ℎ′ ∈ 𝐻 |𝐼 (ℎ,ℎ′) = 𝑖} is the set of possible deviations from the

designated outcome ℎ ∈ 𝐻 . It is enough to prove that within the main graph ⟨𝐻, 𝐸 |≠𝑗 ⟩ every
two elements ℎ𝑖′ , ℎ𝑖′′ belonging to two different sets of possible deviations, i.e., ℎ𝑖′ ∈ 𝐻𝑖′ and
ℎ𝑖′′ ∈ 𝐻𝑖′′ with 𝑖′, 𝑖′′ ∈ I \ { 𝑗} and 𝑖′ ≠ 𝑖′′, are always connected. Formally, we need to show that

it always holds (ℎ𝑖′ , ℎ𝑖′′) ∈ 𝐸 |≠𝑗 , i.e., 𝐼 (ℎ𝑖′ , ℎ𝑖′′) ≠ 𝑗 . Given the designated ℎ ∈ 𝐻 , we observe that
𝐼 (ℎ,ℎ𝑖′) = 𝑖′ and 𝐼 (ℎ,ℎ𝑖′′) = 𝑖′′. For the triangle property of Lemma 3.5 either 𝐼 (ℎ𝑖′ , ℎ𝑖′′) = 𝑖′ ≠ 𝑗 or

𝐼 (ℎ𝑖′ , ℎ𝑖′′) = 𝑖′′ ≠ 𝑗 , which concludes the proof. □

Example. Let us consider again the game-graph of Fig. 3 with candidate outcome ℎ = ℎ3. Let us

characterise a generic maximal clique 𝐶2, i.e., the set of outcomes of a strategy 𝑠2 ∈ 𝑆2 of player
𝑗 = 2 that admits ℎ3 ∈ 𝐻 (𝑠2) = 𝐶2 as possible outcome. By hypothesis we have to fix ℎ3 ∈ 𝐶2

and ℎ4 ∉ 𝐶2, since 𝐻2 = {ℎ4}. Let us consider thus 𝐻1 = {ℎ5, ℎ6, ℎ7, ℎ8} and 𝐻3 = {ℎ1, ℎ2}. Given
any edge (ℎ′, ℎ′′) ∈ 𝐻1 × 𝐻3, the label 𝐼 (ℎ′, ℎ′′) ≠ 2 again from Lemma 3.5. In this specific case

𝐼 (ℎ′, ℎ′′) = 1 for every pair of elements. Any candidate strategy 𝑠2 ∈ 𝑆2 for a Nash equilibrium 𝑠 ∈ 𝑆
having 𝑠 ↦→ ℎ3 as realisation has therefore a set of outcomes 𝐻 (𝑠2) = 𝐶2 = {ℎ3} ∪ (𝐶2 |𝐻1

) ∪ (𝐶2 |𝐻3
),

where 𝐶2 |𝐻1
and 𝐶2 |𝐻3

are sets of elements that induce a maximal clique respectively on ⟨𝐻1, 𝐸 |≠2⟩
and ⟨𝐻3, 𝐸 |≠2⟩.
Theorem 3.4 requires to identify for every 𝑗 ∈ I a maximal clique over the graph ⟨𝐻, 𝐸 |≠𝑗 ⟩.

Thanks to the latest result, it is possible to check the existence of such maximal clique on every

induced graph ⟨𝐻𝑖 , 𝐸 |≠𝑗 ⟩. We thus rewrite the necessary and sufficient condition on the induced

subgraphs: for all 𝑖 ∈ I there must be a set 𝐶 𝑗 |𝐻𝑖 inducing a maximal clique for every player

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 11

ALGORITHM 2: (MC) Existence of a maximal clique excluding a set of vertices

Input: ⟨𝐻, 𝐸,𝑋 ⟩ defining a graph ⟨𝐻, 𝐸⟩ and a subset of vertices 𝑋 ⊂ 𝐻 .
Output: Is there a vertex set 𝐶 ⊂ 𝐻 \ 𝑋 that induces a maximal clique on ⟨𝐻, 𝐸⟩?

𝑗 ∈ I \ {𝑖} such that none of the possible deviations ℎ′ ∈ 𝑋𝑖 ⊂ 𝐻𝑖 belongs to the intersection of the

maximal cliques ∩𝑗∈I\{𝑖 }𝐶 𝑗 |𝐻𝑖
.

Example. In Fig. 5a we have that 𝑋1 = {ℎ6, ℎ7, ℎ8} and the induced sets over 𝐻1 = {ℎ5, ℎ6, ℎ7, ℎ8}
that induce maximal cliques are respectively 𝐶2 |𝐻1

= {ℎ5} and 𝐶3 |𝐻1
= {ℎ5, ℎ6, ℎ7}. The property

(∩𝑗∈I\{𝑖 }𝐶 𝑗) ∩𝑋𝑖 = ∅ is fulfilled, since (𝐶2 ∩𝐶3) |𝐻1
= {ℎ5} and 𝑋1 = {ℎ6, ℎ7, ℎ8} have no elements

in common.

Let us discuss the properties of the intersection ∩𝑗∈I\{𝑖 }𝐶 𝑗 |𝐻𝑖
: these are the possible unilateral

deviations of player 𝑖 , given the strategies of the other players ∩𝑗∈I\{𝑖 }𝐶 𝑗 |𝐻𝑖
= 𝐻 (𝑠−𝑖) for some

𝑠−𝑖 ∈ 𝑆−𝑖 . Let us observe that given the possible outcomes ∩𝑗∈I\{𝑖 }𝐶 𝑗 |𝐻𝑖
it is the player 𝑖 ∈ I who

chooses which one is to be the deviation. In other words, it is intuitive that for every pair of elements

ℎ,ℎ′ ∈ ∩𝑗∈I\{𝑖 }𝐶 𝑗 |𝐻𝑖
it must hold 𝐼 (ℎ,ℎ′) = 𝑖 . Let us show that this property is maximal and thus

that identifying an intersection of maximal cliques ∩𝑗∈I\{𝑖 }𝐶 𝑗 |𝐻𝑖
is equivalent to identifying a set

C𝑖 inducing a maximal clique over 𝐻𝑖 .

Lemma 4.2. Given a game in graph form ⟨𝐻, 𝐼,𝑢⟩, a player 𝑖 ∈ I and the induced subgraph ⟨𝐻𝑖 , 𝐸⟩
on the set of possible deviations 𝐻𝑖 and a set C𝑖 ⊂ 𝐻𝑖 , the two conditions are equivalent:
• C𝑖 induces a maximal clique over graph ⟨𝐻𝑖 , 𝐸 |=𝑖⟩, where 𝐸 |=𝑖 = {(ℎ,ℎ′) ∈ 𝐻 2

𝑖 |𝐼 (ℎ,ℎ′) = 𝑖};
• There are sets {𝐶 𝑗 |𝐻𝑖

} 𝑗∈I\{𝑖 } inducing maximal cliques over the graphs {⟨𝐻𝑖 , 𝐸 |≠𝑗 ⟩} 𝑗∈I\{𝑖 } such
that C𝑖 = ∩𝑗∈I\{𝑖 }𝐶 𝑗 |𝐻𝑖

.

Proof. For sake of clarity, in the proof we drop the subscript |𝐻𝑖
from 𝐶 𝑗 |𝐻𝑖

.

We first prove the direct implication. Let C𝑖 induce a maximal clique over ⟨𝐻𝑖 , 𝐸 |=𝑖⟩ and for all

𝑗 ∈ I \ {𝑖} a set 𝐶 𝑗 with C𝑖 ⊂ 𝐶 𝑗 induce maximal clique over the graphs ⟨𝐻𝑖 , 𝐸 |≠𝑗 ⟩. The sets {𝐶 𝑗 }
are well defined because for all ℎ′, ℎ′′ ∈ C𝑖 it holds 𝐼 (ℎ′, ℎ′′) = 𝑖 ≠ 𝑗 . We observe that for every

ℎ′, ℎ′′ ∈ ∩𝑗𝐶 𝑗 it holds 𝐼 (ℎ′, ℎ′′) = 𝑖 and thus C𝑖 ⊂ ∩𝑗𝐶 𝑗 . Since C𝑖 is a maximal clique, C𝑖 = ∩𝑗𝐶 𝑗 .
Now let us prove the opposite, i.e., let us show that C𝑖 = ∩𝑗𝐶 𝑗 induces a maximal clique over

⟨𝐻𝑖 , 𝐸 |=𝑖⟩. For all ℎ′, ℎ′′ ∈ C𝑖 it holds 𝐼 (ℎ′, ℎ′′) = 𝑖 , i.e., C𝑖 induces a clique on ⟨𝐻𝑖 , 𝐸 |=𝑖⟩. Let us show
that it is maximal. By contradiction, there is C′𝑖 ⊃ C𝑖 forming a maximal clique over {𝐻𝑖 , 𝐸 |=𝑖 }.
With a similar argument used for Lemma 3.3 we prove that this is absurd. □

Let us observe the induced graph ⟨𝐻1, 𝐸 |=1⟩ of Fig. 5b. There are no edges with label 1 and

therefore all the maximal cliques are the single vertices. This means that players 2 and 3 can identify

strategies such that player 1 is forced to pick only the vertex chosen by them.

Problem of the excluding maximal clique. The necessary and sufficient condition of Theorem 3.4

is equivalent to verify whether on every graph ⟨𝐻𝑖 , 𝐸 |=𝑖⟩ there is a set C𝑖 that induces a maximal

clique such that C𝑖 ∩ 𝑋𝑖 = ∅. The problem is known as the the existence of a maximal clique

excluding a set of vertices (cf. Algorithm 2).
1
The condition is thus to verify with the problem of

Algorithm 2 with input ⟨𝐻, 𝐸,𝑋 ⟩ = ⟨𝐻𝑖 , 𝐸 |=𝑖 , 𝑋𝑖⟩ for every 𝑖 ∈ I the existence of a set 𝐶 ⊂ 𝐻𝑖 \ 𝑋𝑖
inducing a maximal clique over 𝐻𝑖 .

Equivalent problem of the excluding clique. In [Zappalà et al., 2023] it is proved that such problem

is equivalent to determine whether there is a (non-maximal) clique on 𝑉 = 𝐻 \ 𝑋 such that for

every element in 𝑋 there is at least one in 𝑉 not connected to it (cf. Algorithm 3). Such problem is

1
For sake of clarity, the definitions of the problem of the excluding maximal clique and the problem of the excluding clique

[Zappalà et al., 2023] are presented in the Appendix A.

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 12

ALGORITHM 3: (EC) Existence of a clique excluding a set of vertices
Input: ⟨𝑉 ,𝑋, 𝐸⟩ defining a graph ⟨𝑉 ∪ 𝑋, 𝐸⟩ with 𝑉 ∩ 𝑋 = ∅.
Output: Is there a vertex set 𝐶 ⊂ 𝑉 that induces a clique on ⟨𝑉 ∪ 𝑋, 𝐸⟩ such that for all ℎ′′ ∈ 𝑋 there is

ℎ′ ∈ 𝐶 so that (ℎ′, ℎ′′) ∉ 𝐸?

ALGORITHM 4: (NE) Determining whether an outcome is a realisation of a Nash equilibrium

Input: A game in its graph form = ⟨𝐻, 𝐼,𝑢⟩ and an outcome ℎ ∈ 𝐻 .
Output: Is ℎ a realisation of a Nash equilibrium?

𝑏𝑜𝑜𝑙𝑒𝑎𝑛 = 𝑇𝑟𝑢𝑒 ; // A boolean value determining whether ℎ is a realisation of a NE

for 𝑖 ∈ I do
𝑉𝑖 ← {ℎ′ ∈ 𝐻 \ {ℎ}, 𝐼 (ℎ,ℎ′) = 𝑖, 𝑢𝑖 (ℎ) ≥ 𝑢𝑖 (ℎ′)};
𝑋𝑖 ← {ℎ′ ∈ 𝐻 \ {ℎ}, 𝐼 (ℎ,ℎ′) = 𝑖, 𝑢𝑖 (ℎ) < 𝑢𝑖 (ℎ′)};
𝐸 |𝑉𝑖∪𝑋𝑖

= {(ℎ,ℎ′) ∈ 𝑉𝑖 ∪ 𝑋𝑖 , 𝐼 (ℎ,ℎ′) = 𝑖};
if Output of Algorithm 3 with input ⟨𝑉𝑖 , 𝑋𝑖 , 𝐸 |𝑉𝑖∪𝑋𝑖

⟩ is negative then
𝑏𝑜𝑜𝑙𝑒𝑎𝑛 = 𝐹𝑎𝑙𝑠𝑒;

end
end

NP-complete on a generic graph, but it comes with a simple integer linear formulation [Zappalà

et al., 2023].

We can thus rely on Theorem 3.4, the latest results and the newly introduced problem to present

Algorithm 4 which determines whether an outcome is a realisation of a Nash Equilibrium.

Theorem 4.3. Given a game in its graph form ⟨𝐻, 𝐼,𝑢⟩ and an outcome ℎ ∈ 𝐻 as input, Algorithm 4
determines whether ℎ is a realisation of a Nash equilibrium.

Proof. Let us define the set of possible unilateral deviations 𝐻𝑖 = {ℎ′ ∈ 𝐻, 𝐼 (ℎ,ℎ′) = 𝑖}, with
𝐻𝑖 = 𝑉𝑖 ∪𝑋𝑖 as in Algorithm 4. Theorem 3.4 states that the necessary and sufficient condition for ℎ

to be a realisation of a Nash equilibrium is the existence of sets {𝐶𝑖 }𝑖∈I inducing maximal cliques

over the respective graphs {⟨𝐻, 𝐸 |≠𝑖⟩}𝑖∈I such that ℎ ∈ ∩𝑖∈I𝐶𝑖 and ∩𝑗∈I\{𝑖 }𝐶 𝑗 ⊂ 𝑉𝑖 . The previous
results let us simplify such condition up to the excluding clique problem: for sake of clarity, hereafter

let us summarise the argument. For Lemma 4.1 the condition is equivalent to verifying for all 𝑖 ∈ I
the existence of sets {𝐶 𝑗 |𝐻𝑖

⊂ 𝐻𝑖 } 𝑗∈I\{𝑖 } inducing maximal cliques over graphs {⟨𝐻𝑖 , 𝐸 |≠𝑗 ⟩}𝑖∈I
such that ∩𝑗∈I\{𝑖 }𝐶 𝑗 |𝐻𝑖

⊂ 𝑉𝑖 . Finally, for Lemma 4.2 this condition is equivalent to verifying for all

𝑖 ∈ I the existence of a set C𝑖 ⊂ 𝑉𝑖 that induces a maximal clique over ⟨𝐻𝑖 , 𝐸 |=𝑖⟩. Since the problem
of the excluding maximal clique is equivalent to the problem of the excluding clique [Zappalà et al.,

2023], we have the proof. □

5 RECURSIVE ALGORITHM
Algorithm 4 allows us to determine if an outcome is a possible realisation of a Nash equilibrium.

If we iterate the algorithm over all the outcomes of the game, it is possible to enumerate all the

realisations of Nash equilibria. However, we observe that many computations are repeated. In

this section we discuss Algorithm 5, that allows to perform the enumeration while avoiding such

repetitions. The following arguments are developed in the rest of the section:

• If we fix the graph ⟨𝐻𝑖 , 𝐸 |=𝑖⟩, the problem of identifying a clique on 𝐻𝑖 excluding 𝑋𝑖 = {ℎ′ ∈
𝐻𝑖 , 𝑢𝑖 (ℎ) < 𝑢𝑖 (ℎ′)} depends solely on the parameter 𝑢𝑖 (ℎ). Not all designated outcomes ℎ

allow to find an excluding clique: there is a value 𝑢 = 𝑢𝑖 (\𝑖) for some \𝑖 ∈ 𝐻𝑖 over which the

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 13

clique exists and under which the clique does not; we call this value threshold outcome (cf.

Definition 5.1);

• Solving the problem of the excluding clique for a given ℎ ∈ 𝐻 on a graph ⟨𝐻𝑖 , 𝐸 |=𝑖⟩ is thus
equivalent to comparing the value of 𝑢𝑖 (ℎ) to 𝑢𝑖 (\𝑖), i.e., the utility of the threshold outcome

\𝑖 ∈ 𝐻𝑖 ; Algorithm 5 avoid repetitions by first computing such thresholds;

• The set 𝐻𝑖 is the union of different subgames and thus its threshold can be obtained by either

maximising or minimising the utility of the thresholds of such subgames (cf. Lemma 5.2);

• It is thus possible to compute all thresholds recursively on the game-tree by decomposing

every subgames in smaller ones;

• Algorithm 5 recursively computes the thresholds of every subgame and checks simultaneously

whether every outcome ℎ ∈ 𝐻 meets them (cf. Theorem 5.3).

Example. Let us consider the game-graph of Fig. 3. Let us apply Algorithm 4 to the designated

outcomes ℎ3, ℎ4 ∈ 𝐻 . In the case of ℎ3 ∈ 𝐻 we recall that the possible unilateral deviations for

the players are respectively 𝐻1 = {ℎ5, ℎ6, ℎ7, ℎ8}, 𝐻2 = {ℎ4} and 𝐻3 = {ℎ1, ℎ2}. For the case of

outcome ℎ4 ∈ 𝐻 by inspection the possible deviations are 𝐻1 = {ℎ5, ℎ6, ℎ7, ℎ8}, 𝐻2 = {ℎ3} and
𝐻3 = {ℎ1, ℎ2}. Even if 𝐻1 and 𝐻3 are unchanged, the input of Algorithm 2, namely ⟨𝐻𝑖 , 𝐸 |≠𝑖 , 𝑋𝑖⟩,
with 𝑋𝑖 = {ℎ′ ∈ 𝐻𝑖 |𝑢𝑖 (ℎ) < 𝑢𝑖 (ℎ′)}, is changed. However, the only parameter that changes is 𝑢𝑖 (ℎ).

We can avoid to repeat part of such computations by identifying the lowest value of utility 𝑢𝑖 (ℎ)
that an outcome ℎ ∈ 𝐻 must achieve in order to admit a set C𝑖 inducing a maximal clique over

⟨𝐻𝑖 , 𝐸 |=𝑖⟩ such that C𝑖 ∩ 𝑋𝑖 = ∅, with 𝑋𝑖 = {ℎ′ ∈ 𝐻𝑖 , 𝑢𝑖 (ℎ) < 𝑢𝑖 (ℎ′)}. Let us observe that if 𝑋𝑖 = ∅
for some 𝑢𝑖 (ℎ), then the maximal clique always exists. As the parameter 𝑢𝑖 (ℎ) decreases, the set 𝑋𝑖
gets larger and it is thus less likely to find a maximal clique. When 𝑢𝑖 (ℎ) is lower than the value

of 𝑢𝑖 (ℎ′) for any ℎ′ ∈ 𝐻𝑖 , we have that 𝑋𝑖 = 𝐻𝑖 and thus the maximal clique does not exist. The

intuition is the following: the lowest value of utility that an outcome can attain corresponds to an

element of 𝐻𝑖 which is the one with the smallest utility among those which that cannot be included

in 𝑋𝑖 for a maximal clique to be identified in 𝐻𝑖 \𝑋𝑖 . For this reason, we call this element a threshold
outcome.

Definition 5.1 (Threshold). Given a game in graph form ⟨𝐻, 𝐼,𝑢⟩, a player 𝑖 ∈ I, a designated
outcome ℎ and the set 𝐻𝑖 ⊂ 𝐻 of of her possible deviations, a threshold outcome \𝑖 ∈ 𝐻𝑖 is such
that Algorithm 2 with input ⟨𝐻𝑖 , 𝐸 |≠𝑖 , 𝑋𝑖⟩ with 𝑋𝑖 = {ℎ′ ∈ 𝐻𝑖 |𝑢 < 𝑢𝑖 (ℎ′)} admits solutions for every

𝑢 ≥ 𝑢𝑖 (\𝑖) and does not admit solution for every 𝑢 < 𝑢𝑖 (\𝑖).
It is obvious that player 𝑖 attains same utility at threshold outcomes.

Example. In the game-graph of Fig. 3 the corresponding subgraphs ⟨𝐻1, 𝐸 |=1⟩, and ⟨𝐻3, 𝐸 |=3⟩
have trivially no edges, and thus every outcome alone generates a maximal clique. In this case the

minimum value admitted for ℎ3 and ℎ4 are the minimum values of the elements of the induced

graphs in𝐻1 for player 1 and in𝐻3 for player 3. Such values, which are the thresholds for𝐻1 and𝐻3,

are respectively ℎ5 and ℎ1: 𝑢
𝑚𝑖𝑛
1

= minℎ′∈𝐻1
𝑢1 (ℎ′) = 𝑢1 (ℎ5) and 𝑢𝑚𝑖𝑛3

= minℎ′∈𝐻3
𝑢3 (ℎ′) = 𝑢3 (ℎ1).

The candidate outcomes ℎ3 and ℎ4 must be compared first with \1 = ℎ5 with respect to player 1:

we observe both ℎ3 ⪰1 ℎ5 and ℎ4 ⪰1 ℎ5. Then they both must be compared to \3 = ℎ1 with respect

to player 3: we have that ℎ3 ⪰3 ℎ1, but ℎ4 ≺3 ℎ1. Therefore ℎ4 cannot be the realisation of a Nash

equilibrium, because no maximal clique can be identified on 𝐻3, indeed 𝑋3 = 𝐻3.

The first intuition at the base of Algorithm 5 is that that the set of possible deviations 𝐻𝑖 from a

target outcome ℎ is the union of the outcomes of all the subgames that must be avoided by player 𝑖

in order to attain ℎ. Furthermore, such subgames are separated one from the other by the label 𝑖 on

the game-graph, because it is player 𝑖 who is decisive in not attaining them.

Example. Let us go back to the game-tree of Fig. 1: in order to get to ℎ3 or ℎ4 player 1 does

not go right at the root. Note that the corresponding subgame is identified by the deviating

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 14

outcomes 𝐻1 = {ℎ5, ℎ6, ℎ7, ℎ8}, so that we can associate to it the corresponding threshold outcome

ℎ5 corresponding to 𝐻1. Then, again, at the following node, player 3 need not to go left. By direct

computation, the threshold for the corresponding subgame, identified this time by the deviating

outcomes 𝐻3 = {ℎ1, ℎ2}, is ℎ1. Note that, in this case, the sets 𝐻1 and 𝐻3 correspond to two unique

subgames.

The second intuition of Algorithm 5 is that in order to prevent a deviation of player 𝑖 ∈ I from

ℎ to another outcome belonging to a subgame, the other players pick strategies so as to let her

available the outcomes with the lowest utility. Among these outcomes player 𝑖 chooses the one

with the highest utility ℎ′. If this outcome is preferred to ℎ′ by player 𝑖 , there is no way for the

other players to keep her from deviating to the subgame. The outcome ℎ′ with the lowest value of

utility that can be chosen by player 𝑖 ∈ I is later proved to be the threshold of the subgame rooted

at the node where player 𝑖 acts. More specifically, we show below that the threshold outcome is

obtained via a minmax argument: it is obtained by supposing that in every subgame all players but

𝑖 minimise the value of the utility function 𝑢𝑖 , while player 𝑖 maximises it. Hence, this argument is

the basis for the design of a recursive computation of thresholds and equilibria on the game-tree.

The key observation is that the game-graph of a subgame can be partitioned in the game-graphs

of the subgames at the lowest stage; such subgames are separated by the same label 𝑗 ∈ I of the

player who chooses among them at the stage before.

Example. In Fig. 1 in the subgame generated by outcomes 𝐻1 = {ℎ5, ℎ6, ℎ7, ℎ8} players 2 and 3

identify a combination of strategies leading to ℎ5, which minimises the utility of the player 𝑖 = 1.

The subgames {ℎ5}, {ℎ6} and {ℎ7, ℎ8} are all connected by label 𝑗 = 2 (cf. Fig. 3).

In order to prove formally these two arguments, we need a method that allows to analyse a

game-graph when it is partitioned in sets separated by the same label. Such decomposition method

is justified by the following lemma.

Lemma 5.2 (Decomposition). Let us consider a game in this graph form ⟨𝐻, 𝐼,𝑢⟩, a player 𝑖 ∈ I,
a set of possible deviations 𝐻𝑖 = {ℎ′ ∈ 𝐻 \ {ℎ}, 𝐼 (ℎ,ℎ′) = 𝑖} and one of its partition {𝐻𝑘𝑖 }𝑘∈𝐾 such
that for every 𝑘 ′, 𝑘 ′′ ∈ 𝐾 and for every pair of outcomes ℎ𝑘 ′ ∈ 𝐻𝑘

′
𝑖 and ℎ𝑘 ′′ ∈ 𝐻𝑘

′′
𝑖 with 𝑘 ′ ≠ 𝑘 ′′ it

holds 𝐼 (ℎ𝑘 , ℎ′𝑘) = 𝑗 ∈ I. Let us consider the respective thresholds \𝑖 ∈ 𝐻𝑖 and {\𝑘𝑖 ∈ 𝐻𝑘𝑖 }𝑘∈𝐾 , then

• if 𝑗 = 𝑖 , \𝑖 ∈ argmax𝑘∈𝐾 𝑢𝑖 (\𝑘𝑖);
• if 𝑗 ≠ 𝑖 , \𝑖 ∈ argmin𝑘∈𝐾 𝑢𝑖 (\𝑘𝑖).

Proof. Let us consider the case 𝑗 = 𝑖 . The proof is based on the fact that every clique on 𝐻𝑖 \ 𝑋𝑖
is a union of cliques over 𝐻𝑘𝑖 \ 𝑋𝑘𝑖 . It can be thus be proved that if we fix ℎ ∈ 𝐻 \ {𝐻𝑖 } such that

𝑢𝑖 (ℎ) = max𝑘∈𝐾 𝑢𝑖 (\𝑘𝑖) the Algorithm 3 with input ⟨𝐻𝑖 , 𝐸 |≠𝑖 , 𝑋𝑖⟩, where 𝑋𝑖 = {ℎ′ ∈ 𝐻𝑖 , 𝑢𝑖 (ℎ) <
𝑢𝑖 (ℎ′)} always admits solution. On the other hand, if we fix ℎ ∈ 𝐻 \ {𝐻𝑖 } such that there is \ ′ ∈ 𝐻𝑖
with 𝑢𝑖 (ℎ) ≤ 𝑢𝑖 (\ ′) < max𝑘∈𝐾 𝑢𝑖 (\𝑘𝑖) the Algorithm 3 does not admit solution, because there is at

least one element in 𝑋𝑘𝑖 for some 𝑘 ∈ 𝐾 that is not excluded by the clique induced on 𝐻𝑖 .

Let us consider the case 𝑗 ≠ 𝑖 . The argument of the proof is analogous. We observe that the sets

{𝐻𝑘𝑖 }𝑘∈𝐾 are disconnected within ⟨𝐻𝑖 , 𝐸 |=𝑖⟩. Therefore for any set𝐶 ⊂ 𝐻𝑖 \𝑋𝑖 inducing a clique on
𝐻𝑖 there is 𝑘 ∈ 𝐾 and 𝐶𝑘 ⊂ 𝐻𝑘𝑖 \ 𝑋𝑘𝑖 such that 𝐶 = 𝐶𝑘 . The thresholds \𝑖 is computed on the same

clique giving solution to the lowest of the {\𝑘𝑖 }𝑘∈𝐾 . □

The set of possible deviations 𝐻𝑖 is the union of outcomes of the subgames separated from the

tagged ℎ by player 𝑖 . Given two elements ℎ′, ℎ′′ belonging to two of these different subgames, we

have that 𝐼 (ℎ′, ℎ′′) = 𝑖 . Therefore we apply Lemma 5.2 to compute the thresholds on every subgame:

the maximum value of utility of these is the threshold for 𝐻𝑖 .

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 15

Within a subgame Γ different players act. Let us note that at the root ℎ0 ∈ 𝐻 ′ the subgame can

be further split in as many subgames Γ𝑘 as the actions available in A(ℎ0) for 𝑗 = 𝑃 (ℎ0). Every two

outcomes ℎ𝑘
′
, ℎ𝑘

′′
belonging to two different Γ𝑘

′
≠ Γ𝑘

′′
have as label 𝐼 (ℎ𝑘 ′ , ℎ𝑘 ′′) = 𝑗 . We can thus

apply Lemma 5.2 and first compute the threshold on every subgame before maximising (if 𝑗 = 𝑖)

or minimising (if 𝑗 ≠ 𝑖) the respective results for the function 𝑢𝑖 . Recursively, we can thus split

every subgame in smaller ones and compute the thresholds on them before obtaining the general

threshold for Γ.
Recursive computation of subgame thresholds. Algorithm 5 adopts the same recursive structure

of the backward induction (cf. Algorithm 1). In practice it computes the thresholds \ = (\𝑖)𝑖∈I at

every node starting from the leaves. If the game is degenerate, i.e., it has only one element 𝐻 = 1,

such element is the Nash equilibrium and it is also the unique threshold no matter whose player’s

utility is to be compared. In a generic game Algorithm 5 computes at each stage the thresholds

{\𝑖 ∈ 𝐻 }𝑖∈I by picking for the player 𝑖 = 𝑃 (ℎ′) acting at a node ℎ′ ∈ 𝐻 ′ the thresholds at the
following stage that maximises her utility, while for the other players 𝑗 ∈ I \ {𝑖} the one that
minimise their utility.

Example. Let us identify such thresholds for the game of Fig. 1. The computations are shown

in Fig. 6. Let us start from the bottom nodes on the third stage. Player 1 must choose between ℎ1
and ℎ2. Following Algorithm 5, we identify the outcome with largest utility for player 1 (\1 = ℎ2,

because ℎ2 ≻1 ℎ1) and the lowest utility for the other players (\2 = \3 = ℎ1 in both cases,

since ℎ1 ≺2 ℎ1 and ℎ1 ≺3 ℎ2). Player 2 chooses between ℎ3 and ℎ4, which are equivalent for her

ℎ3 ∼2 ℎ4, therefore \2 = ℎ3 = ℎ4 (since both can be chosen, for clarity in Fig. 6 we write only

\2 = ℎ4). For the other two players 1 and 3 it is necessary to minimise the utility: indeed, we

have \1 = \3 = ℎ4, because ℎ4 ≺1 ℎ3 and ℎ4 ≺3 ℎ3. Player 3 has to choose between the ℎ7 and

ℎ8. Maximising for the utility of player 3 and minimising for the other two players (ℎ8 ≺1 ℎ7,
ℎ7 ≺2 ℎ8 and ℎ8 ≻3 ℎ7), we obtain (\1, \2, \3) = (ℎ8, ℎ7, ℎ8). Let us now compute the thresholds for

the nodes at the second stage. Player 3 must choose between left and right, whose thresholds are

respectively \ = (ℎ2, ℎ1, ℎ1) and \ = (ℎ4, ℎ4, ℎ4). We maximise for player 3 and thus have \3 = ℎ1,

because ℎ1 ≻3 ℎ4, while we minimise for player 1 and 2, getting \1 = argmin𝑢1 (·) (ℎ2, ℎ4) = ℎ2
and \2 = argmin𝑢2 (·) (ℎ1, ℎ4) = ℎ1. At the second stage player 2 has three actions available (left,

centre, right). Left and centre actions lead to outcomes of the game ℎ5 and ℎ6 and thus we fix for

them the thresholds \ = (ℎ5, ℎ5, ℎ5) and \ = (ℎ6, ℎ6, ℎ6). The thresholds to be compared are thus

\ = (ℎ5, ℎ5, ℎ5), \ = (ℎ6, ℎ6, ℎ6) and \ = (ℎ8, ℎ7, ℎ8). Let us maximise for the utility of player 2,

getting \2 = argmax𝑢2 (·) (ℎ5, ℎ6, ℎ7) = ℎ5, and minimise for the utility of the other players 1 and 3,

leading thus to \1 = argmax𝑢1 (·) (ℎ5, ℎ6, ℎ8) = ℎ5 and \3 = argmax𝑢3 (·) (ℎ5, ℎ6, ℎ8) = ℎ5. Finally at

the root player 1 has to choose between left and right actions, whose thresholds are (ℎ2, ℎ1, ℎ1) and
(ℎ5, ℎ5, ℎ5). For player 1 we have ℎ2 ≻1 ℎ5 and thus \1 = ℎ2 (utility is maximised), while for players

2 and 3 we have \2 = \3 = ℎ1, since ℎ5 ≻2 ℎ1 and ℎ5 ≻3 ℎ1.
Comparison between outcomes and respective thresholds. Once the thresholds are computed at

each stage, a backward propagation argument let us determine the outcomes who are realisation of

a Nash equilibrium. In order for an outcome to be a realisation of a Nash equilibrium, it should

avoid unilateral deviations at every stage from the root to the leaf. The threshold at every stage

is the lowest value a unilateral deviation can achieve in a subgame which is not explored. If an

outcome does not meet a threshold at a certain stage, it means that the player acting at the stage

has an incentive to deviate unilaterally. Now that the thresholds are computed, we can thus verify

which outcomes meet all the thresholds at every stage. In fact, Algorithm 5 performs this control

while computing the thresholds (cf. Fig. 6): we will discuss this approach later, for the moment we

perform the analysis outcome by outcome.

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 16

ALGORITHM 5: (EA) Enumeration Algorithm

Input: A game Γ = ⟨I,A, 𝐻 ′, 𝐻, 𝑃,𝑢⟩ and its root ℎ0 = ∅ ∈ 𝐻 ′.
Output: ⟨𝑁𝐸, ⟨\𝑖 ⟩𝑖∈I⟩, i.e. the set of outcomes which are realisations of all Nash equilibria 𝑁𝐸 ⊂ 𝐻 and

the thresholds ⟨\𝑖 ⟩𝑖∈I for every player.

⟨𝑁𝐸, ⟨\𝑖 ⟩𝑖∈I⟩ ← ∅ ; // Initialising the output

if 𝐻 = 1 then
𝑁𝐸 = 𝐻 ; // degenerate game-tree (leaf)

\𝑖 = ℎ for all 𝑖 ∈ I, where 𝐻 = {ℎ} ; // is also a threshold outcome

else
⟨𝑁𝐸𝑘 , ⟨\𝑘

𝑖
⟩𝑖∈I⟩𝑎𝑘 ∈A(ℎ0) ← ∅ ; // Output of the subgames of the root node

for 𝑎𝑘 ∈ A(ℎ0) do
Γ𝑘 = Γ(ℎ0 + (𝑎𝑘)) ; // The subgame that follows actions 𝑎𝑘

⟨𝑁𝐸𝑘 , \𝑘 ⟩ = 𝐸𝐴(Γ𝑘) ; // The candidate outcomes and the thresholds

end
for 𝑖 ∈ I do

if 𝑖 = 𝑃 (ℎ0) then
\𝑖 = argmax𝑘 𝑢𝑖 (\𝑘𝑖) ; // Maximising for the player acting at the node

𝑁𝐸 = {ℎ ∈ ∪𝑘𝑁𝐸𝑘 |ℎ ⪰𝑖 \𝑖 };
else

\𝑖 = argmin𝑘 𝑢𝑖 (\𝑘𝑖) ; // Minimising for the other players

end
end

end

Example. Let us start from ℎ1: starting from the bottom to the root the thresholds are \1 = ℎ2
(player 1 on the third stage), \3 = ℎ1 (player 3 on the second stage) and \1 = ℎ2 (player 1 at the root).

The thresholds are highlighted in Fig. 6. The outcome ℎ1 does not meet two thresholds, indeed

ℎ1 ≺1 \1 = ℎ2, ℎ1 ∼3 \3 = ℎ1 and ℎ1 ≺1 \1 = ℎ2. Therefore it is not the realisation of a Nash

equilibrium. On the other hand, outcome ℎ2 has the same thresholds and it does meet them all:

ℎ2 ∼1 \1 = ℎ2, ℎ2 ≻3 \3 = ℎ1 and ℎ2 ∼1 \1 = ℎ2. Therefore it is the realisation of a Nash equilibrium;

indeed, we verified before (cf. Fig. 1b) that it is the outcome of the subgame perfect equilibrium.

The outcomes ℎ3 and ℎ4 have the following thresholds \2 = ℎ4, \3 = ℎ1 and \1 = ℎ2. Outcome ℎ3
meets all the thresholds: ℎ3 ∼2 \2 = ℎ4, ℎ3 ≻3 \3 = ℎ1 and ℎ3 ≻1 \1 = ℎ2. It is thus the realisation
of a Nash equilibrium. Outcome ℎ4 fails to meet threshold ℎ4 ≺3 \3 = ℎ1, and therefore it is not

a realisation of a Nash equilibrium. Outcome ℎ5 and ℎ6 have two thresholds \2 = ℎ5 and \1 = ℎ2.

Outcome ℎ6 fails to meet the first one, ℎ6 ≺2 \2 = ℎ5, while outcome ℎ5 fails to meet the second

one, ℎ5 ≺1 \1 = ℎ2. Finally outcome ℎ7 and ℎ8 have three thresholds: \3 = ℎ8, \2 = ℎ5 and \1 = ℎ2.

Both fail to meet ℎ7 ≺2 ℎ8 ≺2 \2 = ℎ5. Therefore none of them is a realisation of Nash equilibria.

In Fig. 6 we observe that Algorithm 5 verifies if an outcome meets a thresholds right after

computing them. Those potential outcomes of Nash equilibria 𝑁𝐸𝑘 that met all the thresholds in

subgame Γ𝑘 are tested on the upper stage of the game, recursively up to the root.

Theorem 5.3. Given a game Γ = ⟨I,A, 𝐻 ′, 𝐻, 𝑃,𝑢⟩ and its root ℎ0 = ∅ ∈ 𝐻 ′ as input, Algorithm 5
provides all the possible realisations of a Nash equilibrium of the game.

Proof. Let us consider a tagged outcome ℎ ∈ 𝐻 and the sets 𝐻𝑖 = {ℎ′ ∈ 𝐻 |𝐼 (ℎ,ℎ′) = 𝑖},
𝑋𝑖 = {ℎ′ ∈ 𝐻𝑖 |𝑢𝑖 (ℎ) < 𝑢𝑖 (ℎ′)}, 𝑉𝑖 = 𝐻𝑖 \ 𝑋𝑖 . Theorem 4.3 shows that ℎ is the realisation of a Nash

equilibrium if and only if there exists clique 𝐶𝑖 ⊂ 𝑉𝑖 on every graph ⟨𝐻𝑖 , 𝐸 |=𝑖⟩. The definitions of

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 17

(h2, ℎ1, ℎ1)

(ℎ2, ℎ1, h1)

(h2, ℎ1, ℎ1)

ℎ1 ℎ2

(ℎ4, h4, ℎ4)

ℎ3 ℎ4

(ℎ5, h5, ℎ5)

ℎ5 ℎ6
(ℎ8, ℎ7, h8)

ℎ7 ℎ8

{ℎ2, ℎ3}

{ℎ2, ℎ3}

{ℎ2}

ℎ1 ℎ2

{ℎ3, ℎ4}

ℎ3 ℎ4

{ℎ5}

ℎ5 ℎ6
{ℎ8}

ℎ7 ℎ8

Fig. 6. Application of Algorithm 5. Game in extensive form. Preferences of the players over the outcomes
are respectively: 𝑢1 : ℎ6 ≻1 ℎ7 ≻1 ℎ8 ≻1 ℎ3 ≻1 ℎ4 ≻1 ℎ2 ≻1 ℎ1 ≻1 ℎ5, 𝑢2 : ℎ5 ≻2 ℎ8 ≻2 ℎ7 ≻2 ℎ6 ≻2 ℎ2 ≻2
ℎ3 ∼2 ℎ4 ≻2 ℎ1 and 𝑢3 : ℎ8 ≻3 ℎ7 ≻3 ℎ6 ≻3 ℎ2 ≻3 ℎ5 ≻3 ℎ3 ≻3 ℎ1 ≻3 ℎ4. Above: Thresholds \𝑘 = (\𝑘

1
, \𝑘

2
, \𝑘

3
)

at every node. Below: Nash Equilibria 𝑁𝐸𝑘 of every subgame Γ𝑘 .

thresholds (cf. Definition 5.1) allows to rewrite the problem as 𝑢𝑖 (ℎ) ≥ 𝑢𝑖 (\𝑖) for all 𝑖 ∈ I. Given
any ℎ𝑘 < ℎ the 𝑘-prefix of ℎ, \𝑘𝑖 the threshold of every subgame Γ𝑘 not explored by player 𝑖 = 𝑃 (ℎ𝑘),
Algorithm 5 guarantees that 𝑢𝑖 (ℎ) ≥ 𝑢𝑖 (\𝑘𝑖) for every ℎ𝑘 < ℎ. Since 𝐻𝑖 is the union of all subgames

not explored by player 𝑖 , Lemma 5.2 implies that the two conditions are equivalent. □

Complexity analysis. Differently from Algorithm 5, Algorithm 4 does not require to build the full

game-tree to determine if an outcome is a realisation of a Nash equilibrium. It can be extremely

efficient when the full enumeration is not required or when the sets of deviations {𝐻𝑖 }𝑖∈I has low

values of utility. Moreover, it is recommended when the game-tree is too large to be stored.

We have remarked before that when Algorithm 4 is used to iteratively compute every outcome

of the Nash equilibria, it repeats the analysis of possibly the same sets of outcomes, and relies

on the resolution of a problem which is NP-complete for a generic graph. On the the other hand,

Algorithm 5 is more efficient, as it avoids every repetition and exploits the properties of the graph

(cf. Lemma 3.5). Indeed, let us prove that Algorithm 5 is polynomial with respect to the size of the

game, i.e., to the number of outcomes |𝐻 | of the game. The recursive structure of Algorithm 5 makes

it a generalisation of the backward induction (cf. Algorithm 1). We characterise the complexity of

Algorithm 5 using similar arguments already used for the backward induction [Szymanik, 2013].

The result exploits the property that the intermediate histories |𝐻 ′ \𝐻 | are fewer than the outcomes

|𝐻 | and that the number of operations at every recursion are proportional to the number of players.

Theorem 5.4. Given a game Γ = ⟨I,A, 𝐻 ′, 𝐻, 𝑃,𝑢⟩ and its root ℎ0 = ∅ as input, Algorithm 5 is
polynomial with respect to the size of the game |𝐻 |.

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 18

Proof. Algorithm 5 is called recursively for every history of the game ℎ′ ∈ 𝐻 ′, where it is an
intermediate history ℎ′ ∈ 𝐻 ′ \𝐻 or an outcome ℎ ∈ 𝐻 . The number of operations to be performed

at every recursion is 𝑂 (𝑁), where 𝑁 is the number of players. The total number of operations to

be performed is thus 𝑂 (𝑁 · |𝐻 ′ |). If the game is not degenerate, every player 𝑖 ∈ I can perform

at least one action somewhere in the game, i.e., we suppose that every 𝑆𝑖 ≠ ∅. Therefore we have
that 𝑁 < |𝐻 ′ | (usually 𝑁 << |𝐻 ′ |). It is thus enough to prove that |𝐻 ′ | = 𝑂 (|𝐻 |). More specifically,

for the intermediate histories 𝐻 ′ \ 𝐻 of the game-tree it holds |𝐻 ′ \ 𝐻 | < |𝐻 | so that |𝐻 ′ | < 2 · |𝐻 |.
To show this let us define the function 𝑓 : 𝐻 ′ → N such that 𝑓 (ℎ′) = ∑

𝑎∈A(ℎ′) 𝑓 (ℎ′ + (𝑎)) if
ℎ′ ∈ 𝐻 ′ \ 𝐻 and 𝑓 (ℎ′) = 1 if ℎ′ ∈ 𝐻 . The function 𝑓 counts for every history ℎ′ the outcomes

of the subgame Γ(ℎ′) and thus 𝑓 (ℎ0) = |𝐻 |. Let us then define the function 𝑔 : 𝐻 ′ → N such

that 𝑔(ℎ′) = 1 + ∑𝑎∈A(ℎ′) 𝑔(ℎ′ + (𝑎)) if ℎ′ ∈ 𝐻 ′ \ 𝐻 and 𝑔(ℎ′) = 1 if ℎ′ ∈ 𝐻 . The function 𝑔

counts the intermediate histories for every subgame and thus 𝑔(ℎ0) = |𝐻 ′ \ 𝐻 |. We prove now

that 𝑓 (ℎ′) > 𝑔(ℎ′) for every ℎ′ ∈ 𝐻 ′. For an outcome ℎ ∈ 𝐻 it holds 𝑓 (ℎ) = 1 > 0 = 𝑔(ℎ). We

proceed by induction. We suppose that for every other intermediate history ℎ′ ∈ 𝐻 ′ \ 𝐻 and for

every following node ℎ′ + (𝑎) ∈ A it holds 𝑓 (ℎ′ + (𝑎)) > 𝑔(ℎ′ + (𝑎)). By induction, we have

that 𝑓 (ℎ′) = ∑
𝑎∈A(ℎ′) 𝑓 (ℎ′ + (𝑎)) =

∑
𝑎∈A(ℎ′) (𝑓 (ℎ′ + (𝑎)) − 1) + |A(ℎ′) | ≥

∑
𝑎∈A(ℎ′) 𝑔(ℎ′ + (𝑎)) +

|A(ℎ′) | ≥ 𝑔(ℎ′) + |A(ℎ′) |. Since the number of actions available is always |A(ℎ′) | > 1we have that

𝑓 (ℎ′) > 𝑔(ℎ′) for every ℎ′ ∈ 𝐻 ′. Therefore |𝐻 | = 𝑓 (ℎ0) > 𝑔(ℎ0) = |𝐻 ′ \ 𝐻 |, hence the proof. □

6 CONCLUSIONS
In this paper we analysed Nash equilibria in extensive-form games with perfect information and

perfect recall. The literature of the domain analyses the mathematical structure of the sets of

strategies. Instead, we have focused on the set of possible outcomes decided by such strategies. We

have observed that such sets can be deduced by comparing pairwise the outcomes of the game, we

have introduced a new representation of extensive-form games as an undirected graph of their

outcomes, which highlights a distinct property at the core of every couple of outcomes. This allowed

us to introduce the first algorithm to determine whether an outcome is a realisation of a Nash

equilibrium, generalising thus the results of [Zappalà et al., 2023] for two-player extensive-form

games. Adopting such algorithm in parallel it is possible to determine all the realisations of Nash

equilibria. However, we introduced another recursive algorithm that performs such enumeration in

polynomial time with respect to the size of the game and thus generalises the celebrated backward

induction algorithm.

We foresee the application of the new algorithms to the domain of games with more than two

players, which has been almost unexplored in literature so far. The simplified notation of the graph

form allows to better study those games whose outcomes belong to a space with a binary relation,

e.g., timing games [Zappalà et al., 2022]. In the future we plan to study ways to characterise subgame

perfect equilibria directly on the graph of the game; such result could provide new algorithms that

are not based on the principle of backward induction and thus can be parallelized. Finally, a further

open problem raised by this work is whether it is possible to characterise the set of outcomes of a

strategy in an extensive-form game with imperfect information.

REFERENCES
Charles Audet, Slim Belhaiza, and Pierre Hansen. 2009. A new sequence form approach for the enumeration and refinement

of all extreme Nash equilibria for extensive form games. International Game Theory Review 11, 04 (2009), 437–451.

Arthur Cayley. 1875. Mathematical questions with their solutions. The Educational Times 23 (1875), 18–19.
Harold William Kuhn and Albert William Tucker. 1953. Contributions to the Theory of Games. Vol. 2. Princeton University

Press.

John F Nash Jr. 1950. Equilibrium points in n-person games. Proceedings of the national academy of sciences 36, 1 (1950),
48–49.

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 19

Reinhard Selten. 1965. Spieltheoretische behandlung eines oligopolmodells mit nachfrageträgheit: Teil i: Bestimmung des

dynamischen preisgleichgewichts. Zeitschrift für die gesamte Staatswissenschaft/Journal of Institutional and Theoretical
Economics H. 2 (1965), 301–324.

Jakub Szymanik. 2013. Backward Induction is PTIME-complete. In InternationalWorkshop on Logic, Rationality and Interaction.
Springer, 352–356.

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, and Rosa Figueiredo. 2023. Nouvelle modélisa-

tion des jeux extensifs basée sur des graphes. In 24ème congrès annuel de la Société Francaise de Recherche Opérationnelle
et d’Aide à la Décision. Rennes, France. https://hal.science/hal-03953563

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, and Rosa Figueiredo. 2022. A timing game

approach for the roll-out of new mobile technologies. In 2022 20th International Symposium on Modeling and Optimization
in Mobile, Ad hoc, and Wireless Networks (WiOpt). 217–224. https://doi.org/10.23919/WiOpt56218.2022.9930538

A EXCLUDING CLIQUES
In this section we present the problems of the maximal excluding clique (cf. Algorithm 2) and of

the excluding clique (cf. Algorithm 3) and the results obtained by [Zappalà et al., 2023].

Let us consider the graph ⟨𝐻, 𝐸⟩ of Fig. 7 and a set𝑋 ⊂ 𝐻 . The problem of the maximal excluding

clique is to determine whether there is a set C that includes no elements of𝑋 and induces a maximal

clique in the graph. The problem of the excluding clique is instead to determine whether there is a

set C′ such that for all the elements in 𝑋 there is at least one in C′ not connected to it. For instance,
in the example of Fig. 7b the clique C′ = {ℎ2, ℎ3} is an excluding clique for {ℎ5, ℎ6, ℎ7, ℎ8, ℎ10}.
Indeed, ℎ5 and ℎ8 are not connected to either {ℎ2, ℎ3}; ℎ6 is not connected to ℎ3, while ℎ7 and ℎ8
are not connected to ℎ2.

Given the partition 𝐻 = 𝑉 ∪ 𝑋 and the graph ⟨𝑉 ∪ 𝑋, 𝐸⟩ a linear formulation of the problem of

the excluding clique with input ⟨𝑉 ,𝑋, 𝐸⟩ is:

𝑥𝑖 + 𝑥𝑖′ ≤ 1 𝑖, 𝑖′ ∈ 𝑉 , (𝑖, 𝑖′) ∉ 𝐸∑︁
𝑖:(𝑖, 𝑗)∉𝐸

𝑥𝑖 ≥ 1 ∀𝑗 ∈ 𝑋

𝑥𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑉 .
An excluding clique exists in the graph if and only if the above system provides a solution. The

two following results hold [Zappalà et al., 2023].

Theorem A.1. The problem of the maximal excluding clique and the problem of the maximal clique
are equivalent.

Theorem A.2. In a generic graph the problem of the maximal clique is NP-complete.

https://hal.science/hal-03953563
https://doi.org/10.23919/WiOpt56218.2022.9930538

Paolo Zappalà, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo 20

ℎ1

ℎ2

ℎ3

ℎ4

ℎ9

ℎ5

ℎ6

ℎ7

ℎ8

ℎ10

ℎ1

ℎ2

ℎ3

ℎ4

ℎ5

ℎ6

ℎ7

ℎ8

ℎ9

ℎ10

a) b)

Fig. 7. Equivalence of problems (𝑀𝐶) and (𝐸𝐶). a) Let us consider problem (𝑀𝐶) with 𝐻 =

{ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6, ℎ7, ℎ8, ℎ9, ℎ10} and 𝑋 = {ℎ5, ℎ6, ℎ7, ℎ8, ℎ10}. A maximal clique that solves (𝑀𝐶) is
C = {ℎ2, ℎ3, ℎ4}; b) Let us consider problem (𝐸𝐶) with 𝑉 = {ℎ1, ℎ2, ℎ3, ℎ4} and 𝑋 = {ℎ5, ℎ6, ℎ7, ℎ8, ℎ10}.
A clique that solves (𝐸𝐶) is C′ = {ℎ2, ℎ3}.

	Abstract
	1 Introduction
	2 Extensive-form games
	3 Graph form
	4 Iterative algorithm
	5 Recursive algorithm
	6 Conclusions
	References
	A Excluding cliques

