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Computing Nash equilibria in extensive-form games with more than two players

Identifying efficiently the Nash equilibria of extensive-form games with perfect recall and perfect information is a known open problem. In this paper, we introduce a new representation of a 𝑁 -player extensive-form game as an undirected complete graph of its outcomes. The Nash equilibria can hence be characterized directly on the graph of the outcomes, without naming the corresponding strategies. Such approach lets us introduce two distinct algorithms for the enumeration of Nash equilibria. The first algorithm iterates over the outcomes and determines on a subgraph whether each of them is a realisation of a Nash equilibrium. The second one generalises the backward induction algorithm and recursively enumerates all the outcomes of the Nash equilibria of the game. The recursive algorithm is more efficient, but it requires the exploration of the entire game tree, while the iterative algorithm can be used to provide results on any subset of outcomes.

INTRODUCTION

In extensive-form games with perfect recall and perfect information a finite set of agents, called players, observe in turns each other's actions and pick one of the possible subsequent actions available to them [START_REF] William | Contributions to the Theory of Games[END_REF]. A strategy of a player consists of picking one action whenever they ought to during the game. A Nash equilibrium is a combination of strategies such that no player has an incentive to change her own strategy. Every game admits at least one Nash equilibrium [START_REF] Jr | Equilibrium points in n-person games[END_REF], but no results have been given on the identification of all Nash equilibria of a generic extensive-form game. Algorithms for the enumeration of Nash equilibria are provided for two-player extensive-form games [START_REF] Zappalà | Nouvelle modélisation des jeux extensifs basée sur des graphes[END_REF]. Extensive-form games always admit a specific Nash equilibrium, called subgame perfect equilibrium [START_REF] William | Contributions to the Theory of Games[END_REF]. Such equilibrium can be computed by the algorithm called backward induction [START_REF] Cayley | Mathematical questions with their solutions[END_REF], but it does not give insights on other Nash equilibria. In this paper we introduce a representation of extensive-form games as an undirected complete graph of their outcomes. We provide a necessary and sufficient condition for an outcome to be a realisation of a Nash equilibrium. Moreover, we design an extension of the backward induction algorithm which can be proved to provide the complete enumeration of all Nash Equilibria of a generic extensive-form game. Section 2 introduces the reader to extensive-form games and all the formal definitions for the aforementioned objects. Section 3 discusses the new graph representation of extensive-form games. Section 4 presents an algorithm to determine if an outcome is a realisation of a Nash equilibrium. In Section 5 we introduce an algorithm to enumerate the Nash equilibria, which is proved to be polynomial in the size of the game. Finally, Section 6 ends the paper with possible directions of future research.

EXTENSIVE-FORM GAMES

In this section we provide the definitions for extensive-form games with perfect recall and perfect information as in [START_REF] Zappalà | Nouvelle modélisation des jeux extensifs basée sur des graphes[END_REF]]. An extensive-form game develops in a finite number of stages. At every stage there exists a designated player 𝑖 ∈ I who observes a history ℎ ′ , i.e., the sequence of actions occurring up to the stage. The designated player has available a set of actions A (ℎ ′ ) at this stage. We denote by 𝑃 (ℎ ′ ) the designated player observing the history ℎ ′ . When the set of available actions is empty (A (ℎ) = ∅) the game ends, i.e., the sequence of actions leading to this stage ℎ corresponds to an outcome of the game. We call 𝐻 ′ the set of histories and 𝐻 ⊂ 𝐻 ′ the set of the outcomes. Every outcome is evaluated by every player 𝑖 ∈ I through a function, called utility function, 𝑢 𝑖 : 𝐻 → R. We also write ℎ 𝐴 ≻ 𝑖 ℎ 𝐵 for ℎ 𝐴 , ℎ 𝐵 ∈ 𝐻 when 𝑢 𝑖 (ℎ 𝐴 ) > 𝑢 𝑖 (ℎ 𝐵 ), or ℎ 𝐴 ∼ 𝑖 ℎ 𝐵 when 𝑢 𝑖 (ℎ 𝐴 ) = 𝑢 𝑖 (ℎ 𝐵 ). Following [START_REF] Zappalà | Nouvelle modélisation des jeux extensifs basée sur des graphes[END_REF], we denote by ℎ ′ + ℎ ′′ = (𝑎 1 , 𝑎 2 , . . . , 𝑎 𝑚 ′ , 𝑏 1 , 𝑏 2 , . . . , 𝑏 𝑚 ′′ ) the concatenation of two vectors of actions ℎ ′ = (𝑎 1 , 𝑎 2 , . . . , 𝑎 𝑚 ′ ) and ℎ ′′ = (𝑏 1 , 𝑏 2 , . . . , 𝑏 𝑚 ′′ ). We also denote by ℎ ′′′ = ℎ ′ ∩ ℎ ′′ the lowest common prefix of the two vectors of actions ℎ ′ and ℎ ′′ , shortly referred as prefix in the following. The full definition of extensive-form game is therefore: Definition 2.1 (extensive-form game). An extensive-form game is a tuple Γ = ⟨I, A, 𝐻 ′ , 𝐻, 𝑃, 𝑢⟩, where:

• I = {1, . . . , 𝑁 } is the set of players;

• 𝐻 ′ is the set of histories with ∅ ∈ 𝐻 ′ ;

• A : ℎ ′ ∈ 𝐻 ′ → 𝐴 is a function that provides for every history a set of actions 𝐴, i.e. for all 𝑎 ∈ 𝐴, we have ℎ ′ + (𝑎) ∈ 𝐻 ′ ; • 𝐻 = {ℎ ∈ 𝐻 ′ |A (ℎ) = ∅} ⊂ 𝐻 ′ is the set of outcomes;

• 𝑃 : 𝐻 ′ \ 𝐻 → I is a function that indicates which player 𝑃 (ℎ ′ ) ∈ I acts after observing the history ℎ ′ ∈ 𝐻 ′ \ 𝐻 ; • 𝑢 = (𝑢 𝑖 ) 𝑖 ∈ I , with 𝑢 𝑖 : 𝐻 → R the utility function of player 𝑖 ∈ I.

Since in the literature the representation of the game is the game-tree of possible histories, it is customary to call a node a history observed by a player. Analogously, we alternatively call an outcome the final node (or leaf ) and the vector of actions leading to it. When a node is not final, the rest of the game starting at it is itself a game called subgame. Indeed, once a player has observed a history ℎ 𝑘 ∈ 𝐻 ′ with 𝑘 ∈ {1, . . . , |𝐻 ′ |} at a given stage, we know that the alternative actions up to this stage have not been played. We thus consider the possible histories that derive from ℎ 𝑘 .

Example. Let us consider the game-tree of Fig. 1. If player 3 observes the player 1 choosing ℎ 𝑘 = (𝐿), we obtain the subgame framed in Fig. 1. Definition 2.2 formalises the concept of subgame.

Definition 2.2 (subgame). Given an extensive-form game Γ = ⟨I, A, 𝐻 ′ , 𝐻, 𝑃, 𝑢⟩ and a history ℎ 𝑘 we call subgame the game Γ(ℎ 𝑘 ) = ⟨I 𝑘 , A 𝑘 , 𝐻 ′𝑘 , 𝐻 𝑘 , 𝑃 𝑘 , 𝑢 𝑘 ⟩ where:

• I 𝑘 = I, i.e., the set of players is the same as in the original game;

• 𝐻 ′𝑘 = {ℎ ′𝑘 , ∃ℎ ′ ∈ 𝐻 ′ , ℎ ′ = ℎ 𝑘 + ℎ ′𝑘 }, the set of histories share the same prefix ℎ 𝑘 ;

• A 𝑘 (ℎ ′𝑘 ) = A (ℎ 𝑘 + ℎ ′𝑘 );

• 𝐻 𝑘 = {ℎ ∈ 𝐻 ′𝑘 |A 𝑘 (ℎ) = ∅};

• 𝑃 𝑘 (ℎ ′𝑘 ) = 𝑃 (ℎ 𝑘 + ℎ ′𝑘 );

• 𝑢 𝑘 = (𝑢 𝑘 𝑖 ) 𝑖 ∈ I , with 𝑢 𝑘 𝑖 (ℎ) = (ℎ 𝑘 + ℎ). As in [START_REF] Zappalà | Nouvelle modélisation des jeux extensifs basée sur des graphes[END_REF] we only consider pure strategies, from now simply called strategies, as they are enough to compute all equilibria (cf. Theorem 1 of [START_REF] Audet | A new sequence form approach for the enumeration and refinement of all extreme Nash equilibria for extensive form games[END_REF]). A strategy is a function that maps every history observed by a player to an action. Definition 2.3 (strategy). Given a game Γ = ⟨I, A, 𝐻 ′ , 𝐻, 𝑃, 𝑢⟩ and a player 𝑖 ∈ I, let 𝐻 ′ 𝑃 =𝑖 = {ℎ ′ ∈ 𝐻 ′ \ 𝐻 |𝑃 (ℎ) = 𝑖} be the histories at which the player 𝑖 acts. A strategy 𝑠 𝑖 ∈ 𝑆 𝑖 is a function

𝑠 𝑖 : ℎ ′ ∈ 𝐻 ′ 𝑃 =𝑖 ↦ → 𝑎 ∈ A (ℎ ′
) that maps every observed history ℎ ′ ∈ 𝐻 ′ 𝑃 =𝑖 to one of the actions 𝑎 ∈ A (ℎ ′ ) available to the player.

We call strategy profile a 𝑁 -tuple of strategies 𝑠 = ⟨𝑠 1 , 𝑠 2 , . . . , 𝑠 𝑁 ⟩, one for each player. We denote by 𝑆 = 𝑆 1 × 𝑆 2 × • • • × 𝑆 𝑁 the set of all strategy profiles. If every player chooses a strategy, one single action is picked at every history; therefore, given a strategy profile, the actions chosen by the players lead to a single outcome. We denote by 𝑠 ↦ → ℎ the outcome ℎ ∈ 𝐻 of a strategy profile 𝑠 ∈ 𝑆. When a player picks a strategy, she limits the set of possible outcomes. We define such specific set in Definition 2.4. Definition 2.4 (outcomes of a strategy). Given a game Γ = ⟨I, A, 𝐻 ′ , 𝐻, 𝑃, 𝑢⟩ and a strategy 𝑠 𝑖 ∈ 𝑆 𝑖 of a player 𝑖 ∈ I, the set of outcomes 𝐻 (𝑠 𝑖 ) ⊂ 𝐻 of strategy 𝑠 𝑖 is

𝐻 (𝑠 𝑖 ) = {ℎ ∈ 𝐻 |∃𝑠 ′ ∈ 𝑆, 𝑠 ′ 𝑖 = 𝑠 𝑖 , 𝑠 ′ ↦ → ℎ}. We also write 𝐻 (⟨𝑠 𝑗 ⟩ 𝑗 ∈ 𝐽 ) = ∩ 𝑗 ∈ 𝐽 𝐻 (𝑠 𝑗 )
to indicate the possible outcomes of a vector of strategies ⟨𝑠 𝑗 ⟩ 𝑗 ∈ 𝐽 for some players 𝐽 ⊂ I. We write ⟨𝑠 𝑗 ⟩ 𝑗 ∈ 𝐽 = 𝑠 -𝑖 when 𝐽 = I \ {𝑖}. Clearly for a strategy profile 𝑠 ∈ 𝑆 the set 𝐻 (𝑠) = {ℎ} is a singleton. Furthermore, with some abuse of notation, let 𝑢 𝑖 (𝑠) := 𝑢 𝑖 (𝑠 ↦ → ℎ) denote the utility of player 𝑖 under a certain strategy profile 𝑠. A strategy profile is a Nash equilibrium if no player can increase her utility by changing unilaterally her strategy.

Definition 2.5 (Nash equilibrium). Given a game Γ = ⟨I, A, 𝐻 ′ , 𝐻, 𝑃, 𝑢⟩, a strategy profile ⟨𝑠 𝑖 ⟩ 𝑖 ∈ I is a Nash equilibrium if for every 𝑖 ∈ I and for all 𝑠 𝑖 ∈ 𝑆 𝑖 it holds 𝑢 𝑖 (𝑠 𝑖 , 𝑠 -𝑖 ) ≥ 𝑢 𝑖 (𝑠 𝑖 , 𝑠 -𝑖 ).

The recursive algorithm proposed in this work is inspired by the backward induction (BI) algorithm (cf. Algorithm 1), which is the most known algorithm to compute a Nash equilibrium in extensive-form games [START_REF] Cayley | Mathematical questions with their solutions[END_REF]. However, the backward induction algorithm provides only a specific subset of Nash equilibria, i.e., the subgame perfect equilibria (SPE). A subgame perfect ALGORITHM 1: Backward induction (BI) Input: A game Γ = ⟨I, A, 𝐻 ′ , 𝐻, 𝑃, 𝑢⟩ and its root ℎ 0 = ∅ ∈ 𝐻 ′ . Output: The set of subgame perfect equilibria 𝑆𝑃𝐸.

if |𝐻 | = 1 then 𝑆𝑃𝐸 = 𝐻 ; else 𝑖 = 𝑃 (ℎ 0 ) ; //
The player acting at the vertex

⟨Γ 𝑘 , 𝑆𝑃𝐸 𝑘 , ℎ ′ 𝑘 ⟩ 𝑎 𝑘 ∈ A (ℎ 0 ) ← ∅; for 𝑎 𝑘 ∈ A (ℎ 0 ) do Γ 𝑘 = Γ(ℎ 0 + (𝑎 𝑘 )) ; //
The subgame that follows actions 𝑎 𝑘

𝑆𝑃𝐸 𝑘 = 𝐵𝐼 (Γ 𝑘 ) ; ℎ ′ 𝑘 ∈ arg min ℎ ′ ∈𝑆𝑃𝐸 𝑘 𝑢 𝑖 (ℎ ′ ) ; // The lowest utility 𝑢 𝑖 a SPE can achieve in Γ 𝑘 end 𝑆𝑃𝐸 = {ℎ ∈ ∪𝑆𝑃𝐸 𝑘 |∀𝑘, ℎ ⪰ 𝑖 ℎ ′
𝑘 } ; // Outcome ℎ is preferred by player 𝑖 to any other SPE end equilibrium is a Nash equilibrium for every subgame [START_REF] Selten | Spieltheoretische behandlung eines oligopolmodells mit nachfrageträgheit: Teil i: Bestimmung des dynamischen preisgleichgewichts[END_REF]. Every extensive-form game with perfect recall and perfect information admits a subgame perfect equilibrium in pure strategies. The backward induction selects, starting from the leaves of the game-tree, the outcomes that are most favourite by the player acting at a given node. The subgame perfect equilibrium might not be unique, so the candidate outcome ℎ must be preferred among at least one possible selection of candidate outcomes {ℎ ′ 𝑘 ∈ 𝑆𝑃𝐸 𝑘 } of the other subgames. The value of the corresponding outcomes thus propagates upwards towards the root of the game-tree as exemplified next.

Example. Let us consider the game Γ represented by tree of Fig. 1a. The preferences of the players w.r.t. the outcomes are indicated in the caption. Let us compute the subgame perfect equilibria of the game by applying the BI algorithm. The algorithm starts from the leaves of the tree. Player 1 prefers ℎ 2 to ℎ 1 (ℎ 2 ≻ 1 ℎ 1 ), player 2 has no strict preference between ℎ 3 and ℎ 4 (ℎ 3 ∼ 2 ℎ 4 ) and player 3 prefers ℎ 8 to ℎ 7 (ℎ 8 ≻ 3 ℎ 7 ). The outcomes ℎ 2 , {ℎ 3 , ℎ 4 } and ℎ 8 are the SPE of the respective subgames, as shown in Fig. 1b. At the second stage of the tree, players 3 and 2 prefer respectively ℎ 2 to ℎ 3 and ℎ 4 (ℎ 2 ≻ 3 ℎ 3 ∼ 3 ℎ 4 ), ℎ 5 to ℎ 6 and ℎ 8 (ℎ 5 ≻ 2 ℎ 8 ≻ 2 ℎ 6 ). Finally, at the root of the tree, player 1 prefers ℎ 2 to ℎ 5 (ℎ 2 ≻ 1 ℎ 5 ). The (here unique) subgame perfect equilibrium of the game is ℎ 2 .

In the following section we focus on identifying the outcomes of the Nash equilibria. Let us consider a strategy profile 𝑠 ∈ 𝑆. We recall that its realisation is the only element ℎ ∈ 𝐻 belonging to the set of its possible outcomes 𝐻 (𝑠). For any strategy profile originated by a unilateral deviation 𝑠 ′ ∈ 𝑆 it must hold 𝑠 ′ 𝑖 ≠ 𝑠 𝑖 and 𝑠 ′ -𝑖 = 𝑠 -𝑖 for one and only one 𝑖 ∈ I. Therefore the realisation of any possible unilateral deviation, namely ℎ ′ ∈ 𝐻 , belongs to the set of possible outcomes 𝐻 (𝑠 -𝑖 ) of the strategies 𝑠 -𝑖 ∈ 𝑆 -𝑖 = × 𝑗 ∈ I\{𝑖 } 𝑆 𝑗 of all players but the one deviating 𝑖 ∈ I. We thus characterise the realisation of a Nash equilibrium over the sets of outcomes. Lemma 2.6. Given a game Γ = ⟨I, A, 𝐻 ′ , 𝐻, 𝑃, 𝑢⟩, an outcome ℎ ∈ 𝐻 is a realisation of a Nash equilibrium if and only if there exists a strategy profile 𝑠 ∈ 𝑆 such that 𝐻 (𝑠) = {ℎ} and for each 𝑖 ∈ I and ℎ ′ ∈ 𝐻 (𝑠 -𝑖 ) it holds 𝑢 𝑖 (ℎ) ≥ 𝑢 𝑖 (ℎ ′ ).

Proof. The direct implication is obvious. For the converse let us consider the strategy profile 𝑠 ∈ 𝑆 whose existence is assumed in the statement. Observe that set 𝐻 (𝑠 -𝑖 ) \ {ℎ} = {ℎ ′ ∈ 𝐻 |∃𝑠 ′ 𝑖 ∈ 𝑆 𝑖 , 𝑠 = ⟨𝑠 𝑖 , 𝑠 -𝑖 ⟩ ↦ → ℎ ′ , ℎ ′ ≠ ℎ} is the set of the outcomes of the strategy profiles of type 𝑠 ′ where 𝑠 ′ = ⟨𝑠 ′ 𝑖 , 𝑠 -𝑖 ⟩, 𝑠 ′ 𝑖 ≠ 𝑠 𝑖 , i.e., of strategy profiles which are unilateral deviations from 𝑠. Hence, for any such strategy profile it holds

𝑢 𝑖 (𝑠 ′ 𝑖 , 𝑠 -𝑖 ) = 𝑢 𝑖 (ℎ ′ ) ≤ 𝑢 𝑖 (ℎ) = 𝑢 𝑖 (𝑠 𝑖 , 𝑠 -𝑖 ). □ 1 3 1 ℎ 1 ℎ 2 2 ℎ 3 ℎ 4 L 2 ℎ 5 ℎ 6 3 ℎ 7 ℎ 8 R {ℎ 2 } {ℎ 2 } {ℎ 2 } ℎ 1 ℎ 2 {ℎ 3 , ℎ 4 } ℎ 3 ℎ 4 {ℎ 5 } ℎ 5 ℎ 6 {ℎ 8 } ℎ 7 ℎ 8 a) b)
Fig. 1. Example. a) 3-player game in extensive form. Preferences of the players over the outcomes are respectively:

𝑢 1 : ℎ 6 ≻ 1 ℎ 7 ≻ 1 ℎ 8 ≻ 1 ℎ 3 ≻ 1 ℎ 4 ≻ 1 ℎ 2 ≻ 1 ℎ 1 ≻ 1 ℎ 5 , 𝑢 2 : ℎ 5 ≻ 2 ℎ 8 ≻ 2 ℎ 7 ≻ 2 ℎ 6 ≻ 2 ℎ 2 ≻ 2 ℎ 3 ∼ 2 ℎ 4 ≻ 2 ℎ 1 and 𝑢 3 : ℎ 8 ≻ 3 ℎ 7 ≻ 3 ℎ 6 ≻ 3 ℎ 2 ≻ 3 ℎ 5 ≻ 3 ℎ 3 ≻ 3 ℎ 1 ≻ 3 ℎ 4 .
A subgame is framed. b) Application of the backward induction to the game. The subgame perfect equilibrium of the game is ℎ 2 .
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In this section we characterize the set of outcomes 𝐻 (𝑠 𝑖 ) of a strategy 𝑠 𝑖 ∈ 𝑆 𝑖 of a player 𝑖 ∈ I. To this aim we introduce a new representation of extensive-form games as an undirected graph of their outcomes. Let us consider the game of Fig. 1. We observe that at the root the first player chooses between going left (𝐿) and going right (𝑅). Thus, the first player cannot choose a pure strategy that can lead to both ℎ 1 and ℎ 8 : since two different actions must be chosen, two different strategies must be taken. Analogously, the second player cannot choose a strategy whose outcomes include both ℎ 3 and ℎ 4 . With this argument we can conclude that two outcomes cannot be included in the set of outcomes of the same strategy of a player 𝑖 ∈ I if the paths from the root to such outcomes are separated at a node where player 𝑖 acts. Given two outcomes ℎ, ℎ ′ ∈ 𝐻 , the node at which the paths from the root to them are separated is the history corresponding to the common prefix ℎ ∩ ℎ ′ , and the player acting at such node is 𝑃 (ℎ ∩ ℎ ′ ). Moreover, there is always a way for the other players to let player 1 choose between ℎ 1 and ℎ 8 , i.e., there is a combination of strategies 𝑠 -1 ∈ 𝑆 -1 = 𝑆 2 × 𝑆 3 such that ℎ 1 , ℎ 8 ∈ 𝐻 (𝑠 -1 ). We can formalise the above arguments in the following theorem.

Theorem 3.1. Given a game Γ = ⟨I, A, 𝐻 ′ , 𝐻, 𝑃, 𝑢⟩ and two outcomes ℎ, ℎ ′ ∈ 𝐻 , the following three propositions are equivalent:

(1) 𝑖 = 𝑃 (ℎ ∩ ℎ ′ );

(2) There is no 𝑠 𝑖 ∈ 𝑆 𝑖 such that ℎ, ℎ ′ ∈ 𝐻 (𝑠 𝑖 );

(3) There exists a set of strategies 𝑠 -𝑖 ∈ 𝑆 -𝑖 such that ℎ, ℎ ′ ∈ 𝐻 (𝑠 -𝑖 ).

Proof. Let us represent outcomes ℎ and ℎ ′ as the two sequences of actions leading to them, i.e., ℎ = (𝑎 𝑘 ) 𝑘 ∈ {1,...,𝐾 } and ℎ ′ = (𝑎 ′ 𝑘 ) 𝑘 ∈ {1,...,𝐾 ′ } , respectively. We denote ℎ 𝑟 and ℎ ′𝑟 the histories which are the prefix of size 𝑟 of ℎ and ℎ ′ , respectively. By definition the prefix ℎ ∩ ℎ ′ , of size 𝑟 , is the history such that ℎ 𝑟 = ℎ ′𝑟 for 𝑟 ≤ 𝑟 and ℎ 𝑟 +1 ≠ ℎ ′𝑟 +1 .

(1) ⇒ (3). Let us consider strategy profile 𝑠 = ⟨𝑠 𝑗 ∈ 𝑆 𝑗 ⟩ 𝑗 ∈ I defined as follows: 𝑠 𝑗 (ℎ 𝑟 ) = 𝑎 𝑟 +1 and 𝑠 𝑗 (ℎ ′𝑟 ) = 𝑎 ′ 𝑟 +1 for all 𝑟 ≠ 𝑟 such that respectively 𝑃 (ℎ 𝑟 ) = 𝑗 or 𝑃 (ℎ ′𝑟 ) = 𝑗. For all other nodes of the game tree, the actions are chosen at random. Let us consider two strategies 𝑠 𝑖 , 𝑠 ′ 𝑖 ∈ 𝑆 𝑖 of player 𝑖 = 𝑃 (ℎ ∩ ℎ ′ ) and such that 𝑠 𝑖 (𝑎 𝑟 ) = 𝑎 𝑟 +1 and 𝑠 ′ 𝑖 (𝑎 ′ 𝑟 ) = 𝑎 ′ 𝑟 +1 . By construction ⟨𝑠 1 , . . . , 𝑠 𝑖 , . . . , 𝑠 𝑁 ⟩ ↦ → ℎ and ⟨𝑠 1 , . . . , 𝑠 ′ 𝑖 , . . . , 𝑠 𝑁 ⟩ ↦ → ℎ ′ and thus for all 𝑗 ≠ 𝑖 it holds ℎ, ℎ ′ ∈ 𝐻 (𝑠 𝑗 ). (2) ⇒ (1). We prove it by contradiction. If 𝑃 (ℎ ∩ℎ ′ ) = 𝑗 ≠ 𝑖 we would have that, since (1) ⇒ (3), there exists 𝑠 𝑖 ∈ 𝑆 𝑖 such that ℎ, ℎ ′ ∈ 𝐻 (𝑠 𝑖 ), against the assumptions in (2).

(3) ⇒ (2). If there is a strategy 𝑠 𝑖 ∈ 𝑆 𝑖 such that ℎ, ℎ ′ ∈ 𝐻 (𝑠 𝑖 ), then we have {ℎ, ℎ ′ } ⊆ 𝐻 (𝑠), i.e., strategy profile ⟨𝑠 𝑖 , 𝑠 -𝑖 ⟩ would have more than one outcome, which is absurd. □ The expression 𝑃 (ℎ ∩ ℎ ′ ) is capital for the following part of the analysis. Let us highlight it by defining function

𝐼 : 𝐻 × 𝐻 → I where 𝐼 (ℎ, ℎ ′ ) = 𝑃 (ℎ ∩ ℎ ′ ).
It maps the pair of outcomes ℎ, ℎ ′ ∈ 𝐻 with ℎ ≠ ℎ ′ to the player 𝑖 = 𝐼 (ℎ, ℎ ′ ) that separates their paths from the root of the game tree. In order to define the set of possible outcomes 𝐻 (𝑠 𝑖 ) of a strategy 𝑠 𝑖 ∈ 𝑆 𝑖 of a player 𝑖 ∈ I, it is possible to use directly function 𝐼 to select which elements ℎ ∈ 𝐻 can or cannot belong to 𝐻 (𝑠 𝑖 ). We therefore represent the game as a complete graph whose vertex set is made by the game outcomes 𝐻 and each edge (ℎ, ℎ ′ ) ∈ 𝐻 2 is labeled with the label of player 𝐼 (ℎ, ℎ ′ ).

Definition 3.2. Given an extensive-form game Γ = ⟨I, A, 𝐻 ′ , 𝐻, 𝑃, 𝑢⟩ the graph form ⟨𝐻, 𝐼, 𝑢⟩ is described by the complete edge-labeled graph with vertex set 𝐻 , where every edge (ℎ, ℎ ′ ) ∈ 𝐻 2 with ℎ ≠ ℎ ′ has label 𝐼 (ℎ, ℎ ′ ) = 𝑃 (ℎ ∩ ℎ ′ ) ∈ I and the utility function 𝑢 : 𝐻 → R 𝑁 .

Example. Let us observe the game of Fig. 2 with its graph form. In this game each player acts at only one node, therefore we represent with 𝑠 𝑎 the strategy that chooses action 𝑎. The paths from the root to outcomes ℎ 1 and ℎ 3 are split by player 1, who can choose whether to go left (strategy 𝑠 𝑎 ) or to go right (strategy 𝑠 𝑏 ). We thus write 𝐼 (ℎ 1 , ℎ 3 ) = 1 and we assign the label 1 to arc (ℎ 1 , ℎ 3 ). Analogously, the paths belonging to outcomes ℎ 3 and ℎ 4 are split by player 3 who can go either left (strategy 𝑠 𝑒 ) or right (strategy 𝑠 𝑓 ). Therefore we write 𝐼 (ℎ 3 , ℎ 4 ) = 3, assigning label 3 to arc (ℎ 3 , ℎ 4 ).

As anticipated, we would like to define the set of outcomes of a strategy by using the function 𝐼 : 𝐻 × 𝐻 → I. The graph form contains all the possible values of function 𝐼 (ℎ, ℎ ′ ) for every couple of outcomes (ℎ, ℎ ′ ) ∈ 𝐻 × 𝐻 of the game. Let us analyse our example and then conclude how to characterize the set of outcomes of a strategy directly on the graph of the game.

Example. For the game of Fig. 2a let us enlist all the strategies, their possible outcomes and then observe the corresponding labelling on the graph. Player 1 has two strategies: 𝑠 𝑎 and 𝑠 𝑏 . If player 1 picks strategy 𝑠 𝑎 the only possible outcomes are 𝐻 (𝑠 𝑎 ) = {ℎ 1 , ℎ 2 }, while if she picks strategy 𝑠 𝑏 we have 𝐻 (𝑠 𝑏 ) = {ℎ 3 , ℎ 4 }. Player 2 has two strategies: 𝑠 𝑐 and 𝑠 𝑑 . If player 2 chooses strategy 𝑠 𝑐 , she limits the possible outcomes to 𝐻 (𝑠 𝑐 ) = {ℎ 1 , ℎ 3 , ℎ 4 }, while if she chooses 𝑠 𝑑 we have 𝐻 (𝑠 𝑑 ) = {ℎ 2 , ℎ 3 , ℎ 4 }.

Finally for player 3 we have that 𝐻

(𝑠 𝑒 ) = {ℎ 1 , ℎ 2 , ℎ 3 } and 𝐻 (𝑠 𝑓 ) = {ℎ 1 , ℎ 2 , ℎ 4 }.
Let us consider the graph form depicted in Fig. 2b and remove all arcs with the same label 𝑖 ∈ I. Formally, let us define the graph ⟨𝐻, 𝐸| ≠𝑖 ⟩ for each player 𝑖 ∈ I, with

𝐸| ≠𝑖 = {(ℎ, ℎ ′ ) ∈ 𝐻 2 : 𝐼 (ℎ, ℎ ′ ) ≠ 𝑖} excluding all the arcs (ℎ, ℎ ′ ) ∈ 𝐸 such that 𝐼 (ℎ, ℎ ′ ) = 𝑖.
Let us consider 𝑖 = 1 and observe the strategies 𝑠 1 = 𝑠 𝑎 and 𝑠 1 = 𝑠 𝑏 . Their outcomes 𝐻 (𝑠 𝑎 ) = {ℎ 1 , ℎ 2 } and 𝐻 (𝑠 𝑏 ) = {ℎ 3 , ℎ 4 } form cliques over ⟨𝐻, 𝐸| ≠1 ⟩. This is compliant with Theorem 3.1, for which given a strategy 𝑠 𝑖 for all elements ℎ, ℎ ′ ∈ 𝐻 (𝑠 𝑖 ) we have that 𝐼 (ℎ, ℎ ′ ) ≠ 𝑖 and thus (ℎ, ℎ ′ ) ∈ 𝐸| ≠𝑖 . Moreover, as proved next, with an argument similar to the one introduced in [START_REF] Zappalà | Nouvelle modélisation des jeux extensifs basée sur des graphes[END_REF] we conclude that such cliques are maximal.

The above argument can be made stronger: not only the outcomes of a strategy 𝑠 𝑖 ∈ 𝑆 𝑖 form a maximal clique over ⟨𝐻, 𝐸| ≠𝑖 ⟩, but also for every set 𝐶 ⊂ 𝐻 inducing a maximal clique on ⟨𝐻, 𝐸| ≠𝑖 ⟩ there is a corresponding strategy 𝑠 𝑖 ∈ 𝑆 𝑖 with such set of outcomes 𝐶 = 𝐻 (𝑠 𝑖 ).

Lemma 3.3. Given an extensive-form game Γ = ⟨I, A, 𝐻 ′ , 𝐻, 𝑃, 𝑢⟩ and its graph form ⟨𝐻, 𝐼, 𝑢⟩, let us consider ⟨𝐻, 𝐸| ≠𝑖 ⟩ the graph with 𝐻 as vertices and 𝐸| ≠𝑖 = {(ℎ, ℎ ′ ) ∈ 𝐻 2 , 𝐼 (ℎ, ℎ ′ ) ≠ 𝑖} for some player 𝑖 ∈ I. There is a bijection between the set of maximal cliques of ⟨𝐻, 𝐸| ≠𝑖 ⟩ and the set of outcomes of the player's strategies 𝐻 (𝑆 𝑖 ) = {𝐻 (𝑠 𝑖 )|𝑠 𝑖 ∈ 𝑆 𝑖 }.

Proof. Let 𝐶 ⊂ 𝐻 induce a maximal clique on graph ⟨𝐻, 𝐸| ≠𝑖 ⟩. Let us define a strategy 𝑠 𝑖 ∈ 𝑆 𝑖 such that 𝐶 ⊂ 𝐻 (𝑠 𝑖 ). We use the same constructive argument as done in Theorem 3.1: for all ℎ ∈ 𝐶, and for all 𝑘-prefix ℎ 𝑘 such that 𝑃 (ℎ 𝑘 ) = 𝑖, we can fix 𝑠 𝑖 (ℎ 𝑘 ) = 𝑎 𝑘 such that ℎ 𝑘 + (𝑎 𝑘 ) = ℎ 𝑘+1 ; indeed, since 𝐶 is a clique, for every other ℎ ′ ∈ 𝐶 such that ℎ 𝑘 is a prefix of ℎ ′ we have that ℎ 𝑘+1 is a prefix also for ℎ ′ . For all remaining nodes of the tree, actions can be fixed at random. Let ℎ ′′ ∈ 𝐻 \ 𝐶: by construction there is ℎ ∈ 𝐶 such that 𝐼 (ℎ, ℎ ′ ) = 𝑖, so that ℎ ′′ ∉ 𝐻 (𝑠 𝑖 ) and thus 𝐻 (𝑠 𝑖 ) = 𝐶.

We now prove the opposite, i.e., the outcomes of a strategy of player 𝑖 ∈ I define a maximal clique over ⟨𝐻, 𝐸| ≠𝑖 ⟩. Consider a strategy 𝑠 𝑖 ∈ 𝑆 𝑖 and the set of its outcomes 𝐻 (𝑠 𝑖 ). We apply Theorem 3.1: for every ℎ, ℎ ′ ∈ 𝐻 (𝑠 𝑖 ) it holds 𝐼 (ℎ, ℎ ′ ) ≠ 𝑖. By definition, all the elements ℎ, ℎ ′ ∈ 𝐻 (𝑠 𝑖 ) are connected in ⟨𝐻, 𝐸| ≠𝑖 ⟩, i.e., 𝐻 (𝑠 𝑖 ) forms a clique. If this clique is not maximal, there exists 𝐶 ⊂ 𝐻 with 𝐻 (𝑠 𝑖 ) ⫋ 𝐶 that induces a maximal clique over ⟨𝐻, 𝐸| ≠𝑖 ⟩. As done before, we define

𝑠 ′ 𝑖 ∈ 𝑆 𝑖 a strategy such that 𝐻 (𝑠 ′ 𝑖 ) = 𝐶. We have thus 𝐻 (𝑠 𝑖 ) ⫋ 𝐻 (𝑠 ′ 𝑖 ). This is absurd. Indeed, since 𝑠 𝑖 ≠ 𝑠 ′ 𝑖 , there exists ℎ 𝑘 ∈ 𝐻 (𝑠 ′ 𝑖 ) with 𝑃 (ℎ 𝑘 ) = 𝑖 such that 𝑠 𝑖 (ℎ 𝑘 ) ≠ 𝑠 ′ 𝑖 (ℎ 𝑘 ). Let us consider an element ℎ ∈ 𝐻 (𝑠 𝑖 ) such that ℎ 𝑘 + 𝑠 𝑖 (ℎ 𝑘
) is a prefix of ℎ: such element exists because the subgame Γ 𝑘 starting from node ℎ 𝑘 + 𝑠 𝑖 (ℎ 𝑘 ) must be not empty. We have that ℎ ∈ 𝐻 (𝑠 𝑖 ) and ℎ ∉ 𝐻 (𝑠 ′ 𝑖 ), hence proving the contradiction. □

The above result characterises the players' strategies in terms of a structural property of the graph form of the game. Let us recall that Lemma 2.6 defines a realisation of the Nash equilibria over the set of outcomes of the strategies, which are then characterised on the graph in Lemma 3.3. We combine the two lemmas to discuss over the graph whether a candidate outcome ℎ ∈ 𝐻 is the realisation of a Nash equilibrium 𝑠 ∈ 𝑆.

Theorem 3.4. Given a game in its graph form ⟨𝐻, 𝐼, 𝑢⟩, let us consider ⟨𝐻, 𝐸| ≠𝑖 ⟩ defined for each player 𝑖 ∈ I. An outcome ℎ ∈ 𝐻 is a realisation of a Nash equilibrium if and only if there are sets {𝐶 𝑖 ⊂ 𝐻 } 𝑖 ∈ I that induce maximal cliques respectively over the graphs {⟨𝐻, 𝐸| ≠𝑖 ⟩} 𝑖 ∈ I such that:

i. ℎ ∈ ∩ 𝑖 ∈ I 𝐶 𝑖 ; ii. ∀ℎ ′ ∈ 𝐻 \ {ℎ} and 𝑖 = 𝐼 (ℎ, ℎ ′ ) at least one of the two conditions holds: a) 𝑢 𝑖 (ℎ) ≥ 𝑢 𝑖 (ℎ ′ ) or b) ℎ ′ ∉ ∩ 𝑗 ∈ I\{𝑖 } 𝐶 𝑗 .
Proof. Let us consider a strategy 𝑠 ∈ 𝑆 as for Lemma 2.6. First, for all 𝑖 ∈ I it must hold ℎ ∈ 𝐻 (𝑠 𝑖 ). Second, for any other outcome

ℎ ′ ≠ ℎ, if 𝐼 (ℎ, ℎ ′ ) = 𝑖 we have that ℎ ∈ 𝐻 (𝑠 𝑖 ) implies that ℎ ′ ∉ 𝐻 (𝑠 𝑖 ) (cf. Theorem 3.1). Therefore the only condition that allows ℎ ′ ∈ 𝐻 (𝑠 -𝑖 ) = ∩ 𝑗 ∈ I\{𝑖 } 𝐻 (𝑠 𝑗 ) is that 𝐼 (ℎ, ℎ ′ ) = 𝑖. Any outcome ℎ ′ ≠ ℎ must thus fulfill at least one of the two conditions: a) 𝑢 𝑖 (ℎ) ≥ 𝑢 𝑖 (ℎ ′ ) no matter if ℎ ∈ ∩ 𝑗 𝐻 (𝑠 𝑗 ) or not, or b) ℎ ′ ∉ ∩ 𝑗 𝐻 (𝑠 𝑗 ).
Finally, from Lemma 3.3 we know that the existence of every set 𝐻 (𝑠 𝑖 ) depends on the existence of a set 𝐶 𝑖 = 𝐻 (𝑠 𝑖 ) that forms a maximal clique on graph ⟨𝐻, 𝐸| ≠𝑖 ⟩. □

Example. Let us apply Theorem 3.4 to the game-graph of Fig. 2b for outcome ℎ 2 ∈ 𝐻 . Three cliques have to be identified 𝐶 1 , 𝐶 2 and 𝐶 3 . The only set inducing a maximal clique on ⟨𝐻, 𝐸| ≠1 ⟩ such that ℎ 2 belongs to it is 𝐶 1 = {ℎ 1 , ℎ 2 }. Analogously, the only maximal clique on ⟨𝐻, 𝐸| ≠2 ⟩ including ℎ 2 is 𝐶 2 = {ℎ 2 , ℎ 3 , ℎ 4 }. Finally, the maximal cliques on ⟨𝐻, 𝐸| ≠3 ⟩ are 𝐶 3 = {ℎ 1 , ℎ 2 , ℎ 3 } and 𝐶 3 = {ℎ 1 , ℎ 2 , ℎ 4 }. Therefore ℎ 1 ∈ 𝐶 1 ∩ 𝐶 3 and the condition 𝑢 2 (ℎ 2 ) ≥ 𝑢 2 (ℎ 1 ) is necessary. On the other hand, either ℎ 3 ∈ 𝐶 2 ∩ 𝐶 3 and ℎ 4 ∈ 𝐶 2 or ℎ 4 ∈ 𝐶 2 ∩ 𝐶 3 and ℎ 3 ∈ 𝐶 2 . One of the two conditions between 𝑢 1 (ℎ 2 ) ≥ 𝑢 1 (ℎ 3 ) and 𝑢 1 (ℎ 2 ) ≥ 𝑢 1 (ℎ 4 ) must be fulfilled. Finally, ℎ 2 is a realisation of a Nash equilibrium if and only if 𝑢 2 (ℎ 2 ) ≥ 𝑢 2 (ℎ 1 ) and either 𝑢 1 (ℎ 2 ) ≥ 𝑢 1 (ℎ 3 ) or 𝑢 1 (ℎ 2 ) ≥ 𝑢 1 (ℎ 4 ).

In the next sections we apply Theorem 3.4 to introduce new algorithms to identify the realisations of the Nash equilibria of the game. Before getting to it, we state a property of the graph of the game, which will be helpful in the following arguments. Lemma 3.5 (Triangle property). Given a game in its graph form ⟨𝐻, 𝐼, 𝑢⟩ let us consider three outcomes

ℎ, ℎ ′ , ℎ ′′ ∈ 𝐻 . If 𝐼 (ℎ, ℎ ′′ ) ≠ 𝐼 (ℎ ′′ , ℎ ′ ), then either 𝐼 (ℎ, ℎ ′ ) = 𝐼 (ℎ, ℎ ′′ ) or 𝐼 (ℎ, ℎ ′ ) = 𝐼 (ℎ ′′ , ℎ ′ ).
Example. Let us consider three vertices in the graph of Fig. 2b, for instance vertices ℎ 1 , ℎ 2 and ℎ 3 . The arcs (ℎ 1 , ℎ 3 ) and (ℎ 2 , ℎ 3 ) have label 1, while the arc (ℎ 1 , ℎ 2 ) has label 2. The outcome ℎ 3 is separated at the root by ℎ 1 and ℎ 2 and therefore shares with them the same label 𝑖 = 1. Being the separation held at the same stage, ℎ 3 must share the same label with ℎ 1 and ℎ 2 . With a similar argument it is possible to show that among three outcomes there is always one which is separated by the other two at the same stage. Formally, since it is impossible that three paths in a tree share three different intersections, it is possible to prove that no triangle in the graph of a game has three different labels.

ITERATIVE ALGORITHM

In this section we introduce a new method, namely Algorithm 4, to determine on the graph of the outcomes of the game, from now on also game-graph, whether a tagged outcome is a realisation of a Nash equilibrium. By iteration of Algorithm 4 on every outcome of the game, it is possible to enumerate the realisations of Nash equilibria.

The graph form of a game labels every pair of outcomes with the unique player who can be decisive in choosing among them. In order for an outcome ℎ ∈ 𝐻 to be the realisation of a Nash equilibrium (cf. Theorem 3.4), any possible outcome ℎ ′ ∈ 𝐻 \ {ℎ} resulting from a deviation in terms of strategies must be either not incentivised, i.e., 𝑢 𝑖 (ℎ) ≥ 𝑢 𝑖 (ℎ ′ ), or not be a realisation of an unilateral deviation, i.e., there are at least two players having strategies that do not include ℎ ′ as possible outcome. The first condition is easily verified by checking the values of the utility function for each tagged player 𝑖. Let us focus on the second condition: for any other outcome ℎ ′ ≠ ℎ with 𝐼 (ℎ, ℎ ′ ) = 𝑖 we have to find sets {𝐶 𝑗 } 𝑗 ∈ I\{𝑖 } inducing maximal cliques on the respective graphs {⟨𝐻 |𝐸 ≠𝑗 ⟩} 𝑗 ∈ I\{ 𝑗 } such that for at least one 𝑗 ∈ I \ {𝑖} we have that ℎ ′ ∉ 𝐻 (𝑠 𝑗 ). The aim of the Algorithm 4 is to verify the existence a set of maximal cliques such to prevent that any outcome not meeting the first condition 𝑢 𝑖 (ℎ) ≥ 𝑢 𝑖 (ℎ ′ ) at some player 𝑖 belongs to the intersection of all cliques but the one corresponding to player 𝑖. Algorithm 4 allows, given a graph-game ⟨𝐻, 𝐼, 𝑢⟩, precisely to determine if an outcome ℎ ∈ 𝐻 is the realisation of a Nash equilibrium. In the following paragraphs we develop the steps that lead to the design of the algorithm:

• The graph ⟨𝐻, 𝐸⟩ is partitioned into subgraphs {⟨𝐻 𝑖 , 𝐸⟩} 𝑖 ∈ I , where 𝐻 = ∪ 𝑖 ∈ I {𝐻 𝑖 } ∪ {ℎ} and 

𝐻 𝑖 = {ℎ ′ ∈ 𝐻, 𝐼 (ℎ, ℎ ′ ) = 𝑖}
ℎ 1 ℎ 2 ℎ 3 ℎ 4 ℎ 5 ℎ 6 ℎ 7 ℎ 8 1 3 3 1 1 1 3 3 1 1 1 2 1 1 1 1 1 1 1 2 2 2 2 2 3 𝐻 2 𝐻 3 𝐻 1
Fig. 3. Graph form of game of Fig. 1. Given ℎ = ℎ 3 as designated outcome, we have 𝐻 1 = {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 }, 𝐻 2 = {ℎ 4 } and 𝐻 3 = {ℎ 1 , ℎ 2 }. In the example the chosen strategy profile 𝑠 ∈ 𝑆 is such that 𝐻 (𝑠 1 ) = 𝐶 1 = {ℎ 1 , ℎ 3 , ℎ 4 }, 𝐻 (𝑠 2 ) = 𝐶 2 = {ℎ 1 , ℎ 2 , ℎ 3 , ℎ 5 } and 𝐻 (𝑠 3 ) = 𝐶 3 = {ℎ 3 , ℎ 4 , ℎ 5 , ℎ 6 , ℎ 7 }. Preferences of the players over the outcomes are respectively:

𝑢 1 : ℎ 6 ≻ 1 ℎ 7 ≻ 1 ℎ 8 ≻ 1 ℎ 3 ≻ 1 ℎ 4 ≻ 1 ℎ 2 ≻ 1 ℎ 1 ≻ 1 ℎ 5 , 𝑢 2 : ℎ 5 ≻ 2 ℎ 8 ≻ 2 ℎ 7 ≻ 2 ℎ 6 ≻ 2 ℎ 2 ≻ 2 ℎ 3 ∼ 2 ℎ 4 ≻ 2 ℎ 1 and 𝑢 3 : ℎ 8 ≻ 3 ℎ 7 ≻ 3 ℎ 6 ≻ 3 ℎ 2 ≻ 3 ℎ 5 ≻ 3 ℎ 3 ≻ 3 ℎ 1 ≻ 3 ℎ 4 .
• Algorithm 4 thus checks for all 𝑖 ∈ I that on every subgraph ⟨𝐻 𝑖 , 𝐸| =𝑖 ⟩ there is a set C 𝑖 ⊂ 𝐻 𝑖 inducing a maximal clique such that none of the elements that do not meet the first condition

𝑋 𝑖 = {ℎ ′ ∈ 𝐻 𝑖 , 𝑢 𝑖 (ℎ) < 𝑢 𝑖 (ℎ ′ )} belong to C 𝑖 , i.e., such that C 𝑖 ∩ 𝑋 𝑖 = ∅ (cf.
problem of the excluding maximal clique Algorithm 2); • At every iteration Algorithm 4 solves a problem of the excluding clique (cf. Algorithm 3), rather than the equivalent problem of the excluding maximal clique (cf. Algorithm 2). Induced subgraphs of deviations. From now on the object of the inquire is a designated outcome ℎ ∈ 𝐻 and whether or not it is the realisation of some Nash equilibrium 𝑠 ∈ 𝑆. For the sake of example we shall use the game-graph of Fig. 3 which corresponds to the game of Fig. 1. Let us group all the outcomes that can be potential unilateral deviations of the same player. In the following we call alternatively unilateral deviation the strategy 𝑠 ′ 𝑖 ≠ 𝑠 𝑖 that differs from the one used at the Nash equilibrium 𝑠 ∈ 𝑆 and the realisation ℎ ′ of the new strategy profile 𝑠 ′ = (𝑠 ′ 𝑖 , 𝑠 -𝑖 ) ↦ → ℎ ′ . Let us define the set of potential deviations of a given player 𝑖 ∈ I from ℎ

𝐻 𝑖 = {ℎ ′ ∈ 𝐻 \ {ℎ}, 𝑖 = 𝐼 (ℎ, ℎ ′ )}. ℎ 5 ℎ 6 ℎ 7 ℎ 8 2 2 2 2 2 2 3 𝐻 1 ℎ 1 ℎ 2 ℎ 4 1 𝐻 2 𝐻 3 a) b) c)
Fig. 4. Induced subgraphs. The candidate outcome is ℎ = ℎ 3 . We show graph of Fig. 3 induced over a)

𝐻 1 = {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 } b) 𝐻 2 = {ℎ 4 } and c) 𝐻 3 = {ℎ 1 , ℎ 2 }. We recall that the chosen 𝑠 ∈ 𝑆 in the example is such that 𝐻 (𝑠 1 ) = 𝐶 1 = {ℎ 1 , ℎ 3 , ℎ 4 }, 𝐻 (𝑠 2 ) = 𝐶 2 = {ℎ 1 , ℎ 2 , ℎ 3 , ℎ 5 } and 𝐻 (𝑠 3 ) = 𝐶 3 = {ℎ 3 , ℎ 4 , ℎ 5 , ℎ 6 , ℎ 7 }.
Example. In the game of Fig. 1 let us choose ℎ = ℎ 3 and verify whether or not it is a possible realisation of a Nash equilibrium. The possible deviations from ℎ 3 for players 1, 2 and 3 are respectively 𝐻 1 = {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 }, 𝐻 2 = {ℎ 4 } and 𝐻 3 = {ℎ 1 , ℎ 2 } (cf. Fig. 3). We split the set of possible deviations 𝐻 𝑖 = 𝑉 𝑖 ∪ 𝑋 𝑖 between those with no incentive of deviating 𝑉 𝑖 = {ℎ ′ ∈ 𝐻 𝑖 , 𝑢 𝑖 (ℎ) ≥ 𝑢 𝑖 (ℎ ′ )} and those whose utility would increase for the player 𝑋 𝑖 = {ℎ ′ ∈ 𝐻 𝑖 , 𝑢 𝑖 (ℎ) < 𝑢 𝑖 (ℎ ′ )}. Such division helps us to distinguish those elements, i.e., all the outcomes in {𝑉 𝑖 } 𝑖 ∈ I , that already meet the first condition of Theorem 3.4. In the aforementioned example we have

𝑉 1 = {ℎ 5 }, 𝑋 1 = {ℎ 6 , ℎ 7 , ℎ 8 }, 𝑉 2 = {ℎ 4 }, 𝑋 2 = ∅, 𝑉 3 = {ℎ 1 } and 𝑋 3 = {ℎ 2 }.
Direct application of the main theorem. Let us apply Theorem 3.4 on the graph of Fig. 3 for ℎ = ℎ 3 by analysing every potential deviation ℎ ′ ∈ 𝐻 𝑖 for every 𝑖 ∈ I. Let us consider 𝐶 1 = {ℎ 1 , ℎ 3 , ℎ 4 }, 𝐶 2 = {ℎ 1 , ℎ 2 , ℎ 3 , ℎ 5 } and 𝐶 3 = {ℎ 3 , ℎ 4 , ℎ 5 , ℎ 6 , ℎ 7 } inducing maximal cliques respectively on ⟨𝐻, 𝐸| ≠1 ⟩, ⟨𝐻, 𝐸| ≠2 ⟩ and ⟨𝐻, 𝐸| ≠3 ⟩. The elements in 𝑉 1 , 𝑉 2 and 𝑉 3 already meet the first condition of Theorem 3.4. Let us thus consider first 𝑋 1 = {ℎ 6 , ℎ 7 , ℎ 8 } and then 𝑋 3 = {ℎ 2 } (𝑋 2 is empty). By construction, the elements in 𝑋 1 cannot belong to 𝐶 1 . Moreover, we find out that in this case none of the outcomes of 𝑋 1 neither belongs to 𝐶 2 . Therefore we can conclude that for 𝑖 = 1 and every ℎ ′ ∈ 𝑋 1 there is 𝑗 = 2 such that ℎ ′ ∉ 𝐶 2 . It is thus possible to define strategies such that the deviation to any element of 𝑋 1 is at least bilateral (both players 1 and 2 should change their strategies). Similarly, ℎ 2 ∈ 𝑋 3 cannot belong to 𝐶 3 because it is player 𝐼 (ℎ 2 , ℎ 3 ) = 3 that can potentially deviate from ℎ 3 to ℎ 2 . Moreover, ℎ 2 ∉ 𝐶 1 and therefore player 1 guarantees that the deviation is bilateral, or formally for 𝑖 = 3 and ℎ 2 ∈ 𝐶 3 there is 𝑗 = 1 such that ℎ 2 ∉ 𝐶 1 . Summing up, we admit that outcomes ℎ 1 , ℎ 4 and ℎ 5 cannot result from unilateral deviations, because they belong to respectively to 𝑉 3 , 𝑉 2 and 𝑉 1 and therefore there is no incentive for players to deviate to them. On the other hand, there exists a strategy profile such that all outcomes ℎ 2 , ℎ 6 , ℎ 7 and ℎ 8 cannot result from unilateral deviations, since they require at least a strategy deviation from at least two players simultaneously. Finally, Theorem 3.4 ensures that ℎ = ℎ 3 is the realisation of a Nash equilibrium of the game.

In order to simplify the condition of Theorem 3.4, we analyse the relationship between maximal cliques and the subgraphs induced by sets of possible deviations {𝐻 𝑖 } 𝑖 ∈ I .

Example. Fig. 4 shows the graph of Fig. 3 induced over respectively 𝐻 1 = {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 }, 𝐻 2 = {ℎ 4 } and 𝐻 3 = {ℎ 1 , ℎ 2 }. Let us suppose that we are given for all 𝑗 ∈ I the set of outcomes 𝐶 𝑗 of a strategy 𝑠 𝑗 ∈ 𝑆 𝑗 inducing a maximal clique over graph ⟨𝐻, 𝐸| ≠𝑗 ⟩.

The first observation is that, in order for the designated ℎ ∈ 𝐻 to be an outcome of the strategy profile 𝑠 ∈ 𝑆, it must hold ℎ ∈ 𝐶 𝑗 for every 𝑗 ∈ I. By definition of 𝐻 𝑗 , we have that 𝐶 𝑗 ∩ 𝐻 𝑗 = ∅, because all of its elements are incompatible with ℎ with respect to player 𝑖. Example. In Fig. 4 we observe 𝐶 1 ∩ 𝐻 1 = ∅, 𝐶 2 ∩ 𝐻 2 = ∅ and 𝐶 3 ∩ 𝐻 3 = ∅. Any set 𝐶 𝑗 that verifies the assumptions of Theorem 3.4 includes solely elements of outcome sets 𝐻 𝑖 for 𝑖 ≠ 𝑗.

The second observation is that the elements in 𝐶 𝑗 ∩ 𝐻 𝑖 for any 𝑖 ≠ 𝑗 form a maximal clique also on the induced graph ⟨𝐻 𝑖 , 𝐸| ≠𝑗 ⟩, i.e., with 𝐻 𝑖 as set of vertices and

𝐸| ≠𝑗 = {(ℎ, ℎ ′ ) ∈ 𝐻 2 𝑖 |𝐼 (ℎ, ℎ ′ ) ≠ 𝑗 }. Example.
Let us consider 𝐶 3 = {ℎ 3 , ℎ 4 , ℎ 5 , ℎ 6 , ℎ 7 } and let us analyse 𝐶 3 ∩𝐻 1 and 𝐶 3 ∩𝐻 2 . The element ℎ 4 is the only element of 𝐶 3 ∩ 𝐻 2 and therefore forms a maximal clique within 𝐻 2 . The elements {ℎ 5 , ℎ 6 , ℎ 7 } ⊂ 𝐶 3 belong to 𝐻 1 = {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 }. Let us observe the induced graph ⟨𝐻 1 , 𝐸| ≠3 ⟩ in Fig. 5a. The outcomes ℎ 7 and ℎ 8 are not connected since 𝐼 (ℎ 7 , ℎ 8 ) = 𝑗 = 3. The elements 𝐶 3 ∩𝐻 1 = {ℎ 5 , ℎ 6 , ℎ 7 } form indeed a maximal clique within ⟨𝐻 1 , 𝐸| ≠3 ⟩.

With the following lemma we show that it is equivalent to look for a maximal clique over the graph ⟨𝐻, 𝐸| ≠𝑗 ⟩ and looking for 𝑁 -1 maximal cliques on the 𝑁 -1 respective graphs {⟨𝐻 𝑖 , 𝐸| ≠𝑗 ⟩} 𝑖 ∈ I\{ 𝑗 } . Lemma 4.1 (Partition). Given a game in its graph form ⟨𝐻, 𝐼, 𝑢⟩, a player 𝑖 ∈ I and the graph ⟨𝐻, 𝐸| ≠𝑗 ⟩, every set 𝐶 𝑗 inducing a maximal clique over the graph ⟨𝐻, 𝐸| ≠𝑗 ⟩ is the union

𝐶 𝑗 = ∪ 𝑖 ∈ I\{ 𝑗 } 𝐶 𝑗 | 𝐻 𝑖 of the disjoint sets 𝐶 𝑗 | 𝐻 𝑖 = 𝐶 𝑗 ∩ 𝐻 𝑖 inducing maximal cliques over ⟨𝐻 𝑖 , 𝐸| ≠𝑗 ⟩.
Proof. We recall that 𝐻 𝑖 = {ℎ ′ ∈ 𝐻 |𝐼 (ℎ, ℎ ′ ) = 𝑖} is the set of possible deviations from the designated outcome ℎ ∈ 𝐻 . It is enough to prove that within the main graph ⟨𝐻, 𝐸| ≠𝑗 ⟩ every two elements ℎ 𝑖 ′ , ℎ 𝑖 ′′ belonging to two different sets of possible deviations, i.e., ℎ 𝑖 ′ ∈ 𝐻 𝑖 ′ and ℎ 𝑖 ′′ ∈ 𝐻 𝑖 ′′ with 𝑖 ′ , 𝑖 ′′ ∈ I \ { 𝑗 } and 𝑖 ′ ≠ 𝑖 ′′ , are always connected. Formally, we need to show that it always holds (ℎ 𝑖 ′ , ℎ 𝑖 ′′ ) ∈ 𝐸| ≠𝑗 , i.e., 𝐼 (ℎ 𝑖 ′ , ℎ 𝑖 ′′ ) ≠ 𝑗. Given the designated ℎ ∈ 𝐻 , we observe that 𝐼 (ℎ, ℎ 𝑖 ′ ) = 𝑖 ′ and 𝐼 (ℎ, ℎ 𝑖 ′′ ) = 𝑖 ′′ . For the triangle property of Lemma 3.5 either 𝐼 (ℎ 𝑖 ′ , ℎ 𝑖 ′′ ) = 𝑖 ′ ≠ 𝑗 or 𝐼 (ℎ 𝑖 ′ , ℎ 𝑖 ′′ ) = 𝑖 ′′ ≠ 𝑗, which concludes the proof. □

Example. Let us consider again the game-graph of Fig. 3 with candidate outcome ℎ = ℎ 3 . Let us characterise a generic maximal clique 𝐶 2 , i.e., the set of outcomes of a strategy 𝑠 2 ∈ 𝑆 2 of player 𝑗 = 2 that admits ℎ 3 ∈ 𝐻 (𝑠 2 ) = 𝐶 2 as possible outcome. By hypothesis we have to fix ℎ 3 ∈ 𝐶 2 and ℎ 4 ∉ 𝐶 2 , since 𝐻 2 = {ℎ 4 }. Let us consider thus 𝐻 1 = {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 } and 𝐻 3 = {ℎ 1 , ℎ 2 }. Given any edge (ℎ ′ , ℎ ′′ ) ∈ 𝐻 1 × 𝐻 3 , the label 𝐼 (ℎ ′ , ℎ ′′ ) ≠ 2 again from Lemma 3.5. In this specific case 𝐼 (ℎ ′ , ℎ ′′ ) = 1 for every pair of elements. Any candidate strategy 𝑠 2 ∈ 𝑆 2 for a Nash equilibrium 𝑠 ∈ 𝑆 having 𝑠 ↦ → ℎ 3 as realisation has therefore a set of outcomes 𝐻

(𝑠 2 ) = 𝐶 2 = {ℎ 3 } ∪ (𝐶 2 | 𝐻 1 ) ∪ (𝐶 2 | 𝐻 3 ),
where 𝐶 2 | 𝐻 1 and 𝐶 2 | 𝐻 3 are sets of elements that induce a maximal clique respectively on ⟨𝐻 1 , 𝐸| ≠2 ⟩ and ⟨𝐻 3 , 𝐸| ≠2 ⟩.

Theorem 3.4 requires to identify for every 𝑗 ∈ I a maximal clique over the graph ⟨𝐻, 𝐸| ≠𝑗 ⟩. Thanks to the latest result, it is possible to check the existence of such maximal clique on every induced graph ⟨𝐻 𝑖 , 𝐸| ≠𝑗 ⟩. We thus rewrite the necessary and sufficient condition on the induced subgraphs: for all 𝑖 ∈ I there must be a set 𝐶 𝑗 |𝐻 𝑖 inducing a maximal clique for every player ALGORITHM 2: (MC) Existence of a maximal clique excluding a set of vertices Input: ⟨𝐻, 𝐸, 𝑋 ⟩ defining a graph ⟨𝐻, 𝐸⟩ and a subset of vertices 𝑋 ⊂ 𝐻 . Output: Is there a vertex set 𝐶 ⊂ 𝐻 \ 𝑋 that induces a maximal clique on ⟨𝐻, 𝐸⟩? 𝑗 ∈ I \ {𝑖} such that none of the possible deviations ℎ ′ ∈ 𝑋 𝑖 ⊂ 𝐻 𝑖 belongs to the intersection of the maximal cliques ∩ 𝑗 ∈ I\{𝑖 } 𝐶 𝑗 | 𝐻 𝑖 .

Example. In Fig. 5a we have that 𝑋 1 = {ℎ 6 , ℎ 7 , ℎ 8 } and the induced sets over 𝐻 1 = {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 } that induce maximal cliques are respectively

𝐶 2 | 𝐻 1 = {ℎ 5 } and 𝐶 3 | 𝐻 1 = {ℎ 5 , ℎ 6 , ℎ 7 }. The property (∩ 𝑗 ∈ I\{𝑖 } 𝐶 𝑗 ) ∩ 𝑋 𝑖 = ∅ is fulfilled, since (𝐶 2 ∩ 𝐶 3 )| 𝐻 1 = {ℎ 5 } and 𝑋 1 = {ℎ 6 , ℎ 7 , ℎ 8 } have no elements in common.
Let us discuss the properties of the intersection ∩ 𝑗 ∈ I\{𝑖 } 𝐶 𝑗 | 𝐻 𝑖 : these are the possible unilateral deviations of player 𝑖, given the strategies of the other players ∩ 𝑗 ∈ I\{𝑖 } 𝐶 𝑗 | 𝐻 𝑖 = 𝐻 (𝑠 -𝑖 ) for some 𝑠 -𝑖 ∈ 𝑆 -𝑖 . Let us observe that given the possible outcomes ∩ 𝑗 ∈ I\{𝑖 } 𝐶 𝑗 | 𝐻 𝑖 it is the player 𝑖 ∈ I who chooses which one is to be the deviation. In other words, it is intuitive that for every pair of elements ℎ, ℎ ′ ∈ ∩ 𝑗 ∈ I\{𝑖 } 𝐶 𝑗 | 𝐻 𝑖 it must hold 𝐼 (ℎ, ℎ ′ ) = 𝑖. Let us show that this property is maximal and thus that identifying an intersection of maximal cliques ∩ 𝑗 ∈ I\{𝑖 } 𝐶 𝑗 | 𝐻 𝑖 is equivalent to identifying a set C 𝑖 inducing a maximal clique over 𝐻 𝑖 . Lemma 4.2. Given a game in graph form ⟨𝐻, 𝐼, 𝑢⟩, a player 𝑖 ∈ I and the induced subgraph ⟨𝐻 𝑖 , 𝐸⟩ on the set of possible deviations 𝐻 𝑖 and a set C 𝑖 ⊂ 𝐻 𝑖 , the two conditions are equivalent:

• C 𝑖 induces a maximal clique over graph ⟨𝐻 𝑖 , 𝐸| =𝑖 ⟩, where

𝐸| =𝑖 = {(ℎ, ℎ ′ ) ∈ 𝐻 2 𝑖 |𝐼 (ℎ, ℎ ′ ) = 𝑖}; • There are sets {𝐶 𝑗 | 𝐻 𝑖 } 𝑗 ∈ I\{𝑖 } inducing maximal cliques over the graphs {⟨𝐻 𝑖 , 𝐸| ≠𝑗 ⟩} 𝑗 ∈ I\{𝑖 } such that C 𝑖 = ∩ 𝑗 ∈ I\{𝑖 } 𝐶 𝑗 | 𝐻 𝑖 .
Proof. For sake of clarity, in the proof we drop the subscript | 𝐻 𝑖 from 𝐶 𝑗 | 𝐻 𝑖 . We first prove the direct implication. Let C 𝑖 induce a maximal clique over ⟨𝐻 𝑖 , 𝐸| =𝑖 ⟩ and for all 𝑗 ∈ I \ {𝑖} a set 𝐶 𝑗 with C 𝑖 ⊂ 𝐶 𝑗 induce maximal clique over the graphs ⟨𝐻 𝑖 , 𝐸| ≠𝑗 ⟩. The sets {𝐶 𝑗 } are well defined because for all ℎ ′ , ℎ ′′ ∈ C 𝑖 it holds 𝐼 (ℎ ′ , ℎ ′′ ) = 𝑖 ≠ 𝑗. We observe that for every ℎ ′ , ℎ ′′ ∈ ∩ 𝑗 𝐶 𝑗 it holds 𝐼 (ℎ ′ , ℎ ′′ ) = 𝑖 and thus C 𝑖 ⊂ ∩ 𝑗 𝐶 𝑗 . Since C 𝑖 is a maximal clique, C 𝑖 = ∩ 𝑗 𝐶 𝑗 . Now let us prove the opposite, i.e., let us show that C 𝑖 = ∩ 𝑗 𝐶 𝑗 induces a maximal clique over ⟨𝐻 𝑖 , 𝐸| =𝑖 ⟩. For all ℎ ′ , ℎ ′′ ∈ C 𝑖 it holds 𝐼 (ℎ ′ , ℎ ′′ ) = 𝑖, i.e., C 𝑖 induces a clique on ⟨𝐻 𝑖 , 𝐸| =𝑖 ⟩. Let us show that it is maximal. By contradiction, there is C ′ 𝑖 ⊃ C 𝑖 forming a maximal clique over {𝐻 𝑖 , 𝐸| =𝑖 }. With a similar argument used for Lemma 3.3 we prove that this is absurd. □

Let us observe the induced graph ⟨𝐻 1 , 𝐸| =1 ⟩ of Fig. 5b. There are no edges with label 1 and therefore all the maximal cliques are the single vertices. This means that players 2 and 3 can identify strategies such that player 1 is forced to pick only the vertex chosen by them.

Problem of the excluding maximal clique. The necessary and sufficient condition of Theorem 3.4 is equivalent to verify whether on every graph ⟨𝐻 𝑖 , 𝐸| =𝑖 ⟩ there is a set C 𝑖 that induces a maximal clique such that C 𝑖 ∩ 𝑋 𝑖 = ∅. The problem is known as the the existence of a maximal clique excluding a set of vertices (cf. Algorithm 2). 1 The condition is thus to verify with the problem of Algorithm 2 with input ⟨𝐻, 𝐸, 𝑋 ⟩ = ⟨𝐻 𝑖 , 𝐸| =𝑖 , 𝑋 𝑖 ⟩ for every 𝑖 ∈ I the existence of a set 𝐶 ⊂ 𝐻 𝑖 \ 𝑋 𝑖 inducing a maximal clique over 𝐻 𝑖 .

Equivalent problem of the excluding clique. In [START_REF] Zappalà | Nouvelle modélisation des jeux extensifs basée sur des graphes[END_REF] it is proved that such problem is equivalent to determine whether there is a (non-maximal) clique on 𝑉 = 𝐻 \ 𝑋 such that for every element in 𝑋 there is at least one in 𝑉 not connected to it (cf. Algorithm 3). Such problem is ALGORITHM 3: (EC) Existence of a clique excluding a set of vertices Input: ⟨𝑉 , 𝑋, 𝐸⟩ defining a graph ⟨𝑉 ∪ 𝑋, 𝐸⟩ with 𝑉 ∩ 𝑋 = ∅. Output: Is there a vertex set 𝐶 ⊂ 𝑉 that induces a clique on ⟨𝑉 ∪ 𝑋, 𝐸⟩ such that for all ℎ ′′ ∈ 𝑋 there is ℎ ′ ∈ 𝐶 so that (ℎ ′ , ℎ ′′ ) ∉ 𝐸?

ALGORITHM 4: (NE) Determining whether an outcome is a realisation of a Nash equilibrium Input: A game in its graph form = ⟨𝐻, 𝐼, 𝑢⟩ and an outcome ℎ ∈ 𝐻 .

Output: Is ℎ a realisation of a Nash equilibrium? 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 = 𝑇 𝑟𝑢𝑒 ; // A boolean value determining whether ℎ is a realisation of a NE for 𝑖 ∈ I do

𝑉 𝑖 ← {ℎ ′ ∈ 𝐻 \ {ℎ}, 𝐼 (ℎ, ℎ ′ ) = 𝑖, 𝑢 𝑖 (ℎ) ≥ 𝑢 𝑖 (ℎ ′ )}; 𝑋 𝑖 ← {ℎ ′ ∈ 𝐻 \ {ℎ}, 𝐼 (ℎ, ℎ ′ ) = 𝑖, 𝑢 𝑖 (ℎ) < 𝑢 𝑖 (ℎ ′ )}; 𝐸| 𝑉 𝑖 ∪𝑋 𝑖 = {(ℎ, ℎ ′ ) ∈ 𝑉 𝑖 ∪ 𝑋 𝑖 , 𝐼 (ℎ, ℎ ′ ) = 𝑖}; if Output of Algorithm 3 with input ⟨𝑉 𝑖 , 𝑋 𝑖 , 𝐸| 𝑉 𝑖 ∪𝑋 𝑖 ⟩ is negative then 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 = 𝐹𝑎𝑙𝑠𝑒; end end
NP-complete on a generic graph, but it comes with a simple integer linear formulation [START_REF] Zappalà | Nouvelle modélisation des jeux extensifs basée sur des graphes[END_REF].

We can thus rely on Theorem 3.4, the latest results and the newly introduced problem to present Algorithm 4 which determines whether an outcome is a realisation of a Nash Equilibrium. Theorem 4.3. Given a game in its graph form ⟨𝐻, 𝐼, 𝑢⟩ and an outcome ℎ ∈ 𝐻 as input, Algorithm 4 determines whether ℎ is a realisation of a Nash equilibrium.

Proof. Let us define the set of possible unilateral deviations 𝐻 𝑖 = {ℎ ′ ∈ 𝐻, 𝐼 (ℎ, ℎ ′ ) = 𝑖}, with 𝐻 𝑖 = 𝑉 𝑖 ∪ 𝑋 𝑖 as in Algorithm 4. Theorem 3.4 states that the necessary and sufficient condition for ℎ to be a realisation of a Nash equilibrium is the existence of sets {𝐶 𝑖 } 𝑖 ∈ I inducing maximal cliques over the respective graphs {⟨𝐻, 𝐸| ≠𝑖 ⟩} 𝑖 ∈ I such that ℎ ∈ ∩ 𝑖 ∈ I 𝐶 𝑖 and ∩ 𝑗 ∈ I\{𝑖 } 𝐶 𝑗 ⊂ 𝑉 𝑖 . The previous results let us simplify such condition up to the excluding clique problem: for sake of clarity, hereafter let us summarise the argument. For Lemma 4.1 the condition is equivalent to verifying for all 𝑖 ∈ I the existence of sets

{𝐶 𝑗 | 𝐻 𝑖 ⊂ 𝐻 𝑖 } 𝑗 ∈ I\{𝑖 } inducing maximal cliques over graphs {⟨𝐻 𝑖 , 𝐸| ≠𝑗 ⟩} 𝑖 ∈ I such that ∩ 𝑗 ∈ I\{𝑖 } 𝐶 𝑗 | 𝐻 𝑖 ⊂ 𝑉 𝑖 .
Finally, for Lemma 4.2 this condition is equivalent to verifying for all 𝑖 ∈ I the existence of a set C 𝑖 ⊂ 𝑉 𝑖 that induces a maximal clique over ⟨𝐻 𝑖 , 𝐸| =𝑖 ⟩. Since the problem of the excluding maximal clique is equivalent to the problem of the excluding clique [START_REF] Zappalà | Nouvelle modélisation des jeux extensifs basée sur des graphes[END_REF], we have the proof. □

RECURSIVE ALGORITHM

Algorithm 4 allows us to determine if an outcome is a possible realisation of a Nash equilibrium.

If we iterate the algorithm over all the outcomes of the game, it is possible to enumerate all the realisations of Nash equilibria. However, we observe that many computations are repeated. In this section we discuss Algorithm 5, that allows to perform the enumeration while avoiding such repetitions. The following arguments are developed in the rest of the section:

• If we fix the graph ⟨𝐻 𝑖 , 𝐸| =𝑖 ⟩, the problem of identifying a clique on 𝐻 𝑖 excluding 𝑋 𝑖 = {ℎ ′ ∈ 𝐻 𝑖 , 𝑢 𝑖 (ℎ) < 𝑢 𝑖 (ℎ ′ )} depends solely on the parameter 𝑢 𝑖 (ℎ). Not all designated outcomes ℎ allow to find an excluding clique: there is a value 𝑢 = 𝑢 𝑖 (𝜃 𝑖 ) for some 𝜃 𝑖 ∈ 𝐻 𝑖 over which the clique exists and under which the clique does not; we call this value threshold outcome (cf. Definition 5.1); • Solving the problem of the excluding clique for a given ℎ ∈ 𝐻 on a graph ⟨𝐻 𝑖 , 𝐸| =𝑖 ⟩ is thus equivalent to comparing the value of 𝑢 𝑖 (ℎ) to 𝑢 𝑖 (𝜃 𝑖 ), i.e., the utility of the threshold outcome 𝜃 𝑖 ∈ 𝐻 𝑖 ; Algorithm 5 avoid repetitions by first computing such thresholds; • The set 𝐻 𝑖 is the union of different subgames and thus its threshold can be obtained by either maximising or minimising the utility of the thresholds of such subgames (cf. Lemma 5.2); • It is thus possible to compute all thresholds recursively on the game-tree by decomposing every subgames in smaller ones; • Algorithm 5 recursively computes the thresholds of every subgame and checks simultaneously whether every outcome ℎ ∈ 𝐻 meets them (cf. Theorem 5.3). Example. Let us consider the game-graph of Fig. 3. Let us apply Algorithm 4 to the designated outcomes ℎ 3 , ℎ 4 ∈ 𝐻 . In the case of ℎ 3 ∈ 𝐻 we recall that the possible unilateral deviations for the players are respectively 𝐻 1 = {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 }, 𝐻 2 = {ℎ 4 } and 𝐻 3 = {ℎ 1 , ℎ 2 }. For the case of outcome ℎ 4 ∈ 𝐻 by inspection the possible deviations are 𝐻 1 = {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 }, 𝐻 2 = {ℎ 3 } and 𝐻 3 = {ℎ 1 , ℎ 2 }. Even if 𝐻 1 and 𝐻 3 are unchanged, the input of Algorithm 2, namely ⟨𝐻 𝑖 , 𝐸| ≠𝑖 , 𝑋 𝑖 ⟩, with 𝑋 𝑖 = {ℎ ′ ∈ 𝐻 𝑖 |𝑢 𝑖 (ℎ) < 𝑢 𝑖 (ℎ ′ )}, is changed. However, the only parameter that changes is 𝑢 𝑖 (ℎ).

We can avoid to repeat part of such computations by identifying the lowest value of utility 𝑢 𝑖 (ℎ) that an outcome ℎ ∈ 𝐻 must achieve in order to admit a set C 𝑖 inducing a maximal clique over

⟨𝐻 𝑖 , 𝐸| =𝑖 ⟩ such that C 𝑖 ∩ 𝑋 𝑖 = ∅, with 𝑋 𝑖 = {ℎ ′ ∈ 𝐻 𝑖 , 𝑢 𝑖 (ℎ) < 𝑢 𝑖 (ℎ ′ )}. Let us observe that if 𝑋 𝑖 = ∅
for some 𝑢 𝑖 (ℎ), then the maximal clique always exists. As the parameter 𝑢 𝑖 (ℎ) decreases, the set 𝑋 𝑖 gets larger and it is thus less likely to find a maximal clique. When 𝑢 𝑖 (ℎ) is lower than the value of 𝑢 𝑖 (ℎ ′ ) for any ℎ ′ ∈ 𝐻 𝑖 , we have that 𝑋 𝑖 = 𝐻 𝑖 and thus the maximal clique does not exist. The intuition is the following: the lowest value of utility that an outcome can attain corresponds to an element of 𝐻 𝑖 which is the one with the smallest utility among those which that cannot be included in 𝑋 𝑖 for a maximal clique to be identified in 𝐻 𝑖 \ 𝑋 𝑖 . For this reason, we call this element a threshold outcome.

Definition 5.1 (Threshold). Given a game in graph form ⟨𝐻, 𝐼, 𝑢⟩, a player 𝑖 ∈ I, a designated outcome ℎ and the set 𝐻 𝑖 ⊂ 𝐻 of of her possible deviations, a threshold outcome 𝜃 𝑖 ∈ 𝐻 𝑖 is such that Algorithm 2 with input ⟨𝐻 𝑖 , 𝐸| ≠𝑖 , 𝑋 𝑖 ⟩ with 𝑋 𝑖 = {ℎ ′ ∈ 𝐻 𝑖 |𝑢 < 𝑢 𝑖 (ℎ ′ )} admits solutions for every 𝑢 ≥ 𝑢 𝑖 (𝜃 𝑖 ) and does not admit solution for every 𝑢 < 𝑢 𝑖 (𝜃 𝑖 ).

It is obvious that player 𝑖 attains same utility at threshold outcomes. Example. In the game-graph of Fig. 3 the corresponding subgraphs ⟨𝐻 1 , 𝐸| =1 ⟩, and ⟨𝐻 3 , 𝐸| =3 ⟩ have trivially no edges, and thus every outcome alone generates a maximal clique. In this case the minimum value admitted for ℎ 3 and ℎ 4 are the minimum values of the elements of the induced graphs in 𝐻 1 for player 1 and in 𝐻 3 for player 3. Such values, which are the thresholds for 𝐻 1 and 𝐻 3 , are respectively ℎ 5 and ℎ 1 :

𝑢 𝑚𝑖𝑛 1 = min ℎ ′ ∈𝐻 1 𝑢 1 (ℎ ′ ) = 𝑢 1 (ℎ 5 ) and 𝑢 𝑚𝑖𝑛 3 = min ℎ ′ ∈𝐻 3 𝑢 3 (ℎ ′ ) = 𝑢 3 (ℎ 1 ).
The candidate outcomes ℎ 3 and ℎ 4 must be compared first with 𝜃 1 = ℎ 5 with respect to player 1: we observe both ℎ 3 ⪰ 1 ℎ 5 and ℎ 4 ⪰ 1 ℎ 5 . Then they both must be compared to 𝜃 3 = ℎ 1 with respect to player 3: we have that ℎ 3 ⪰ 3 ℎ 1 , but ℎ 4 ≺ 3 ℎ 1 . Therefore ℎ 4 cannot be the realisation of a Nash equilibrium, because no maximal clique can be identified on 𝐻 3 , indeed 𝑋 3 = 𝐻 3 .

The first intuition at the base of Algorithm 5 is that that the set of possible deviations 𝐻 𝑖 from a target outcome ℎ is the union of the outcomes of all the subgames that must be avoided by player 𝑖 in order to attain ℎ. Furthermore, such subgames are separated one from the other by the label 𝑖 on the game-graph, because it is player 𝑖 who is decisive in not attaining them.

Example. Let us go back to the game-tree of Fig. 1: in order to get to ℎ 3 or ℎ 4 player 1 does not go right at the root. Note that the corresponding subgame is identified by the deviating outcomes 𝐻 1 = {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 }, so that we can associate to it the corresponding threshold outcome ℎ 5 corresponding to 𝐻 1 . Then, again, at the following node, player 3 need not to go left. By direct computation, the threshold for the corresponding subgame, identified this time by the deviating outcomes 𝐻 3 = {ℎ 1 , ℎ 2 }, is ℎ 1 . Note that, in this case, the sets 𝐻 1 and 𝐻 3 correspond to two unique subgames.

The second intuition of Algorithm 5 is that in order to prevent a deviation of player 𝑖 ∈ I from ℎ to another outcome belonging to a subgame, the other players pick strategies so as to let her available the outcomes with the lowest utility. Among these outcomes player 𝑖 chooses the one with the highest utility ℎ ′ . If this outcome is preferred to ℎ ′ by player 𝑖, there is no way for the other players to keep her from deviating to the subgame. The outcome ℎ ′ with the lowest value of utility that can be chosen by player 𝑖 ∈ I is later proved to be the threshold of the subgame rooted at the node where player 𝑖 acts. More specifically, we show below that the threshold outcome is obtained via a minmax argument: it is obtained by supposing that in every subgame all players but 𝑖 minimise the value of the utility function 𝑢 𝑖 , while player 𝑖 maximises it. Hence, this argument is the basis for the design of a recursive computation of thresholds and equilibria on the game-tree.

The key observation is that the game-graph of a subgame can be partitioned in the game-graphs of the subgames at the lowest stage; such subgames are separated by the same label 𝑗 ∈ I of the player who chooses among them at the stage before.

Example. In Fig. 1 in the subgame generated by outcomes 𝐻 1 = {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 } players 2 and 3 identify a combination of strategies leading to ℎ 5 , which minimises the utility of the player 𝑖 = 1. The subgames {ℎ 5 }, {ℎ 6 } and {ℎ 7 , ℎ 8 } are all connected by label 𝑗 = 2 (cf. Fig. 3).

In order to prove formally these two arguments, we need a method that allows to analyse a game-graph when it is partitioned in sets separated by the same label. Such decomposition method is justified by the following lemma. Lemma 5.2 (Decomposition). Let us consider a game in this graph form ⟨𝐻, 𝐼, 𝑢⟩, a player 𝑖 ∈ I, a set of possible deviations 𝐻 𝑖 = {ℎ ′ ∈ 𝐻 \ {ℎ}, 𝐼 (ℎ, ℎ ′ ) = 𝑖} and one of its partition {𝐻 𝑘 𝑖 } 𝑘 ∈𝐾 such that for every 𝑘 ′ , 𝑘 ′′ ∈ 𝐾 and for every pair of outcomes ℎ 𝑘 ′ ∈ 𝐻 The set of possible deviations 𝐻 𝑖 is the union of outcomes of the subgames separated from the tagged ℎ by player 𝑖. Given two elements ℎ ′ , ℎ ′′ belonging to two of these different subgames, we have that 𝐼 (ℎ ′ , ℎ ′′ ) = 𝑖. Therefore we apply Lemma 5.2 to compute the thresholds on every subgame: the maximum value of utility of these is the threshold for 𝐻 𝑖 .

Within a subgame Γ different players act. Let us note that at the root ℎ 0 ∈ 𝐻 ′ the subgame can be further split in as many subgames Γ 𝑘 as the actions available in A (ℎ 0 ) for 𝑗 = 𝑃 (ℎ 0 ). Every two outcomes ℎ 𝑘 ′ , ℎ 𝑘 ′′ belonging to two different Γ 𝑘 ′ ≠ Γ 𝑘 ′′ have as label 𝐼 (ℎ 𝑘 ′ , ℎ 𝑘 ′′ ) = 𝑗. We can thus apply Lemma 5.2 and first compute the threshold on every subgame before maximising (if 𝑗 = 𝑖) or minimising (if 𝑗 ≠ 𝑖) the respective results for the function 𝑢 𝑖 . Recursively, we can thus split every subgame in smaller ones and compute the thresholds on them before obtaining the general threshold for Γ.

Recursive computation of subgame thresholds. Algorithm 5 adopts the same recursive structure of the backward induction (cf. Algorithm 1). In practice it computes the thresholds 𝜃 = (𝜃 𝑖 ) 𝑖 ∈ I at every node starting from the leaves. If the game is degenerate, i.e., it has only one element 𝐻 = 1, such element is the Nash equilibrium and it is also the unique threshold no matter whose player's utility is to be compared. In a generic game Algorithm 5 computes at each stage the thresholds {𝜃 𝑖 ∈ 𝐻 } 𝑖 ∈ I by picking for the player 𝑖 = 𝑃 (ℎ ′ ) acting at a node ℎ ′ ∈ 𝐻 ′ the thresholds at the following stage that maximises her utility, while for the other players 𝑗 ∈ I \ {𝑖} the one that minimise their utility.

Example. Let us identify such thresholds for the game of Fig. 1. The computations are shown in Fig. 6. Let us start from the bottom nodes on the third stage. Player 1 must choose between ℎ 1 and ℎ 2 . Following Algorithm 5, we identify the outcome with largest utility for player 1 (𝜃 1 = ℎ 2 , because ℎ 2 ≻ 1 ℎ 1 ) and the lowest utility for the other players (𝜃 2 = 𝜃 3 = ℎ 1 in both cases, since ℎ 1 ≺ 2 ℎ 1 and ℎ 1 ≺ 3 ℎ 2 ). Player 2 chooses between ℎ 3 and ℎ 4 , which are equivalent for her ℎ 3 ∼ 2 ℎ 4 , therefore 𝜃 2 = ℎ 3 = ℎ 4 (since both can be chosen, for clarity in Fig. 6 we write only 𝜃 2 = ℎ 4 ). For the other two players 1 and 3 it is necessary to minimise the utility: indeed, we have 𝜃 1 = 𝜃 3 = ℎ 4 , because ℎ 4 ≺ 1 ℎ 3 and ℎ 4 ≺ 3 ℎ 3 . Player 3 has to choose between the ℎ 7 and ℎ 8 . Maximising for the utility of player 3 and minimising for the other two players (ℎ 8 ≺ 1 ℎ 7 , ℎ 7 ≺ 2 ℎ 8 and ℎ 8 ≻ 3 ℎ 7 ), we obtain (𝜃 1 , 𝜃 2 , 𝜃 3 ) = (ℎ 8 , ℎ 7 , ℎ 8 ). Let us now compute the thresholds for the nodes at the second stage. Player 3 must choose between left and right, whose thresholds are respectively 𝜃 = (ℎ 2 , ℎ 1 , ℎ 1 ) and 𝜃 = (ℎ 4 , ℎ 4 , ℎ 4 ). We maximise for player 3 and thus have 𝜃 3 = ℎ 1 , because ℎ 1 ≻ 3 ℎ 4 , while we minimise for player 1 and 2, getting 𝜃 1 = arg min 𝑢 1 (•) (ℎ 2 , ℎ 4 ) = ℎ 2 and 𝜃 2 = arg min 𝑢 2 (•) (ℎ 1 , ℎ 4 ) = ℎ 1 . At the second stage player 2 has three actions available (left, centre, right). Left and centre actions lead to outcomes of the game ℎ 5 and ℎ 6 and thus we fix for them the thresholds 𝜃 = (ℎ 5 , ℎ 5 , ℎ 5 ) and 𝜃 = (ℎ 6 , ℎ 6 , ℎ 6 ). The thresholds to be compared are thus 𝜃 = (ℎ 5 , ℎ 5 , ℎ 5 ), 𝜃 = (ℎ 6 , ℎ 6 , ℎ 6 ) and 𝜃 = (ℎ 8 , ℎ 7 , ℎ 8 ). Let us maximise for the utility of player 2, getting 𝜃 2 = arg max 𝑢 2 (•) (ℎ 5 , ℎ 6 , ℎ 7 ) = ℎ 5 , and minimise for the utility of the other players 1 and 3, leading thus to 𝜃 1 = arg max 𝑢 1 (•) (ℎ 5 , ℎ 6 , ℎ 8 ) = ℎ 5 and 𝜃 3 = arg max 𝑢 3 (•) (ℎ 5 , ℎ 6 , ℎ 8 ) = ℎ 5 . Finally at the root player 1 has to choose between left and right actions, whose thresholds are (ℎ 2 , ℎ 1 , ℎ 1 ) and (ℎ 5 , ℎ 5 , ℎ 5 ). For player 1 we have ℎ 2 ≻ 1 ℎ 5 and thus 𝜃 1 = ℎ 2 (utility is maximised), while for players 2 and 3 we have 𝜃 2 = 𝜃 3 = ℎ 1 , since ℎ 5 ≻ 2 ℎ 1 and ℎ 5 ≻ 3 ℎ 1 .

Comparison between outcomes and respective thresholds. Once the thresholds are computed at each stage, a backward propagation argument let us determine the outcomes who are realisation of a Nash equilibrium. In order for an outcome to be a realisation of a Nash equilibrium, it should avoid unilateral deviations at every stage from the root to the leaf. The threshold at every stage is the lowest value a unilateral deviation can achieve in a subgame which is not explored. If an outcome does not meet a threshold at a certain stage, it means that the player acting at the stage has an incentive to deviate unilaterally. Now that the thresholds are computed, we can thus verify which outcomes meet all the thresholds at every stage. In fact, Algorithm 5 performs this control while computing the thresholds (cf. Fig. 6): we will discuss this approach later, for the moment we perform the analysis outcome by outcome. 

(h 2 , ℎ 1 , ℎ 1 ) (ℎ 2 , ℎ 1 , h 1 ) (h 2 , ℎ 1 , ℎ 1 ) ℎ 1 ℎ 2 (ℎ 4 , h 4 , ℎ 4 ) ℎ 3 ℎ 4 (ℎ 5 , h 5 , ℎ 5 ) ℎ 5 ℎ 6 (ℎ 8 , ℎ 7 , h 8 ) ℎ 7 ℎ 8 {ℎ 2 , ℎ 3 } {ℎ 2 , ℎ 3 } {ℎ 2 } ℎ 1 ℎ 2 {ℎ 3 , ℎ 4 } ℎ 3 ℎ 4 {ℎ 5 } ℎ 5 ℎ 6 {ℎ 8 } ℎ 7 ℎ 8
1 : ℎ 6 ≻ 1 ℎ 7 ≻ 1 ℎ 8 ≻ 1 ℎ 3 ≻ 1 ℎ 4 ≻ 1 ℎ 2 ≻ 1 ℎ 1 ≻ 1 ℎ 5 , 𝑢 2 : ℎ 5 ≻ 2 ℎ 8 ≻ 2 ℎ 7 ≻ 2 ℎ 6 ≻ 2 ℎ 2 ≻ 2 ℎ 3 ∼ 2 ℎ 4 ≻ 2 ℎ 1 and 𝑢 3 : ℎ 8 ≻ 3 ℎ 7 ≻ 3 ℎ 6 ≻ 3 ℎ 2 ≻ 3 ℎ 5 ≻ 3 ℎ 3 ≻ 3 ℎ 1 ≻ 3 ℎ 4 . Above: Thresholds 𝜃 𝑘 = (𝜃 𝑘 1 , 𝜃 𝑘 2 , 𝜃 𝑘 
3 ) at every node. Below: Nash Equilibria 𝑁 𝐸 𝑘 of every subgame Γ 𝑘 . thresholds (cf. Definition 5.1) allows to rewrite the problem as 𝑢 𝑖 (ℎ) ≥ 𝑢 𝑖 (𝜃 𝑖 ) for all 𝑖 ∈ I. Given any ℎ 𝑘 < ℎ the 𝑘-prefix of ℎ, 𝜃 𝑘 𝑖 the threshold of every subgame Γ 𝑘 not explored by player 𝑖 = 𝑃 (ℎ 𝑘 ), Algorithm 5 guarantees that 𝑢 𝑖 (ℎ) ≥ 𝑢 𝑖 (𝜃 𝑘 𝑖 ) for every ℎ 𝑘 < ℎ. Since 𝐻 𝑖 is the union of all subgames not explored by player 𝑖, Lemma 5.2 implies that the two conditions are equivalent. □ Complexity analysis. Differently from Algorithm 5, Algorithm 4 does not require to build the full game-tree to determine if an outcome is a realisation of a Nash equilibrium. It can be extremely efficient when the full enumeration is not required or when the sets of deviations {𝐻 𝑖 } 𝑖 ∈ I has low values of utility. Moreover, it is recommended when the game-tree is too large to be stored.

We have remarked before that when Algorithm 4 is used to iteratively compute every outcome of the Nash equilibria, it repeats the analysis of possibly the same sets of outcomes, and relies on the resolution of a problem which is NP-complete for a generic graph. On the the other hand, Algorithm 5 is more efficient, as it avoids every repetition and exploits the properties of the graph (cf. Lemma 3.5). Indeed, let us prove that Algorithm 5 is polynomial with respect to the size of the game, i.e., to the number of outcomes |𝐻 | of the game. The recursive structure of Algorithm 5 makes it a generalisation of the backward induction (cf. Algorithm 1). We characterise the complexity of Algorithm 5 using similar arguments already used for the backward induction [START_REF] Szymanik | Backward Induction is PTIME-complete[END_REF]. The result exploits the property that the intermediate histories |𝐻 ′ \ 𝐻 | are fewer than the outcomes |𝐻 | and that the number of operations at every recursion are proportional to the number of players.

Theorem 5.4. Given a game Γ = ⟨I, A, 𝐻 ′ , 𝐻, 𝑃, 𝑢⟩ and its root ℎ 0 = ∅ as input, Algorithm 5 is polynomial with respect to the size of the game |𝐻 |.

Proof. Algorithm 5 is called recursively for every history of the game ℎ ′ ∈ 𝐻 ′ , where it is an intermediate history ℎ ′ ∈ 𝐻 ′ \ 𝐻 or an outcome ℎ ∈ 𝐻 . The number of operations to be performed at every recursion is 𝑂 (𝑁 ), where 𝑁 is the number of players. The total number of operations to be performed is thus 𝑂 (𝑁 • |𝐻 ′ |). If the game is not degenerate, every player 𝑖 ∈ I can perform at least one action somewhere in the game, i.e., we suppose that every 𝑆 𝑖 ≠ ∅. 

CONCLUSIONS

In this paper we analysed Nash equilibria in extensive-form games with perfect information and perfect recall. The literature of the domain analyses the mathematical structure of the sets of strategies. Instead, we have focused on the set of possible outcomes decided by such strategies. We have observed that such sets can be deduced by comparing pairwise the outcomes of the game, we have introduced a new representation of extensive-form games as an undirected graph of their outcomes, which highlights a distinct property at the core of every couple of outcomes. This allowed us to introduce the first algorithm to determine whether an outcome is a realisation of a Nash equilibrium, generalising thus the results of [START_REF] Zappalà | Nouvelle modélisation des jeux extensifs basée sur des graphes[END_REF] for two-player extensive-form games. Adopting such algorithm in parallel it is possible to determine all the realisations of Nash equilibria. However, we introduced another recursive algorithm that performs such enumeration in polynomial time with respect to the size of the game and thus generalises the celebrated backward induction algorithm. We foresee the application of the new algorithms to the domain of games with more than two players, which has been almost unexplored in literature so far. The simplified notation of the graph form allows to better study those games whose outcomes belong to a space with a binary relation, e.g., timing games [START_REF] Zappalà | A timing game approach for the roll-out of new mobile technologies[END_REF]. In the future we plan to study ways to characterise subgame perfect equilibria directly on the graph of the game; such result could provide new algorithms that are not based on the principle of backward induction and thus can be parallelized. Finally, a further open problem raised by this work is whether it is possible to characterise the set of outcomes of a strategy in an extensive-form game with imperfect information. 
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 2 Fig. 2. Example of graph form. a) Game in extensive form. b) Game in graph form.
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 5 Fig. 5. Removing arcs from a induced graph. a) Induced graph ⟨𝐻 1 , 𝐸| ≠3 ⟩ b) Induced graph ⟨𝐻 1 , 𝐸| =1 ⟩.
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 6 Fig. 6. Application of Algorithm 5. Game in extensive form. Preferences of the players over the outcomes are respectively: 𝑢1 : ℎ 6 ≻ 1 ℎ 7 ≻ 1 ℎ 8 ≻ 1 ℎ 3 ≻ 1 ℎ 4 ≻ 1 ℎ 2 ≻ 1 ℎ 1 ≻ 1 ℎ 5 , 𝑢 2 : ℎ 5 ≻ 2 ℎ 8 ≻ 2 ℎ 7 ≻ 2 ℎ 6 ≻ 2 ℎ 2 ≻ 2

  Therefore we have that 𝑁 < |𝐻 ′ | (usually 𝑁 << |𝐻 ′ |). It is thus enough to prove that |𝐻 ′ | = 𝑂 (|𝐻 |). More specifically, for the intermediate histories 𝐻 ′ \ 𝐻 of the game-tree it holds |𝐻 ′ \ 𝐻 | < |𝐻 | so that |𝐻 ′ | < 2 • |𝐻 |. To show this let us define the function 𝑓 : 𝐻′ → N such that 𝑓 (ℎ ′ ) = 𝑎∈ A (ℎ ′ ) 𝑓 (ℎ ′ + (𝑎)) if ℎ ′ ∈ 𝐻 ′ \ 𝐻 and 𝑓 (ℎ ′ ) = 1 if ℎ ′ ∈ 𝐻 .The function 𝑓 counts for every history ℎ ′ the outcomes of the subgame Γ(ℎ ′ ) and thus 𝑓 (ℎ 0 ) = |𝐻 |. Let us then define the function 𝑔 :𝐻 ′ → N such that 𝑔(ℎ ′ ) = 1 + 𝑎∈ A (ℎ ′ ) 𝑔(ℎ ′ + (𝑎)) if ℎ ′ ∈ 𝐻 ′ \ 𝐻 and 𝑔(ℎ ′ ) = 1 if ℎ ′ ∈ 𝐻 .The function 𝑔 counts the intermediate histories for every subgame and thus 𝑔(ℎ 0 ) = |𝐻 ′ \ 𝐻 |. We prove now that 𝑓 (ℎ ′ ) > 𝑔(ℎ ′ ) for every ℎ ′ ∈ 𝐻 ′ . For an outcome ℎ ∈ 𝐻 it holds 𝑓 (ℎ) = 1 > 0 = 𝑔(ℎ). We proceed by induction. We suppose that for every other intermediate history ℎ ′ ∈ 𝐻 ′ \ 𝐻 and for every following node ℎ ′ + (𝑎) ∈ A it holds 𝑓 (ℎ ′ + (𝑎)) > 𝑔(ℎ ′ + (𝑎)). By induction, we have that𝑓 (ℎ ′ ) = 𝑎∈ A (ℎ ′ ) 𝑓 (ℎ ′ + (𝑎)) = 𝑎∈ A (ℎ ′ ) (𝑓 (ℎ ′ + (𝑎)) -1) + |A (ℎ ′ )| ≥ 𝑎∈ A (ℎ ′ ) 𝑔(ℎ ′ + (𝑎)) + |A (ℎ ′ )| ≥ 𝑔(ℎ ′ ) + |A (ℎ ′ )|.Since the number of actions available is always |A (ℎ ′ )| > 1 we have that 𝑓 (ℎ ′ ) > 𝑔(ℎ ′ ) for every ℎ ′ ∈ 𝐻 ′ . Therefore |𝐻 | = 𝑓 (ℎ 0 ) > 𝑔(ℎ 0 ) = |𝐻 ′ \ 𝐻 |, hence the proof. □
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 7 Fig. 7. Equivalence of problems (𝑀𝐶) and (𝐸𝐶). a) Let us consider problem (𝑀𝐶) with 𝐻 = {ℎ 1 , ℎ 2 , ℎ 3 , ℎ 4 , ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 , ℎ 9 , ℎ 10 } and 𝑋 = {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 , ℎ 10 }. A maximal clique that solves (𝑀𝐶) is C = {ℎ 2 , ℎ 3 , ℎ 4 }; b) Let us consider problem (𝐸𝐶) with 𝑉 = {ℎ 1 , ℎ 2 , ℎ 3 , ℎ 4 } and 𝑋 = {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 , ℎ 10 }. A clique that solves (𝐸𝐶) is C ′ = {ℎ 2 , ℎ 3 }.

  are the outcomes of the possible unilateral deviations of player 𝑖; • Any set 𝐶 𝑗 ⊂ 𝐻 inducing a maximal clique over ⟨𝐻, 𝐸| ≠𝑗 ⟩ is shown to be a union of sets 𝐶 𝑗 = ∪ 𝑖 ∈ I\{ 𝑗 } 𝐶 𝑗 | 𝐻 𝑖 inducing maximal cliques over the respective subgraphs {⟨𝐻 𝑖 , 𝐸| ≠𝑗 ⟩} 𝑖 ∈ I\{ 𝑗 } (cf. Lemma 4.1); the problem can be thus analysed on every subgraph ⟨𝐻 𝑖 , 𝐸| ≠𝑗 ⟩; • The problem of existence of multiple sets {𝐶 𝑗 | 𝐻 𝑖 ⊂ 𝐻 𝑖 } 𝑗 ∈ I\{𝑖 } inducing maximal cliques over the respective subgraphs {⟨𝐻 𝑖 , 𝐸|

≠𝑗 ⟩} 𝑗 ∈ I\{𝑖 } is proved to be equivalent to the problem of existence of a set C 𝑖 ⊂ 𝐻 𝑖 inducing a maximal clique over ⟨𝐻 𝑖 , 𝐸| =𝑖 ⟩ (cf. Lemma 4.2);

  𝑘 ′ 𝑖 and ℎ 𝑘 ′′ ∈ 𝐻 𝑘 ′′ 𝑖 with 𝑘 ′ ≠ 𝑘 ′′ it holds 𝐼 (ℎ 𝑘 , ℎ ′ 𝑘 ) = 𝑗 ∈ I. Let us consider the respective thresholds 𝜃 𝑖 ∈ 𝐻 𝑖 and {𝜃 𝑘 𝑖 ∈ 𝐻 𝑘 𝑖 } 𝑘 ∈𝐾 , then • if 𝑗 = 𝑖, 𝜃 𝑖 ∈ arg max 𝑘 ∈𝐾 𝑢 𝑖 (𝜃 𝑘 𝑖 ); • if 𝑗 ≠ 𝑖, 𝜃 𝑖 ∈ arg min 𝑘 ∈𝐾 𝑢 𝑖 (𝜃 𝑘 𝑖 ). Proof. Let us consider the case 𝑗 = 𝑖. The proof is based on the fact that every clique on 𝐻 𝑖 \ 𝑋 𝑖 is a union of cliques over 𝐻 𝑘 𝑖 \ 𝑋 𝑘 𝑖 . It can be thus be proved that if we fix ℎ ∈ 𝐻 \ {𝐻 𝑖 } such that 𝑢 𝑖 (ℎ) = max 𝑘 ∈𝐾 𝑢 𝑖 (𝜃 𝑘 𝑖 ) the Algorithm 3 with input ⟨𝐻 𝑖 , 𝐸| ≠𝑖 , 𝑋 𝑖 ⟩, where 𝑋 𝑖 = {ℎ ′ ∈ 𝐻 𝑖 , 𝑢 𝑖 (ℎ) < 𝑢 𝑖 (ℎ ′ )} always admits solution. On the other hand, if we fix ℎ ∈ 𝐻 \ {𝐻 𝑖 } such that there is 𝜃 ′ ∈ 𝐻 𝑖 with 𝑢 𝑖 (ℎ) ≤ 𝑢 𝑖 (𝜃 ′ ) < max 𝑘 ∈𝐾 𝑢 𝑖 (𝜃 𝑘 𝑖 ) the Algorithm 3 does not admit solution, because there is at least one element in 𝑋 𝑘 𝑖 for some 𝑘 ∈ 𝐾 that is not excluded by the clique induced on 𝐻 𝑖 . Let us consider the case 𝑗 ≠ 𝑖. The argument of the proof is analogous. We observe that the sets {𝐻 𝑘 𝑖 } 𝑘 ∈𝐾 are disconnected within ⟨𝐻 𝑖 , 𝐸| =𝑖 ⟩. Therefore for any set 𝐶 ⊂ 𝐻 𝑖 \ 𝑋 𝑖 inducing a clique on 𝐻 𝑖 there is 𝑘 ∈ 𝐾 and 𝐶 𝑘 ⊂ 𝐻 𝑘 𝑖 \ 𝑋 𝑘 𝑖 such that 𝐶 = 𝐶 𝑘 . The thresholds 𝜃 𝑖 is computed on the same clique giving solution to the lowest of the {𝜃 𝑘 𝑖 } 𝑘 ∈𝐾 . □

For sake of clarity, the definitions of the problem of the excluding maximal clique and the problem of the excluding clique[Zappalà et al., 

2023] are presented in the Appendix A.

ALGORITHM 5: (EA) Enumeration Algorithm

Input: A game Γ = ⟨I, A, 𝐻 ′ , 𝐻, 𝑃, 𝑢⟩ and its root ℎ 0 = ∅ ∈ 𝐻 ′ . Output: ⟨𝑁 𝐸, ⟨𝜃 𝑖 ⟩ 𝑖 ∈ I ⟩, i.e. the set of outcomes which are realisations of all Nash equilibria 𝑁 𝐸 ⊂ 𝐻 and the thresholds ⟨𝜃 𝑖 ⟩ 𝑖 ∈ I for every player. ⟨𝑁 𝐸, ⟨𝜃 𝑖 ⟩ 𝑖 ∈ I ⟩ ← ∅ ;

// Initialising the output if 𝐻 = 1 then 𝑁 𝐸 = 𝐻 ; // degenerate game-tree (leaf) Example. Let us start from ℎ 1 : starting from the bottom to the root the thresholds are 𝜃 1 = ℎ 2 (player 1 on the third stage), 𝜃 3 = ℎ 1 (player 3 on the second stage) and 𝜃 1 = ℎ 2 (player 1 at the root). The thresholds are highlighted in Fig. 6. The outcome ℎ 1 does not meet two thresholds, indeed

Therefore it is not the realisation of a Nash equilibrium. On the other hand, outcome ℎ 2 has the same thresholds and it does meet them all:

Therefore it is the realisation of a Nash equilibrium; indeed, we verified before (cf. Fig. 1b) that it is the outcome of the subgame perfect equilibrium. The outcomes ℎ 3 and ℎ 4 have the following thresholds 𝜃 2 = ℎ 4 , 𝜃 3 = ℎ 1 and 𝜃 1 = ℎ 2 . Outcome ℎ 3 meets all the thresholds:

It is thus the realisation of a Nash equilibrium. Outcome ℎ 4 fails to meet threshold ℎ 4 ≺ 3 𝜃 3 = ℎ 1 , and therefore it is not a realisation of a Nash equilibrium. Outcome ℎ 5 and ℎ 6 have two thresholds 𝜃 2 = ℎ 5 and 𝜃 1 = ℎ 2 . Outcome ℎ 6 fails to meet the first one, ℎ 6 ≺ 2 𝜃 2 = ℎ 5 , while outcome ℎ 5 fails to meet the second one, ℎ 5 ≺ 1 𝜃 1 = ℎ 2 . Finally outcome ℎ 7 and ℎ 8 have three thresholds: 𝜃 3 = ℎ 8 , 𝜃 2 = ℎ 5 and 𝜃 1 = ℎ 2 . Both fail to meet ℎ 7 ≺ 2 ℎ 8 ≺ 2 𝜃 2 = ℎ 5 . Therefore none of them is a realisation of Nash equilibria.

In Fig. 6 we observe that Algorithm 5 verifies if an outcome meets a thresholds right after computing them. Those potential outcomes of Nash equilibria 𝑁 𝐸 𝑘 that met all the thresholds in subgame Γ 𝑘 are tested on the upper stage of the game, recursively up to the root. Theorem 5.3. Given a game Γ = ⟨I, A, 𝐻 ′ , 𝐻, 𝑃, 𝑢⟩ and its root ℎ 0 = ∅ ∈ 𝐻 ′ as input, Algorithm 5 provides all the possible realisations of a Nash equilibrium of the game.

Proof. Let us consider a tagged outcome ℎ ∈ 𝐻 and the sets

3 shows that ℎ is the realisation of a Nash equilibrium if and only if there exists clique 𝐶 𝑖 ⊂ 𝑉 𝑖 on every graph ⟨𝐻 𝑖 , 𝐸| =𝑖 ⟩. The definitions of

A EXCLUDING CLIQUES

In this section we present the problems of the maximal excluding clique (cf. Algorithm 2) and of the excluding clique (cf. Algorithm 3) and the results obtained by [START_REF] Zappalà | Nouvelle modélisation des jeux extensifs basée sur des graphes[END_REF].

Let us consider the graph ⟨𝐻, 𝐸⟩ of Fig. 7 and a set 𝑋 ⊂ 𝐻 . The problem of the maximal excluding clique is to determine whether there is a set C that includes no elements of 𝑋 and induces a maximal clique in the graph. The problem of the excluding clique is instead to determine whether there is a set C ′ such that for all the elements in 𝑋 there is at least one in C ′ not connected to it. For instance, in the example of Fig. 7b the clique C ′ = {ℎ 2 , ℎ 3 } is an excluding clique for {ℎ 5 , ℎ 6 , ℎ 7 , ℎ 8 , ℎ 10 }. Indeed, ℎ 5 and ℎ 8 are not connected to either {ℎ 2 , ℎ 3 }; ℎ 6 is not connected to ℎ 3 , while ℎ 7 and ℎ 8 are not connected to ℎ 2 .

Given the partition 𝐻 = 𝑉 ∪ 𝑋 and the graph ⟨𝑉 ∪ 𝑋, 𝐸⟩ a linear formulation of the problem of the excluding clique with input ⟨𝑉 , 𝑋, 𝐸⟩ is:

An excluding clique exists in the graph if and only if the above system provides a solution. The two following results hold [START_REF] Zappalà | Nouvelle modélisation des jeux extensifs basée sur des graphes[END_REF].

Theorem A.1. The problem of the maximal excluding clique and the problem of the maximal clique are equivalent.

Theorem A.2. In a generic graph the problem of the maximal clique is NP-complete.